Epitaxial thick films by spray pyrolysis for coated conductors

⁴ Nexans France, 4-10 rue Mozart, 92587 Clichy, France

Abstract

Spray pyrolysis has been successfully used to synthesize many oxides, like transparent conducting films (SnO₂, ZnO and InO₃) or cuprate-based superconducting films. The technique has a high deposition rate and uses cheap raw materials in non-vacuum environment. In our work spray pyrolysis has been used to grow superconducting epitaxial thick films of YBa₂Cu₃O_{7-δ} (YBCO) on textured substrates. A precursor nitrate solution is atomized and carried towards a substrate which is heated between 800°C and 900°C. After growth, oxygenation is carried out by cooling under oxygen flow. YBCO films deposited on a single-crystal (SrTiO₃) exhibit a very good c-axis orientation ($\Delta \omega$ =0.4°) as well as an in-plane texture ($\Delta \phi$ =0.6°). Transport measurement has given Ic value close to 10A (77K, sf) on a 5 mm wide tape. First YBCO depositions on technical substrates made by ion beam assisted deposition (IBAD) display a quite good out-of-plane texture ($\Delta \omega$ =7°) and a Tc_{onset} of 90K. Furthermore, prospective work on buffer layers (Y₂O₃, CeO₂, CuO) synthesis has been carried out. Despite the high potential of spray pyrolysis, the mechanisms involved in the deposition are quite unknown. It has been evidenced a narrow relationship between the precursor decomposition and the properties of the deposition. In particular an important difference

L. Vergnières^{1,2,3}, P. Odier², F. Weiss¹, C-E. Bruzek³, J-M. Saugrain⁴

¹ LMGP-ENSPG-INPG, BP 46, 38402 Saint Martin d'Hères, France.

² Laboratoire de Cristallographie-CNRS, BP 166, 38042 Grenoble, France.

³ Nexans France, 31 rue de l'industrie, 59572 Jeumont, France.

between the decomposition temperatures of the precursors implies a modification of the stoichiometry in the film. In certain cases NO₂ outgassing can be problematic as it can induce cracks or foam morphology.