Distributed data acquisition and

control via software bus
Cecil Bruce-Boye, Dmitry A. Kazakov

Abstract: Increasing global competition
forces manufacturers of products from
all technical fields to guarantee a high
product quality for a long period of time.
At the same time it is necessary to
minimize production costs. In order to
meet all these requirements, on-line data
acquisition and processing are of
increasing importance in distributed
automation systems. A software bus
operating on industrial Ethernet has an
ability to minimize operating costs by
offering easy installation; scalability;
high degree of reliability and remote
monitoring and control.

Most modern control processes are such that
all input / output operations are not centralized
at one particular location. The input / output
operations and the corresponding data said to
be distributed both physically and logically.
Thus both the input / output devices are
therefore connected to the control system via a
communication network such as industrial
Ethernet. A software bus stretching through
the whole system provides a distributed access
to the data.

Software bus systems in one hand provide
abstraction the application level from the
hardware specific and decoupling the hardware
interface modules from the application level.
In the other hand they allow a smooth
integration of the software components,
supporting a component based software
design. Single software components can be
separately developed and tested within shorter
and more cost efficient cycles, because a
software bus architecture natively assists early
testing, simulation without access to the target
system, which might be unavailable for time /
space / money reasons.

LabMap® [1] is an example of an
implementation of the concept of software bus
[2]. Tt is successfully applied the automotive
area [3]. LabMap® currently supports a variety
of software and hardware protocols, like OPC,
AK, Modbus, CAN etc.

By an application LabMap® is viewed as a
set of variables. Each variable has a type, the
current value and the current timestamp. No
configuration is required. An application may
access a value immediately after the system
start. The following basic requests are
provided for each variable:

e Get. The value of a variable can be read in
a safe way. It is guarantied that the read
value bits and the timestamp are
consistent. The application is relieved
from the burden of locking the value in
presence of concurrent tasks accessing it.
The application is unaware of the source
of the value and the policy used to
actualize or obtain the value.

e Set. The value of a variable can be set in a
safe way.

e Request. A new value of a variable can be
requested from the underlying hardware.
The application does not know which
actions are necessary to request the new
value. It is the responsibility of the driver.
The request is asynchronous and the
application is not blocked until input /
output completion. However it may enter
a non-busy waiting for the input / output
completion.

e Send. The value of a variable can be sent
to the underlying hardware. Like in the
case of request the application is unaware
of the actions the hardware undertakes
upon send. The application may enter a
non-busy waiting for the input / output
completion.

LabMap® offers a variety of synchronization
mechanisms to the application:

e Wait for input / output completion. An
application may enter time-limited waiting
for completion of input / output involving
a variable.

e Wait for value change. An application
may enter time-limited waiting for the
time moment the value of a variable is
getting changed. This method is very often
used for monitoring system state
variables. The main advantage of this
approach is that the application developer
is relived from the burden of polling the
variable value and may concentrate on the
domain objectives.

e Blackboard. Sometimes it is necessary to
trace all changes of a variable. For
instance an application visualizing signal
waveforms would like to trace the signal.
A usual approach for catching value
changes involves some kind of
notification mechanism between the
source of the value and the application.
Such point-to-point bias is hard to

implement without overstraining the
system resources and a danger of resource
leaks when an application ends
abnormally. The software bus uses an
alternative approach. All value changes
are written onto the blackboard and
remain there for a certain time. Any
application may inspect the blackboard
contents in order to trace the changes of
desired variables.

To achieve better hardware abstraction
LabMap® provides integrated support of
measurement units. Variables of floating-types
have measurement units attached. An
application may get the value either in SI units
or in the desired units compatible with the
units used by the hardware driver.

The hardware abstraction interface uses
the messaging mechanism for decoupling the
application from the communication software.
A hardware driver responsibility is to provide
values of the variables. Any variable is a
hardware driver attached to it. The driver
receives notification messages upon interface
start/stop and input / output start / stop. For the
values requested from the hardware the
following input / output strategies are
supported:

e On request. A new value is requested
from the hardware only on an explicit
request of an application.

e Polling. A new value is requested
periodically.

e On change. A new value is requested
when the value of the corresponding
physical variable is about to change.

