IONIC AND N-TYPE ELECTRONIC CONDUCTION

IN La₂Mo₂O₉-BASED SOLID ELECTROLYTES

I.P. Marozau^a, A.L. Shaula^b, V.V. Kharton^b, A.P. Viskup^a, J.R. Frade^b, F.M.B. Marques^b

- ^a Institute of Physicochemical Problems, Belarus State University, 14 Leningradskaya Str., 220050 Minsk, Belarus
- ^b Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal

Solid electrolytes based on lanthanum molybdate possess a substantially high oxygen ionic conductivity and may thus be of interest for high-temperature electrochemical applications. The present report summarizes data on physicochemical and transport properties of La_{1.7}Bi_{0.3}Mo₂O₉, $La_2Mo_{1.7}W_{0.3}O_9$ and $La_2Mo_{1.95}V_{0.05}O_9$ ceramics, which were reported among most-conducting materials derived from La₂Mo₂O₉. The partial oxygen ionic and n-type electronic conductivities of lanthanum molybdate-based solid electrolytes were studied at 973-1173 K in the $p(O_2)$ range from 10^{-5} to 1.0 atm by impedance spectroscopy, faradaic efficiency and e.m.f. methods. The oxygen ion transference numbers are 0.995-0.977 in air, decreasing when the oxygen partial pressure decreases or temperature increases. Under the $p(O_2)$ gradient of $0.21/10^{-5}$ atm, the n-type electronic contribution to the total conductivity achieves 5-20% at 1123-1173 K. Reducing $p(O_2)$ down to 10^{-4} - 10^{-3} atm leads to a reversible degradation of the total conductivity, probably due to phase decomposition. The activation energies for ionic and electronic transport in air vary in the ranges 61-71 and 123-141 kJ/mol, respectively. Doping La₂Mo₂O₉ with calcium results in the segregation of CaMoO₄-based solid solution, accompanied with increasing electronic conductivity. The average thermal expansion coefficients of La₂Mo₂O₉-based ceramics in air are $(14.4 - 14.8) \times 10^{-6}$ K⁻¹ at 300-700 K, and increase up to $(16.4 - 22.5) \times 10^{-6} \text{ K}^{-1}$ at higher temperatures.