
Page 1/8

How the concepts of the Automotive standard "AUTOSAR" are
realized in new seamless tool-chains

Dr. Stefan Voget1, P. Favrais2

1: Continental Engineering Services GmbH, Siemensstraße 12, 93055 Regensburg
2: Continental Automotive France SAS, Avenue Paul Ourliac B.P. 83649, 31036 Toulouse

ABSTRACT: In this paper we present concepts
leading to a new seamless tool-chain in the
automotive industry. The actual tool market is mainly
influenced by the AUTOSAR standard and an open
user group approach that published and maintains
an AUTOSAR Tool platform (ARTOP).

Keywords: AUTOSAR, AUTOSAR methodology,
meta-model, seamless tool-chain, ARTOP,
EAST/ADL, timing modeling

1. Introduction
Since six years the AUTOSAR standard [1] is under
development within the automotive industry. No sub-
domain of the vehicle is excluded. Today, series
developments based on this standard run in interior,
power-train as well as in chassis. Although their
requirements are quite different, AUTOSAR allows
reuse of infrastructure software between the sub-
domains.

In none of the projects the development starts at
zero. Existing solutions have to be adapted to the
AUTOSAR approach. The reality shows, that there is
not the one and only path to migrate existing
solutions to AUTOSAR. But, several "best practices"
can already be derived by the experiences done in
all automotive domains as the standard is in series
development since more than three years.
AUTOSAR does not only define new infrastructure
software, but also the processes and tool-chains are
influenced by the standard.

In this article we will motivate the importance of
AUTOSAR for the tool chains in series development
projects. This is due to the AUTOSAR methodology
[2][3] which shifts more and more complexity from an
implementation oriented process to a configuration
based process. This results in a shift of main tasks in
a development process more to the left part of the V-
cycle.
As a consequence, the configuration based process
enables the introduction and use of more
automatism in the software development. The new
character of the AUTOSAR methodology enables
and requires new tools that provide the automatisms.
Therefore, AUTOSAR currently has a deep influence
on the tool developments for the automotive

industry. More and more tool vendors arise in the
market with tools that support the AUTOSAR
methodology.

Mainly two alternative approaches for the
development of these tools can be observed. Some
vendors enhance their existing tools with export and
import capabilities to and from the AUTOSAR format
but do not adapt the workflow regarding the
configuration process. This is mainly reasoned in the
fact that most of the series projects are still non-
AUTOSAR projects. The comment given above
regarding migration to AUTOSAR is also valid for the
tool industry. Other vendors use the standard as an
opportunity to design new tool capabilities. This
enables new vendors to establish them self in the
automotive industry.

A lot of new tool innovations that realize the
concepts around the AUTOSAR system
methodology are on the way. One platform for these
innovations is ARTOP (AUTOSAR TOol Platform)
[4][5][7][9]. The so called ARTOP user group
provides common base functionality used for design
and configuration of AUTOSAR compliant systems
and electronic control units (ECU). It is an Eclipse-
based AUTOSAR tool infrastructure platform (See
www.artop.org) [6].

Based on this platform we will show how the
AUTOSAR concepts like system development,
system configuration, timing analysis and code
generation can be brought together into a seamless
tool-chain. Some outlook about extensions into
functional modelling – that is not defined by the
AUTOSAR methodology itself – is presented, too.

2. AUTOSAR
The main concept of the AUTOSAR approach is to
separate application and infrastructure software. On
application level the AUTOSAR software
components (SW-C) are introduced. A SW-C may
cover a small, reusable but also a complex
automotive functionality.

Software components are connected with each other
through well defined ports and interfaces. In terms of
implementation, the AUTOSAR software component

Page 2/8

is independent from the infrastructure, i.e. it is
independent from the type of the microcontroller and
the type of electronic control units (ECU) the SW-C
is running on.

The separation between function and infrastructure
is important for the reusability of software
components in different ECU's and is achieved at
design time through the Virtual Functional Bus
(VFB). The Virtual Functional Bus takes care of the
communication between different components and
between software components and the hardware.
The VFB realizes the goal of being able to relocate
software components and allows a virtual integration
of AUTOSAR software components in an early
development phase. AUTOSAR provides a
methodology and proposes the use of tools for this
purpose.

