Electrical characteristics of BaTiO₃ ceramics and thick films prepared from soft chemistry

powders

Madona Boulos¹, Sophie Guillemet¹, Bernard Durand¹, Vincent Bley², Thierry Lebey²

¹ Centre Inter-Universitaire de Recherche et d'Ingénierie des Matériaux (CIRIMAT)

² Laboratoire de Génie Electrique (LGET)

Université Paul Sabatier

118, route de Narbonne

31062 Toulouse Cedex

It is known that the dielectric properties of BaTiO₃ ceramics strongly depend on the sintering

ability of the starting powders and therefore of their morphological characteristics (size

distribution, crystallite size, agglomeration state). Finally divided BaTiO₃ powders were

synthesized by hydrothermal method: treatment at 150 °C and 250 °C for 7 hours of a

mixture of TiCl₃ and BaCl₂ or TiO₂ and BaCl₂. Then the powders were spread in thick film

using the doctor blade method or compacted in pellets by uniaxial pressing and finally

sintered by heating in air. The sintering parameters were adjusted to optimise the density of

the final materials. The microstructure, densities and dielectric constants of the ceramics and

films have been determined and correlated to the powder quality.