Characterization of a NASICON based potentiometric CO₂ sensor

S. Baliteau^a, A-L. Sauvet^b, C. Lopez^a* and P. Fabry^a

^aLEPMI, INPG-UJF-CNRS, 1130 rue de la piscine, 38 402 Saint Martin d'Hères Cedex ^bCEA Le Ripault, BP 16, 37260 Monts, France Tel :33 4 76 82 65 73, email : christian.lopez@lepmi.inpg.fr

Abstract

In open devices, CO_2 sensors work in a differential mode and the response must only depend on the CO_2 pressure. To obtain a more stable response, the O_2 reference electrode consists of a material which can exchange oxygen with gas and sodium ions (Na⁺) with the NASICON membrane. Such an electrode is composed of a mixture of sodium titanates Na₂Ti₃O₇-Na₂Ti₆O₁₃ and La_{1-x}Sr_xMnO₃ (LSM). This latter compound is added to improve the oxygen electrode reaction. The sensing electrode is composed of gold and a mixture of sodium and barium carbonates (Na₂CO₃ and BaCO₃). Different compositions of the two electrodes are investigated in a large range of CO₂ pressure. Sensors with a weight composition of carbonates about 3:1 in sodium and barium for the sensing electrode show a nernstian response in the 385-668°C temperature range. In this range, the experimental slopes are about 90% of the theoretical value. Below 385°C, a logarithmic function of the CO₂ pressure is still observed but deviations from the Nernst behaviour occur. A thermodynamic approach based on the standard potential E° point of view reveals a good agreement between theory and experiments.

Keywords: CO₂ sensors, sodium titanates, NASICON