
  

  
Abstract—Wireless orthogonal frequency division multiplexing 

(OFDM) systems need accurate channel estimation in order to 
compensate for the distortions caused by propagation through 
the dispersive channel. This work compares two fundamentally 
different pilot-assisted channel estimation algorithms: the 
maximum likelihood and the linear minimum mean squared 
error criteria based. Both performance and computational 
complexity are analysed to establish a feasible solution. 
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I. INTRODUCTION 

Orthogonal frequency division multiplexing (OFDM) 
technology has become increasingly popular nowadays. 
Contemporary wireless OFDM systems offer high 
transmission rates due to the use of spectrally efficient 
quadrature amplitude modulation (QAM). Coherent 
demodulation of the QAM signals requires explicit knowledge 
of the channel response, in order to minimise the probability 
of detection error [5]. Thus accurate channel estimation is of 
crucial importance to keep system performance at a proper 
level.     

In most application scenarios of the wireless OFDM 
systems, the propagation channel can be assumed slow fading, 
which exhibits strong frequency correlation (within one 
OFDM symbol) and time correlation (across several symbols) 
properties. Priority should be addressed to the accurate 
frequency-domain estimation performed on the interval of one 
OFDM symbol as it gives better performance for a given 
complexity than the approaches exploiting long-term time 
correlation of the channel. Derivation of such a scheme is 
presented in [3], where it is referred to as the block-oriented 
linear minimum mean squared error (LMMSE) estimator. The 
advantage of the LMMSE method is that it belongs to the so-
called non-parametric channel estimation techniques, which 
do not rely on a specific channel model. 

Another approach in the OFDM channel estimation deals 
with parametric channel models. In [2] frequency correlation 
of the channel is expressed by the finite multipath delay 
spread. This property allows using deterministic model, 
parameterised by the channel impulse response, to derive 

maximum likelihood (ML) estimator. In [1] an alternative 
decision-directed implementation of the ML estimation 
algorithm is proposed. Being based on the same idea, it is free 
of some shortcomings of the previous scheme, namely a 
bound on the number of training subcarriers.  

In this paper, we present a comparative analysis of the two 
fundamentally different low-complexity channel estimation 
techniques, which can be used in the wireless OFDM systems 
– low-rank LMMSE and ML. The objective is to examine a 
number of aspects: design limitations, complexity-
performance comparison, robustness to changes in channel 
statistics, etc. The rest of the work is organised as follows. In 
Section II OFDM system model is described. Section III 
introduces the channel estimation algorithms. The complexity 
of these algorithms is analysed in Section IV. Section V 
contains performance evaluation results obtained by means of 
simulations. This is followed by conclusions in Section VI.  
 

II. OFDM SYSTEM MODEL  

In the given work a single-input-single-output discrete-time 
baseband OFDM model is considered. It includes transmitter, 
receiver and equivalent bandlimited channel model (Fig. 1). 
The transmitter and the receiver are assumed to have ideal 
timing and frequency synchronisation. 
 

 
Fig. 1.  Baseband pilot-assisted OFDM system 

 
In the transmitter, serial stream of (coded) data bits is 

divided into N parallel binary streams, each of which passes 
through a linear modulation scheme. The ith OFDM symbol is 
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formed as the result of the inverse discrete Fourier transform 
(IDFT), applied to N parallel complex-valued modulation 
subsymbols 1,...,0),( −= NniX n . The resultant waveform 
is converted to a serial sequence of samples. Before 
transmission each OFDM symbol is prepended with the cyclic 
prefix, which is a copy of the last portion of the OFDM 
symbol.  

In the considered scenario the channel is assumed to be 
slowly time-varying (or slow fading), i.e. the channel response 
is approximately constant during one OFDM symbol. 
However, if the channel is rapidly time-varying, typically in 
situations when the transmitter and the receiver are mobile 
relatively to each other or to the objects on the propagation 
path, the channel response undergoes strong changes on the 
interval of one OFDM symbol (fast fading), which lead to the 
loss of orthogonality between subcarriers and, as a 
consequence, severe signal distortions due to intercarrier 
interference (ICI). In [1] it is asserted that a time-varying 
channel can be well approximated by the time-invariant model 
during time interval T if  

D/01.0 fT ≤ ,  (1) 

where cvff /cD =  is the maximum Doppler frequency, fc is 
the RF carrier frequency, v is the speed of relative movement 
between the transmitter and the receiver, and c is the speed of 
light. Criterion (1) is usually satisfied for all fixed or slow-
moving high-rate wireless OFDM systems, operating in the 
band 2-11 GHz, as the duration of the OFDM symbol is much 
shorter than the coherence time of the radio channel.  