The described abstraction mechanisms hide the
distributed nature of the software bus from the
applications and their components. The
software bus itself abstracts networking as a
hardware interface. LabMap” has an
implementation of the networking interface
called LabNet. It implements presentation and
application levels (6-7) within OSI model.
LabNet may function over different transport
layers, but its most compelling use is based on
Ethernet.

LabNet is fully transparent for
applications using it:

e The data synchronization between
distributed partitions is maintained in
background and invisible for an
application.

e The basic requests of LabMap® are
transported by LabNet and executed on
remote partitions as if the hardware they
control were directly connected to the
local host.

e Measurement units are consistently
handled, not compromising an ability to
deal with different though compatible unit
systems on different network hosts.

e An application may ensure that no other
application accesses a variable for write.
The software bus distinguishes local and
global variables. Local variables are seen
by the applications running on the same
network host where the wvariable is
declared. Global variables accessible from
potentially any are host. Access operations
on global variables are also global.

e Values are provided with the time stamp.
A hardware driver is responsible for
supplying correct time stamps. An
application may figure out that the values
of several are consistent by inspecting
their time stamps.

e LabNet provides peer-to-peer a time
synchronization mechanism to ensure
consistency of the time stamps. This does
not require any synchronization of the
partition’s clocks, because the time stamps
are translated from one clock reading to
other transparently. This feature can be
used when there is no way to synchronize
local clocks. At the same time LabNet
supports use of any external time
synchronization, such as NTP etc.

e LabNet provides plug and play support.
All local variables can be enumerated
from remote hosts.

The figure 1 represents an example use of the
software bus LabMap” in a medium-sized real
system. The automation system controls a
roller dynamometer used perform various truck
tests [4]. Here three permanent hosts are
connected via Ethernet and the LabMap®
software bus system.

The controlling host runs the primary
MMI (man-machine interface) application. It
has a real-time controller connected to it.

The slave host is used for secondary MMI
application, which does not require a
permanent attention of the operator. It has no
hardware connected and yet accesses all the
necessary values via LabMap®.

Legend:
LabAK

LabNet
LabNiCAN - CAN-bus driver

- AK serial driver
- TCP/IP network driver

LabRRR - Transputer-Link driver
LabVirt - virtual channels driver
MMI - man machine interface
OnLinLog - logger plug-in

RRR - dynamometer controller

COM-portsf§ CAN-bus

on-line
binary

Controling Host Slave Host

Fig. 1

The log server is used for on-line logging
and also data acquisition using various
measurement devices connected to it. The
devices use various hardware protocols. The

log server also runs various on-line
computations using the integrated virtual
channel interface of LabMap®. Virtual

channels are ones computed from real ones.
Another responsibility of the log server is to
log the system state. All the data broadcasted
via the software bus can be automatically
logged. Log writing happens upon demand. No
polling is used. Each record is provided with
the time stamp. In other words, no data or
information is lost. The off-line post
processing has an ability to restore the system
state to any time moment of the past. Because
LabMap® makes all system variables available
with the correct time stamps, logging need not
to be distributed over the network hosts.
LabMap® and Ethernet add a high flexibility to
the system configuration.

In addition to the permanent hosts the
system has optionally a practically unlimited
number of additional hosts running LabMap®.
This includes portable computer used for data
acquisition within the truck, driver aid devices
etc. The whole system can be remotely

Log Server

9

AK
devices

Software bus system in roller dynamometer automation

monitored over WAN. Which allows a cost
effective system maintenance. A change in the
hardware or its location does not mean a
change in the control application but just a
reconfiguration in LabMap®.

Conclusion: LabMap® provides an interface to
decouple the control application development
from the hardware layer. A distributed
application communicates with the hardware
through and its partitions via variables and
LabMap® carries out the actual sending of the
data through the appropriate protocol and
interfaces for the given hardware. LabMap®
offers:

e Very short installation time;

e High grade of extensibility;
e Excellent reliability;

e Minimal engineering effort;
e Reduced maintenance costs.
References:

[1] http://www.cbb-

software.de/products/labmap.html

(2]

(3]

(4]

M. Schneider, J. Pisarz, S. Thiebeaut.
Ethernet-Newsletter — To whom it
concern. IEE
automatisierung+datentechnik, No: 10
Oct. 2000

Miiller et al / A smooth ride. Testing
Technology International. Nov. 2000

D. Kazakov, A. Sechner, C. Bruce-
Boye / A smooth ride. Testing
Technology International. May 2001

