
 Page 1/8

Software Quality Objectives for Source Code

A. Patrick BRIAND5, B. Martin BROCHET4, C. Thierry CAMBOIS2,
D. Emmanuel COUTENCEAU5 E. Olivier GUETTA3, F. Daniel MAINBERTE2,
G. Frederic MONDOT3, H. Patrick MUNIER4, I. Loic NOURY4, J. Philippe SPOZIO2,
K. Frederic RETAILLEAU1

1. Delphi Diesel System France s.a.s, 9 bd de l'Industrie 41042 BLOIS France
2. PSA Peugeot Citroën , 75 avenue de la Grande-Armée, BP01, 75761 PARIS
3. Renault s.a.s , 13/15 Quai Alphonse Le Gallo, 92100 BOULOGNE-BILLANCOURT
4. The MathWorks , 2 rue de Paris 92196 MEUDON France
5. Valeo , 43 Rue Bayen, PARIS 75017

Abstract : The MathWorks - Renault SA - PSA
Peugeot Citroën - Delphi Diesel System - Valeo
group wrote together a code quality standard from
scratch. This document describes how the code
standard places the proof of absence of run-time
errors at the centre of its software quality model. It
details how the following elements of the quality
model co-exist together with the supplier code life
cycle: MISRA-C coding standard, the absence of
run-time errors and some code complexity metrics.
Additionally, this document describes how the
Automotive manufacturers and the suppliers have
to agree on and achieve different Software Quality
Objectives according to the code life cycle stage
and the safety aspects of the application.

Finally, the document illustrates that standard with
the PolySpace product and details how the product
can help both the automotive manufacturer and the
supplier working with this standard.

Keywords : Quality, run-time error, absence, formal
method, MISRA, formal proof, software

1. Introduction

This document has been produced by a working
group which includes the automotive manufacturers
Renault SA and PSA Peugeot Citroën, the
automotive suppliers Delphi Diesel Systems and
Valeo, and software supplier The MathWorks1.
The document defines a general and standard
approach to measure the software quality of a
product using criteria linked to code quality and
dynamic execution errors.

N.B: This current work does not cover functional test

activities.

1 With Patrick Artola participation (DevQuality).

 Page 2/8

2. Origin of Software Quality Objectives

After the PolySpace company acquisition by The
MathWorks in 2007, a new dynamic occurred. The
MathWorks team worked as facilitator to organize a
meeting with PSA Peugeot Citroën and Renault SA.
The objective of this meeting was to get their
feedback about PolySpace product usage. During
this discussion PSA Peugeot Citroën and Renault
presented their 4 PolySpace usages:

- Risk prevention of non-quality embedded
software

- Acceptance criteria for product delivery or
process embedded software

- Audit/Assess the quality of embedded software

- Investigate the possible causes of
malfunctions

And these uses had several objectives:

- A "deterministic” implementation to know
exactly the software quality integrated in
vehicles.

- Keep a good technical/economic performance
by maximizing the automation (e.g. reduce the
number of warnings need to be analyzed
manually)

- Compliance strategy (to obtain results) rather
than means (tools to use)

From their experiences automotive manufacturer
gathered a set of common difficulties:

- The analysis reports were not homogeneous,
they were homemade, did not always indicate
whether the preconditions of the analysis were
validated and did not guarantee their integrity
or completeness. (e.g. MISRA compliance).
Incremental verification between 2 software
deliveries and comparative treatment of the
associated report were difficult

- The reports documented numerous measures
and/or warnings without providing the method
of analysis involved (see Process Area MA
CMMi) which increased the presence of
inaccuracies and false alarms

- The method of verification report was not
formalized and validation of justification was
difficult, it was primarily for validation (expert
opinion). The report study did not provide the
possibility to easily conclude on the software
quality and made judgments “OK or Not OK”
on the product embedded software.

In regard of this feedback the working group decided
to:

� Gather criteria, (complexity metrics, measure
of unreachable code, etc) to be able to
objectively measure “Software Quality”

� Formalize relationships and communication
between automotive manufacturers and their
suppliers through a list of requirements.

� Ask software suppliers to provide guidelines
on how to use their tools (ex: PolySpace) to
produce information required.

After two and a half years the working group got
agreement between automotive manufacturers and
suppliers on a standard requirement list and
described it in the Software Quality Objective
document version 2.0. This requirement list consists
of six Software Quality Objectives (SQO) which are
associated to four quality levels, Quality Levels 1
(QL-1 lowest quality) to Quality Levels 4 (QL-4
highest quality).