Assuming a multipath time-invariant channel, the length of 
the cyclic prefix Ncp can be selected big enough to 
accommodate finite channel impulse response 

Lmihm ,...,0),( = , where )(ihm  could be modelled as the 
i.i.d. zero-mean complex Gaussian variables, with Rayleigh 
distribution of magnitudes and uniform distribution of phases, 
and the maximum sample-normalised delay spread L ≤ Ncp. 
Thus, the intersymbol interference (ISI) between consecutive 
OFDM symbols will be eliminated. The unit-energy 
normalised power delay profile of the channel is typically 
assumed to be exponentially decaying, i.e.  
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where the exponential factor 00 >α  is determined from the 

sample-normalised root-mean-squared delay spread RMSτ  
solving numerically the nonlinear algebraic equation 
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At the receiver side, after removing cyclic prefix and 
applying DFT to the ith OFDM symbol we get a vector of 
received data subsymbols [5]: 

[ ] )()()()()()( ][10 iiiiYiYi D
T

N NHXY +== −� ,  (4) 

where )(][ iDX  denotes a diagonal matrix with data symbols 

1,...,0),( −= NniX n , [ ]T
N iHiHi )()()( 10 −= �H  is the 

DFT of the channel impulse response 1,...,0),( −= Nmihm , 

and [ ]TN iNiNi )()()( 10 −= �N  are the DFT-transformed 
white noise variables. 

Before the parallel set of the received complex subsymbols 

nY  can be demodulated, it is necessary to correct signal 

distortions caused by passing through the channel. As OFDM 
systems work by resolving the frequency domain, a simple 
block-oriented one-tap equaliser can be used. It divides the 
post-DFT received signal by the estimate of the channel 
frequency response (hereafter OFDM symbol index i is 
omitted for clarity, as the processing is done on a symbol-by-
symbol basis, without considering correlation with the 
neighbouring symbols): 

nnn HYX ˆ/ˆ = .  (5) 

Channel estimates nĤ  can be obtained with the help of 
pilot-symbol assisted modulation (PSAM). This method relies 
on the transmission of the known training sequence on a small 
fraction of subcarriers, usually equally spaced over the whole 
band (Fig. 2).  
 

 
Fig. 2.  OFDM spectrum with equally spaced pilot subcarriers 

 

III. CHANNEL ESTIMATION 

A. Linear Interpolation of the LS Estimates 
In the simplest case the channel estimates are found by 

straightforward multiplying the received pilot subsymbols by 
the inverse of the reference pilot subsymbol values – the so-
called frequency-domain least squares (LS) estimator, which 
can be written as  
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where },...,{ 10 −Ppp  denotes the set of subcarriers, which are 
used to carry pilot subsymbols as shown in Fig. 2. 

After that, the channel estimates 1,...,0,ˆ LS −= PzH
zp , 

obtained at the pilot positions, are interpolated over the whole 
band. Linear interpolation represents an example of a solution 
with the least possible computational complexity, when only 
one multiplication by a real factor is needed to compute the 
channel estimate for each data subcarrier: 
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where 1,...,1 1 −−= + zz ppk , and const1 =−+ zz pp  
1,...,0 −=∀ Pz  for the case of the equally-spaced pilot 

subcarriers. 
It is reasonable that the main disadvantage of the linear-

interpolated LS estimator is its poor performance, as it takes 
into account neither statistical, nor structural properties of the 



  

channel. We include the LS scenario only for the purpose of 
illustrating the performance bound for the smallest 
complexity.  

