
 Page 1/10

PharOS, a multicore OS ready for safety-related automotive
systems: results and future prospects

C. Aussaguès1, D. Chabrol1, V. David1, D. Roux2, N. Willey2, A.Tournadre2, M. Graniou3

1: CEA, LIST, Embedded real-time systems laboratory
2: Delphi France SAS

3: PSA Peugeot Citroen

Abstract: Automotive electrical/electronic
architectures need to perform more and more
functions that are mapped onto many different
electronic control units (ECU) because of their
different safety levels or different application
domains (body, powertrain, multimedia, etc.).
Freedom of interference is required to comply with
the upcoming ISO 26262 standard for mixing
different ASIL levels on the same ECU and is also
required to cope with the safe integration of software
from different suppliers. PharOS provides dedicated
software partitioning mechanisms as well as
controlled and efficient resource sharing by
construction, from the design to the implementation
stages. The main features of PharOS, contributing to
this property, are presented in this paper as well as
the results on its application an industry-driven case
study and associated future prospects.

Keywords: dependability and safety, real-time
systems, multi-core, automotive embedded software.

1. Introduction

Automotive electrical/electronic architectures need to
perform more and more functions that are mapped
onto many different electronic control units (ECU)
because they have different safety levels or different
application domains (body, powertrain, multimedia,
etc.). Next-generation vehicles need reduced
development costs and reduced energy consumption
and this can be achieved by reducing the number of
embedded ECUs [1].
This evolution of automotive architectures requires,
firstly, ECUs with more computing power. Today
microcontroller suppliers can offer multi-core
architectures, where computing power is increased
by adding cores rather than by over-clocking the
CPU and so for the same CPU capability, this
solution increases much less the power consumed.
However, carmakers and automotive suppliers lack
the appropriate support tools to obtain the full benefit
from these new paralleled architectures without
compromising safety requirements.
Secondly, non-interference among different functions
of “merged” ECUs must be ensured. It is required
also to comply with the upcoming ISO 26262
standard and to solve the problem of mixing different
ASIL levels on the same ECU. Freedom from

interference is also a property required to cope with
the actual way of integrating software from different
suppliers in automotive industry. It calls for dedicated
software partitioning mechanisms as well as
controlled and efficient resource sharing.
Standard approaches in automotive software
architectures, like the AUTOSAR-based ones,
address some of these requirements partially, such
as software modularity and portability, but do not yet
provide complete and proved solutions to safety
aspects related to non-interference and optimal use
of multi-core microcontrollers.
To this aim, CEA LIST has developed, in
collaboration with Delphi, PharOS, a technology for
design and implementation of safe embedded real-
time multi-core systems. It shares the same parallel
time-triggered and safe-by-construction paradigms of
the OASIS technology [2] but coping with the specific
automotive requirements. Such approaches allow
conciliating efficient parallelism management and
real-time determinism [3].
PharOS provides safety-assisted real-time design,
temporal & spatial partitioning mechanisms and
dual-core support, optimized in terms of memory
footprint and computing performance required by the
highly-constrained automotive environment.
The icing on the cake is that PharOS can effectively
reduce the development cost by simplifying the
validation of components and limiting the need of
global system revalidation.
This paper will present on one hand the main
features of PharOS easing the design and
implementation of safe-by-construction and highly
available embedded real-time systems and on the
other hand the results and future perspectives in the
automotive domain.

2. PharOS execution and protection features

A real-time system coordinates elementary activities
(such as data acquisitions/actuations from/to the
environment or computations) that are performed by
processing units. Each elementary activity has its
associated temporal constraints, which can be
derived or specified explicitly: an activation rhythm
(not necessarily periodic), a time interval when the
activity has to be performed (i.e. an earliest start
date and a deadline), and dependencies with others

 Page 2/10

activities (communications, atomic requests). The
coordination among all activities implies
synchronization on the physical (i.e. real) time—to
ensure the temporal coherence—and
synchronization of the sequential and conditional
activities. Thus, temporal distribution of different
activities must be controlled and, consequently,
defined by the task model.
Furthermore, to allow valid offline verification (e.g.
proofs, tests, etc.), the system must be deterministic.
Indeed, predictability and reproducibility of software
behavior in both temporal and logical domains
guarantees the coherence between, offline analysis
and tests, on one hand, and actual execution, on the
other. To ensure such determinism, sources of
asynchronism, such as scheduling (e.g. preemption),
variation of the execution time, and communication
delays must be taken into account at the design level
in order to control interactions among tasks.
Therefore, all temporal constraints on interactions
must be explicitly provided by the tasks model.

