Lanthanum titanate ceramics : electrical characterizations in large temperature and frequency ranges

Didier Fasquelle

Universit du littoral Cte d'Opale - France

Abstract

ABO3 ceramics have been studied for many years. More recently, thin films deposition has allowed to make electronic devices like ferroelectric grid FET, tunable filters or antennas. Using RF-magnetron sputtering, we have deposited LaTiOxNy oxynitride thin films on (001) strontium titanate and glass substrates, starting from a homemade oxide target [1]. In this paper, the microwave dielectric properties of La2Ti2O7 ceramic have been investigated in order to have a reference for further studies. These results are presented, to our knowledge, for the first time. The behaviour of this ceramic is also presented in a large temperature range. In fact, high temperature applications are also possible because La2Ti2O7 has a very high Curie temperature: Tc=1500C [2].

Microwave dielectric measurements. Small dense oxide pellets (=3 mm) were prepared by pressure-less sintering at 1400C for 3 hours under air. Gold-palladium electrodes were sputtered on either side of the sintered pellets. The following apparatus have been used: an HP4284A LCR bridge from 20Hz to 1MHz, an HP4291A LCR bridge from 1MHz to 1.8GHz and an ANRITSU 37369A vectorial network analyzer from 40MHz to 10GHz. We have made a specific support for the pellets which can be used with all our measurement systems. The evolution of ε and ε shows a dielectric relaxation with a critical frequency Fc = 1GHz.

Dielectric measurements in the [293K-1150K] range

The evolution of the dielectric constant ε is presented. Its value is quite constant up to 550K at different frequencies. Above this temperature, ε roughly depends on the frequency: at a given temperature, ε increases with the frequency.