B. LMMSE Estimator 
The linear minimum mean squared error (LMMSE) 

estimator, concerned in this paper, is designed to work in the 
frequency-domain only (one-dimensional). In particular, for 
the PSAM-based OFDM system, we describe an LMMSE 
pilot approximator that uses only P LS estimates as input 
values for the linear transformation: 

P
MMSE YQH =ˆ ,  (8) 

where the PN × -size weighting matrix Q is selected in order 
to minimise MSE between the channel frequency response 
estimate MMSEĤ  and the assumed channel frequency response 
model H  (described in terms of the second-order statistics):  
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where C is the NP × -size selection matrix with the elements 
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C  that is needed to extract channel 

frequency response samples corresponding to the pilot 
subcarriers, and NCNP =  denotes the noise affecting the 

received pilot subsymbols PY . 

One can determine the optimal weighting matrix Q by 
minimising (9) with respect to Q. Hence substitution of the 
corresponding result into (8) yields: 
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where }{ HE HHR =  is the autocorrelation matrix of the 
channel frequency response; I  is the PP × -size identity 
matrix; and SNR represents the signal-to-noise power ratio at 
the pilot subcarriers. Equation (10) is applicable to the case 
when pilot subsymbols transmitted on different subcarriers 
have equal constant power, i.e. 22 |||| pp XX

z
= . 

The LMMSE estimator (10) uses a priori knowledge of the 
signal-to-noise ratio and the channel autocorrelation matrix R, 
and is optimal when the statistical properties of the channel 
are known. Here the SNR value can be predefined: higher 
SNR ratios are preferable to obtain more accurate estimates. 
The robust estimator design necessitates account for the worst 
correlation of the multipath channel, namely when the channel 
power-delay profile is uniform. Under such an assumption the 
elements of the channel correlation matrix are expressed as:  
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Straightforward product with the weighting matrix Q in the 
expression (10) involves NP complex multiplications that may 
represent a considerable computational load if P is large. In 
order to reduce it, [3] proposes to apply an optimal rank 

reduction for the matrix [ ] 1
][

1
1
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which is based on the singular value decomposition (SVD). 
This lets Q to be written as  

HV�UQ = ,  (12) 
where �  is the PN × -size diagonal matrix containing the 
singular values 110 ... −≥≥≥ Pλλλ , U and V are unitary 
matrices of the sizes NN ×  and PP ×  correspondingly, 
whose columns are the singular vectors. Interpreting �  as a 
descending set of variances (powers) of the linear transform 
coefficients, one can exclude all but the r largest singular 
values 10 ... −≥≥ rλλ , i.e. �  can be decomposed as 

PN ×

≈
00
0�

�
r , where r�  is the rr × -size diagonal matrix 

with elements 10 ... −≥≥ rλλ . Thus, the rank of the matrix Q is 
reduced from P to r ( Pr ≤ ). In practice setting 

∆+=∆+= cpNLr , where ∆  is selected according to Fig. 3, 

ensures accurate low-rank approximation without the error 
floor effect due to ignoring coefficients with smaller 
magnitudes ( 1... −≥≥ Pr λλ ), and further increase of r does not 
give noticeable performance improvement as the remaining 
coefficient magnitudes are very close to zero. Dependence in 
Fig. 3 is obtained experimentally and describes an optimal ∆  
value choice for a given target SNR to achieve necessary 
precision level of the low-rank approximation. For example, 
in order to obtain approximated estimates with the relative 
error of MSE not exceeding 1% in respect to the full-rank 
LMMSE scheme ∆  must be no less than 5 for target SNR ≤ 
40 dB. There is, however, a restriction that for a realisable 
estimator construction ∆+= cpNr , where 1≥∆ , must not 

exceed the number of pilot subcarriers P [4].   
 

 
Fig. 3.  Selection of ∆ based on a target SNR 

 
Notation (10) can be rewritten [7] as a combination of the 

orthogonal singular vectors ><= i
i Uu  and ><= i

i Vv  (where 
><.(.)  denotes a column of the matrix with the given index), 

then 
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where iiuλ  is the scalar-vector product, and pYv ,*
i  is the 



  

inner Euclidean product of the two vectors. Note that the 
vectors iiuλ  and vi are pre-computed at the design stage from 

SVD of Q, based on the preset target SNR and the channel 
correlation matrix, and stay fixed during the estimator’s 
operation. The functional diagram of the low-rank pilot-
assisted LMMSE channel estimator (13) is depicted in Fig. 4. 
One can see that the received pilot subsymbols are projected 
onto a (smaller) subspace spanned by the vectors vi

*, where 
estimation is performed by the singular value weighting. The 
final channel estimates are then found by linear combination 
of the basis vectors ui. 
 

