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Abstract— OFDM/OQAM is a special type of multi-carrier
modulation that can be considered as an alternative to conven-
tional OFDM with cyclic prefix (CP) for transmission over multi-
path fading channels. Indeed, as it requires no guard interval,
it has the advantage of a theoretically higher spectral efficiency.
Furthermore if the pulse shape is well-localized in frequency,
the resulting OFDM/OQAM signal satisfies stringent spectrum
requirements. However, the classical channel estimation methods
used for OFDM cannot be directly applied to OFDM/OQAM.
In this paper we present an analysis of this problem and we
describe a method for “pseudo” perfect channel estimation in
OFDM/OQAM. Then we introduce two new realistic preamble-
based channel estimation methods. The performance results are
obtained by considering an IEEE 802.22 channel model with
OFDM/OQAM and the proposed channel estimation methods
are compared to the ones obtained with CP-OFDM.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is
an efficient Multi Carrier Modulation (MCM) to fight against
multi-path fading channels. However its robustness to multi-
path propagation effects comes from the insertion of a Guard
Interval (GI) and is therefore obtained at the price of a reduced
spectral efficiency. As furthermore the rectangular OFDM
symbols lead to a sin(x)/x frequency spectrum, several
alternatives have been researched to find better MCM schemes
w.r.t. the frequency and/or time-frequency localization criteria.

As suggested in [1]–[3], OFDM/OQAM is a MCM mod-
ulation scheme, which may be the appropriate alternative. In
OFDM/OQAM each subcarrier is modulated with a staggered
Offset Quadrature Amplitude Modulation (OQAM). The basic
concepts of OFDM/OQAM can be found in [4], [5]. But it is
more recently [1] that OFDM/OQAM has been presented as
a viable alternative to OFDM that could also be based on
fast Fourier transform algorithms. Compared to conventional
OFDM that transmits complex-valued symbols at a given
symbol rate, OFDM/OQAM transmits real-valued symbols at
twice this symbol rate and therefore has a similar spectral
efficiency. Furthermore, in practice, it may provide a higher
useful bit rate, since it operates without the addition of a
guard interval, together with a pulse shaping that can be
optimized according to given channel characteristics. How-
ever all the nice features of OFDM/OQAM come at the
price of a relaxation of the orthogonality conditions that
only hold in the real field. Consequently existing OFDM
channel estimation methods cannot be directly applied in
the case of OFDM/OQAM signals. Then, indeed a specific
problem of imaginary intrinsic interference has to be solved.

Solutions have already been proposed for preamble-based [6]
and scattered-based [7] channel estimation for OFDM/OQAM.
Our aim here is to propose two new approaches leading to a
reduced complexity. Furthermore, differently from [6], with
one of them there is no need of an a priori knowledge of the
pulse shaping function.

In section II, we give a short description of the continuous-
time OFDM/OQAM modulation. Then, in section III, we
provide an overview of the specific problem related to channel
estimation for the OQAM modulation. Section IV is devoted to
the presentation of the perfect channel estimation method for
OFDM/OQAM and of the proposed preamble-based realistic
estimation approaches. Finally, in section V, we compare in an
IEEE802.22 context, these different channel OFDM/OQAM
estimation algorithms to the ones obtained using a conven-
tional OFDM modulation with Cyclic Prefix (CP-OFDM).

II. THE OFDM/OQAM MODULATION

We can write the baseband equivalent of a continuous-time
OFDM/OQAM signal as follows [1]:

s(t) =
M−1∑
m=0

∑

n∈Z

am,n g(t− nτ0)ej2πmF0tejφm,n

︸ ︷︷ ︸
gm,n(t)

(1)

with M an even number of sub-carriers, F0 = 1/T0 =
1/2τ0 the subcarrier spacing, g the pulse shape and φm,n

an additional phase term. The transmitted symbols am,n are
real-valued. They are obtained from a 22K-QAM constellation,
taking the real and imaginary parts of these complex-valued
symbols of duration T0 = 2τ0, where τ0 denotes the time
offset between the two parts [1]–[3], [8].

