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Abstract— The focus of this paper is on presenting new results network. In seminal works [1], Gupta and Kumar showed that
on throughput capacity of wireless ad hoc networks with multi- the per-user rate asymptotically decreases to zero when the
cast traffic. In seminal works [1], Gupta and Kumar introduced — ,mher of nodes goes to infinity. It is then possible to achiev

a new line of research. It is about the asymptotic throughput d ity o 1 1 . lobal scheduli
capacity of dense wireless ad hoc networks as a function of & PEr noae capacity (\/W) » using global scheaduling

the number of nodes in the network. First, we present results and near straight route lines. ThHegn factor is present

on asymptotic behavior of a random ad hoc network based on because each node radio transmission range needs to icreas
simulations and analytical methods. Then, we present an upper zg logn in order for an ad hoc network to stay connected
bound on the throughput capacity of an ad hoc network with iy high probability as the number of nodes increases. In

multicast traffic using a hierarchical routing strategy. We start by .
generating the upper bound and the strategy gain for the 2-level [4], Grossglauser and Tse have shown that if the nodes of

hierarchical strategy. Then, we generalize the result for multi- the networks are moving quickly and independently, then a
level hierarchical routing by giving the recurrence expression constant rate per communication pair can be achieved by

of the multicast gain. Finally, we apply the basic result to a 3 single relay strategy. However, this strategy can induce

broadcast traffic in the network. large delays, particularly in the situation where nodesless

mobile. In [5], El gamal and al. analyze the capacity/delay

tradeoff by designing new communication strategies. In [6]
Wireless ad hoc networks consist of a collection of nodese authors discuss the limitations of the work in [1], by

which communicate between them through a wireless chanrai#ting a network information theoretic approach. The argtho

and cooperate to route the information from a source nodicuss how several co-operative strategies such asdrgade

to its destination. Formally, a Mobile Ad hoc NETworkcancellation, network coding etc. could be used to imprbee t

(MANET) is a system of wireless mobile nodes that dythroughput. However these tools cannot be exploited fultipw

namically self-organize in arbitrary and temporary networthe current technology, which relies on point-to-point icggl

topologies. The principle characteristics of a wirelesshad and treats all forms of interference as noise.

network are its dynamic topology, limited bandwidth, emgig In this paper, we develop performance bounds on the through-

constraints, security problems and absence of infrastreict put capacity of an ad hoc network with multicast traffic.

There has been recent interest in designing and analyzing

ad-hoc wireless networks since they could be an alternate Il. SYSTEM MODEL

wireless network architecture to the traditional hieresah A= Network Model

cellular architecture. The routing problem was the mostistii

I. INTRODUCTION

until recently and many algorithms have been developed [ZA,Let n_nodes be umform_ly and independently dlstnl_auted
in' a planar square of unit area. Two nodes can directly

3]. X X . )

[l . . c?mmumcate with each other if the distance between them
In other words, in ad hoc wireless networks the nodes ac . .

IS no more thanr(n), where r(n) is the signal range of

both as sources of information as well as relays for traff .
handling on behalf of other nodes through muItihopping.-Cor{]%ese nodes. The ad hoc network consists then of n niides

. - . i € [1..n], each node can be either a source, a destination or a
sequently, the simultaneous transmissions in ad hoc nk$wor
o oo . relay node. Furthermore, we assume that each source node has
limit its per-user rate. So it is imperative to understand th ~ "7 . . ; .

. S an infinite reservoir of packetsto send to its destination. We
fundamental capacity performance limits, in terms of tigtou il denote bvd.. the distance between nodes i and i. Finall
put and delay, of ad hoc wireless networks, with the goal i yeis ) Y
designing resource allocation (power control, medium sgce
routing...) algorithms that allow to reach these perforogan
limits. A new line of research has been initiated which is [f(n)] < clg(n)] and |g(n)| < '[f(n)]
the asymptotic throughput of dense wireless networks. 8t h@; constant: and¢’ and for a large enough

been established as a function of the number of nodes in thérhis implies that we neglect buffering problems

