Grain Growth Control of BaTiO₃ Ceramics

with CuO/BaO=2.5 Mixture Addition Cheng-Fu Yang¹, Chien-Chen Diao², and Chien-Min Cheng³

Department of Chemical and Material Eng., N.U.K., Kaohsiung, Taiwan, R.O.C.¹ Department of Electronic Eng., K.Y.I.T., Kaohsiung, Taiwan, R.O.C.²

Department of Electrical Eng., N.S.Y.S.U., Kaohsiung, Taiwan, R.O.C.³

Grain growth of BaTi_{1.005}O_{3.01} during liquid-phase sintering of BaTiO₃ ceramics was investigated for CuO-BaO (molar ratio, CuO/BaO=2.5) mixture additions from 0.5wt% to 2wt%. Sintering in air for 2h at 1050°C to 1250°C was investigated to study the densification process, while sintering in air for 1 to 16h at 1150°C to 1250°C was investigated to study the grain growth. The sintered grain morphologies (no grain growth, abnormal grain growth, and normal grain growth) of BaTi_{1.005}O_{3.01} ceramics depend on the amount of CuO-BaO mixture, the sintering temperature, and sintering time. The results were discussed in terms of the phenomenological kinetic grain growth expression: $G^n - G_o^n = K_o$ t exp(-Q/RT). The average grain growth exponents of BaTiO₃ with 0.5wt%, 1wt%, 1.5wt%, and 2wt% CuO-BaO mixture addition were 5.193, 4.307, 5.773, and 9.182, respectively. The activation energy for grain growth of BaTiO₃ with 0.5wt%, 1wt%, 1.5wt%, and 2wt% CuO-BaO mixture addition were 502±25 kJ/mol, 314±40 kJ/mol, 448±53 kJ/mol, and 392±48 kJ/mol.

Keywords: grain growth, liquid phase sintering, phenomenological kinetic