2.1 AUTOSAR Methodology

The AUTOSAR Methodology is a booklet to support
the exchange of model data in early development
steps of a series project. It defines activities and
work products. But, it is neither a process description
nor a business model and therefore does not
predefine a strict order in which the activities should
be accomplished.

In the first step, system information is collected that
will be used for a configuration of the system. These
inputs are formal descriptions of software
components, ECU hardware resources and system
topology.

The first important step, the system configuration,
takes these descriptions and performs a mapping of
the software components to one or more ECU's.
With the help of the VFB principle the application
software had been modelled independent from the
concrete hardware until this step. The system
configuration step marks the changeover from a
hardware independent SW development to a
hardware related SW configuration.
To complete this step, a second mapping is
performed. It is the mapping of signals to bus frames
which results in the communication matrix.

If the system configuration step is finalized, one
knows the software components that are allocated to
a single ECU. Now, the further steps of the
methodology operate on a single ECU. To be able to
concentrate on a single ECU, the subset of
information that is relevant for the further
implementation of that ECU is extracted from the
system configuration description.

Additionally, necessary information for the
implementation is added in the ECU configuration

activity. The output of this step is the ECU
Configuration Description containing all information
concerning one electronic control unit. Using this
description executable software for this ECU can be
generated.

This step includes the generation of code, compiling
code and connecting everything into an executable.
The description of an AUTOSAR system is
performed using appropriate templates. Those
templates define the AUTOSAR meta-model and
allow a formal description of an AUTOSAR system.
Based on these descriptions the AUTOSAR
Methodology generates an ECU executable.

Figure 1 AUTOSAR methodology

2.2. Challenges in AUTOSAR Methodology

SW architectures with several thousands of
networked software components lead to a high
complexity of today's distributed embedded systems
in cars. To improve the distributed development,
AUTOSAR reduces the usage of different data
formats. Now, models are exchanged between the
development partners based on a standardized
exchange format.

But, the AUTOSAR meta-model is very complex. It is
a new terminology with complex relationships
between the defined objects. So far, only limited
knowledge about how to realize the methodology in
series projects can be found in the industry.

The models will be exchanged and reused between
suppliers and OEMs during the life cycle of a
software development. However, the AUTOSAR
methodology does not define who is doing what and
when in a software development. Procedures and
the sharing of the different roles and tasks have to

Page 3/8

be identified and contracted between the OEM and
their suppliers.

The standard itself does not give support in the
modelling process and just partial support in the data
consistency. Concurrent configuration / modelling
and parallel development are not considered by
AUTOSAR but are a must for the usability of a tool-
chain.
Furthermore, until now several AUTOSAR versions
are in use, that are incompatible with each other.
The templates defined by AUTOSAR improve the
interoperability of tools but do not completely solve
the problem of usage of too many different tools. As
each step of the methodology leads to a result,
which is saved in an exchange format, the change of
a tool can lead to loss of information and to errors.
Additionally to the AUTOSAR data, very often the
tools need to store presentation data for the tool
itself. As this is not foreseen in AUTOSAR,
exporters, importers and translators are still needed.

2.3 AUTOSAR Use Case: exchange of models

In this section we want to consider an example for
how an OEM and a supplier may collaborate during
the development of a network of ECUs. It is
assumed that the supplier develops several ECUs
that run within the network of ECUs in a vehicle. The
OEM is the integrator for the whole system. The
steps are presented in the form of a use case
description.

Figure 2: Exchange of models between OEM and
supplier

Title of Use Case:
A subsystem, consisting of several ECUs (integrated
hardware and software), is sold by one supplier to an
OEM. The OEM integrates the subsystem into its
vehicle network of ECUs. The remaining ECUs may
come from different suppliers.

Pre-condition:

A subsystem, consisting of several ECUs equipped
with AUTOSAR software, is developed by the
supplier.

Post-condition:
A subsystem of ECUs is adapted according to the
customer’s specific wishes and is sold to the
customer.

