TRANSPORT PROPERTIES AND THERMAL EXPANSION

OF PEROVSKITE-LIKE La_{0.3}Sr_{0.7}Fe(Al,Cr)O_{3-δ} CERAMICS

A.A. Yaremchenko^a, V.V. Kharton^a, M.V. Patrakeev^b, F.M.B. Marques^a

- ^a Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
- ^b Institute of Solid State Chemistry, Ural Division of RAS, 91 Pervomayskaya Str., Ekaterinburg 620219, Russia

Substitution of iron with aluminum and chromium in perovskite-type $La_{0.3}Sr_{0.7}Fe_{1-x-v}Al_xCr_vO_{3-\delta}$ (x = 0 -0.4; y=0-0.2) decreases thermal expansion and partial oxygen ionic and electronic conductivities. At oxygen partial pressures from 10^{-10} 10^{-8} to 0.5 atm, the total conductivity is predominantly *p*-type electronic. Temperature-activated character and relatively low values of hole mobility, estimated from the total conductivity and Seebeck coefficient data, suggest a small polaron mechanism. The oxygen ion transference numbers of $La_{0.3}Sr_{0.7}Fe(Al,Cr)O_{3-\delta}$ in air, determined from the data on faradaic efficiency, oxygen permeation and total conductivity, vary in the range 10^{-4} to 10^{-2} at 1023-1223 K, increasing with temperature and dopant content. As for other (La,Sr)FeO3-based phases, reducing oxygen pressure below 10^{-14} - 10^{-10} atm results in dominating ionic and *n*-type electronic contributions to the total conductivity. The low-p(O₂) stability boundaries of La_{0.3}Sr_{0.7}Fe(Al,Cr)O_{3.8} are similar to that of LaFeO₃. The activation energies for ionic transport, 90-130 kJ×mol⁻¹, are essentially independent on the cation composition and oxygen chemical potential. While the oxygen ionic conductivity of $La_{0.3}Sr_{0.7}Fe(Al)O_{3-\delta}$ slightly increase on reducing $p(O_2)$, doping with Cr suppresses this dependence. The average thermal expansion coefficients of La_{0.3}Sr_{0.7}Fe_{1-x-y}Al_xCr_yO_{3-δ} ceramics, calculated from dilatometric data in air, are the in range $(12.1-13.1) \times 10^{-6} \text{ K}^{-1}$ at 350-800 K and increase up to (20.9-27.4) × 10⁻⁶ K⁻¹ at 800-1300 K.