The Sintering and Microwave Dielectric Characteristics of MgTa_{1.5}Nb_{0.5}O₆ Ceramics

Chien-Min Cheng¹, Chao-Chin Chan², Cheng-Fu Yang³, and Ying-Chung Chen¹

Department of Electrical Eng., N.S.Y.S.U., Kaohsiung, Taiwan, R.O.C.¹

Department of Chemical Eng., K.Y.I.T, Lu-Chu, Kaohsiung, Taiwan, R.O.C.²

Department of Chemical and Material Eng., N.U.K., Kaohsiung, Taiwan, R.O.C.³

MgTa_{1.5}Nb_{0.5}O₆ ceramics were combined from two microwave dielectrics with high Q×f values and high τ_f values, MgTa₂O₆ (sintered at 1500°C, ε_r =30.5, Q×f=56900 GHz, and τ_f =28.3 ppm/°C) and MgNb₂O₆ (sintered at 1300°C, ε_r =21.7, Q×f=89900 GHz, and τ_r =-68.5 ppm/°C) MgNb₂O₆, in order to obtain microwave dielectric resonators with τ_f value close to 0 ppm/°C. The sintering and microwave dielectric characteristics of MgTa_{1.5}Nb_{0.5}O₆ ceramics were investigated in this study. As the sintering temperature increased from 1300°C~1450°C, the density values, the ε_r values, and the Q*f values of MgTa_{1.5}Nb_{0.5}O₆ ceramics increased and saturated at 1450°C, and τ_f values were shifted to close 0 ppm/°C. The 1450°C-sintered MgTa_{1.5}Nb_{0.5}O₆ ceramics had the microwave dielectric characteristics of ε_r =27.9, Q×f =33100 GHz, and τ_f =-0.7 ppm/°C.

KEYWORDS: $MgTa_{1.5}Nb_{0.5}O_6$, microwave dielectric characteristic, sintering temperature