Assuming a distortion-free channel, perfect reconstruction
of real symbols is obtained owing to the following real
orthogonality condition:

<{〈gm,n|gp,q〉} = <
{∫

gm,n(t)g∗p,q(t)dt

}
= δm,pδn,q,

(2)
where, δm,p = 1 if m = p and δm,p = 0 if m 6= p.
For concision purpose we set 〈g〉p,q

m,n = −j 〈gm,n|gp,q〉, with
〈gm,n|gp,q〉 a pure imaginary term for (m,n) 6= (p, q).

However in practice for transmission over a realistic chan-
nel, the orthogonality property is lost, leading to ISI (Inter
Symbol Interference) and ICI (Inter Carrier Interference). We
will show that if the prototype filter g has good localization
properties in time and frequency domains, a simple one tap



equalization process may be sufficient to restore the real
orthogonality. However, this equalization requires channel
estimates that are complex-valued. As the orthogonality is
limited to the real field a specific estimation procedure has
to be carried out. Recall that in practical OFDM systems the
complex orthogonality is insured thanks to the introduction of
a cyclic prefix (CP) of length ∆.

III. PROBLEM STATEMENT

Generally the CP-OFDM system is dimensioned in order to
get a flat channel characteristic leading to the possibility of a
simple zero forcing (ZF) equalization. Here we place ourselves
in a similar context for OFDM/OQAM, we also call OQAM
in short.

A. The channel model

The transmitted OFDM/OQAM signal is filtered by a
channel with impulse response denoted h(t, τ) and we also
consider the presence of an additive noise denoted by η(t).
Then the baseband version of the received signal can be written
as follows:

y(t) = (h ∗ s) (t) + η(t) (3)

where ∗ denotes the convolution operation.
Denoting by ywn(t) the channel output without any noise

component, and by ∆ the maximum delay spread of the
channel, we get:

ywn(t) =
∞∑

n=−∞

M−1∑
m=0

am,n

∫ ∆

0

h(t, τ)gm,n(t− τ) dτ. (4)

This expression can be expanded as follows:

ywn(t) =
∞∑

n=−∞

M−1∑
m=0

am,nejφm,ne2jπmF0t

×
∫ ∆

0

h(t, τ)g(t− τ − nτ0)e−2jπmF0τdτ.

Let denote by Tg the length of the prototype filter with Tg =
kT0 and k > 1. As an example for the IOTA prototype [1], k is
generally taken equal to 4. Then we assume that we have a flat
fading channel at each subcarrier, which means that, 1

Tg
is less

than the coherence bandwidth of the channel Bc ≈ 1
2∆ [9].

Therefore the prototype function has relatively low variations
in time over the interval [0,∆] that is, g(t − τ − nτ0) ≈
g(t− nτ0) for τ ∈ [0,∆]. Then we get:

ywn(t) =
∞∑

n=−∞

2N−1∑
m=0

am,ngm,n(t)H(c)
m (t),

with

H(c)
m (t) =

∫ ∆

0

h(t, τ)e−2jπmF0τdτ,

where H
(c)
m (t) represents the complex response of the channel

at instant t, if the channel is constant during the all duration

of the prototype then H
(c)
m (t) = H

(c)
m,n and we get:

y(t) =
∞∑

n=−∞

2N−1∑
m=0

am,ngm,n(t)H(c)
m,n + η(t)

If the channel is only constant on a short period of time,
e.g. during 2τ0, as assumed for CP-OFDM, or over 2τ0, this
last equality can be nevertheless approximately satisfied if the
prototype function has most of its energy concentrated in a
reduced time interval.

