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Abstract: This paper reports the results of an 
experiment about the formal verification of source 
code made according to an EMF model. Models 
define the semantics of a system whereas the 
source code defines its implementation. We applied 
this solution to a model of Automaton in SAM 
language and its C language implementation. The 
technical environment is close to an industrial 
operational context and all the tools are available. 
The experimentation has succeeded and has to be 
consolidated with bigger cases before an 
introduction in the operational development process. 
More generally, this solution must be extended to 
other model languages. 
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1. Introduction 

In the context of critical software development, 
formal verification is a way of improvement of 
verification activities that is cost effective and with a 
high degree of quality. This kind of functional 
verification of programs requires a formal 
specification to be defined by the user. 
Another way of improvement in the software 
development process is the use of models in 
specification and design. Among other things, one 
advantage of model approach is that it helps the 
user to define its requirements in a more 
comprehensive and formal way. 
We will try to take advantage of both techniques that 
are formal verification and model driven engineering 
by choosing a most formalized kind of model and 
considering it as the formal specification in a proof 
verification of program process. 
The context of this study is close to the operational 
context: the chosen model language is SAM, that is 
already used, source code is compliant with critical 
software development constraints and formal 
verification tools of C language that are Caveat  [1] 
already used for unit proof [3] and Frama-C/Jessie 
[8]. 
This study will first demonstrate feasibility of this 
solution. Then, we will focus on performance of 
different solutions defined by the implementation 
choices of the source code and the proof verification. 
We will finally make a balance of this method, 
comparing it with case test generation and source 
code generation. 

2. Industrial context 

The development of avionics application is generally 
considered as following the classical V cycle: 
specification of the functional needs, design of the 
solution, implementation of the product, and careful 
verification of the product against its design and 
specification. Of course, the validity and the 
consistency of each sub-product are also verified. 
This approach, driven by the DO-178B document, 
often implies a huge effort of verification. 

A quite common situation is to develop 1000 lines of 
automated tests for only 100 lines of code. To 
improve this situation, several improvements are 
possible: 

• Replace the implementation and associated 
tests by a qualified code generator: very 
effective once the generator has been 
developed, it is also very expensive, as the code 
generator needs to be developed with the same 
DO-178B constraints than the target application.  

• Develop a test plan generator: this solution is a 
light one compared to the development of a 
code generator, as it has to be qualified as a 
verification tool – verification tools have only to 
be verified against their functional specifications 
– rather than a development tool. But test plans 
are de facto limited. They can only cover some 
well known scenarii. Test plan generators often 
– but not necessarily – rely on a test engine. 

• Develop a formal properties generator: this 
solution remains a light one. This generator has 
only to be qualified as a verification tool. But the 
formal verification engine on which it is based is 
comprehensive: each property is verified against 
every possible execution of the code. 

Of course, the 2 last approaches require a test or a 
verification engine compatible with DO-178B 
requirements. But fortunately, it is already the case 
(note that these tools also need to be qualified, or 
their results have to be reviewed).  

Code generation is now used for years, but because 
of their cost, it is not adapted to every context. Test 
plans generation is on its side also already used 
successfully in industrial contexts, but the more 
innovative formal properties generation remains 
more seductive because of its completeness. This 
study therefore focuses on it. As our goal is to 
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prepare a deployment in the short term, our use 
case has been extracted from a real development 
involving networking protocols engineering. The 
specification of this networking protocol has been 
formalized as simples Mealy machines using SAM 
language ([10]) – SAM is often used to help with 
functional split up of applications, but it also allow to 
describe formal behaviours with automata. This 
networking protocol has been implemented using C, 
in compliance with common constraints of the 
embedded domain (no malloc/free, etc.).  

