Y_2O_3 - $Y(Cr_xMn_{1-x})O_3$ NTC ceramics resistors

Houivet David, Bernard Jerome, Haussonne Jean-Marie

LUSAC, EA2607, Université de Caen, Site de Cherbourg BP 78 - 50130 Octeville

Previous studies[1] have shown the opportunity to obtain high temperature sensors with compounds from the ternary diagram Y_2O_3 - Mn_2O_3 - Cr_2O_3 . This NTC resistors are two phased with an high resistive phase Y_2O_3 and a less resistive orthorhombic phase $Y(Cr,Mn)O_3$. The present study is devoted to the compositions $0,6Y_2O_3-0,4Y(Cr_xMn_{1-x})O_3$ with $0 \le x \le 1$. Dense ceramics sintered at 1600°C.

When x is ranging to 0,3 to 0,9, resistivities at room temperature, are continuously ranging from 10^5 to 6 $10^8 \Omega$ cm together with B coefficients ranging from 3400 to 5600K, when resistance versus temperature is classically expressed as R=a exp(B/T).

Structure and microstructure have been investigated by DRX and MEB observations. When x>0,3, ceramics are two phased with an Y_2O_3 phase and an $Y(Cr,Mn)O_3$ phase: a solid solution of Mn in an YCrO₃ phase. The cell parameters have been calculated and the cell volume decreases continuously when x increases. When $x\le0,3$ a third phase isomorph at YMnO₃ is observed.

[1] Houivet D., Bernard J., Haussonne J.M., "High temperature NTC ceramics resistors (ambient-1000°C)", J. Eur. Ceram. Soc., 24, pp 1237-1241, 2004