Electric Property of Novel Ferroelectric Thin Film Based on PZT

Takeshi Kijima, Yasuaki Hamada, Koji Ohashi, Masao Nakayama, Taku Aoyama, Hiromu Miyazawa, Eiji Natori and Tatsuya Shimoda

SEIKO EPSON CORPORATION Technology Platform Research Center 281 Fujimi, Fujimi-machi, Nagano-ken 3990293, Japan

We have succeeded in fabricating Pb(ZrTiNb)O₃ (PZTN) thin films with more than 10 at % Nb, which is suitable for high density and reliable ferroelectric random access memory (FeRAM) applications. A sol-gel spin-coating method was used to prepare the PZTN thin films. 1 to 3 at % Si co-doping was applied to promote the solid-solution of Nb atom into the original Pb(ZrTi)O₃ films. Obtained 150-nm-thick PbZr_{0.2}Ti_{0.6}Nb_{0.2}O₃ film has very low leakage current and realizes excellent imprint and data-retention properties. XRD reciprocal space mapping and Raman scattering reveal that our PZTN film is a single ferroelectric phase of ABO₃ perovskite-type structure and Nb substitutes B-site atom. In addition, we suggest that in our PZTN, the oxygen vacancies are effectively suppressed due to the Nb substitution, in contrast to conventional Pb(Zr,Ti)O₃ (PZT). The first-principle calculation indicates that this reduction of the oxygen vacancy remains bandgap wide enough and hence reduces the leakage current in our PZTN film.