1f(n) = ©(g(n)) if and only if



each node can transmit Ht bits per second over a commonB. Node distribution properties

wireless channel. The nodes are uniformly and independently distributed in a

planar square of unit area
Lemma 3.1:For a suitable choice df(n), no cell is empty
We consider an ad hoc network withnodes which share with high probability as: becomes large.
a common wireless channel and can act as transmitters and Proof: For a network of unit area with nodes uniformly
receivers. Assume time is divided into equal slots. In eaémnd independently distributed agn) cells ofa(n) area, the
time slot, a node is scheduled to send data. A node canpegbability that a cell is empty is equal 1@ — a(n))". By
transmit and receive data simultaneously and a node can ou$yng the union bound, we have:
receive data from another node at the same time.
For the interference model, we adopt thhe protocol
model” presented in [1]. Suppose nodg transmits to a node = k(n)(1 —1/k(n))"
X;. Then this transmission is successfully received by node < k(n)exp (—n/k(n))

Xj it and only if: _ where we used the fact thatn) = 1/a(n) and(1—z) < e~
« The distance betweeN; and X; is no more tham(n),  Fo|lowing results on occupancy problems [7], we Bet) =
ie., Crogmr €2 1 and obtain:
[ Xi — X;[ <r(n)

B. Interference Model

Prlat least one cell is empt k(n)((1 — a(n))”

Pr[at least one cell is empt ¢

« For every other node simultaneously transmitting over the log(n)ne—1t
same channel which goes to zero as increases indefinitely. |
1Xe — X;| > (1+ A)r(n) By using simulations, the variation of the probability ofding

an empty cell as the number of nodes increases in the network
The quantityA > 0 models situations where a guard zone i§ represented in figure 2, assumimg= 1. It is indeed
specified by the protocol to prevent a neighboring node frog®@nfirmed that the lemma result holds.
transmitting on the same channel at the same time. It also
allows for imprecision in the achieved range of transmissio 0.05

0.045 1

[1l. TECHNICAL LEMMAS 004

In this section, we present results on the asymptotic behavi 0035
of random ad hoc netwoks. Based on simulations of the 0.03
network topology and the traffic model we show numerically 0025
the validity of some technical lemmas [1], [4], [5]. 0.02
0.015
A. Cell partitioning 001
As illustrated in figure 1, we assume the area of the network 0.005
to be partitioned in a set d@f regular cells. Each cell is a square % o0 1000 1500 2000 2500 3000 3500

of areaa = 1/k. The number of cells will in general depend

on n, hence we will usé:(n) to represent this parameter. ] y o
Fig. 2. Probability of finding an empty cell versus the numbenoflesn

Let b; be the number of nodes in the céll, 1 < j < k(n)
and B = {175 < by < 25755 }
NI AR . Lemma 3.2:For a suitable choice of k(n),
*'*;« s ] * * »: « llmn*}Oo PT[E] — 1
NP 1 : Proof: b; is a binomial random variable, with expectation
k&,)- Applying the Chernoff bounds we obtain:

n
) < exp—

8k(n)

DN | =

| . ., and n n
' Prib; > 2@} < exp (_f(l)m)

Fig. 1. Unit Square Network with cell partitiom, = 200 where f(z) = (1 + z)log(1 + z) — x.




Then from the simulations, we have:

1
Pr|s——< b; < 2n] =1- E[N=Number of lines crossing central céll] ~ a\/nlogn
2 k(n) k(n) 1)
Pr Kl" <b; < 2”) } wherea is a positive constani~ 0.1 by simulations). Let’s
2 k(n) k(n) consider the Binomial random variablés defined as follow:
1 n
=1—-Pr|b;<-——|U i D li )
( =5 (n)> X, = {1 |f|the S-D line L; cross center cell C
0 else
(022505
) ] _ " Let p = Pr[X; = 1] then, asN = ), X; is a Bernoulli
Using the union bound we obtain then: random variable:
n n E[N] = np (2)
PrlE]|>1— —— —f(1
r1E) = 1 (o (- ) + o (£ 7))
_n_ Var[N] = np(1 - p) ®)
>1-2 -
> exp ( Sk(n))

Similarly to the last lemma, we sét(n) = c—lo’g’n, c>1and Using the simulations results, we obtain:

obtain: 9 np = a/nlogn

] Using Tchebycheff inequality, we have
= lim Pr{E]=1

Pr(N > 2E[N]) = Pr (N — E[N] > E[N])

- < Pr(IN - E[N)? > E2[N))
C. Bound on the number of lines through a cell

o : . E [[N - E[N]]?]
Considering the uniform traffic model [1], each source S
chooses uniformly a destination from the rest of the nodes in v [N][ ]
ar

the network. In this model, the authors showed that the mean =
number of Source-Destination (S-D) lines passing through a E?[N]

