Preparation of potassium tantalate niobate thin films by chemical solution deposition and their characterization

J. BURŠÍK^a, V. ŽELEZNÝ^b, and P. VANĚK^b

^aInstitute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, 25068 Řež, Czech Republic

^bInstitute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 18221 Prague, Czech Republic

Potassium tantalum niobate (KTa_xNb_{1-x}O₃, (KTN), where x = 0, 0.21, 0.36, 0.53, 0.74, 0.82, 0.86, and 1) thin films of perovskite structure were prepared by chemical solution deposition on Si and SiO₂ glass substrates. A homogeneous and stable precursor solution was obtained by dissolving potassium, niobium and tantalum isobutoxides in absolute isobutanol and an addition of diethanolamine as a modifier. Optimum conditions for film preparation were found. Annealing temperature and heating regime, Al_2O_3 "chemical" buffer layer and KNbO₃ seeding layer were the determining factors for film quality. It was demonstrated by X-ray diffraction that the films have desired pseudocubic perovskite structure. Infrared transmittance was measured for broad range of Ta/Nb ratios. The spectra show continuous transformation from KTaO₃ to KNbO₃ and indicate that the optical axis lies in the plane of the film.