2.1. Observability Principles

When asynchronism is not accounted for at design
level, interactions can result in out-of-date or
inconsistent data being manipulated, which can lead
to non-reproducible behavior or failures. Indeed, in
absence of synchronization mechanisms, it is
impossible to know whether production processing is
complete or not. Similarly, consulted data must be
consistent throughout the associated consumption
processing. Furthermore, expiration rules must be
provided in order to compute bounds for the size of
communication buffers.
An observation of a temporal variable is a couple
(X,V) where X is the value of the variable and V is
the formal visibility instant of this value.
Communications are then based on the following
principles (see Figure 1):

• A variable X is visible only from its visibility
instant V.

• An observed value of a variable X is not
modifiable, neither by its producer nor by
consumers.

• An observed value of a variable X must
remain available until a consumer can use it.

Figure 1. Observability principles

Consider two communicating tasks shown in Figure
1. Assume that Task 1 produces a new value for the
variable X once in the interval [T0,T2[and once in the
interval [T2,T4[; Task 2 consults the value of X at
some current date Tc ∈ [T3,T5[. As the date Tc is a
priori unknown, the determinism principle requires
that the value of the variable X at the date Tc is equal
to the value that was the last one observed at the
date T3. Similarly, this last value is given by the
observation (X, T2). In other words, the consulted
value of a variable is always a past one and equal to
its value at the last formal visibility date less than or
equal to the earliest start date of the current time
interval of the consulting task.

2.2. Time- and Event-Triggered Model

PharOS is based on a Time-Triggered (TT)
execution paradigm [2][5]. The system observes the
environment and initiates its activities at some
predetermined points of the globally synchronized
time. For each task, its time-scale, observations, and
interactions are defined at the design step, allowing
a precise control at the execution of the system.
In the automotive domain, many activities (e.g.
signal capture) have temporal constraints with
durations smaller than few microseconds. Hardware
performance may not allow addressing such
activities with Time-Triggered paradigm. Therefore,
in addition to Time-Triggered execution, PharOS
also extends the principles described in the previous
section to Event-Triggered (ET) activities.
In PharOS, the decomposition in tasks corresponds
exactly to the processing that should be executed in
parallel (i.e. activities that are not directly
dependent). Moreover, a task can be defined in time-
triggered domain or in event-triggered one. The
design in PharOS imposes no constraint on the
decomposition of an application in tasks, nor
triggering domains.

2.2.1. Time-Triggered tasks

A TT task—also called an agent—is an autonomous
entity defined by a deterministic labeled transition
system, where labels represent elementary activities
(denoted EA) representing sequential computation.
Each EA has an associated deadline D, i.e. its latest
end instant and a quota Q, its maximum authorized
execution duration. An EA is executed within a
temporal window w defined by an interval [Ts,Tt[(see
Figure 2), where Ts is the earliest start date, and Tt is
the latest termination date of the activity.
All dates belong to a predetermined subset of ticks
of real-time clocks defined in the system. Each clock
is a couple (P, d), where P is the period and the d
initial phase.

 Page 3/10

Figure 2. TT tasks model

By default the deadline D is equal to Tt or computed
according to different execution paths. It can also be
explicitly specified by the designer for a finer control
of jitter and activation delay. The quota Q is the
maximal authorized execution duration, i.e. the

inequality ∑
=

>
N

i

iqQ
1

 is controlled at runtime, where iq is

the execution time of the executed EA part and N is
the total number of executed parts (preemptive
system).
In the PharOS approach, the quota has no impact on
application design, but is only used for monitoring
and, by offline tools, to perform the CPU sizing
analysis: to verify whether hardware performance is
sufficient for the application requirements or not (and
to compute the associated maximum CPU load).
Thus, in order to ensure timeliness of elementary
activities, quotas represent upper bounds of their
WCET. Quota violation is therefore an error and will
be managed as described in section 3.3.
An execution of an agent is an infinite trace of its
defining transition system. An execution defines a
sequence of temporal windows (denoted W) derived
from the constraints specified at design phase and
such that w

sT of the current temporal window w ∈ W

is equal to 1w
fT − of the previous window

denoted 1w − .
The following temporal constraints can be
expressed, monitored, and guaranteed by the
system (see Figure 2):

• Activation delay (A∆)—the minimum delay
between executions of two consecutive
elementary activities: at the latest, the first
activity must finish before wD , whereas the
second cannot start before 1w

sT + . Hence,

{ }WwDTA ww
s ∈−=∆ + |min 1 .