3. Principles 

Methodological Objectives 
 
The main methodological objective is to formally 
verify that an implementation conforms to its 
specification formally defined in a model. 
The expected benefit is an easier and better 
validation of the source code made with a model 
driven approach. 
We are at the beginning of this approach and we 
have limited the scope of this study to finite state 
machine which is one of the most formalized 
behavioural model. The exact format of the model 
handled is defined by the SAM “Automaton”. 
The model of the state machine is considered as the 
specifications to validate. The model language 
should have a well defined semantic upon which 
both the code and the verification will be built. For 
example, in a classic approach by unit testing, 
scenarios are generated or manually defined from 
the model. 
The proposed solution consists in replacing tests by 
formal verification. That means that we will replace 
the source code of unit tests by formal properties. 
These properties will be written in the format of a 
formal verification tool like Caveat or Frama-C. 
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Figure 1 : Principles of the formal verification of  C 

source code 

To validate this strategy, we have to succeed in the 
two following challenges (see figure #1): 
1/ Describe the behaviour of the SAM state-machine 
as a set of formal properties; 
2/ Make the proof of the formal properties for a given 
implementation of the state-machine. 
 
The first objective requires both a methodological 
work to define the format of the formal properties 
and to develop the tools which will generate 
automatically these properties. 
The second objective requires the use of a 
verification tool and its success depends on both 
generated properties and source code. 
 
Definition of formal properties 
 
The logic defined by an automaton is implemented in 
our context by a single function (called the 
“transition function”) which is in charge of 
computing the output values and the new state 
according to the input values. 
Input and output values are booleans which are 
usually coded as integers (they can be set with 
either “0” – false - or “1” – true). 
The transition function is called in a loop where a 
translator sets the inputs from the external 
environment of the Automaton. An actuator reacts to 
outputs to execute specific actions (callbacks). 
 
This architecture is described in the figure #2 below: 
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Figure 2 : Architecture of a SAM automaton 

A main advantage of this architecture is that the 
semantic of the Automaton is strictly implemented by 
one function with booleans operands. 
This function has operands mapping with inputs and 
outputs of the state machine and one operand 
implementing the current state. 
Based on this architecture, the chosen solution 
consists in a unitary verification by proof of the 
implementation of this unique function. 
The unitary proof principles are defined in [3]. In our 
case study we use the unitary proof to check the 
relation between inputs, outputs and the current 
state of the automaton. 
The mapping between elements of the model and 
terms in the property language is defined as follows: 
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Name of Automaton  � Name of the function 
Name of InCtrlPort � Input name 
Name of OutCtrlPort � Output name 
             Name of current_state = state 
 
The unitary proof method is an exhaustive 
verification method. 
In this context, that means that whole properties will 
define the expected value of each output port and of 
the new state from the values of the input ports and 
of the current state. 
There are no theoretical difficulties in these 
definitions as SAM Automatons have a well-defined 
determinist semantic. 
The chosen solution consists in: 
PRECONDITION 

• Define range of inputs  
(ex : “IN1 ∈ {ON,OFF};”) 

• Define range of current state  
(ex: “state ∈ {S0, S1, S2, S3}; 

POSTCONDITION 
For all states with a transition, define:  

• The new value of the state  

• Values of outputs activated by the transition  

• Values of unmodified outputs  

Example (Caveat syntax): 
Post P1: state’=S1 ∧ (I1=ON ∨ I3=ON) => 
state=S2; 
Post P2: state’=S1 ∧ (I1=ON ∨ I3=ON) => O2=ON; 
Post P3: state’=S1 ∧ (I1=ON ∨ I3=ON) => O1=O1’; 
 

This solution produces an exhaustive definition of 
outputs and could be read by the user. 
The semantic definitions is splitted into several 
different properties, and in case of one or more bugs 
in the source code, the unproven property(ies) will 
allow to identify accurately the origin of the bug(s). 

4. Implementations 

4.1 Formal Verification tools 

Caveat is a formal verification tool for C ANSI 
programs. This tool can be used to perform 
functional verifications by proof of program. Caveat 
is based on the Hoare logic as for the theoretical 
background. 
The user first defines formal properties in a first 
order predicate language. Post-conditions are a kind 
of properties defining relations between inputs and 
outputs operands of a function. These properties are 
applied at the end of a function. As opposite to the 
Postconditions, the Preconditions are applied at the 
beginning of a function. They are considered as 
hypothesis for this function and in the case where 
this function has at least one caller, the Precondition 
must be verified in the caller context. 