Description:
1) The supplier delivers the input information for the
system configuration step.
The supplier delivers the ECU resource description
for the hardware used in the subsystem to the OEM.
The OEM adds this description to the ones used in
the whole vehicle such that he gets a complete set of
ECU resource descriptions for all hardware used in
the dedicated vehicle.
The supplier delivers the application software (ASW)
component descriptions for the ASW components of
the subsystem to the OEM. The OEM adds these
descriptions to his software architecture for the
whole vehicle.
The supplier delivers the system constraints for the
ASW components used in the subsystem to the
OEM. The OEM integrates these system constraints
into the system architecture.

2) OEM runs the system configuration.
The OEM integrates all three templates – the ECU
resource description, the system template and the
ASW component template. Now, the OEM runs
through the system configuration step. This step is
an iterative one. A first mapping of ASW components
to the ECU hardware may lead to the need to adapt
the system architecture as well as the software
architecture. This leads to changes on the side of the
OEM as well as on the supplier’s side. So, a strong
relationship between OEM and the involved
suppliers is necessary.
The OEM extracts the configuration descriptions for
the dedicated subsystem of ECUs that will be
implemented by the considered supplier. The OEM
delivers this configuration data to the supplier.

3) Supplier implements subsystem.
The supplier adapts its subsystem, generates the
RTE and configures the BSW for each ECU. After
the integration and testing on the ECU as well as on
the subsystem level, the supplier delivers the
integrated subsystem to the OEM.

4) OEM integrates system.
The OEM integrates the subsystem into the whole
electronic/electric system. This includes the
necessary integration and testing steps.

The use case shows an intensive interaction
between OEM and suppliers. This is particularly

Page 4/8

necessary when considering early integration on the
vehicle function bus level. Such a new concept
breaks traditional OEM – supplier relationships. As
mentioned for the development processes as well as
for the introduction of new OEM – supplier
collaboration processes needs time and are difficult
to establish. But the success of the whole standard
depends on the success of the processes demanded
by the standard.

2.4 Effects on tool landscape

The importance of exchange of models leads directly
to the conclusion that the interoperability of tools is a
key factor for enabling the AUTOSAR methodology
in reality.
But, some tools use proprietary internal data formats
and support AUTOSAR via Import / Export features.
Although the data can be imported or exported to
AUTOSAR, the merge of the exported data is
complex as the proprietary formats usually do not
follow the workflow of the AUTOSAR methodology.
Additionally to the AUTOSAR data, very often such
tools need to store presentation data for the tool
itself which leads to a mix of AUTOSAR data with
non-AUTOSAR data in files.

Last but not least, a fact that should not be
neglected is that the tools use different base
technology. The users spend a lot of time in learning
the tool rather than in using the tool. Moreover, tools
based on different technology cannot be easily
integrated in a seamless workflow.

3. ARTOP

A common framework, which enables the
development of a continuous, lossless tool chain, is
helpful to overcome the challenges presented in the
previous chapter.

ARTOP (AUTOSAR Tool Platform) is such a
framework jointly developed by the ARTOP user
group. The ARTOP user group is a group of users of
the AUTOSAR standard with a special interest in
AUTOSAR tools. The organization of this group is
comparable to the Eclipse Foundation. The ARTOP
user group had been founded by BMW Car-IT,
Continental AG, PSA and Geensys. Until now further
partners joined. ARTOP is in general open to all
AUTOSAR members.

The ARTOP user group provides an infrastructure
platform for the development of tools used for the
design and configuration of AUTOSAR systems.
ARTOP implements the non-competitive base
functionalities usually needed by all AUTOSAR tools.

The core component of ARTOP is the AUTOSAR
meta-model implementation. It supports all available
AUTOSAR meta-models like 2.0, 2.1, 3.0, 3.1 but
also the newest 4.0. Furthermore, ARTOP encloses
AUTOSAR XML schema conformant serialization,
rule-based validation, model re-factoring, workspace
management, example editors and further utilities.

Through ARTOP the interoperability of different tools
that are used to support the methodology can be
improved and commercial tools with better quality
can be developed in less time, since only key
functionalities have to be implemented.

