The Influence of V₂O₅ Content on Sintering and Dielectric Characteristics of Sr_{0.6}Ba_{0.4}Bi₂Ta₂O₉ Ceramics

Chao-Chin Chan¹, Cheng-Yuan Kung², Cheng-Fu Yang³, and Chien-Min Cheng⁴

Department of Chemical Eng., K.Y.I.T., Lu-Chu, Kaohsiung, Taiwan, R.O.C.¹

Department of Electronic Eng., S.T.U.T., Yung-Kang City, Tainan, Taiwan, R.O.C.²

Department of Chemical and Material Eng., N.U.K., Kaohsiung, Taiwan, R.O.C.³

Department of Electrical Eng., N.S.Y.S.U., Kaohsiung, Taiwan, R.O.C.⁴

(NSC 92-2214-E-244-001)

Ferroelectric $Sr_{0.6}Ba_{0.4}Bi_2Ta_{2-x}V_xO_9$ ceramics were combined by solid-state reaction method. Variations of microstructure have been confirmed by scanning electron microscope and X-ray diffraction patterns. The dielectric properties of $Sr_{0.6}Ba_{0.4}Bi_2Ta_{2-x}V_xO_9$ (x=0, 0.1, and 0.2) also have been investigated particularly. As the sintering temperatures increase, the maximum dielectric constants (revealed at Curie temperatures) will increase at first. After reaching a saturation value at 1100°C, the maximum dielectric constants decrease slightly. The results show that sintering temperatures and V_2O_5 content have great influence on the crystal intensities of (0,0,*I*) planes, the maximum dielectric constants, and the Curie temperatures of $Sr_{0.6}Ba_{0.4}Bi_2Ta_{2-x}V_xO_9$ ceramics.

Keywords: Sr_{0.6}Ba_{0.4}Bi₂Ta_{2-x}V_xO₉, X-ray methods, dielectric properties