MgO insulating films prepared by sol-gel route for SiC substrate

Céline Bondoux¹, Philippe Prené¹, Philippe Belleville¹, François Guillet¹, Sébastien Lambert¹, Benoît Minot¹, Robert Jérisian²

¹Laboratoire Sol-Gel, CEA-Le Ripault, B.P. 16, 37 260 Monts, France
Tel : (33) 02 47 34 56 01 – Fax : (33) 02 47 34 56 76 - celine.bondoux@cea.fr

²Laboratoire de Microélectronique de Puissance, STMicroelectronics, 16 rue Pierre et Marie Curie, B.P. 7155, 37 071 Tours cedex 2, France
Tel : (33) 02 47 42 40 40 – Fax : (33) 02 47 42 49 37 – robert.jerisian@st.com

Abstract

Silicon carbide (SiC) is a wide bandgap semiconductor suitable for high-voltage, high-power, and high-temperature devices from DC to microwave frequencies. However, the commercialization of advanced SiC power devices remains limited due to performance limitation of the SiO₂ dielectric among other issues. Indeed, SiO₂ has a dielectric constant 2.5 times lower than that of SiC, which means that at critical field for breakdown in SiC, the electric field in the adjoining SiO₂ becomes too high for reliable operation. This removes the main advantage of using SiC power devices if the ten times higher breakdown field for SiC in comparison to Si cannot be exploited. Therefore, alternative dielectrics having a dielectric constant higher than or of the same order as that of SiC (εᵣ≈10) should be used to reduce the electrical field in the insulator. Among alternative dielectrics to silicon dioxide (SiO₂),
magnesium oxide (MgO) seems to be a good candidate regarding its bulk properties: large bandgap, high thermal conductivity and stability, and a suitable dielectric constant ($\varepsilon_r \approx 10$). In order to evaluate such promising candidate, the sol-gel process appears to be a convenient route to elaborate this kind of coatings. By selecting appropriate precursor solution and optimizing the curing conditions of the films, MgO films could be obtained under various crystallization states: non-oriented and preferred [111] orientation. MIM structures have been used to investigate the insulating potentialities of the sol-gel MgO films. The dielectric strength of the films was found to be microstructure dependent, and reached 5 to 8 MV/cm at room temperature. Leakage currents were measured from 25°C up to 250°C.

Keywords: A. Films, A. Sol-gel Processing, C. Electrical properties, D. SiC, D. MgO, E. Insulator
1. Introduction

Silicon carbide (SiC) is a wide bandgap semiconductor suitable for high-voltage, high-power, and high-temperature devices from DC to microwave frequencies [1-3]. One of the most important techniques in the development of SiC-based devices is the formation of a suitable insulator or passivation layer. The properties of silicon dioxide (SiO₂, standard dielectric used in microelectronics) are not sufficient because its dielectric constant is 2.5 times lower than that of SiC ($\varepsilon_r=10$), which means that at critical field for breakdown in SiC, the electric field in the adjoining SiO₂ becomes too high for reliable operation [4]. This removes the main advantage of the high breakdown field of SiC (10 x that of Si): the maximum voltage of SiC power devices is limited by the field in the dielectric, not by the breakdown of the semiconductor. Therefore, alternative dielectrics with a higher dielectric constant (typically $\varepsilon_r\geq10$) should be used to reduce the electrical field in the insulator [5]. Among alternative dielectrics to silicon dioxide (SiO₂), magnesium oxide (MgO) seems to be a good candidate regarding its bulk properties: large bandgap (7.8 eV), high thermal conductivity and stability, and a suitable dielectric constant ($\varepsilon_r=10$). In order to evaluate such promising candidate, the sol-gel process appears to be a convenient route to elaborate oxide coatings. Sol-gel films have a high purity and the thickness is easily controlled. Deposition is performed at room temperature and atmospheric pressure, with a low cost compared to conventional vacuum deposition. Furthermore, spin-coating process can be easily integrated to industrial microelectronic production lines.