F:ell isO(v/n logT.L). In this part, we aim to confirm the. analy_t—By using (2) and (3), we obtain:
ical result by using a numerical method based on simulations

for the network model considered in this paper. np(1l —p)
o " > < 2 4
Considering the ad hoc network of square area and partdlon]egr (V= 2E[N]) < np?
in k(n) = 5 cells as described before, we evaluate < 1 0 b |
numerically the number of lines passing through the central ~ ay/nlogn - asn becomes large

cell. In fact, we can remark intuitively that the number of o
S-D lines through the cell in the center of the network ared'®n, we showed that the number of source-destination lines

is more likely to be greater than the number of lines goirgPing through a cell in the network scales@gy/nlogn).
through another cell. By simulation of the uniform traffic in . .

the network, we can find the behavior of the average numjér The average neighbors number scaling law

of routes passing through the central cell with respect & th Similarly to the section before, we consider the network
number of nodes:. It is found [fig.3] that the ratio of the with » nodes uniformly and independently distributed in the
measured number of lines passing through the cell in theeceninit square. Following the result of Gupta and Kumar on the
and the expected one is constantiabecomes large: asymptotic connectivity of the network [8], we assume that
two node are connected if the( distance is smaller than the

o ] critical radius for connectivity® ,/1"% . Then the average

number of neighbors for each node(glogn) asn becomes

| large [1].

os ] In the figure 4, we represent the variation of the ratio of

0 ] the average number of neighbors for all the nodes and the

o ] expected onelogn. The simulations results show that the

o ] variation of this ratio is constant (around 3). Then, foliogy

the same probabilistic method used in the section (llI-C),

e e e we can achieve this numerical “proof” and confirm that the
average number of neighbors of the nodes in the random

Fig. 3. Measured divided by Expected network scales a®(logn).
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0s Fig. 5. Multicast Hierarchical Routing

Average number of neighbors devided by log(n)

0
1000 1500 2000 2500 3000
n: Number of nodes

Lemma 4.1:For the high density multicast case, there is,
with high probability, at least one destination in each wus
and on averagen/k destination nodes in each of them.

Proof: Let X* a random variable:

Fig. 4. Measured divided by Expected

IV. THE MULTICAST TRAFFIC
A. Motivation Xk _ {1 if the nodes is in the cellk

Although the model developed by Gupta and Kumar [1] 0 else
initiated the majority of research activities in this fiettigir While the destination nodes are uniformly and independently
model of point-to-point traffic presents limitations in sevdistributed, the probability that a nodeis in the clusterk
eral applications [9], [10]. Indeed, for voice communioa8 s 1/k. Then E[X}] = 1/k. We define the random variable
between two terminals, the model presented is adequaig, — ZZ’;lX{“ which represents the number of destination
However, we find situations where some nodes support meredes in the celk. Since{ X’ }" is a sequence of i.i.d random
traffic than others. Let us think of a sensor network whekgriables withE[X¥) = 1/k, using the law of large numbers,
various sensor nodes collect information and send them @ obtain with high probability:
a principal node which handles all information received. In

m
this case, the uniform model of point-to-point traffic beeasm My = 1 fo — 1 whenm — oo
limited. Moreover, in several applications such as thertrag m mi3 k
a mu_lt|cast traffic is in _effe_ct, where a source sends data tasgce p — o(m), thenlim,, .o ™ — oo. Finally, M; =
certain number of destination nodes. mo_, o 00
Multicast routing protocols are designed and deployed t n

involving communications between multiple users. In a Multcluster heads (the choice of the cluster head is not imp)rtan
cast session, one of several sources transmits the sam®daffyring the first level of the hierarchy routing.
multiple destinations [11], [12]. Multicast routing prafils are | emma 4.2:For the low density multicast case, only a

in charge of building optimal paths to reach all destination proportion &’ of the clusters are involved in the multicast
In this work, we develop performance bounds on the througfommunicationx’ = k — k(1 — .

put capacity of a network with multicast traffic. Proof: Let X; be a random variable defined us follow:

B. Routing Strategy 1 if the cluster! contains at least one destination
We adopt a hierarchical routing strategy. In fact, we cosid ! ~ )¢ else

a source node which sends the same datantdestination

nodes independently and randomly chosen. The unit square PriX,=1]=1— Pr[X, = 0]

is divided into k& square cells (convex clusters) of the same 1

area {/k). The convexity of the clusters insure that the traffic =1-(1- E)m

between the nodes in a cell remains inside the cell and doesn’

involve intermediate nodes from other clusters (cells).aAsT en, 1

first attempt we will consider a two-level hierarchical riogt EX]=1-(1- %)m

[fig.5]. The source sends the same data to the cluster heads in , & i
e ot If we defineY;, = > ;_; X, we obtain that the average number
each cell containing at least one of thedestinations. Then, k 1=1 D

each cluster head will route the packets to the destinations®f clusters where there is at least a destination node{i5]:

its cell. The advantage of this strategy is in the shared path k 1

gain of the multicast tree. Assuming the bandwidth is didide ElYi] =) E[X)]=k—k(1— "

among different levels, we identify two cases. On the onalhan =1

the high density multicast (large number of destinationas)d Thenk’ = k — k(1 — %)m [ ]

and on the other hand, the low density multicast (small numbe Consequently, in this case the source node sends data
of destination nodes). packets tok’ < k cluster heads.



V. CAPACITY OF AD HOC NETWORKS. DEFINITION AND A. The Cluster Traffic

SEMINAL WORK We suppose for the routing strategy that the unit square is
In this section, we present the seminal work of Gupta ar%jcliwded Intof: square Cll.JS.terS (celI;). If we nofethe average
. . . th length of a S-D pair in the unit square, we have to express
Kumar [1] and their results on the asymptotic capacity - p -
i e relation betweed. and L, the average path length of a
random wireless networks. .
S-D in the clusters. If we suppose that the clusters are the
o ) result of a reduction of the unit square to a smaller one of
A. Definition of Throughput Capacity 1/k area, we can translate the well known results of Gupta

If every node of the network can send with high probabilit"d Kumar to a smaller area network. On the other hand, the
at a rate of\ bits per second to its chosen destination, wWReCessary and sufficient condition of the network connigtiv
say that the throughpu is feasible [1]. We then define theln €ach cluster is that the transmission range for each rede i
throughput capacity by the maximum feasible throughput 7(n/k) = 1055%)@ [8], since we have in average/k nodes
with high probability (asymptotically approaching 1). in each cell.

Following [1], thethroughput capacityf a random wireless B. The Upper Bound

network is said to be of ordéd(f(n)) bits per second if there . i . )
exist two positive constantsand ¢’ < oo such that 1) Achievable traffic: Following the interference model

presented above, if we consider two simultaneous sucdessfu
transmissions from nod&’; to node X; and from nodeXy

nlirrgo Prob{A(n) = cf(n)is feasiblg =1, to nodeX;, we have:
lim inf Prob{\(n) = ¢ f(n) is feasibld < 1 dij = (1+ A)dy
im inf Pro {A(n) = f(n)is feasiblé < 1. dutdy > (14 A)dy
B. Uniform Traffic Result djp = (1+A)dij — du
Following Gupta and Kumar [1], we consider a uniform'jlnd similarly,
model, where t_he nodes do not move glur_ing tra_nsm?ssion. dy > (1+A)dw
The nqdes are mdepgndently uniformly o_llstrlbuted in th_ﬂe un dy+dy > (1+A)dy
area disc. They consider an extremely simple communication : -
model which assumes a uniform traffic pattern (i.e., source- djp = (1+A)dy —di;

destination pairs are chosen i.i.d). The destination f@heacqmpining the above two inequalities, we obtain
relaying node is its closest neighbors. The following resul

represent the Main Result 4 in [1] and yield upper and lower 2d; > (14 A)(dij + dpr) — dkl — d;j
bounds on the asymptotically feasible throughput: 4 > AN g vd
Theorem 5.1:There exist constantsand ¢’ such that = 2 (dij + dia)
. cR . .
lim Prob {A(n) = Jiloan fea&ble} =1, This result implies that if we place a disc around each receiv
niosn of radiusA/2 times the length of the hop, the discs must be
and disjoint for successful transmission under the Protocotieho
/R ) Since a node transmits at W bits per second, each bit transmis
lim_Prob {A(n) =R fea5|ble} =0 sion time is1/W seconds. During each bit transmission, the

total area covered by the discs surrounding the receivest mu
R is a parameter which depends on the attenuation model, tieeless than the total unit area. If we ndfén) the number

interferences threshold and the system bandwidth. of simultaneous transmissions in the network, we have:
Consequently, for the physical model where the nodes 2

are fixed, the throughput per source-destination pair is T(n)*m <2T(n)) <1

G(ﬁgn). Even if this result is not particulary encouraging

since the throughput goes to zero when the number of nodésen, we have at mosﬁ% bps that can be transmitted
increases, it represents a starting point for further asly by the network at any time instant.
2) Offered traffic: If every node creates traffic at raién),
VI. UPPER BOUNDS ON THEMULTICAST CAPACITY the aggregate created traffic bysource nodes iaA(n).
Each packet generated by a source must be sent ttes-