Since the first release, published in 2008, more than
200 users had shown interest in ARTOP. In 2009 the
first tools based on ARTOP arrived in the market.
This shows the success of ARTOP. It seems that the
automotive tool market awaited such an approach.

Figure 3 ARTOP surface with example tree editor

4. Eclipse
ARTOP is an Eclipse-based infrastructure platform,
i.e. it is build on top of Eclipse and uses Eclipse
technologies like the Eclipse Modelling Framework
(EMF). Mainly, the technologies provided from
Eclipse are taken by ARTOP and are applied to the
AUTOSAR meta-model specifics.

It is not the goal of ARTOP to develop new, generic
tool utilities. Eclipse already provides a modelling

Page 5/8

framework and code generator technologies to
develop tools based on structured data models.
For the purpose of this paper it is sufficient to
highlight three helpful technologies provided by
Eclipse that are attractive for the development of
AUTOSAR tool-chains.

1. The Plug-In mechanism from Eclipse provides
well defined interfaces to plug different
functionalities together to an enriched tooling. As
Plug-in code is loaded only if necessary this
mechanism enables well performed reaction
times of the tools on user input.

2. The Extension Points mechanism contributes
functionality to a specific plug-in, which defined
the extension point. This enables the users of
tools to extend the functionality in an easy
manner. Adaptations to the needs of the user
can be operated by him. This is an often
whished feature in the Automotive industry.

3. The Wizards utilities enable to guide the user
through a defined sequence of steps to fulfil a
specific task Eclipse provides support to easily
create wizards.

Recently, an automotive working group had been
founded in Eclipse. This group wants to define an
Eclipse target platform for the automotive industry.
This target platform should be used to develop tools
for the whole development process lifecycle.
AUTOSAR influences parts of this development
process. Therefore, ARTOP is of highly interest for
the working group. Due to restrictions given by the
AUTOSAR contracts, the AUTOSAR dependent
parts of ARTOP cannot be handled by the Eclipse
automotive workgroup itself. But the AUTOSAR
independent parts are taken over by the Eclipse
working group. ARTOP is the first concrete use case
for the workgroup.

5. ARTOP enables seamless tool chain

This chapter will present some challenges in the
existing tool landscape and how ARTOP supports
solutions.

5.1 AUTOSAR has boundaries

Having a look to the AUTOSAR methodology one
recognizes that it does not cover the complete
development process lifecycle. The influence of the
methodology begins somewhere in the middle of the
system architecture modelling step and ends directly
before the compilation step. Topics like requirements
management, hardware development or built
management are not related with AUTOSAR.

One cannot expect that ARTOP provides a platform
to enable a seamless tool chain starting with a
requirements step up to an executable built step.
But, as AUTOSAR influences directly a central part
of the development process lifecycle, ARTOP is a
good base for harmonization of the tool landscapes.
It provides useful features to extend the platform
itself – on editor level as well as on meta-model
level. The extension point mechanism from Eclipse
is heavily used.

5.2 Meta-model structure in-homogeneous

The structure of the AUTOSAR meta-model differs
very much between the "work on system" part and
the "work on ECU" part (Figure 1). This reflects the
differences in the use cases to be covered on both
sides.

The tool market follows these borders. Normally a
tool works either on system level or on ECU level but
not on both. The interoperability between both sides
are usually done file based. ARTOP enables tool
chains that do not require from the user to start
several tools, to export from the one tool and to
import to another tool. Everything is shifted from the
file level to the meta-model level that enables a
better data management consistency.

5.3 Concurrent modelling

In addition, in a seamless tool chain it is also
important to consider the support of concurrent
modelling, configuration and implementation. So, it is
a key aspect that ARTOP enables the split of models
such that several developers can work on different
parts of the model independently from each other. In
addition, the support of concurrent modelling also
needs the support for successive iteration loops.
The integration of the work products delivered by the
different developers need to be facilitated by
advanced comparison and merge features. This is
necessary to detect

• integration conflicts
• unresolved references
• incompatible versions
• missing parts of the models

Such workflow oriented support is not content of
ARTOP itself. It has rather to be implemented by the
commercial tools that are implemented on top of
ARTOP.