B. Demodulation and ZF equalisation
The demodulation of the received signal at the (m0, n0)

position, noise taken apart, provides a complex symbol given
by y

(c)
m0,n0 = 〈y|gm0,n0〉. After computations, we get the

following expression:

y(c)
m0,n0 = H(c)

m0,n0am0,n0

+j
X

(p,q)6=(0,0)

am0+p,n0+qH
(c)
m0+p,n0+q 〈g〉m0,n0

m0+p,n0+q

(5)

Let us first assume that the channel is ideal, that is h(t, τ) =
δ(t), i.e H

(c)
m,n = 1. In this particular case, (5) rewrite as:

y(c)
m0,n0 = am0,n0

+j
X

(p,q) 6=(0,0)

am0+p,n0+q 〈g〉m0,n0
m0+p,n0+q

Recall from (2) that, 〈g〉m0,n0
m0+p,n0+q is a pure real term, then

the estimate of the transmitted symbol is obtained by:

âm0,n0 = <
n

y(c)
m0,n0

o
= am0,n0 . (6)

Using similar principles for a realistic transmission conditions,
the one tap ZF equalized signal can be written as:

y
(c)
m0,n0

H
(c)
m0,n0

= am0,n0 + Im0,n0

(7)

where,

Im0,n0 = j
X

(p,q)6=(0,0)

am0+p,n0+q

H
(c)
m0+p,n0+q

H
(c)
m0,n0

〈g〉m0,n0
m0+p,n0+q

is a complex-valued term. Then the estimated symbol is given
by:

âm0,n0 = <
(

y
(c)
m0,n0

H
(c)
m0,n0

)
= am0,n0

−
X

(p,q) 6=(0,0)

am0+p,n0+q=
(

H
(c)
m0+p,n0+q

H
(c)
m0,n0

)
〈g〉m0,n0

m0+p,n0+q

= am0,n0 + <{Im0,n0}.

<{Im0,n0} represents the Inter-Symbol Interference (ISI)
between the successive real symbols. At this point, due to
ISI, it seems difficult to get an accurate estimation of am0,n0 .
However, we are going to show under a few approximations
that: <{Im0,n0} ≈ 0, leading to reliable estimation of am0,n0 .
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Fig. 1. Channel communication model for a perfect channel estimation with OQAM.

Let us define a neighborhood Ω∆m,∆n of a given point
(m0, n0) such that:
Ω∆m,∆n =

n
(p, q), |p| ≤ ∆m, |q| ≤ ∆n|H(c)

m0+p,n0+q ≈ H
(c)
m0,n0

o
,

and let us also set Ω∗∆m,∆n = Ω∆m,∆n − (0, 0).
At this step we have to notice that ∆n and ∆m are chosen
according to the coherence time (Tc) and bandwidth (Bc).
It is worth mentioning that when Bc (resp. Tc) decreases,
∆m (resp. ∆n) also decreases. For well-dimensioned real
systems, Bc encompasses a few sub-carriers (∆m ≥ 1) and
Tc is generally bigger than T0 (∆n ≥ 1). This allows us to
write (7) as:

y
(c)
m0,n0

H
(c)
m0,n0

= am0,n0

+ j
X

(p,q)∈Ω∗∆m,∆n

am0+p,n0+q 〈g〉m0,n0
m0+p,n0+q

+ j
X

(p,q)/∈Ω∆m,∆n

am0+p,n0+q

H
(c)
m0+p,n0+q

H
(c)
m0,n0

〈g〉m0,n0
m0+p,n0+q

(8)

Let us consider at first the case of a prototype function being
well localized in time and frequency. Then, with increasing
|p| and |q|, 〈g〉m0,n0

m0+p,n0+q becomes very close to zero. As an
example with the IOTA function for (p, q) /∈ Ω1,1 we have:
| 〈g〉m0,n0

m0+p,n0+q | < 0.04 and
∑

(p,q)/∈Ω1,1
[〈g〉m0,n0

m0+p,n0+q]
2

∑
(p,q)∈Ω∗1,1

[〈g〉m0,n0
m0+p,n0+q]2

≈ 0.02.