In this section, we derive the throughput capacity of an athations by multi-hop routing strategy. We must count the
hoc network with multicast traffic under a hierarchical ingt average number of hops needed to achieve the transmission to
strategy. We will analyze two cases: the high dense mutticake destinations. For the 2-level hierarchical routingitsiyy,
case and the low dense multicast. we have:



« Level 1: k paths to reach the cluster heads, so the sarmed the multicast gain of the routing strategy by:
packet must be transmitted at Ie% times, where m

L is the average distance between source and destination gr(n,m) = -~ oan (1)
nodes in the unit square. k+ 2\ Tog(n/k)

» Level 2 (cluster traffic):m/k paths on average to reach

the destinations in each cluster, so the same packet mg@f the low density case, the first traffic level would be
be transmitted at leasg L7 ) times, whereL, is the lower and we would have only’ clusters involved in the
k 1

average distance between source and destination nof@gimunication scheme. The multicast gain would be in this

in the cluster ofl /% area. Then, since we have the sam&?S€- m
traffic in all the & clusters, the total number of hops for g (n,m) = 1 (8)
the second level routing step is -~ _ _ K+ 5\ gty
« The total number of hops from a source to itsdesti-
nation under a 2-level hierarchical routingfig,(n,m): wherek’ =k — k(1 — )

m

L Ly
Hlm) = by Ry .
Finally, the offered traffic isuA(n)Hi(m, n). sl
3) The Upper Bound ExpressiorOffered traffic must be
less than achievable traffic, so: 25t nE10% melo
Cm(n) = mxnA(n) g 20}
4W m §
< 4 = 15f
— wA2%(r(n))? Hi(m,n) ) 3
Let us start by the evaluation of the number of hops: o1 ow Density Traffic:
d " . P \
sl
Hip(m,n) =k—— + mikk
r(n) o r(n/k) o - - =

L L r(n)
= — k —_
r(n) ( I r(n/k))
We simplify the quotien% by using the minimum values
of r(n) andr(n/k) which insure the connectivity in the entire
network and in each cluster:

k: number of clusters

Fig. 6. Multicast Gain for High and Low density Traffics

In figure 6, we show the variation of the multicast gain
as a function of the number of clusteksfor the case of

r(n)  [logn (n/k) high traffic density,gx(n,m), and for the low density traffic
r(n/k) n log(n/k) case,gr'(n,m). It appears that the hierarchical strategy with
clustering is more efficient for high density multicast fiaf
_ 1 logn than for the low one. In fact, the aggregate capacity is aBout
Vk \ log(n/k) times larger than the one obtained by a routing strategy evher

the same data packet is senttimes to them destinations.
B Moreover, when the number of destinations is low, we can find
L m logn more appropriate routing strategies [12], [13] using trebih
r(n) minimize the total number of hops to reach all the destimatio

So, we obtain:
Hy(m,n) = + k3 \/ log(n/k)
Replacing this expression dfy(n, m) in (4) yields:

C. Multi-level Hierarchical routing
4w 1 m

C(n) < A2 r(n)? L . oz n The strategy used above is a 2-level hierarchical routing,
r(n) (k+ eV W) we can also explore the benefits of using more hierarchical
AW m n levels in the routing strategy by dividing each clusterkin
< TA? Lm \/WV log n (3)  sub-clusters and so on. Let's consider a multi-level highigal
k3 V log(n/k) routing strategy. Then using induction, we can prove that th

From the definition it follows that the upper bound on the mumulticast gain of the strategy is as follows:
ticast throughput capacity with a 2-level hierarchical thogl

is given as: o 1 1
2-i ogn m ogn
gk1(n,m) = k2 — + — "
" ralm) =3 B ot * 7 \ g (o)

m n
Orn (77) =0 P L m logn V 10gn
k5 \/ log(n/k)

For anl-level hierarchical routing strategy,> 2.



High Density Multicast Traffic, n=1¢°, m=10° VII. CONCLUSION
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Following the different studies on the asymptotic perfor-

. mances of ad hoc networks, we present in this paper a new
| result on the multicast capacity of wireless ad hoc networks
ol By adopting a hierarchical routing strategy based on dlirge

I we found an upper bound on the throughput capacity for high
ol ] and low density multicast traffics. We furthermore compared
i the gain obtained with different hierarchical levels. Trang

N e variation with the number of clusters in the network would
help to conceive efficient multicast protocols.
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