5.4 Limitations of data format harmonization

The normative aspect of AUTOSAR presents an
answer to the usage of different data format for

Page 6/8

describing the same things. Nevertheless, also with
AUTOSAR this has still some limitations.

• Mainly all today's projects are not 100%
AUTOSAR, e.g. some projects implement only
basic software with AUTOSAR but model the
application software without AUTOSAR.

• As there are several releases of AUTOSAR,
there is not the one and only data format.
Transformations between the releases are still
needed.

As ARTOP supports all published AUTOSAR meta-
model releases, transformation algorithms can be
implemented on top of the platform easily.

6. Case Study – CESSAR-CT

On the one side the arguments for an approach like
ARTOP are obvious. It works and one gets
something for free.
On the other side one may ask the question about
why tool vendors should use ARTOP, as they may
give sensitive parts of a tool development into an
open user group.

The development of an AUTOSAR configuration
tooling within Continental Engineering Services
(CES) can be taken as a case study for the
successful usage of ARTOP. Together with the
AUTOSAR standard basic software – also
implemented and put on the market - these software
products enable the engineering activities of CES.

For the engineering business it is of main importance
to have a flexible, extensible and customizable tool.
Normally, these are not the attributes one finds in the
tools available on the market. These are usually
oriented on a fixed end user use case and not
usable for an engineering expert that develops and
adapts something for the customer.

Figure 4 CESSAR-CT showing a SW-C editor

The main user roles supported by the tool are the
"basic software developer" and the "ECU integrator".

Therefore, the focus is on the ECU part. But, with
AUTOSAR also these use cases need information
from the system part of the meta-model. E.g., Figure
4 presents a SW-C editor. It is a typical example for
a situation, in which users normally have to open
several tools in parallel. As CESSAR-CT is based on
ARTOP the user gets a seamless AUTOSAR tooling.

It had been shown that the extensibility mechanisms
provided by ARTOP are of main importance for
CESSAR-CT. CESSAR-CT provides a Pluget
mechanism such that the engineering expert or also
the end user can extend the tool. Code generators of
different technologies can be integrated and a form
editor enables the easy extensibility and
customization of the UI.

Figure 5 One editor based on several layers

Figure 5 shows a typical example about how the
end product, the commercial tool, is created. A basic
explorer is already provided by Eclipse. ARTOP
adds AUTOSAR standardized elements. Last but not
least, the tool supplier adds the use case specific
features. This last step enables the usability of the
tool for the end user.

As Continental were not a tool vendor before it had
been a challenge to act as a founding member of the
user group ARTOP. After nearly two years with
ARTOP it is accepted, that the approach enabled
CES to develop a tool that can be sold on the
market.

7. Experiences

Experiences done within Continental Automotive
have shown the importance of the seamless
integration of the AUTOSAR tools together with the
build tool chain. Indeed, with AUTOSAR
architecture, it becomes natural that a project is an
integration of many AUTOSAR modules (IO, COM,
RTE...) developed by different companies. So, the
first challenge to the project team, before making the
ECU software running, is to make the development

Page 7/8

tool chain running on a robust manner and with good
performances so that it can be deployed to the
complete project team.
If an AUTOSAR module or a set of modules (e.g.
PORT, ADC, DIO...) is delivered by an external
company, the delivery contains the XML
configuration files, the related code generators and -
sometime - specific tool editors. This means that the
tool chain becomes very heterogeneous and more
and more complexity is shifted to this area.

The following problems have to be considered:
Regarding the editors, the complete workbench
becomes very heavy and not user-friendly because
too many different tools must be started to edit the
different modules. As a consequence, the working-
performance is becoming really bad.
Moreover, as there are different tools, it also implies
very often different workspaces or projects for the
XML configuration files.
Regarding this problem ARTOP framework will bring
advantage if it is largely deployed in the future. Thus,
instead of delivering a complete standalone tool, we
could imagine that the companies who deliver its
modules also deliver the ARTOP plug-in for the
edition.