Consequently, we also have:

|
∑

(p,q)/∈Ω∆m,∆n

am0+p,n0+q

H
(c)
m0+p,n0+q

H
(c)
m0,n0

〈g〉m0,n0
m0+p,n0+q |

¿ |
∑

(p,q)∈Ω∗∆m,∆n

am0+p,n0+q 〈g〉m0,n0
m0+p,n0+q |.

Then (8) can be rewritten as:

y
(c)
m0,n0

H
(c)
m0,n0

≈ am0,n0

+j
X

(p,q)∈Ω∗∆m,∆n

am0+p,n0+q 〈g〉m0,n0
m0+p,n0+q .

(9)

Let us denote by ja
(i)
m0,n0 the second term in (9), with

a(i)
m0,n0

=
∑

(p,q)∈Ω∗∆m,∆n

am0+p,n0+q 〈g〉m0,n0
m0+p,n0+q . (10)

As a
(i)
m0,n0 is a pure real term, taking the real part in (9) we

get:

âm0,n0 = <
{

y
(c)
m0,n0

H
(c)
m0,n0

}
≈ am0,n0 . (11)

So the ISI can be neglected in practice for well-localized pro-
totype functions. Therefore we can have an accurate detection
of am0,n0 as long as we know the channel coefficient H

(c)
m0,n0

at the receiver side. In practice we have to estimate H
(c)
m0,n0 .

From (9) and (10) we can write:

y(c)
m0,n0 ≈ H(c)

m0,n0(am0,n0 + ja(i)
m0,n0). (12)

Let us assume that a pilot symbol am0,n0 is transmitted at a
position (m0, n0) that is known by the receiver. The value of
a
(i)
m0,n0 defined in (10) depends on the unknown data that are

transmitted around the pilot position, then the channel value
H

(c)
m0,n0 cannot be directly derived from (12).

IV. THE PROPOSED CHANNEL ESTIMATION METHODS

A. Pseudo perfect estimation

Assuming now for the rest of this paper that the channel is
locally time and frequency invariant and that the prototype
function is well localized in time and frequency. We can
deduce from our previous analysis, that at any time, n, and
for any subcarrier, m, the received signal can be accurately
approximated by:

y(c)
m,n ≈ H(c)

m,n(am,n + ja(i)
m,n). (13)

For an ideal distortion-free channel (13) rewrites as

y(I)
m,n ≈ am,n + ja(i)

m,n (14)

Therefore the channel coefficient H
(c)
m,n is the ratio between

(13) and (14). So differently from the OFDM system, here
the channel coefficients are only approximated. Thus, we only
provide a “pseudo” perfect channel estimation. Figure 1 gives
the block diagram to perform “pseudo” perfect channel esti-
mation in OQAM. This block diagram is only for simulation
purpose and cannot be used in a realistic transmission context.
However we can derive from this ideal case a realistic channel
estimation method. It is a preamble-based method that we have
called Interference Approximation Method (IAM).



B. Interference approximation method (IAM)

The preamble is assumed to be perfectly known at the
receiver and for the OQAM modulation its length is taken
equal at least to 3τ0. As for OFDM the preamble can be limited
to one complex symbol duration 2τ0, it seems at first that the
OQAM involves more overhead than OFDM. Indeed to get
the channel coefficients for all frequencies 3M real data are
required for OQAM and only 2M for OFDM, i.e. there is
a loss of M/2 complex data for OQAM. But in the case of
a classical frame-by-frame transmission mode the situation is
different if we compare with CP-OFDM. Indeed for a frame
of length Q, there is a loss of ∆Q complex data due to the
CP. Situations where ∆Q ≥ (M/2), giving the advantage to
OQAM, may be often encountered in practice. But let us now
examine more in details the IAM method,
for am0,n0 symbols located in the middle of the preamble,
am,n0−1 and am,n0+1 are also part of the preamble so the
imaginary term can be approximated by:

a(i)
m0,n0

≈
∑

(p,q)∈Ω∗∆1,∆1

am0+p,n0+q 〈g〉m0,n0
m0+p,n0+q . (15)