• Jitter (J∆)—the maximum delay between
executions of two consecutive elementary
activities: at the earliest, the first activity can
finish at w

sT (zero, i.e. negligible, execution
time); similarly, the second must start before

1+wD . Hence, { }WwTDJ w
s

w ∈−=∆ + |max 1 .

The basic temporal constraints, such as the
deadlines and sizes of temporal windows (i.e., Tt –

 Ts), are directly incorporated in the task specification
allowing to describe behaviors according to external
events (e.g. received network frame) or internal (e.g.
state of local variable). Therefore, each agent can
adopt dynamic behaviors, periodic or not, regular or
not for which all possible sequence combinations are
known and incorporated in a graph (see section 3.1).
Although each TT task must have an associated
basic clock, all the clocks are defined globally for the
application and can be used by all TT tasks for
synchronization. Thus, tasks can be synchronized
(see Figure 3):

• At system start (potentially with a bounded
phase shift)—first of all, the global reference
of the application is specified as a formal
instant called inittime; then a start delay S∆
relative to inittime is associated to each task.
It is important to observe that inittime and

S∆ need not necessarily belong to the same
clock. Hence, the starting instant of a task is
given by T0 + S∆ , where T0 is the last
formal instant on the clock of S∆ before
inittime.

• At a specified instant on any given clock. For
example, the synchronization between
Agent 1 and Agent 2 in Figure 3 is obtained
by Agent 1 advancing to the fourth and
Agent 2 to the second next tick on the clock
C10.

Figure 3. Tasks synchronization

2.2.2. Event-Triggered tasks
An ET task—also called a handler—runs one
elementary action when an external event is raised
and enables a hardware interrupt. The associated
computation is executed in a growing temporal
window [[fe TT , , where eT is the earliest date when

the event can occur, whereas fT is the termination

instant unknown until the event does occur and
defined by oof TT ∆+= with oT the measured

effective occurrence date and o∆ the minimum
interval with at most N occurrences of the same
event. Similarly to TT tasks, a quota Q (an upper

 Page 4/10

bound for the WCET) can be specified for the
execution time of a handler.

Figure 4. ET tasks model

Altogether, the above parameters specify the largest
acceptable workload.

2.3. Temporal communication

All communications/interactions among tasks are
explicitly described at design phase and incorporate
temporal aspects. The following temporal constraints
can be specified and controlled:

• Age delay is the maximum delay from which
the consumed or sent value (the earliest
value) has been produced.

• Delay before injection is the maximum delay
between effective event occurrence and its
processing by the system. This delay also
comprises the injection of data from ET
domain to the TT one.

• Expedition delay is the maximum delay
between data production and its delivery to
the external environment.

• Expiration delay is the maximum delay from
which the data becomes obsolete.

All these constraints (based on the observability
principles) associated with temporal behaviors of
each task provide means for expression and control
of end-to-end temporal constraints, i.e. maximum
delay between data acquisition and associated
actions.
On the basis of the communication principles
presented above, PharOS provides the following
communications mechanisms within the TT domain:

• Temporal variables are real-time data flows:
values, available to all agents, stored and
updated by a single writer—the owner
agent—at a predetermined temporal rhythm.

• Temporal messages represent a mechanism
for sending typed messages with associated
visibility dates.

• Temporal flags are a special case of
temporal messages for notifying only event
(e.g. implicit boolean value) without
associated data (for optimization purposes).

• Temporal blackboards generalize the first
two above mechanisms to allow several
agents to contribute to the same temporal
variable at a bit granularity.

ET <=> TT (1 agent to 1 handler, and reciprocally)
define mechanisms derived from temporal variables
and messages to exchange data between the two
domains.