Concerning the code generator, they could have
been implemented on different platforms, but need to
be executed from a unique build environment at the
project level. For instance, it is important that:

• The code generator can be executed in
command line mode so that they can be
launched from the build.

• There is a way to check the dependencies
between the generated .h/.c files and the
input XML configuration files. Indeed this is
important to not regenerate and then
recompile more that necessary the .h/.c files.
Else, it is a considerable loose of time for the
project end-users to wait for regeneration
and compilation. On the other side, it is
important to launch the code generators
affected by the modification of parameters in
any of the input XML configuration files.

The AUTOSAR configuration model is very large and
complex. On the side of the configuration tool one of
the challenges was to develop editors which hide the
model complexity and assist the user in its
configuration work. Indeed, for the very first project,
we started to make the configuration using generic
editors. For starting, such generic editors were a
good solution because it provides very quickly the
capability to edit any parts of the whole AUTOSAR
model with the same editor. However, the drawback
of this editor is that it does not hide the AUTOSAR
model complexity.

Indeed, these editors show the configuration model
in a raw way (keeping the Containers / Parameters
structure), which do not necessarily correspond to
the user functional view. Moreover in the AUTOSAR
model a quite big quantity of parameters have
dependencies between each other, or are
sometimes duplicated in different AUTOSAR model
parts.

Also that does not include that each project and
customer have its own requirements. For example,
very often - in a project for an identical AUTOSAR
model - the configuration is done by several users
having different roles (e.g.: Basic SW developer,
Basic SW integrator, Application SW engineer, and
customer). Also the editor should assist the user in
avoiding overwriting configuration parameters which
he is not responsible for or making inconsistencies
by detecting and modifying parameter with
dependencies.

Of course, to improve as much as possible these
generic editors, on the top of them we implemented
many additional accessories (e.g.: validators,
additional consistency checker and advanced tool
tips, plugets...), but still in the project, the time spent
in doing the configuration was too long.

Therefore we have introduced on the top of
CESSAR-CT a Form Composer framework which
enables the users to implement easily specific
editors. The Form Composer is a powerful and
lightweight declarative UI framework based on XML
as markup language. Using the XWT (XML markup
language), the users are able to build their own
editors and to bind any UI controls to the AUTOSAR
model by specifying its fully qualified name. When
more complex operations need to be performed, of
course Java can be used.

Indeed, as AUTOSAR is very large, complex and still
moving, the tool development effort can not only be
covered by a tool team. So, with this framework, we
give the chance to any users (e.g.: AUTOSAR
function specialist, project user members...) to
develop their customized editors.
Moreover, as these Form Editors are placed on the
top of the tool framework, they are very easy to
deploy at the project level and do not need any
update of the tool framework itself.

8. Outlook

The next phase in the development of AUTOSAR
tool-chains will be driven by the new concepts of
AUTOSAR release 4.0 that has been published end
of 2009. The methodology and the meta-model had
been enhanced in this release. "Functional safety"

Page 8/8

and "timing extensions" are only two concepts with
major influence that have been incorporated.
ARTOP will take these new concepts into account
and provide platform support such that the idea of
ARTOP can also be realized in future.

9. References

[1] www.autosar.org; webpage of the AUTOSAR
partnership.

[2] AUTOSAR Methodology; see [1].
[3] AUTOSAR Technical Overview; see [1].
[4] www.artop.org; webpage of the ARTOP User

Group.
[5] M. Rudorfer, S. Voget, S. Eberle; Artop

Whitepaper; see [4].
[6] www.eclipse.org; webpage of the Eclipse

foundation.
[7] H. Heinecke, M. Rudorfer, P. Hoser, C.

Ainhauser, O. Scheickl; Enabling of AUTOSAR
system design using Eclipse-based tooling;
ERTS2008; Toulouse; 2008.

[8] S. Eberle, S. Voget, et al.; Artop – a shared
platform for AUTOSAR tool development;
Eclipse Embedded Day; 2009.

[9] M. Rudorfer, S. Voget, et al.; Artop – an
ecosystem approach for collaborative AUTOSAR
tool development; ERTS 2010; Toulouse; 2010.