 
Fig. 4.  Block diagram of the reduced-rank PSAM-driven LMMSE channel 

estimator 
 

C. ML Estimator 
An alternative in the channel estimator choice is the 

maximum likelihood (ML) criterion based approach [1]. The 
main idea is to obtain an estimate of the channel impulse 

response [ ]T
Lhh �0=h  that minimises the Euclidean 

distance function  
( ) ( ) =−−= PPPPPP HXYHXYh ][][)(d D

H
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where C has been defined in the previous subsection, and F is 
the NN × -size Fourier matrix with the elements 

)2jexp(, NnmF nm π−= . As the assumed channel impulse 

response model is constrained by only L+1 components, 
vector h of the size 1)1( ×+L  has to be zero-padded up to the 

size 1×N  before DFT of h can be taken to yield the channel 
transfer function H. For that reason the )1( +× LN -size 

padding matrix B is used having the concatenated structure of 
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The ML estimation algorithm exploits the deterministic 
property of the limitedness of the channel impulse response, 
when the largest sample-normalised delay spread L is assumed 
to be less or equal to the length of the cyclic prefix Ncp, i.e. 

cpNL ≤ . This structural feature is closely linked with the 

frequency correlation of the channel, and if known precisely 
allows to construct an optimal estimator without any other 
knowledge of the channel [2]. 

Performing minimisation of (14) with respect to h leads to 
the following expression of the algorithm’s output: 
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where the number of pilot subcarriers P is required to be no 
less than the channel impulse response length Ncp+1 for the 

matrix ( ) 1

][][

−
= BFCXXCFBW PP D

H
D

HHH  to be invertible. 

A flow chart visualizing the described ML algorithm is 
shown in Fig. 5. The overall algorithm procedure represents a 
translation from the frequency domain to the time-domain and 
back using a Discrete Fourier Transform (DFT/IDFT) set. The 
actual estimation is performed in the time domain, where the 

number of parameters (
cp

ˆ,...,ˆ
0 Nhh ) is substantially smaller 

than in the frequency domain ( 10
ˆ,...,ˆ

−NHH ). This comes to a 

product in (15) with the weighting matrix HBWB , where the 

inverse term W has a small dimension and can be pre-
calculated and stored as a set of the weight coefficients. 
 

 
Fig. 5.  Block diagram of the DFT-based ML estimator 

 

IV. ALGORITHM COMPLEXITY 

In this section the above channel estimation algorithms are 
analysed from the standpoint of computational complexity, 
which is traditionally expressed as a number of complex 
multiplications (CMs) required to obtain an estimate of the 
channel transfer function on the interval of one OFDM 
symbol.  

A. Low-rank LMMSE Estimator 
The form of the estimator given in (13) involves P CMs to 

compute the inner product pYv ,*
i  for each vector iv . The 

resultant value is multiplied with the corresponding vector 

iiuλ , representing )( PN −  CMs needed to obtain estimates 
for the )( PN −  subcarriers transmitting data. As the final 
estimates are computed by a sum of r vectors, the total number 
of CMs per OFDM symbol becomes rNPPNr =+− )( . 



  

Assuming that the rank of the LMMSE approximator is equal 
to ∆+=∆+= cpNLr , where 5=∆ , the complexity is 

expressed as NN )5( cp +  CMs per symbol.  