Therefore, noise taken apart, the channel is estimated by:

H(c)
wn,m0,n0

=
y
(c)
m0,n0

(am0,n0 + ja
(i)
m0,n0)

(16)

In the presence of a noise n(c) the channel estimation becomes:

H(c)
m0,n0

= H(c)
wn,m0,n0

+
η(c)

(am0,n0 + ja
(i)
m0,n0)

(17)

Then the greater the power of (am0,n0 + ja
(i)
m0,n0) the better

the estimation will be. We assume at first, for a variant named
IAM1, that the real-valued coefficients, am,n, of the OQAM
are i.i.d. with a variance of σ2

a. That means the power of the
complex OFDM pilot symbol has to be equal to 2σ2

a without
boosting. In fact in OQAM/IAM1 we consider that we have a
“pseudo pilot” bm,n = am,n + ja

(i)
m,n such that:

E(bm,n) = 0

E(| bm,n |2) = σ2
a


1 +

∑

(p,q)∈Ω∗∆m,∆n

| 〈g〉m0,n0
m0+p,n0+q |2




In appendix it is shown that for a real-valued discrete-time
orthogonal prototype, we have:

∑

(p,q) 6=(0,0)

[〈g〉m0,n0
m0+p,n0+q]

2 = 1 (18)

Then, as already explained, for a prototype g being well
localized in time and frequency E(| bm,n |2) ≈ 2σ2

a which
shows that the pilot power is nearly the same for OQAM and
OFDM. On the other hand, the preamble can be chosen in
order to get a maximum power of the interference component
a
(i)
m,n. Indeed if in (15) all the am0+p,n0+q 〈g〉m0,n0

m0+p,n0+q terms

have all the same sign, then

E(| a(i)
m,n |2)

= σ2
a

(∑
(p,q)∈Ω∗∆m,∆n

| 〈g〉m0,n0
m0+p,n0+q |

)2

≥ σ2
a

∑
(p,q)∈Ω∗∆m,∆n

(| 〈g〉m0,n0
m0+p,n0+q |2)

≥ σ2
a

Therefore, as the “pseudo” pilot power is higher, the channel
estimation will be of course improved. This second variant of
the interference approximation method is denoted IAM2.

C. Estimation using pairs of real pilots (POP)

This second method is based on the insertion of a pair of
real-valued pilots (POP) at positions known by the receiver. In
practice they can be placed at two consecutive time positions
having the same subcarrier index and where the channel is
quasi-invariant. Let us denote by (m1, n1),(m2, n2) the two
reference symbol positions. We have:

{
y(c)

m1,n1
= H(c)

m1,n1
(am1,n1 + ja(i)

m1,n1
)

y(c)
m2,n2

= H(c)
m2,n2

(am2,n2 + ja(i)
m2,n2

)
(19)

We introduce a parameter C that is the ratio between the
imaginary and real part of Hc

m1,n1, i.e H
(c)
m1,n1 = H

(r)
m1,n1 +

jH
(i)
m1,n1 and C = H

(i)
m1,n1/H

(r)
m1,n1 . Then taking the real and

imaginary part of each equation in (19), we get:




y(r)
m1,n1

= H(r)
m1,n1

am1,n1 − CH(r)
m1,n1

a(i)
m1,n1

y(i)
m1,n1

= CH(r)
m1,n1

am1,n1 + H(r)
m1,n1

a(i)
m1,n1

y(r)
m2,n2

= H(r)
m2,n2

am2,n2 − CH(r)
m2,n2

a(i)
m2,n2

y(i)
m2,n2

= CH(r)
m2,n2

am2,n2 + H(r)
m2,n2

a(i)
m2,n2

(20)

As the channel is invariant we set H
(c)
m2,n2 = H

(c)
m1,n1 and

by a combination of the above equations we get:




X1 = am2,n2y
(r)
m1,n1

− am1,n1y
(r)
m2,n2

= CH(r)
m1,n1

(−am2,n2a
(i)
m1,n1

+ am1,n1a
(i)
m2,n2

)
X2 = am2,n2y

(i)
m1,n1

− am1,n1y
(i)
m2,n2

= H(r)
m1,n1

(am2,n2a
(i)
m1,n1

− am1,n1a
(i)
m2,n2

)

(21)

Then the X1/X2 ratio gives:

C =
am2,n2y

(r)
m1,n1 − am1,n1y

(r)
m2,n2

am1,n1y
(i)
m2,n2 − am2,n2y

(i)
m1,n1

(22)

Then the first two equations in (20) rewrites as:
{

y(r)
m1,n1

= H(r)
m1,n1

am1,n1 − CH(r)
m1,n1

a(i)
m1,n1

Cy(i)
m1,n1

= C2H(r)
m1,n1

am1,n1 + CH(r)
m1,n1

a(i)
m1,n1

The sum of the two above equations gives:

H(r)
m1,n1

am1,n1(1 + C2) = y(r)
m1,n1

+ Cy(i)
m1,n1

Therefore the real component of the channel is:

H(r)
m1,n1

=
y
(r)
m1,n1 + Cy

(i)
m1,n1

am1,n1(1 + C2)

and its imaginary part is given by:

H(i)
m1,n1

= CH(r)
m1,n1



So, we have estimated the channel coefficients. This method,
that does not require any knowledge of the prototype function,
can be used as preamble-based method and also as a scattered-
based channel estimation method.

But let us now examine its behavior in presence of a noise
term. Then (20) becomes:

{
Y1 = CH(r)

m1,n1
(−am2,n2a

(i)
m1,n1

+ am1,n1a
(i)
m2,n2

) + η1

Y2 = H(r)
m1,n1

(am2,n2a
(i)
m1,n1

− am1,n1a
(i)
m2,n2

) + η2

where η1 and η2 are the noise terms at each pilot position.
The quality of this channel estimation is dependent upon how
close Y1

Y 2 is to C.

Y1

Y2
= C

1 + η1

vH
(r)
m1,n1

1− η2

vH
(r)
m1,n1

where: v = −am2,n2a
(i)
m1,n1 + am1,n1a

(i)
m2,n2 .

The quality of the channel estimation is directly linked to the
power of v. Indeed if v power is high, the estimation will be
good enough but if it close to zero then the noise is enhanced
and we will have a poor channel estimation. The problem here
is that v depends on a

(i)
m1,n1 and on a

(i)
m2,n2 , which also are

depending on the real data around the pilot positions. v is then
a random variable that can be sometimes close to zero. This
randomness will impact the performance as we will see in the
simulation results.

V. SIMULATION RESULTS

Our simulations have been carried out with a channel
model and modulation parameters that are borrowed from the
IEEE802.22 standard. IEEE802.22 is a new 802 LAN/MAN
standard that is still in progress. It aims at constructing
Wireless Regional Area Network (WRAN) utilizing free TV
bands. In this context one of the main interest for pulse-
shaped multicarrier modulation systems comes from the pos-
sibility to more easily satisfy the transmission frequency
mask. As furthermore IEEE802.22 may take advantage of
some of the principles of cognitive radio, the possibility with
OFDM/OQAM of generating agile waveforms adds another
interest for this modulation scheme. The channel profile and
the main parameters of the system used are given below:
• Sampling frequency: 9.14 MHz
• Number of paths: 6
• Power profile (in dB) : -6.0, 0.0, -7.0, -22.0, -16.0, -20.0.
• Delay profile (µs) : −3, 0, 2, 4, 7, 11
• FFT size: 2048
• Guard interval composed of 130 samples (14.22µs)
• QPSK modulation and Convolutional channel coding

(K = 7 with g1 = (133)o, g2 = (171)o and code rate= 1
2 )