We report herein on the structural and electrical properties of sol-gel MgO thin films deposited onto Pt/Si(111), so as to select optimal coating preparation before exploring the electrical properties on SiC substrate.

2. Experiment
2.1. Sample preparation

MgO precursor solutions have been prepared using a magnesium alkoxide [6] and a magnesium salt [7] dissolved in an alcohol. Spin-coating was performed to deposit MgO films onto Pt/Si(111) substrate at room temperature. Process parameters and thin film curing conditions have been optimized allowing deposition of nanocrystalline MgO thin layer (thickness \(\approx 100 \text{ nm}\)). For electrical characterization, top electrodes (gold, circular dots, \(\Omega=200\mu\text{m}\)) were deposited using RF magnetron sputtering.

2.2. Characterization

Crystalline structure of the films was investigated using \(\theta-2\theta\) angular X-Ray diffraction (\(\lambda \text{K}\alpha_1=1.78897 \, \text{Å}\)). Refractive index and thickness of the films was estimated from ellipsometry. Porosity of the films was evaluated from refractive index using effective medium approximation (Bruggeman model) and correlated with density measurement from X-Ray reflectometry. The films surface were observed using Field Effect Scanning Electron Microscopy.

I(V) characteristics were performed using a Keithley 236 source-measurement unit and a prober station equipped with a temperature controller. For breakdown measurements, 40 capacitors were tested on each sample. The breakdown field was measured by applying a voltage stepped in 2V increments every 0.1s, and measuring the current until the compliance (25mA/cm²) was reached [5].

3. Results and Discussion

Two sol-gel routes have been investigated for the synthesis of MgO films: an alkoxide (A) and a salt (S) route. All synthesized MgO sol-gel films are nanocrystallized. As shown in figure 1, (S) film seems poorly crystallized and the crystallites are randomly oriented. For (A)
film, the crystallites exhibit a sharp preferred [111] orientation. It has been verified that the crystallization was independent on the substrate nature and orientation (Pt/Si(111), Si(100) and Si(111)) for both type of films. Thus, sol-gel coating structural properties can be controlled by selecting appropriate precursors in coating solutions. Ellipsometry and X-ray reflectometry measurements give a higher porosity for (S) film (36% ± 2%) compared to (A) film (31% ± 2%). SEM films surface micrographs (Figure 2) show nano-sized pores and confirm this difference of porosity.

The mean breakdown field is found around 4 MV/cm and 6 MV/cm respectively for (S) film and (A) film, with a narrow standard deviation (respectively \(\sigma \approx 0.4 \) and \(\sigma \approx 1 \)).

Figure 3 shows the leakage current densities measured at 2 MV/cm as a function of sample temperature. Lower leakage current densities (\(\leq 10^{-5} \) A/cm² at T<250°C) were measured on (A) film, which corresponds to the sharp preferred [111]-oriented film. TEM and X-ray texturation analyses are currently under progress in order to link microstructure and electrical properties.

4. Conclusion

The potentialities of sol-gel prepared MgO thin films used as an insulator for SiC substrates have been investigated. Sol-gel process appears to be a convenient route for preparation of homogeneous MgO coatings. Film structural properties can be controlled by varying precursor nature and optimizing densification conditions. The electrical properties of sol-gel MgO films have been investigated in MIM configurations. The best performances for insulation (dielectric strength and leakage currents) have been reached on sharp preferred [111]-oriented films. In further work, we will characterize electrical properties of sol-gel MgO films deposited onto SiC substrate.
References

Figure 1: XRD patterns of sol-gel MgO films deposited on Pt/Si(111) substrate

Figure 2: Field Effect SEM micrographs of sol-gel MgO film surfaces

Figure 3: Frequency of breakdown versus breakdown electric field (Ebd) of sol-gel MgO thin films

Figure 4: Leakage current densities at 2MV/cm versus sample temperature