The Sintering and Microwave Dielectric Characteristics

of the $(Ba_{1-x}Sr_x)Sm_2Ti_4O_{12}$ Composite (0×0.5)

Chien-Chen Diao¹, Cheng-Fu Yang², Cheng-Yuan Kung³, and Chien-Min Cheng⁴

Department of Electronic Eng., K.Y.I.T., Kaohsiung, Taiwan, R.O.C.¹

Department of Chemical and Material Eng., N.U.K., Kaohsiung, Taiwan, R.O.C.²

Department of Electronic Eng., S.T.U.T., YungKang City, Tainan, Taiwan, R.O.C.³

Department of Electrical Eng., N.S.Y.S.U., Kaohsiung, Taiwan, R.O.C.⁴

The sintering and microwave dielectric characteristics of $(Ba_{1-x}Sr_x)Sm_2Ti_4O_{12}$ compositions (0 x 0.5) are developed in the study. As the SrO content increases, the lattice constants (a, b, and c axis) first increase and then decrease. Sintered at 1350°C, only the BaSm₂Ti₄O₁₂ phase is exist in the BaO-Sm₂O₃-4TiO₂ composite, but the 0.9BaO-0.1SrO-Sm₂O₃- 4TiO₂, 0.75BaO-0.25SrO-Sm₂O₃- 4TiO₂, and 0.5BaO-0.5SrO-Sm₂O₃-4TiO₂ compositions reveal two phases: Sm₂Ti₂O₇ and (Ba,Sr)Sm₂Ti₄O₁₂ coexist. The microwave dielectric characteristics of (Ba₁. _xSr_x)Sm₂Ti₄O₁₂ ceramics are influenced by SrO content. In the $(Ba_{1-x}Sr_x)Sm_2Ti_4O_{12}$ compositions, the $(Ba_{0.9}Sr_{0.1})Sm_2Ti_4O_{12}$ ceramic reveals the optimum microwave dielectric characteristics: ε_r =71.5, Q×f=8150 GHz, and τ_f =-2.83 ppm/°C.

KEYWORDS: (Ba_{1-x}Sr_x)Sm₂Ti₄O₁₂, two phase, microwave dielectric characteristic