Structure development and dielectric properties of (1-x)Pb(Ni_{1/3}Ta_{2/3})O₃xPbTiO₃ ceramics

Zhenrong Li, P. M. Vilarinho

Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal

Lead-based relaxor ferroelectrics are being used as capacitors, transducers, and memory devices. Much of the research has been carried out on lead-based niobate $Pb(B_{1-x}Nb_x)O_3$, (B=Zn²⁺, Mg²⁺, Ni²⁺) and on the solid solution between $Pb(B_1, Nb_x)O_3$ and $PbTiO_3$. Lead-based tantalate $Pb(B_{1-x}Ta_x)O_3$ is another family of lead-based relaxor ferroelectrics. But not too much attention has been paid to this material system. The low phase transition temperature of some members of $Pb(B_{1-x}Ta_x)O_3$, in which B is Zn^{2+} , Mg^{2+} , Ni^{2+} , make them important candidates for utilization in devices operating at cryogenic conditions, like capacitors and actuators for space application. In this paper (1-x)Pb(Ni_{1/3}Ta_{2/3})O₃-xPbTiO₃ (x=0.00~0.80) ceramics were prepared by conventional method. The phase structure development was investigated by XRD analysis. The perovskite phase can not be obtained when x=0.00. As the PT content increases, the content of the perovskite phase increases. When x>0.40, the pure perovskite phase is obtained. The relationship between phase structure and dielectric properties is measured.