Caveat has its own demonstrator that is called when 
the tool is asked to prove a property. After 
computation, the property is considered as verified if 
the result of the demonstrator is true. If it is not the 
case, the tool produces the remaining of the 
property: the remaining is the condition required to 
prove the property. A failed proof can be caused by 
either a real inconsistency between the source code 
and the property or just a weakness of the tool. 
In order to determine if the property is really false, 
the user can terminate the proof of the property with 
an interactive module. 
Caveat has been recently improved by the 
adjunction of a gateway to the multi-prover platform 
why ([9]). This feature enable Caveat to execute an 
external prover such as alt-ergo [11], simplify [12], z3 
[13] to prove its proof obligations. This multi-prover 
gateway is well implemented at a low level and 
enables to combine both use of the interactive 
features of Caveat and the power of external 
provers. 
The user is free to use these verification tools with its 
own methodology. But some important point is that 
one of this tool (Caveat) has been integrated in the 
process development of critical software in place of 
unit test. This usage is called unit proof and is 
described in a previous article [3]. 
 
Frama-C is a framework for static analysis of C 
programs. It is an extensible framework where 
plugins can work in a collaborative way. The 
combination of different techniques of analysis 
implemented through different plugins produces a 
powerful and multi-purpose tool. 
The main components of Frama-C are currently the 
Value Analysis and Jessie. Only the last one has 
been used for this study. 
Jessie [8] is a Frama-C plugin used for formal 
verification like Caveat. This plugin is based on the 
why platform. 
Properties are introduced as annotations in the 
comments of the source-code. The language for 
annotations is called ACSL [6] and is also the 
language of the Frama-C platform. ACSL is a very 
rich language to specify semantics of the program, 
but not all the tools are able to handle all the 
features of this language. 
As Jessie is based on the why platform, it gets 
advantages of the multi-provers platform. 
 
Frama-C doesn’t have the same limitations than 
Caveat as for the semantic of the pointers and 
should be able to tackle a larger variety of programs 
than Caveat. Caveat is older than Frama-C but it has 
a higher maturity and more limitations. Caveat is 
already deployed in industrial projects. 
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4.2 Modus Operandi 

We want to check that a given implementation of a 
SAM automaton conforms to its specifications 
described in a SAM model. 
We can manually define the verification properties 
which will be checked by static analysis tools like 
FRAMA-C and Caveat. These properties are set 
either as annotations in the automaton source code 
(FRAMA-C/Jessie) or into a separate file (Caveat). 
However, writing verification properties manually is 
tedious and error-prone, for even the smallest and 
simplest of SAM automatons. Therefore, we can 
develop a tool – a property generator - to handle this 
task. 
The SAM model is used to generate the formal 
properties. However, the format of these properties 
also depends on the implementation choices 
(functions declarations/interface, variable names, 
types…). 
The SAM model is an EMF model which has been 
edited under TOPCASED. It can be visited by using 
the EMF API to retrieve the automaton’s elements in 
order to generate the properties. 
The algorithm used to generate the verification 
properties is made of two main steps: 

• Step 1: the generator first visits the SAM model 
to: 

o Gather all needed information about the 
automaton’s states and transitions ; 

o Convert the triggering conditions in 
ACSL/Caveat languages; 

• Step 2: the tool generates the verification 
properties according to both information found in 
the first step and coding conventions. 

 

To describe this algorithm we will use an example of 
a SAM automaton (see figure #3) which is assumed 
to be contained into a SAM model. 