B. ML Estimator 
The time-frequency interpretation based on the pair of the 

fast Fourier transforms significantly diminishes complexity of 
the ML estimation algorithm. The conventional radix-4 
implementation of the FFT/IFFT, which forms the base of 
most contemporary OFDM systems and requires 
approximately )1(log43 4 −NN  CMs, can be efficiently used 

for the translation of the P input values *
zz pp XY , zero-padded 

up to N, to the time domain and converting back to the 
frequency domain at the final processing stage (Fig. 5). In a 
general case of non-uniformly spaced pilot subcarriers, a 
product of an IFFT-resultant complex vector with the 
hermitean positive-definite weighting matrix W having real 
elements on the main diagonal requires )2/1)(1( cpcp ++ NN  

CMs. For an equally spaced pilot arrangement W becomes a 
diagonal matrix, so that computational load is reduced to only 

2/)1( cp +N  CMs. Thus, the total CM amount of the ML 

estimator based on the conventional radix-4 FFT engines is 
calculated as PNNNN ++++− )2/1)(1()1(log23 cpcp4  for 

the case of non-uniformly distributed subcarriers, and as 
PNNN +++− 2/)1()1(log23 cp4  for the uniform pilot 

pattern. In [2] it is also reported that complexity can be 
lowered if using comb-optimised inverse FFT engine for the 
uniform pilot arrangement. It needs only about 

2/)1()1(log4/ cpcp2 +−++ NNN  CMs and represents a large 

gain for the big number of subcarriers N.  
The graphs illustrating complexity of the estimators are 

shown in Fig. 6. The last term P in the total CM number 
expressions for the ML algorithm is set equal to the minimum 
allowed value of 1cp += NP . Indeed, its contribution is 

negligible as the number of pilots is several orders of the 
magnitude smaller than the total number of CMs required by 
the estimator. Therefore varying the number of pilot 
subcarriers does not substantially affect the computational 
complexity. 

One can see that the FFT-based ML estimation has lower 
complexity than the low-rank LMMSE scheme. The increase 
of the length of the cyclic prefix, required to accommodate ISI 
due to more extensive channel dispersion, in most cases leads 
to even greater (up to an order of magnitude) difference 
between the ML and the LMMSE estimator. Complexity of 
the ML estimator approaches the one of the low-rank LMMSE 
only at very large Ncp values close to the OFDM symbol 
length, but this case is not of practical interest, as the 
maximum delay spread typically constitutes only a small 
percent of the total symbol duration. It should be noted that 
for a big number of subcarriers in the OFDM spectrum with 
equally spaced pilots, the quantity of CMs required by the ML 

algorithm is almost independent of Ncp, unlike the LMMSE 
case, in which it grows proportionally to the length of the 
channel impulse response.  
 

 
Fig. 6.  Computational complexity of the channel estimation algorithms 

 

V. PERFORMANCE ANALYSIS 

In the following section we discuss the setup and 
performance evaluation of the simulated OFDM system, with 
different channel estimators.  

A. Performance over the Slow Fading Multipath Channel 
The simulation scenario consists of a PSAM-based OFDM 

system with 256 subcarriers and equal spacing of pilots (16 
and 32 pilot cases are considered). Subcarriers transmitting 
uncoded data are modulated by the Gray-mapped QAM-16. 
The power of pilot subcarriers is constant and equal to the 
maximum subsymbol power. The length of the cyclic prefix is 
7 samples. We choose the 8-tap bandlimited channel model 
( 7=L ), statistically characterised as a wide sense stationary 
uncorrelated scattering (WSSUS) process [6], with the 
exponentially decaying power-delay profile and the sample-
normalised delay spread equal to 2RMS =τ . The largest 
Doppler frequency is modelled according to the equation 

Tf /001.0D = , where T is the OFDM symbol duration 

(including cyclic prefix). The target 0/ NEb  ratio for the 
LMMSE estimator was set to 30 dB, and the design was made 
for the channel with the uniform power-delay profile with the 
maximum delay spread equal to 81cp =+N . The rank of the 

LMMSE estimator was reduced to 135cp =+= Nr .  

Simulation results are shown in Fig. 7. Note that here we 
use the energy-per-bit-to-noise-ratio metric, which is common 
for performance analysis of the digital communication 
systems, and is linked to SNR of the PSAM-driven OFDM 
transmissions by equation [6] 
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where s/1 TB =  is the bandwidth of the system, 

scp )( TNNT +=  is the OFDM symbol period, and k is the 

number of bits carried by one modulation symbol ( 4=k  for 
QAM-16). 