The following document will present the content of
the Software Quality Objective. If you need more
information about the software supplier
implementation, please contact them.

 Page 3/8

3. Software Quality Objectives (SQO) Overview

The first working step was to define generic
acceptance criteria.

Generic acceptance criteria

The criteria selected to build Software Quality
Objectives are focused on static and dynamic
software quality and also takes into consideration
the organisational information, which helps the car
manufacturer to better understand who performs
the work, and how and where the work is done.

Static and dynamic criteria are spread over six
others themes:

- Detailed design description,
- Code metrics,
- Coding rules,
- Unreachable branches,
- Run-time errors
- Dataflow Analysis.

4. Definition of 6 incremental Quality Objectives

Differences between Software Quality Objectives 1
and Software Quality Objectives 6 are the number of
requirements to fulfil. The following table presents
this distribution over the 6 Software Quality
Objectives.

For the SQO-1 (Software Quality Objectives) the
supplier has to provide information regarding Quality
Plan, Detailed design description, Code metrics and
Coding rules.

For higher SQO, some additional criteria come in.

For the SQO-3 the supplier has to provide
information to the car manufacturer about systematic
Run Time Error, Non terminating information and
unreachable branches in addition to information
already present in SQO-1.

For the SQO-6, the highest SQO, the supplier has to
provide information about a bigger set of coding
rules, non terminating construction, Dataflow
Analysis and an advance level of review coverage
for potential run-time errors.

The incremental process for quality levels is mapped
to vehicle development processes which guarantee
integration of items of increasing maturity.

 Page 4/8

5. Software Quality Objective vs. Quality Level

Software Quality Objectives (SQO) are associated
with four quality levels, Quality Level 1 (QL-1 lowest
quality) to Quality Level (QL-4 highest quality). It is
up to the supplier and car manufacturer to negotiate
and map SQO to their deliveries and completely
integrate it to their schedule.

The supplier shall provide a quality plan which shall
consist of a table showing for each module:

• The corresponding Quality Level (QL-1 to
QL-4)

• The quality objectives for that level
• The number of times the module will be

delivered during the project.

N.B.: the automotive manufacturer shall validate the

software quality plan and the decisions taken
within it.

The following example table shows the possible
progress for each quality level to achieve the final
Software Quality Objectives. The number of quality
levels is fixed. The SQO associated to the first, last
and penultimate deliveries are also fixed. The
number of deliveries (table lines) is project
dependant.

Delivery
Quality Level

QL-1 QL-2 QL-3 QL-4

First SQO-1 SQO-2 SQO-3 SQO-4

X Intermediates … … … …

X Intermediates SQO-2 SQO-3 SQO-4 SQO-5

X Intermediates … … … …

Penultimate SQO-3 SQO-4 SQO-5 SQO-6

Last SQO-3 SQO-4 SQO-5 SQO-6

N.B.: The penultimate and the last delivery have

the same SQO. This is to increase the
probability to obtain at the last delivery, the
SQO decided at the beginning and
associated to a quality level.

6. How to associate each level to your
application?

As expressed before, at the beginning of the project
the supplier and the car manufacturer have to
associate a quality level to each software module.
The document does not provide recommendation or
criteria to do it.
To accomplish this work several criteria should be
used and combined. The final objective is to achieve
an agreement between both sides.

The SQO document does not exclude any kind of
source code. All software modules have to be
associated with Quality Level, whatever the type of
code it may be: automatically generated, hand-
written, legacy, or COTS.

Potential criteria:

- Re-use work already done with the ISO-26262
standard to define criticality (Level A to Level D)

- The module maturity (Proven in use, new
module…)

- The Code origin (legacy code, COTS, hand
written code, generated code, …)

- Module Quality Insurance
- Module functionality (User interface, Application

layer, Platform layer, Operating system,
Drivers…)

7. Practical example

Supplier is delivering one application with several
modules to an automotive manufacturer. What
should be done?
- Define the number of deliveries for application
- For each module define its Quality Level
- Associate the Software Quality Objective to

intermediate deliveries for each module

After that both sides should respect these
commitments.