 

Figure 3 : a trivial SAM automaton 

Moreover, the implementation of the SAM automaton 
is presupposed to use global variables in order to 
hold the current state, input and output ports of the 
automaton. 
 typedef enum { // state enumeration 
  STATE_InitialState1, 
  STATE_State1, 
  STATE_State2, 
  STATE_State3 
}XXX_Te_StateList; 
extern XXX_Te_StateList state; // current state 
extern int IN1; // input port #1 
extern int IN2; // input port #2 
extern int O1; // output port #1 
extern int O2; // output port #2 

The transition function looks like this: 
void XXX_Se_Automaton1(){ 
  switch (state){ 
  case STATE_InitialState1 : 
    {   
      if (IN1){ 
        state=STATE_State1; 
        O1=1; 
      } 
      break; 
    } 
  case  STATE_State1 : 
    {   
      if (!IN1 && !IN2){ 
        state=STATE_InitialState1; 
      }else if (IN1){ 
        state=STATE_State2; 
        O2=1; 
      } 
      else if (IN2){ 
        state=STATE_State3; 
      break; 
    } 
    } 
  case  STATE_State2 : 
    { 
      if (!IN1 && !IN2){ 
        state=STATE_InitialState1; 
      } 
      break; 
    } 
  case  STATE_State3 : 
    { 
      if (!IN1 && !IN2){ 
        state=STATE_InitialState1; 
      } 
      break; 
    } 
  } 
} 

 
We will concentrate on the state named “State1” in 
order to study the management of the SAM 
transitions priorities. 
 
Formal properties generation algorithm: Step 1 
For each Automaton found in the model: 

1. For each state existing in the automaton, 
retrieve all the outgoing transitions: 

a. Sort the outgoing transitions according to their 
priority. The priority of a SAM transition depends 
on both its priority index and the existence of one 
or more macro states (macro state outgoing 
transitions have a higher priority); 

For state “State1” (highest to lowest): 
- Transition1  (macro-state outgoing transitions 
have a higher priority) 
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- Transition2  (lower priority index = highest 
priority) 
- Transition3   

b. For each transition: 

i. Translate both the conditions which trigger 
the transition (state of input ports) and the 
emission (state of output ports) from the 
SAM syntax to either ACSL or Caveat syntax 
(using ANTLR). We must indicate to the 
prover that we consider the value of the 
input port prior to the call to the transition 
function. This is done by using the function 
“\old()” in Jessie and a quote in CAVEAT: 

Transition1: not(in2) and not(in1) 
 - ACSL: !( \old(IN2)==1) && !(\old(IN1)==1)  
 - Caveat: ¬(IN2'=1) ∧∧∧∧ ¬(IN1'=1)  
Transition2: in1 
 - ACSL: \old(IN1)==1  
 - Caveat: IN1'=1  
Transition3: in2 
 - ACSL: \old(IN2)==1  
 - Caveat: IN2'=1  

ii. Append the negation of the triggering 
conditions of higher priority transitions to the 
triggering conditions of the current transition. 
This is to take into account the priorities. 
These conditions have been added to the 
properties and are indicated, in bold: 

Transition1: 
 - ACSL: !(\old(IN2)==1) && !(\old(IN1)==1) (no 
transition with higher priority) 
Transition2: 
 - ACSL: \old(IN1)==1 && !(!(\old(IN2)==1) && 
!(\old(IN1)==1))  
Transition3: 
 - ACSL: \old(IN2) && !(!(\old(IN2)==1) && 
!(\old(IN1)==1)) && !(\old(IN1)==1)  
Transition1: 
 – Caveat: ¬(IN2'=1) ∧ ¬(IN1'=1) (no transition 
with higher priority) 
Transition2: 
 – Caveat: (IN1'=1) ∧∧∧∧ ¬(¬(IN2'=1) ∧∧∧∧ ¬(IN1'=1))  
Transition3: 
 – Caveat: (IN2'=1)  ∧∧∧∧ ¬(¬(IN2'=1) ∧∧∧∧ ¬(IN1'=1)) 
∧∧∧∧ ¬(IN1'=1) 

iii. Store the output ports which are not 
changed during the transition: 

Transition1: O2 
Transition2: O1 
Transition3: N/A  

c. Store forbidden transitions (transitions which 
must never happen for the current given state). 