The ML estimator exhibits better performance than low-
rank LMMSE for both 16 and 32 pilot subcarriers. The 
difference between the 16-pilot ML estimator and the case 
when channel response is ideally known constitutes 1.5 dB on 
average. Note that the number of pilots does not substantially 
impact performance of the ML estimator. This feature plus 
lower complexity of the ML algorithm makes it attractive for 
the cases when OFDM system, driven by a small number of 
pilots, has to operate over dispersive channels with large 
maximum delay spreads. For the low-rank LMMSE algorithm, 
bigger amount of pilot subcarriers ( 32=P ) improves 
accuracy at higher 0b NE  values, so that BER converges 
with the ML solution.  
 

 
Fig. 7.  Performance of different channel estimation algorithms 

 

B. Effect of time variation of the channel 
In the previous simulation scenario channel was modelled 

as effectively slow fading with the Doppler spread 
Tf /001.0D = , i.e. by order of a magnitude smaller than 

required by (1) that makes its properties almost the same as of 
the time-invariant channel. An essential question is how 
channel estimators behave if time variation of the channel 
becomes stronger. To answer it we simulate OFDM system 
with the same setup over the same channel but with 

Tf /01.0D = . Performance evaluation results are presented in 
Fig. 8.  

Note that ICI, resultant from the loss of orthogonality of 
subcarriers due to their Doppler shifts, leads to irreducible 
error floor for all the considered channel estimation schemes. 
It is manifested by greater performance difference in 
comparison with the equaliser using ideal knowledge of the 
channel frequency response (e.g., approximately 2.7 dB at 

BER = 10-3 for the ML estimator). Subject to ICI distortion, 
estimates of the channel transfer function on the pilot 
subcarriers become more erroneous, so that performance 
difference of the low-rank LMMSE estimator with larger and 
smaller number of pilots diminishes.  
 

 
Fig. 8.  Performance over the channel with faster time variation 

 

VI. CONCLUSIONS 

In this work two fundamentally different OFDM channel 
estimation algorithms have been compared. One of them 
(LMMSE) takes into account statistical properties of the 
channel, while the second (ML) handles deterministic channel 
features. Both complexity and the number of parameters to be 
known by the ML algorithm are much less than in case of the 
low-rank LMMSE estimator. The ML estimator outperforms 
the low-rank LMMSE, and represents a good solution for 
OFDM systems operating in the slow fading conditions. In the 
channel with more intensive time variations additional ICI 
compensation methods should be used to keep performance at 
the acceptable level. 

ACKNOWLEDGMENT 

The authors would like to thank the University of Cape 
Town, Telkom SA, Siemens, the National Research 
Foundation (NRF) and the Department of Trade and Industry 
(DTI) for providing financial support for this research. 

REFERENCES 
[1] P. Chen, and H. Kobayashi, “Maximum Likelihood channel estimation 

and signal detection for OFDM systems”, in Proc. IEEE Intern. Conf. 
Commun. (ICC), pp. 1640-1645, April 2002.  

[2] L. Deneire, P. Vandenameele, L. van der Perre, B. Gyselinckx, M. 
Engels, “A low complexity ML channel estimator for OFDM 
communications, IEEE Trans. Commun., vol. 51, pp. 135-140, February 
2003.  

[3] O. Edfords, M. Sandell, J.-J. van de Beek, S. K. Wilson, and P. O. 
Börjesson, “OFDM channel estimation by singular value 
decomposition,” IEEE Trans. Commun., vol. 46, pp. 931–939, July 
1998.  



  

[4] E. Golovins, and N. Ventura, “Comparative Analysis of Low 
Complexity Channel Estimation Techniques for the Pilot-assisted 
Wireless OFDM Systems”, in Proc. Southern African Telecomm. 
Networks Applications Conf. (SATNAC), September 2006. 

[5] M. Engels, Wireless OFDM Systems: How to Make Them Work? 
IMEC, Belgium, 2002.  

[6] B. Sklar, Digital Communications – Fundamentals and Applications, 2nd 
ed. Upper Saddle River, NJ: Prentice Hall, 2001.  

[7] A. D. Poularikas, The Handbook of Formulas and Tables for Signal 
Processing. CRC Press LLC, 1999.  




