PRODUCING OF PLZT POWDERS BY TWO-STAGE CHEMICAL METHOD.

M.Dambekalne, M.Antonova, M.Livinsh, V.Belov, and A.Sternberg Institute of Solid State Physics, University of Latvia, 8 Kengaraga street, Riga, LV-1063, LATVIA

The processing of electroceramics by means of chemical solutions has become increasingly important especially in the producing transparent $Pb_{1-x}La_x(Zr_{0.65}Ti_{0.35})O_3$ (PLZT) ceramics of large size.

We have worked out original two-stage co-precipitation method from mixed solution of inorganic salts, as follows: ZrOCl₂·8H₂O, TiCl₄, La(NO₃)₂·6H₂O, Pb(NO₃)₂, which are commercially easy available and cheap. At the first stage hydroxopolimer of TiO₂-ZrO₂-La₂O₃ is obtained by co-precipitation from mixed solution of corresponding metallic salts by 10% NH₄OH. In result "dry" curds, snow-like deposit was obtained (without any liquid phase). After it thermal decomposition at 1000 °C for 4 h white powder of above mentioned oxides(TiO₂, ZrO₂, La₂O₃) was obtained.

At the second stage PbO was introduced in powder produced at the first stage of reaction by milling in $Pb(NO_3)_2$ solution for 10 h. After co-precipitation of obtained suspension by mixture of NH₄OH and H₂O₂ the deposit of peroxohydroxopolimer was produced. After filtration the deposit by waterpump and thermal decomposition at 600 °C for 4 h we have obtained PLZT powder of desired composition with perovskite structure.

Transparent PLZT ceramics of large size were produced by two-stage hot pressing sintering. The first stage was performed at 930 ° – 980 °C for about 1 h in forvacuum at 20 MPa pressure. The second stage was performed at 1150°-1200 °C for $1 \div 40$ h depending on size (15 ÷ 90 mm of diameter) at pressure 20 MPa in air or rich in O₂ atmosphere.

The optical transmittance of ceramic plates (thickness 0.3 mm) measured at wavelength of 630 nm reached 67 - 69 %.

Depending on thermal regime and size of samples $1.0 \div 6.0$ wt.% of overstoichiometric PbO was added.