 - None for the state « State1 » 
 - From State2 to State1 
 - From State2 to State3 
 - From State3 to InitialState1 
 - From State3 to State2 

 

Formal properties generation algorithm: Step 2 
The generation of the verification properties follows 
the algorithm described below. 

 

For each state: 

1. Generate the verification properties which check 
all outgoing transitions as shown in the pseudo 
code below: 

old(state)==<starting_state)> 
&& <triggering conditions for this transition> 
&& !< ∑(triggering conditions for transitions of 
higher priority)> 
    � state=<destination_state> 
    && <emitted output ports of this transition 
are true> 
    && <non-emitted output ports remained 
unchanged> 

For instance, the verification property for the 
Transition #2 of our example (ACSL code): 
\old(state)==STATE_State1 
&& (IN1==1) && !(!(IN2==1) && !(IN1==1)) 
� state==STATE_InitialState1 
&& OUT2==1 
&& \old(OUT1)== OUT1; 

2. Generate the properties for the combinations of 
inputs which do not trigger any transition (and 
thus neither change the current state nor the 
output ports). Here we use a little trick: it is more 
simpler to retrieve the negation of all the 
combinations of inputs which effectively trigger a 
transition: 

old(state)==<starting_state> 
&& !( ∑<triggering conditions for all possible 
transitions))>  
� state=<starting_state>  
&& <all output ports remain unchanged> 

3. Generate the properties which check than non 
existing “transitions” never happen (this is 
redundant with the previous verification but it 
may help the user in finding  bugs): 

old(state)=<starting_state> 
� state!=<forbidden_state> 

4.3 Presentation of the property generator 

The properties generator tool implements the 
algorithm which has been presented in the previous 
paragraphs in order to generate the verification 
properties from a given SAM model. 

As the model is an EMF model, the properties 
generator has been coded in Java within the Eclipse 
platform. 

The trickiest part is certainly to write the properties 
according to the targeted source code. Indeed, the 
formal properties must refer to the interface 
elements of the source code (global variables, 
structure fields, etc...) which should be compliant 
with the coding conventions of the project. The 
format of the formal properties thus tightly depends 
on the implementation of the SAM automaton. 
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Many kinds of C implementations of a SAM 
automaton may exist and this thus makes the 
generation process more difficult: 

• In the simplest case, the state of the SAM 
automaton and the states of both input and 
output ports may all be implemented as global 
variables in the source code. These global 
variables are read and written by the transition 
function; 

• The current state of the SAM automaton, of its 
inputs and its outputs may be maintained in a C 
structure which is given as a non-constant 
parameter of the transition function; 

• The input and output ports may be coded either 
as integers or as bit flags; 

• Finally, the transition function itself may call 
other functions to read or write the input and 
output ports, to change the automaton state, 
etc… Under FRAMA-C/Jessie, these functions 
must be annotated as well. 

The impact of the automaton implementation is in 
fact broader and may concern the verification 
process as well, as most provers do not support 
pointers to functions (for instance) or may not 
implement all necessary semantics (bit flags for 
instance). 

Further enhancements have been made to the tool 
to make the properties more human readable: 

• It is possible to generate a single property for 
each targeted state and for each emitted or non-
emitted output port. 

• The transition’s conditions can be factorized in 
one way or another, depending on the prover: 

o In ACSL (FRAMA-C/Jessie), it is possible to 
group properties into behaviours. Such 
behaviour is used to define a set of conditions 
which hold true for all subsequent properties. 
These conditions are described in an “assume” 
property under the name of the behaviour: in 
our case, the “assume” property is used to 
mutualise the starting state:  

 behavior state_INIT: 
   // The starting state of the “state_INIT” 
   // behaviour is STATE_INIT 
 assumes Automaton->CurrentState==STATE_INIT; 
   // The following properties assume that  
   // the starting state is STATE_INIT 
 ensures from_INIT_to_STATE1_1: 
inSet(\old(*Automaton), INPUT_PORT1) ==> 
   Automaton->CurrentState==STATE1; 
 ensures from_INIT_to_STATE1_2: 
inSet(\old(*Automaton), INPUT_PORT1) ==> 
   outSet(*Automaton), OUTPUT_PORT1); 