3. Temporal and spatial partitioning

To implement partitioning, the execution is structured
in different contexts (called execution context) in
PharOS:

• An application layer (compounded of
different tasks), that executes the main
functions (there is one applicative execution
context per task),

• A system layer that manages task execution
control and inter-task communications (there
is one system execution context per task),

• A micro-kernel that manages time and task
context switching (it is the only atomic
execution context).

The kernel is the association of the micro-kernel and
the system layer and is designed to be independent
of any application. The application layer is
compounded of two execution domains:

• Time-triggered (TT) tasks, where processing
is activated only by time evolution,

• Event-triggered (ET) tasks (also called
handlers), where processing is activated on
the occurrence of an associated event
(Input/Output interrupt). This execution
paradigm is typically required when the
temporal rhythm of events is too tight to be
met by TT tasks (limited hardware
performance).

The kernel implements generic spatial and temporal
partitioning mechanisms [4] to protect each
execution context. It uses the protection runtime
information (e.g. MPU descriptors, timers, temporal
diagram) automatically extracted from functional and
sizing constraints provided at software design phase.
The protection mechanisms are configured for:
earliest/nearest error detection and confinement,
non-interference between application and system
layers, nor between domains, nor among
applications, i.e. TT and ET tasks.

3.1. Temporal partitioning

From the design step, offline analysis of the global
software sizing can be performed in order to verify
whether provided hardware performance is adequate
to satisfy application constraints [2][6]. The
guarantee that all the tasks can meet their temporal
constraints is provided for both nominal and failure
contexts. For this analysis to be relevant the
execution of the system must conform to the
analyzed design, including the associated temporal
constraints. The following errors must be detected:

=T2T1
e

EA

Q

∆∆∆∆o

Time

T1
o

Event occurrence

e
T1

f

 Page 5/10

• Local sizing error: task execution
consumes more time than expected. This
error must have no impact on other
tasks.

• Global sizing error: a task reaches its
deadline. Required CPU load is therefore
greater than hardware capabilities. An
increase of CPU quartz would suffice in
the case of an error in the global CPU
load calculation performed during offline
analysis. Such operation is performed
without changing the design of the
application.

• Flow execution error: a task attempts to
take an execution path inconsistent with
its specification.

In PharOS, detection of these errors is performed by
monitoring the deadlines, quotas, and execution
sequences for each task.

3.1.1. Deadline monitoring

In the TT domain, the system observes its
environment and initiates processing operations at
recurring, although not necessarily periodic,
predetermined instants in time. Therefore, effective
execution takes place between two instants—an
earliest start date and a latest termination date—split
potentially into several execution parts due to pre-
emptive scheduling policy (see Figure 5). Execution
support uses therefore a hardware timer to ensure
EA termination at the associated deadline, otherwise
an error is raised.

Figure 5. Deadline monitoring

The same—hardware timer—mechanism is used to
ensure timely termination of handlers in the ET
domain. The main difference is that the deadline for
a handler is determined at the occurrence of its
associated interrupt.

3.1.2. Execution time monitoring

CPU is a shared resource for which scheduling
policy determines, at every instant, which tasks can
use it. Only one task can execute on a given CPU at
any given moment; other tasks are waiting. It is
therefore important to ensure that CPU is correctly
released by the tasks.
Tasks execution time is monitored in order to ensure
that each task uses no more than the quota it has
been assigned at design step. If a task attempts to
use more time, an exception is raised by the kernel
(see Figure 6). Notice that this implies that the
specified execution time of each activity must be
strictly positive, whether it belongs to the applicative
or the system layer.

Figure 6. Quota monitoring

Each fraction of the execution time consumed by the
system layer (communication and monitoring) is
attributed to the task for which the processing is
performed. Observe, in particular, that a specific time
margin, attributed to tasks, is reserved for the
monitoring of the quotas by the micro-kernel.
Similarly to deadlines, the monitoring of quotas is
implemented by a hardware timer which is set when
a task is executed.