 Page 5/8

8. Software Quality developed in criteria

Each Software Quality Objective consists of a
set of 12 criteria listed in the table below

Criteria
Objectives

SQO-1 SQO-2 SQO-3 SQO-4 SQO-5 SQO-6

Quality Plan X X X X X X

Detailed design
description X X X X X X

Code metrics X X X X X X

First MISRA-
C:2004 rules
subset

X X X X X X

Second MISRA-
C:2004 rules
subset

 X X

Systematic run-
time errors

 X X X X X

Non terminating
constructs

 X X X X X

Unreachable
branches

 X X X X

First subset of
potential run-
time errors

 X X X

Second subset of
potential run-
time errors

 X X

Third subset of
potential run-
time errors

 X

Dataflow
Analysis

 X

Criteria distributed over Software Quality Objectives

8.1. Quality Plan

This criterion describes the general information
which shall be provided by a supplier. It covers
information about the methods, tools and teams
involved in the Software Quality Requirement
fulfilment, as well as information about the project
itself. This information shall help to better understand
who performs the work, and how and where the work
is done.

8.2. Detailed design description

The information provided in this criterion will help
evaluate the architecture of the application and its
maturity. This will form the basis for following criteria
of the document. Three levels of information have to
be provided:

• Application level
• Module level
• File level

8.3. Code metrics

This criterion shall help the automotive
manufacturers evaluate the module characteristics
and better understand the methods and tools used
to demonstrate the application quality regarding the
absence of runtime errors.

Some of the recommended metrics are:
- Comment Density; Cyclomatic complexity “v(G)”;
- Number of Calling Functions per Function;
- Number of Function Parameters;
- Number of call Levels;
- Number of return points within a function;
- …

N.B.: The set of recommended metrics was selected
to contribute to respect most of HIS metrics initiative.

8.4. Two MISRA-C:2004 rules subsets

These two criteria shall help the automotive
manufacturer to evaluate the code quality and
maintainability.
The criterion shall help the automotive supplier to be
more efficient regarding the reduction of the number
of Run Time Errors.

Two MISRA-C:2004 rules subsets were defined; the
first one covers 20 rules and the second one 29
rules.

The objective is to correct or justify all violations, i.e.
zero remaining violations found by the tool or
remaining violations unjustified.

 Page 6/8

8.5. Systematic run-time errors

This criterion shall prove the absence of systematic
error in the supplier software. The supplier shall
demonstrate that for all files within a module a
review of systematic runtime errors has been
performed and that errors which have not been
corrected are justified, for the following categories:

• Out-of-bounds array access

• Division by zero

• Read access of non-initialized data

• Function returning non initialized value

• Integer overflow/underflow

• Float overflow

• De-referencing through null or out-of-
bounds pointer

• Usage (read or dereference) of a non-
initialized pointer

• Shift amount is in 0..7, 15, 31 or 63 and left
operand of left shift is negative

• Wrong type for argument passed to a
function pointer

• Wrong number of arguments passed to a
function pointer

• Wrong return type of a function or a
function pointer

• Wrong return type of an arithmetic function

• Non null this-pointer (for C++)

• Positive array size (for C++)

• Incorrect typeid argument (for C++)

• Incorrect dynamic_cast on pointer (for C++)

• Incorrect dynamic_cast on reference (for
C++)

• Invalid pointer to member (for C++)

• Call of pure virtual function (for C++)

• Incorrect type for this-pointer (for C++)

8.6. Non terminating function calls and
loops

This criterion shall help suppliers to present the
amount of verified non terminating function calls
and loops in their software.

If the code intentionally contains:

• Non terminating loops like ‘while(1)’ or ‘for(;;)’
• Non terminating calls like ‘exit’, ‘stop’,

‘My_Non_Returning_Function’

these should be justified.

8.7. Unreachable branches

The supplier shall demonstrate that files do not
contain any unjustified dead code branches, as well
as all defensive code and dead code intentionally
contained in the application shall be justified.

8.8. Three subsets of potential run-time
errors

This criterion shall help suppliers to present the
amount of verified operation presents in their
software.
The supplier shall demonstrate that for all files within
a module, a review of potential runtime errors with
review coverage level 1 (lowest), 2 or 3 has been
performed and that potential errors which have not
been corrected are justified
The 3 subset lists of run time error are the same as
presented in the 8.5 Systematic run-time errors
paragraph. Hereunder there is an example of
percentage defined for review coverage level 1:

• Out-of-bounds array access: 80%

• Division by zero: 80%

• Read access to local non-initialized data: 80%

• overflow/underflow: 60%

• ...