• Frame length: 41 OFDM symbols
In order to accurately satisfy the approximations that are
presented in the previous sections, we only use here proto-
type filters being well-localized in time and frequency. This
criterion also allows us to guarantee a frequency behavior that
is better than the OFDM one. The simulations are carried
out with a discrete-time signal model (cf. the appendix) and

prototype filters of finite length, denoted by L. So the IOTA
prototype filter we use results from the truncation of a IOTA
pulse of length 4T0 and contains L = 4M = 8192 taps. It will
be designated as IOTA4. We also use another prototype filter,
that results from a direct optimization, with L = M = 2048
coefficients, of the time-frequency localization (TFL) criterion
[3]. We designate it by TFL1. As explained in section IV
the preamble is perfectly known at the receiver side and
its content depends on the channel estimation method under
consideration. Therefore different frame configurations have to
be examined. They are depicted in Fig. 2. For OFDM/OQAM
we have compared the two variants of the interference approx-
imation method: IAM1 and IAM2, with the channel estimation
method using Pairs of Pilots, denoted POP. All these methods
are also compared with a CP-OFDM modulation having the
frame configuration depicted in Fig. 2A. In Fig. 2 we can see
that, as indicated previously, preambles have different lengths:
2τ0 for OFDM (see Fig. 2A) and OQAM/POP (see Fig. 2D)
and 3τ0 for OQAM/IAM (see Figs. 2B and C). Note also that
for OQAM/IAM1, the am,n coefficients of the preamble result
from a random selection of real-valued extracted from a QPSK
constellation.

As usual, the performance of the different estimation meth-
ods are evaluated by a comparison of the Bit Error Rate (BER)
as a function of the Eb/N0 ratio, with Eb the useful bit energy
and N0 the monolateral noise density. First of all, it can be
seen in Fig. 3 that in case of a perfect channel estimation,
OQAM performs better than OFDM. For a BER of 10−3,
the performance gain is around 0.3 dB. This difference is
mainly due to the no use of a guard interval (GI) in OQAM
(10 log((2048 + 130)/(2048) ≈ 0.3 dB). The gain could have
been still more important if we had transformed the no use of
a GI into a more powerful coding rate, i.e. using a coding rate
of 0.5 for OFDM and one of 0.47 for OQAM.

The results obtained for the realistic, preamble-based, chan-
nel estimation methods are reported in Fig. 4. For OQAM
systems, to designate the results obtained with a given es-
timation method and a given prototype, both acronyms are
combined. For instance IOTA4/IAM1 corresponds to the result
when IAM1 is run with the IOTA4 prototype.

The performance results are compared at BER=10−3. It can
be noted that IOTA4/IAM1 and TFL1/IAM1 give performance
that are approximately 1 dB worst than the OFDM one. This
is due to the fact that a

(i)
m,n is a random variable that can be

close to zero. Then the power of the pilot symbol is reduced
to the power of am,n, i.e. is equal to σ2

a, whereas for OFDM
the power of the pilot is always 2σ2

a.
With the IAM2 variant, the preamble is chosen in order to

maximize the power of a
(i)
m,n. Then, with the IOTA4 prototype,

we get a
(i)
m,n = ±0.882 while the TFL1 prototype gives

a
(i)
m,n = ±1.076. So, IOTA4/IAM2 is 1 dB better than CP-

OFDM and the gain with TFL1/IAM2 is around 1.3 dB w.r.t.
CP-OFDM. TFL1/IAM2 outperforms IOTA4/IAM2 because
the power of its pseudo-pilot is higher, as the power value of
a
(i)
m,n is higher for TFL1 than for IOTA4.
IOTA4/POP gives results that are similar to the ones of

IOTA4/IAM1. The small gain at low Eb/N0 is mainly due
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to the gain brought by a reduction of the preamble duration
which is 2τ0 instead of 3τ0. The randomness of the parameter
v, as we said in the previous section, explains the 1 dB
loss compared to CP-OFDM. TFL1/POP provides a 0.2 dB
gain compared to IOTA4/POP. This can be explained by the
fact that a short length prototype may be more robust to
delay spread than a longer one. This slight difference can
be explained by the impact of the prototype’s length in the
presence of a delay spread. Indeed, for a shorter prototype the
resulting interference is more limited in the time domain. This
effect cannot be observed with IAM1. Then, indeed, the power
of the a

(i)
m,n term is the most predominant factor.