The inSet and outSet are logic function defined 
in ACSL helping input/output status access. 

o For Caveat, a definition (in a ‘LET’ term) 
holding all the triggering conditions can be 
defined prior to the properties which will use 
that variable: 

LET cond_from_INIT_to_STATE1 =Automaton'.[*', 

.CurrentState]=TCA_E_INIT ∧ 
((bit&32(Automaton'.[*', .InputEvents], 
TCA_E_RD_FILE_REQ))); 
   Post from_INIT_to_STATE1_1:  
cond_from_INIT_to_STATE1  => Automaton.[*, 
.CurrentState]= STATE1; 
   Post from_INIT_to_STATE1_2:  
cond_from_INIT_to_STATE1  => bit&32(Automaton.[*, 
.OutputEvents], OUTPUT_PORT1); 

5. Results 

5.1 Proving capabilities 

We have tested both the verification tools and the 
property generator on various SAM automatons and 
on different kinds of C implementations. We will 
study here two automatons: 

• A trivial case of a SAM automaton. This is the 
case described previously (see figure #1); 

• A SAM automaton from an industrial project. 
The default implementation was made regarding 
a previous SAM model without priorities defined 
between transitions. Consequently, this 
automaton had a lot of unconformities that have 
been detected by Caveat (and its external 
provers). The existence of these bugs has been 
particularly useful to check the reliability of the 
verification tools. The source code of the SAM 
automaton has been fixed to further study the 
behaviour of the verification tools. 

The first expected quality of a verification tool is to 
detect bugs and not to prove a false property. 
In an industrial context, the tool should be able to 
prove all the true properties. 
 
The following table indicates the percentage of 
properties which have been proved by both FRAMA-
C/Jessie and Caveat for the various implementations 
of SAM automatons: 

  Trivial case 

Industrial  
case 
 (initial) 

Industrial  
case 
(fixed) 

Jessie/Alt-ergo 100% X X 

Jessie/Simplify 100% X X 

Jessie/z3 100% X X 

Jessie/All provers 100% X X 

Caveat 100% 37% 57% 

Caveat+alt-ergo 100% 49% 100% 

Table 1 : Percentages of properties proved by 

FRAMA-C/Jessie and Caveat (trivial and industrial 

cases) 
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In the case of the trivial automaton: 

• We can see that the combination of Jessie and 
any of the tested provers (alt-ergo, simplify and 
z3) allows to prove 100% of properties; 

• The internal demonstrator of Caveat is able to 
prove 100% of properties (using an external 
prover is not necessary for a simple case like 
this one). 

In the case of the industrial SAM automaton: 

• Jessie results have not been reported since we 
have encountered some difficulties relative to 
the implementation of the SAM automaton; 

• The internal demonstrator of Caveat is able to 
detect all the errors in the initial source code but 
not to prove all true properties. 

• Combining the internal demonstrator of Caveat 
and an external prover (like alt-ergo) is 
necessary to find all the true properties (49% in 
the initial source code of the industrial 
automaton and 100% in the fixed version). 

The Caveat GUI can be used to check the failed 
properties and to re-write their remaining conditions. 
In our case, rewriting the remaining condition of a 
failed property led to the exact definition of the inputs 
combinations that caused the bug. In case of failed 
proof of a true property, we have easily succeeded in 
proving it thanks to basics interactive features of 
Caveat. It is however quicker and simpler to use an 
external prover like alt-ergo to complete the results 
of the Caveat demonstrator as this allowed to prove 
100% of properties. 
 
