Ferroelectric versus Relaxor Behaviour in Na_{0.5}Bi_{4.5}Ti₄O₁₅ – BaBi₄Ti₄O₁₅ Solid Solutions

D. Ben Jannet¹, M. El Maaoui¹ & J.P. Mercurio²

Abstract

Sodium-bismuth titanate Na_{0.5}Bi_{4.5}Ti₄O₁₅ (NBT) and barium bismuth titanate BaBi₄Ti₄O₁₅ (BBT) and their solid solutions were prepared by solid state reaction of the constituent oxides The room temperature structural characteristics were determined by X-ray diffraction and the dielectric properties investigated in a wide range of temperatures (20-750°C) and frequencies (1kHz-1MHz). As the barium content increases, the unit cell change from orthorhombic to pseudo-tetragonal, the paraelectric to ferroelectric phase transition decreases from 655°C to 400-420°C and a relaxor-like behaviour is observed for high barium contents. Depending on the composition, dielectric data were fitted using both classical (low Ba) and modified Curie-Weiss law for relaxors (high Ba).

¹ Laboratoire de Chimie Minérale Appliquée, Université de Tunis El Manar, Faculté des Sciences, 1060 Tunis, Tunisie

² Science des Procédés Céramiques et de Traitements de Surface, Faculté des Sciences et Techniques, 123 Avenue Albert-Thomas, 87060 Limoges Cedex, France