N.B.: For runtime errors the review coverage is

defined by a percentage, indicated after the
runtime error category (example: “Division by
zero: 80 %”) which represents the number of
operations concluded as proven safe or
justified.

These conclusions could be drawn:
- Automatically (with a tool);
- Partially automatically and completed

manually;
- Totally manually.

Example: let’s take an application containing 60

divisions. Let’s assume that the review
coverage objective is “Division by zero: 80%”.
Then the 80% review coverage can be reached
by proving that at least 80% of the divisions are
“safe operations” or “potential runtime errors”
that can be justified.
Let’s consider that a tool is used, which proves
automatically that 45 divisions out of the 60 are
“safe operations”. The review objective can be
reached by demonstrating that at least 3
“potential errors” can be justified, because (45 +
3) / 60 = 80%.

 Page 7/8

8.9. Dataflow Analysis

This criterion shall help automotive manufacturer to
see the dependencies in the supplier application
files architecture (global variables read/write
location) and show if all shared variables are
protected.

The supplier shall provide for each module, the data
flow analysis results.

This shall contain at least:

• Application call tree
• Dictionary containing read/write accesses to

global variables
• List of shared variables and their associated

concurrent access protection (if any)

9. Impact on PolySpace developments

The Document has already impacted the
PolySpace development. For example release
2010a supports the following capabilities.

- Incremental review.
- Result justifications capabilities

(annotations in source code)
- Formalisation of review through

standardized acronyms
- Improved report generator
- Methodological assistant oriented towards

quality objectives (on top of existing bug
finding methodology)

- Provide facilities to model application
environment (support function Stub in Data
Range Specification functionality)

- Enlarged detection of unreachable code.

10. Conclusion

Currently “Software Quality Objectives” version 2.0 is
available.

PSA Peugeot Citroën and Renault SA integrated
Version 1.0 in their Quality Requirements in 2009
and already got some feedback from suppliers in
October 2009.

Renault integrated it as rank 2 in their requirement
but they are negotiating with Nissan to integrate it in
their rank 1 requirements.

Valeo & Delphi Diesel System promoted this
document internally and they are currently working
on a solution to implement this standard in their
process.

The MathWorks presented it to several companies
from the automotive industry, Railway industry,
defence industry, in France and abroad (Germany,
Japan and USA)

Presentations have been given to several other
software companies, including Coverity, KlocWork
and Programming Research (QAC author).

Work is ongoing to evaluate the interaction between
the SQO standard and ISO-26262 and establish how
the SQO complements the ISO-26262 requirement
and how it covers it.

The SQO standard version 2.0 is available; please
contact the work group to get it and provide
feedback

 Page 8/8

11. Glossary

COTS: Commercial, off-the-shelf is a term for
software or hardware, generally technology or
computer products, that are ready-made and
available for sale, lease, or license to the
general public. They are often used as
alternatives to in-house developments or one-off
government-funded developments. The use of
COTS is being mandated across many
government and business programs, as they
may offer significant savings in procurement and
maintenance. However, since COTS software
specifications are written by external sources,
government agencies are sometimes wary of
these products because they fear that future
changes to the product will not be under their
control.

Automotive manufacturer : is a company that uses
a component made by a second company in its
own product, or sells the product of the second
company under its own brand. It constitutes a
federally-licensed entity required to warrant
and/or guarantee their products, unlike
"aftermarket" which is not legally bound to a
government-dictated level of liability.

Supplier: automotive components manufacturer.

SQO: Software Quality Objectives

QL: Quality Level

MISRA: The Motor Industry Software Reliability
Association (http://www.misra.org.uk/)

ISO 26262: Is an emerging ISO standard for safety
systems in road vehicles engine
(http://www.iso.org/)

HIS: Hersteller Inititiative Software. Initiative from
German automotive manufacturers (Audi, BMW
Group, DaimlerChrysler, Porsche and Volkswagen)
whose goal is the production of agreed standards
within the area of standard software modules for
networks, development of process maturity,
software test, software tools and programming of
ECU’s. HIS specifies a fundamental set of Software
Metrics to be used in the evaluation of software.

See http://portal.automotive-
his.de/images/pdf/SoftwareTest/his-sc-
metriken.1.3.1_e.pdf