VI. CONCLUSION

In this paper, we have presented two preamble-based chan-
nel estimation methods for OFDM/OQAM modulation sys-
tems. Our experimental setup, i.e. the channel model and the
system parameters, is inspired from the IEEE802.22 standard
and it also includes the simulation of CP-OFDM. The first
channel estimation method for OFDM/OQAM (IAM) requires
a preamble of 3τ0 duration whereas the second one (POP
method) only needs a 2τ0 duration, i.e. the equivalent of one
complex OFDM symbol. However, with one of the variant
of the interference approximation method (IAM2), which
includes an efficient design of the IAM preamble, the power of
the pseudo-pilot symbol is maximized. So that OQAM/IAM2
provides the best results with a 2 dB gain compared to
OQAM/POP and 1 dB gain when comparing with CP-OFDM.
It has been also shown that we always get better or, at least,
equal performance with the shortest OQAM prototype, the
TFL1 prototype being better than the IOTA4 one. In future
work the performance of these systems will be analyzed in
the presence of Doppler spread and synchronisation errors.



APPENDIX

The OFDM/OQAM discrete-time expression derived from
(1) is given by:

s[k] =
M−1∑
m=0

∑

n∈Z

am,n g[k − nN ]ej 2π
M m(k−L−1

2 )ejφm,n

︸ ︷︷ ︸
gm,n[k]

(23)

with N = M/2 and L the length of the prototype filter. For
discrete-time prototypes, the real orthogonality condition can
be written for instance as shown in [10]:

∑

n∈Z

∑

m∈Z

g[k + nN ]g[k + mN ]zm−n =
1
N

(24)

In the following we show that any real-valued prototype being
orthogonal and with unit energy satisfies equation (18). So let
show that:

S =
M−1∑
p=0

∑

q∈Z

∣∣∣〈g〉m0,n0
m0+p,n0+q

∣∣∣
2

= 2 (25)

First we have:
∣∣∣〈g〉m0,n0

m0+p,n0+q

∣∣∣
2

=
∑

k∈Z

∑

l∈Z

g[l]g[k]g[k+qN ]g[l+qN ]ej 2π
M p(k−l)

(26)
which can be rewritten as follows

S =
∑

k∈Z

∑

l∈Z

g[l]g[k]
∑

n∈Z

g[k+nN ]g[l+nN ]
M−1∑
m=0

(
ej 2π

M (k−l)
)m

.

︸ ︷︷ ︸
Ak,l

There are two possible cases
• k − l 6= aM with a ∈ Z. then Ak,l = 0
• k − l = aM = 2aN with a ∈ Z. then Ak,l = M

which lead to

S = M
∑

k∈Z

∑

a∈Z

g[k+2aN ]g[k]
∑

n∈Z

g[k+nN ]g[k+(n+2a)N ]

(27)
Using the orthogonality condition (24), for a 6= 0, we can
write:

∀k,
∑

n∈Z

g[k + nN ]g[k + (n + 2a)N ] = 0 (28)

while for a = 0 we get:

∀k,
∑

n∈Z

g[k + nN ]2 =
1
N

(29)

Then

S =
M

N

∑

k∈Z

g[k]2

︸ ︷︷ ︸
=1 normalized prototype

= 2

and since | 〈g〉0,0
0,0 |= 1, we have:

∑

(p,q)6=(0,0

[〈g〉m0,n0
m0+p,n0+q]

2 = 1 (30)
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