3.1.3. Execution sequence monitoring

The temporal behavior of tasks and handlers is
monitored in order to verify that it conforms to the
specified one. To avoid misinterpretation by
developers, the temporal model is automatically
extracted from the application design and stored in a
runtime table; this information supplies online
verification mechanisms to check correctness of
processing sequence and their associated temporal
constraints.
The labeled transition system describing a task
encompasses its complete temporal behavior and
includes all synchronization points that this task can
reach. For each task, an extended representation,
independent from other tasks, is obtained by
unfolding this transition system and computing a
temporal congruence on its states. The resulting
temporal diagram (illustrated in Figure 7) is an
optimized model for behavior used by the system
layer to control the execution of a task. This diagram
allows one to precisely place each elementary
activity in a corresponding temporal window.
The temporal diagram in Figure 7 illustrates a cyclic
task for which temporal behavior alternates
according to a conditional test. This diagram has two
types of nodes: adv and upd, corresponding
respectively setting and updating the temporal
window of the current activity.
A system call function sysCall_xxx_n(), generated
separately for each transition (cf. the generated code
in the right-hand side of Figure 7), passes the index
of the target node of the temporal diagram to the
system layer. The diagram itself is stored in read-
only memory and cannot be modified. The system
layer verifies whether the task can move from the
current node to the target one while respecting the
associated constraints thereby controlling the
conformity of the execution to the design
specifications.

 Page 6/10

Figure 7. Temporal behavior monitoring

In the ET domain, all useful interrupt sources are
explicitly identified; other unused interrupts are
disabled. Therefore, apart from timer interrupts used
for time management, each interrupt must start an
appropriated processing, encapsulated in a known
and controlled temporal window: the interrupt must
be expected. For this, minimum time interval (the
shortest acceptable in terms of CPU load) between a
given number of occurrences of the same interrupt
must be specified at the design stage. Then, a
system automaton ensures that their executions are
performed according to occurrence’s order of the
respective events. Based on this information,
support tools generate appropriate code to perform
occurrence monitoring through dedicated hardware
timer channel.

3.1.4. Timer implementation

Timer implementation in the Time-Triggered domain
of PharOS is straightforward. Indeed, one timer is
sufficient for monitoring both deadlines and quotas of
task activities. Hence, a hardware timer can always
be used. This timer is always enabled and reset
each time the execution leaves the microkernel.
In the Event-Triggered domain, each handler has a
specified quota used for monitoring. Hence a
separate timer might be necessary for each interrupt
type in order to optimize their execution time.
However, timer resources may be insufficient or
microcontroller performance too tight. Different
implementations are possible. In the optimal case, a
dedicated or shared timer can be set while ensuring
time countdown coherency policy: time must only be
deducted when the handler is effectively executed.
In some other cases, a software mechanism must be
implemented by checking whether, when handler is
executed, its previous execution was already
terminated or not.

3.2 Spatial partitioning

3.2.1. Code and data partitioning

An error occurring during the execution of a task
should impact neither the other tasks, nor the kernel.

This can be ensured by the hardware memory
protection, provided clear and explicit segmentation
of the executable code: text and data sections of
object files must be identified in order to clearly
separate variable and constant data, and the
application code.
In PharOS, data naming rules are used in order to
assist this identification. In addition, specific
information for the backend compiler can be included
in the source code to specify membership of
sections. Sections can then be aggregated into
uniform ones depending on the execution context:

• produced data and buffers,
• consumed data and buffers,
• functions.

These sections are then placed in the memory
according to the following criteria:

• Access performance of the memory
support (code or data is frequently used).

• Shared memory between cores when
multi-core architecture is targeted,

• Implicit protection provided by the
memory support such as flash memory.
(indeed, such memory requires use of
specific driver to distort it),

• Similarity of the required memory access
rights for different elements.

All the above operations depend on the memory
protection abilities provided by the hardware unit.

3.2.2. Execution support protection

Hardware execution mode mechanism is used to
prevent applications from interfering with the system
layer. Such mechanism authorizes execution of
specific instructions and access to memory regions
(through configuration of memory protection unit
descriptors) only according to specific
microcontroller mode. At least two execution modes
must be distinguished by the hardware:

• Supervisor mode—to restrict access to
the internal registers (e.g. stack pointer
store/load instructions, memory
management unit instructions) and
peripheral device registers (INT, MPU,
timers, etc.) used for the execution.

• User mode—for the application software.