As indicated earlier, we encountered some 
difficulties with Jessie applied to the source code of 
the industrial SAM automaton. This case study is still 
under analysing in order to find the real origin of 
these difficulties (ACSL formal properties, C 
language structures). We have thus rewritten this 
automaton with integers and global variables and we 
succeeded in applying Jessie to this new 
implementation as shown in the table below: 

  

Rewritten Industrial 
case 
 (initial buggy code) 

Rewritten Industrial  
case 
(fixed) 

Jessie/Alt-ergo 61,7% 100% 

Jessie/Simplify 61,7% 100% 

Jessie/z3 61,7% 100% 

Jessie/All provers 61,7% 100% 

Table 2 : Percentages of properties proved by Frama-

C/Jessie with a rewritten implementation of the 

industrial SAM automaton 

 
 
 

We can observe the following results: 

• All the provers were able to detect the failed 
properties (37/60) in the buggy source code. We 
have thoroughly checked the wrong properties to 
ensure that they really incriminate the bugs of 
the source code. To do so, we were forced to 
develop a new tool to bind the failed obligation 
proofs to their corresponding user properties 
(such information is not provided by Frama-
C/Jessie by default); 

• All the provers were able to prove all properties 
in the fixed version of the automaton. 

5.2 Performances 

Typically, the provers should be run periodically on a 
dedicated machine: the performance of the code 
analysis is not the most important criteria when 
having to chose and deploy a verification tool. 
But the quickest is the analysis, the quickest it is 
possible to fix possible bugs and to re-iterate. And as 
we are going to see, real performance differences 
exist between the tools which have been tested: 
 

 Trivial Case Industrial 
Case (initial) 

Industrial 
Case (fixed) 

Analysis duration 
(alt-ergo) 

< 1mn 31mn 101mn 

Analysis duration 
(simplify) 

< 1mn 4mn 57mn 

Analysis duration 
(z3) 

6mn 14mn 69mn 

Analysis duration 
(Caveat) 

10s 1mn24 1mn31 

Analysis duration 
(Caveat + Alt-ergo) 

10s 1mn25 1mn31 

Table 3 : duration of the code analysis according to the 

verification tool and the studied SAM automaton 

Caveat offers the quickest analyzes: the verification 
process lasts only a few minutes, whatever the 
complexity of the SAM automaton and even when 
the external provers are enabled. In comparison, 
FRAMA-C/Jessie analyses are really slow and may 
easily last more than one hour for the industrial 
automaton. 
 
This is partly due to the fact that Caveat calls its 
external provers only when its internal demonstrator 
has failed to prove a property. Moreover the external 
provers work with the remaining of the failed 
property. 
But this huge performance gap is mostly due to the 
inner working of Jessie which generates a lot of 
proof obligations for each property as we can see in 
the following table: 
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 Trivial Case Industrial 
Case (initial) 

Industrial 
Case (fixed) 

# User Properties - 
FRAMA-C Jessie 

18 66 66 

# Proof obligations - 
FRAMA-C Jessie 807 2919 19567 

# User Properties - 
Caveat 

20 60 60 

# Proof obligations - 
Caveat 

N/A N/A N/A 

Table 4 : number of user properties and of the 

generated proof obligations for FRAMA-C/Jessie and 

Caveat 

We can first observe that the number of user 
properties is higher for Jessie than it is for Caveat 
since all functions called by the transition function 
must be annotated as well in the case of Jessie. 
Caveat does not generate proof obligations for each 
user property whereas for Jessie the number of 
proof obligations depends on both the user property 
count and the complexity of the code (number of 
code branches and number of instructions, both 
higher in the fixed version of the industrial case). The 
number of proof obligations generated by Jessie can 
reach nearly 20000 for the fixed industrial case: this 
increases dramatically the work of provers and 
explains why Jessie is slower than Caveat. 
 
Finally, for information purposes, we can note that 
the FRAMA-C/Jessie GUI is even slower than the 
command line (both at launch and during the proving 
process). 

