Influence of seed particle addition on the microstructure and on the dielectric

properties of Ba_{0.77}Ca_{0.23}TiO₃ ceramics

Talita Mazon^a, Antonio Carlos Hernandes^a

^aGrupo Crescimento de Cristais e Materiais Cerâmicos,Instituto de Física de São Carlos, Universidade de

São Paulo, C.P. 369, 13560-970, São Carlos, SP, tmazon@bol.com.br

Abstract

The solid state reaction method as well as addition of seed particles of

Ba_{0.77}Ca_{0.23}TiO₃ (BCT23) were used to prepare BCT23 ceramics. Appropriated amounts of

BaCO₃, CaCO₃ and TiO₂ were mixed for 96 h by ball milling in isopropyl alcohol. The

powder was calcined at 1100 °C for 3 h and the phase formation was accompanied by

XRD. It was verified the presence of the BaTiO₃ (BT) and CaTiO₃ (CT) phases in the

powder. After calcinations, the powder was uniaxially pressed at 20 MPa with addition of

BCT23 single crystal fiber pieces, which were used as seed particles. After pressing, the

samples were sintered at 1300 °C for 3 h. A highly dense ceramic of up to 98% of the

theoretical density and the BCT phase was obtained by sintering compacted powders at

1300 °C. The addition of BCT23 single crystal fiber pieces as seed particles influenced on

the microstructure and on the dielectric properties of BCT ceramics. BCT23 ceramics

prepared by this methodology show values of dielectric constant comparable the values

obtained for BCT23 single crystal (5250 at 1 kHz).

Keywords: (Ba, Ca) TiO₃; dielectric properties, seed particles