System access is only possible through a unique
interface: by the application, based on trap calling
(automatically generated at compilation stage), and
by the micro-kernel via timer interrupt to manage
scheduling as illustrated in Figure 8 (SL means
System layer and µN means Micro-Kernel in the
following figures).

 Page 7/10

Figure 8. Execution modes

3.2.3. Memory access protection

A strict memory protection policy must be
implemented in order to protect data and code
sections against spurious read, write or/and execute
attempts. This protection is essential to ensure
predictable and reproducible behavior even for the
degraded modes. This protection is defined with the
memory protection unit (MPU), where rights
associated with execution modes provided by the
microprocessor are applied dynamically and
swapped upon context switch to allow appropriate
memory access for the enabled context, as
illustrated in Figure 9 (the current task is shown on
the left-hand side for each context).

Figure 9. Memory rights

Write access protection
Write access protection is the most important one.
Indeed, task or system state alteration can only be
confirmed by writing of data in memory or register.
Applicative right accesses must therefore restrict at
the necessary and sufficient need whatever
protection abilities level.
Read and execution access protection
A priori, write access protection is sufficient for some
safety-related purposes. However, read and execute
accesses should not be restricted to increase the
execution determinism, particularly in case of failure.
Task should not be able to access unrelated memory
area. Hence, for optimal protection, memory area
consulted or executed by a context must be clearly
identified. However, depending on hardware
capacity, degraded protection can be used, where
read access rights are extended: first for constant
data and code, then for variable data. To be
coherent with hardware capabilities, memory
protection is highly correlated with the code and data
segmentation.

3.3. Failure management

Whenever an error is detected and confined, a
specific failure management policy must be applied.
Based on the presented protection mechanisms,
PharOS ensures that errors are detected and
confined in their source execution context. The
system then remains stable and continues its
execution in a degraded mode. Degraded behavior
is specified at design stage with the same
requirements as in the nominal behavior. PharOS
allows performing specific recovery procedures.

3.3.1. Degraded behavior

When a faulty task is shut down upon detection and
confinement of an error, other tasks can still be
affected if their behaviors depend on the data
produced by this task. In order to control such error
propagation, PharOS provides two kinds of
mechanisms to specify degraded behavior:

• Task grouping—confinement area is defined
over a set of tasks. Thus, if one task fails, all
tasks of the group are shut down. This is
necessary when several tasks compose the
same application or specification of the
degraded behavior for correct tasks is
impossible.

• Task state broadcasting—for tasks
producing real-time data flows, data
extrapolation can be realized by the system
to ensure data coherency. Consumer tasks
are therefore notified of the state of the
producer (faulty or correct) and the
pertinence of data. To ensure real-time
coherence of the data-state pair, the state
information is broadcasted to consumers
through the real-time data flow mechanisms.

3.3.2. Recovery policy

PharOS provides a recovery mechanism that is
performed at the faulty task (or group) level without
affecting the functions of the other tasks. Moreover,
it is realized with temporal constraints to ensure
restarting within a controlled delay.
This recovery mechanism is provided by the kernel.
The first step consists in reinitializing the context of
the task (stacks, registers, etc.) and communication
mechanisms without impacting actual consumed
values. The second step consists in re-integrating
tasks in scheduling lists. For this, a restart instant is
computed from a delay specified over a congruent
cycle, i.e. in a synchronized way consistent with the
offline computed CPU load.
When a task is restarted, relevant information are
provided to the application level to enable choosing
between the nominal behavior (executed at the
system initialization and start) or a specific
(degraded) one, as all behaviors, including those
after a retart, are described in the design. In
particular, this allows correct re-initialization of local
variables.

 Page 8/10

3.3.3. Logging mechanisms

Safe and controlled resource sharing allows
reporting the error source for later diagnostic
operation.1 For TT tasks failures, the nature of the
error as well as the corresponding location in code
(given by the temporal execution diagram) can be
reported; for ET tasks—information about the
interrupt vector. The global determinism ensured by
PharOS allows enhanced error identification, and
better verification and validation support during
software development.

4. Dual-core support

The dual-core hardware architectures used for
microcontrollers dedicated to automotive ECU
provides intrinsic execution parallelism.

4.1. PharOS execution model

In order to optimize the allocation of the CPU time to
application execution, PharOS provides an execution
model based on the following two principles:

• Task execution must be interrupted only
when necessary.