6. Conclusion 

In this article, we have studied the formal verification 
of SAM automatons implementations. The formal 
verification ensures that a given implementation of a 
SAM automaton conforms to its specifications 
(described in an EMF model in our case). 
 
Formal verification first consists in defining the 
properties which describe the behaviour of the SAM 
automaton. These formal properties are then 
possibly proved during the analysis of the automaton 
source code: a failed property may indicate a bug in 
the implementation. 
 
Two tools allowed us to perform the static analysis: 
FRAMA-C/Jessie and Caveat. They may use 
external provers to prove the verification properties 
(like alt-ergo, simplify and z3). 
 
Both tools have proved all the properties defined for 
a trivial automaton. 
More importantly, Caveat (seconded by the external 
prover “alt-ergo”) has detected many bugs in a 
development version of an industrial SAM 

automaton. After having fixed the code, Caveat 
finally proved automatically all the properties. 
This experience confirms the ability of this solution to 
detect any unconformity. 
The necessary condition returned by Caveat in case 
of a failed proof is enough comprehensive for the 
user. It shows concretely the exact combination of 
entries that causes the failure of the proof. 
With this information, the developer can quickly fix 
the bug and reiterate the formal verification. This 
process is fully compliant with an operational use. 
 
Frama-C was able to provide the same quality of 
verification but not with the initial implementation of 
the automaton. 
 
Caveat offers the best performances but provides a 
limited support for pointers. The free and open 
source solution FRAMA-C/Jessie seems promising 
but some enhancements are needed to make this 
solution more suitable for industrial projects (better 
traceability between user properties and proof 
obligations). 
 
This study has shown that the functional verification 
of SAM automatons through code analysis may 
advantageously replace unit tests. Hereafter we 
enumerate the key points of this strategy. 
 
A direct verification between model and 
implementation 
In this new strategy, we consider the SAM 
Automaton as the formal specification. The 
generated properties are temporary elements in the 
process. In the context of this study, all verifications 
are proven automatically. Indeed, test efforts are 
replaced by a fully automatic and formal verification, 
here, very cost effective. 
We have only considered a specific model of state 
machines, SAM Automatons, that react with boolean 
input, which is simple problem. It would be valuable 
to extend this strategy to others and more rich 
formalisms, like a subset of UML StateMachine or 
Activity. 
 
Quality of verification 
This formal verification provides a higher degree of 
quality than unit testing because this kind of 
verification is exhaustive: 
• All code branches are visited by the provers 

during  the verification process; 
• The exact condition of a transition is checked, 

not an incomplete set of cases satisfying the 
condition. 

• Formal verification checks the combinations of 
input ports which does not trigger any transition 
in the SAM automaton  
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• Formal verification checks that the transitions 
which do not exist in the model cannot occur 
according to the source code; 

 
Comparison with Code generation 
This strategy can be compared with another solution 
equally fully automatic consisting in generating the 
SAM automaton source code from the model. 
In the case of critical software with certification 
constraints, the certification of a code generator is 
usually a very huge process. The verification tools 
presented in this study also have to be certified but 
certifying a verification tool is easier than certifying a 
code generator. 
It is also possible to combine both techniques, using 
a qualified verification tool to check source code 
produced by a non-qualified generator tool. 
Less constrained environments may also benefit 
from formal verification as it is fully automatic and as 
it provides a good quality of verification. 
During this study, we have developed different 
generators targeting two verification tools (Caveat 
and Frama-C) and different implementation choices 
in the source code. If we consider that developing or 
adapting a property generator is quite easy, it may 
be possible to adapt our solution to different contexts 
and projects. 
 
Operational application? 
The proposed solution has succeeded with a context 
close to the operational context. 
This solution has to be consolidated by other case 
studies with higher complexity. Generally, there is 
always a limit over which tools and methods are 
ineffective. It is necessary to know this limit before 
any decision in using this strategy for Automation 
verification. 
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9. Glossary 

PDF:  Portable Document Format 

ACSL:  ANSI/ISO C Specification Langage 

SAM:  Structured Analysis Model 