• Ready tasks must be executed whenever
possible.

The microkernel is split between cores2 in order to
perform system execution in parallel with application
execution:

• The control core manages time evolution
and scheduling (lists of ready and pending
TT tasks).

• The computing core executes TT tasks, with
appropriate task context switching
management, according to the list of ready
tasks.

The control core is also in charge of the execution of
handlers, thus avoiding any perturbation of the
execution of TT tasks. Therefore, CPU time is
preserved for the execution of TT tasks; no time is
consumed for task's context switching and system
process execution.
Figure 10 illustrates the PharOS dual-core execution
principle. The computing core runs TT tasks from the
list of ready tasks (contexts), which is updated by the
control core. Assume that two agents AG1 and AG2
are to be executed in the temporal window [T0, T1[.
When AG1 terminates its elementary action the
computing core switches execution to AG2. Apart
from changing the task contexts (by the micro-kernel
layer), this operation involves operations such as, for
example, updating the list of ready tasks. In the

1 The failure reports are stored in an EEPROM.
2 These microkernel features for multi-cores are integrated into a patent.

single-core context, all these operations are
performed by the same core, which implies, in
particular, a number of additional context switches.
The separation of control from computing reduces
the number of context switches and control
computations on the computing core, saving time for
execution of application tasks.
To summarize, the control core relieves the
computing one from managing the time evolution
and TT scheduling, as well as processing the
interrupts from the I/O operations. Moreover no
context switching is required between agents and
handlers.

Figure 10. Dual-core execution principles

4.2. Programming model

The dual-core architecture underlying the system
execution is completely transparent for developers,
thus simplifying the design phase. In particular, no
API is needed for specifying processing on the
control core or mapping of tasks. Developers
describe only nature of tasks, that is whether a task
is Time-Triggered or Event-Triggered, and provide
the associated temporal and functional constraints.
The mapping is implicit and automatically
determined from the design description.

5. Case study and results

An ECU developed for PSA Peugeot Citroen with an
OSEK OS on the S12XS (Freescale microcontroller,
single HC12 core) has been redeveloped partially,
using PharOS on the S12XE (double core, pin to pin
compatible with S12XS).
The case study is a subset of an automotive
application that includes: some functions for system
outputs command, CAN communication bus,
sensors signal measurements and voltage control.
The whole application is composed of 7 TT tasks
(including CAN LS driver) and 2 handlers. TT tasks
have different dynamic behaviors and scales from
hundreds of microseconds to several seconds, ET
ones from a few microseconds to several
milliseconds. Handlers indeed measure the duty

 Page 9/10

cycle of a 400 Hz PWM signal and catch the signal
state after a precise exclusion time with a filtering
policy. CAN driver is totally integrated in the TT
domain, even though the CAN frames are received
in an event way
The sample application that is described below
covers some representative functions extracted from
this automotive industrial case study.

5.1. Sample application

This application includes some functions of system
outputs commands, communication through a CAN
LS bus and sensors signal measurements.

Figure 11. Sample application

The application consists of 6 TT tasks (including
CAN LS driver) and 1 ET handler (see Figure 11 and
Figure 15):

• AgCanRx: Reception management of CAN
LowSpeed (125 kbits/s) driver. Its design is
implemented to ensure by construction that
there is no loss of received messages due to
hardware buffer overflows and no work
overload due to CAN bursts. AgCanRx has a
period of 1 ms followed by a 500 µs deadline
in order to ensure a maximum jitter of
message extraction processing under 1.5
ms.

• AgPwmOut: Production of the duty cycle
according to an external value. This process
is performed only if beams command is set
to on (15 ms period); otherwise AgPwmOut
periodically checks for a presence of a new
command (5 ms period for improved
reactivity).

• AgCmd: Management of the output signals
for the light beams and the wiper according
to the command received from CAN.

• AgCanTx: Transmission management of
CAN LowSpeed driver. Its design is
implemented to ensure by construction that
message transmission is precise and
guaranteed. AgCanTx has a period of 5 ms
to satisfy transmission constraints of the new
values produced by AgPwmIn and AgWAF.

• AgWAF: Retrieval of the fix stop position of
the wiper and its communication over the
CAN network via AgCanTx

• itECT: ET task for measurement of a duty
cycle of a 400 Hz PWM signal. Time scale
(from some microseconds to 2.5 ms)
required for this signal processing is too
small (compared to the provided frequency
range) to be treated in the TT domain. Thus,
itECT extracts timers registers value (e.g.
instants) noted by hardware on occurrence
of rising and falling edges of the measured
PWM signal (400 MHz). Then, it
communicates these acquisitions to
AgPwmIn by blocks of 5. System is then
configured to tolerate 2 interrupts by period
of 2.5 ms.

• AgPwmIn: Computation of the duty cycle
based on the instants provided by itECT and
communication of the result over the CAN
network via AgCanTx.

TT tasks have different dynamic behaviors,
according to internal or external state/command, and
different time scales from 500 microseconds to
several milliseconds.

5.2. Error injection results

To stress the error detection mechanisms and the
recovery management, 3 kinds of errors were
injected at AgWAF level:

• A wrong memory access (see Figure 12), to
attempt distortion of a critical function such
as light beams command (AgCanRx) by
setting the beams to off when they must be
set on.

Figure 12. Memory access error injection

• An infinite loop (see Figure 13), for example,
to simulate hardware failure which diverts
the exit condition of a test.

Figure 13. Quota error injection

• And interferences on interrupt occurrences
(see Figure 14), to simulate interrupt burst or
bad plug connector.

 Page 10/10

Figure 14. Interference error injection

In actual automotive controllers, such errors can lead
to undesirable failures and, in the worst case, a loss
of all functions as a result of restarting the controller.
With PharOS, each error was detected and confined
at the level of the task responsible for the failure (see
Figure 15); the sources and nature of errors were
logged in the EEPROM memory for later diagnostics.
Subsequently, a recovery procedure was engaged
for the faulty task in order to restart it after a
specified delay of 2 seconds (see Figure 15). No
other functions were disturbed during this recovery
process.

Figure 15. Application temporal diagram

The development of the industrial case has
established the feasibility of PharOS in an
automotive real case. So, ongoing work is now
focused on achieving integration between PharOS
and AUTOSAR. This paves the way for a modular
software architecture where components reuse and
modification is easier among vehicles: software
component interactions and composition can be
controlled to improve cost-efficiency without making
any compromise with respect to quality and safety.

6. Conclusions and prospects

PharOS is a solution for next-generation of
automotive controllers that enables implementation
of the upcoming automotive safety standard
(ISO 26262). It provides a new approach for the
design and implementation of embedded real-time
systems fulfilling also other important automotive
requirements: generic software architecture,
adaptability to hardware features such as multi-core
one, reuse of safety-based mechanisms, software
integration from different suppliers. As it is possible
to define and control different temporal behaviors
and operational modes of applicative and basic
software designed with the PharOS kernel and its
associated code generation tool-chain, development

times and costs can be improved. Moreover, it
enables integration of functions with different ASIL
level on a same ECU, as the embedded protection
mechanisms ensure freedom from interference
between them and so paves the way to future multi-
domain ECUs.

7. References

[1] Leteinturier, P., “Multi-Core Processors: Diving the
Evolution of Automotive Electronics Architecture”,
EETimes, Embedded.com online journal, 2007

[2] David, V., Delcoigne, J., Leret, E., Ourghanlian, A.,
Hilsenkopf, Ph., Paris, Ph., “Safety properties
ensured by the OASIS model for safety critical real
time systems”, IFIP-SAFECOMP’98 Conf.,
Heidelberg, Germany, 1998.

[3] Halang, W. A., Gumzej, R., Colnaric, M. and
Druzovec, M. (2000), "Measuring the Performance
of Real-Time Systems", The International Journal
of Time-Critical Computing Systems 18: 59-68

[4] Rushby, J., “Partitioning in Avionics Architectures:
Requirements”, Technical Report, Computer
Science Laboratory, SRI International, 1998.

[5] Kopetz, H., “The time-triggered approach to real-
time system design”, Predictability Dependable
Computing Systems, Springer-Verlag, pp. 53-78,
1995.

[6] Aussaguès, C., David, V., “Guaranteeing timeliness
in safety critical real-time systems”, 15th IFAC
Workshop on Distributed Computer Control
Systems, Como, Italy, 1998.

