
 1

Improving architecture efficiency of SoftCore processors

Bertrand LE GAL (1), Christophe JEGO (1)
(1) IMS Laboratory - UMR CNRS 5218,

IPB / ENSEIRB-MATMECA, University of Bordeaux, France
{firstname.surname}@ims-bordeaux.fr

1. INTRODUCTION

The growing complexity of applications increases the challenge of the System-On-Chip design. The most efficient way
to produce area and power efficient circuits is to design fully dedicated architectures for ASIC or FPGA technologies.
However, such approach is unsuited with the “time to market” constraint due to times for design and verification.
Moreover, this approach has a lack of flexibility: a modification in the application specification can require new design
flow iterations. Another way to implement applications under “time to market” pressure is based on high-end processor
usage. Nowadays, General-Purpose Processors (GPP) or Digital Signal Processors (DSP) provides high computation
performance. Moreover, programming languages and compiler tools provide high flexibility degree for these
approaches. However, general processors are not relevant in the embedded market.

There are another architectural solutions that combine design, flexibility and time to market. One of these approaches
consists to adapt low-cost GPP cores by adding domain specific instructions. Such processor architectures named
Application-Specific Instruction-set Processors (ASIP) efficiently improve application performances (throughput,
latency, etc.) thanks to dedicated hardware instructions.

Several ASIP design automation flows [1, 2, 3] and ASIP case of studies [4, 5, 6, 7, 8] have been proposed. They work
on processor customization, identify and instantiate custom instructions in the processor. In this paper, we present an
alternative approach. It enables to produce more efficient architectures in terms of hardware complexity. The objective
is to obtain area cost reduction compared to original softcore processor. To achieve this objective, application's source
code is first analyzed to identify useless processor instructions. Based on this instruction analysis, parts of the processor
(useless ones) are removed before the logical synthesis process.

Study presented in this article is based on the SPARC v8 processor for two reasons. The first one is that the ISA is free
of patents and thus the customization of the processor instruction set does not need licenses. The second one is that
VHDL source codes of the SPARC v8 architecture called LEON-3 are available under the GPL/LGPL licenses.
Processor source code allows us to modify the processor architecture according to the proposed methodology and to
validate the modifications on FPGA boards.

The paper is structured as follows. In Section 2, we present some ASIP designs, ASIP methodology and discussion
about presented work motivations. Section 3 presents the proposed design methodology used to reduce the instruction
set. Finally, Section 4 gives experimental results with signal processing benchmarks on ACTEL ProASIC-3 target.

2. RELATED WORKS

A. Processor customization (ASIP)

Nowadays, most application domains - signal and video processing, digital communications, cryptograph, etc. - need
fast implementations of their algorithms to respect real time execution. Some works have study these applications and
new instruction sets have been proposed to speed-up application execution. In [4, 5] authors have proposed new
multimedia instructions to increase execution of video applications. Similar works [6, 7, 8] tried to increase
cryptography or digital communication applications. All these works are based on hand made application analysis and
hand made VHDL description.

To speed-up the ASIP design time, automatic design flows have also been proposed [1, 2, 3]. Two main automatic ASIP
design flows can be cited:
- First one is based on the complete description of the processor core [2]. In such methodology a designer has to fully

describe the processor core using a dedicated HDL language. Then a set of automated tools generates the processor
description in a HDL language such as VHDL and a complete set of development tools. Using the processor
description and the automatically generated compiler, the designer can execute its application on a fully customized
processor. This approach enables efficient implementation. But it is complex because the processor core have to be
fully described.

- Second one is based on the reuse of a softcore processor [1, 3]. The main idea is to reuse an existing processor core
by adding some custom instructions. Associated automatic methodologies perform (Figure 1): instruction

 2

identification from application source code, instruction code generation (VHDL), processor modification and
compiler tool chain adaptation. All these steps are specific problems. In practice, for real-life applications, heuristic
based techniques are necessary. However these methodologies focus only on processor enrichment, in particularly
they never try to optimize the “existing processor core” according to the application requirements.

Fig. 1. Design flow for softcore processor customization

B. Work motivation

Hand-made and automatic ASIP methodologies help designers to generated dedicated processors. However, reused
processor cores already contain instruction set, functional units, etc. All these resources may become useless for a
specific application. These useless resources have drawback effects on processor enrichment possibilities and
consequently on processor architecture performances:
1. If reused softcore processor has a large instruction set, only a few custom instructions may be added. In the Leon-3

ISA, there is only 8 free instructions (for arithmetic and logic instructions). This ISA constraint reduces drastically
the design space exploration and performances.

2. After the softcore customization process, custom instructions are added to the processor architecture. Due to these
custom instructions, some parts of the processor (instructions, functional units) may become useless.

For these reasons, we proposed an automated design flow that removes useless instructions and associated hardware
resources from softcore processors. This approach enables:
- A better design space exploration because more instructions can be added in the processor ISA,
- A decrease of architecture cost in terms of hardware complexity for the final ASIP.

2. INSTRUCTION SET REDUCTION METHODOLOGY

A. Optimization methodology for softcore processors

The main objective is to study the application characteristics to (1) identify the useless parts of the processor:
instructions, functional units, registers, etc. (2) to automatically remove them from the softcore hardware description.
Proposed methodology for this task is shown in Figure 1. The application source code is first transformed into its binary
representation using a software compiler dedicated to the processor target (like gcc). The generated executable file
produced by the compiler contains the instructions that can be used by the softcore processor to execute the application
behavior.

Fig. 2. Proposed design flow for useless instruction detection and hardware removing

The softcore transformation process that enables to reduce the hardware complexity is composed of the following steps:
- Executable file is first disassembled and dead code (unused functions) are removed.
- Instruction occurrences are counted and useless instructions (instruction that are never used) are identified.
- Definitions of useless instruction are removed from the compiler source code for safety reason. Indeed if a designer

modifies its application and uses removed instructions, the compiler will generate a compilation error.

Application
source code

Processor
description

Pattern
search

Generated
architecture

Modified
compiler

Compiler
extension

Binary
code

Instruction
selection

Hardware
generation

Source code
transf.

Modified
application

Processor
description

(VHDL)

Application
source code

Compiler
(gcc)

Binary
code

ISA
modification

Modified
processor
(VHDL)

Application
binary code

 3

- The hardware description of the softcore processor is modified. Source code lines that correspond to instruction
processing or functional unit allocation are removed from the source code. By this way, logical synthesis tool won’t
allocate useless logic and register resources.

Finally, a dedicated version of the processor softcore requiring less hardware resources is obtained. This generic design
flow reduces the hardware cost of processors. This technique can be used for softcore processors with or without
custom instructions. However, it is important to note that instruction set reduction breaks the processor compatibility
with other applications that require some of the removed instructions.

B. Optimization methodology in an ASIP environment

Design flow presented in previous section is applied just before logic synthesis. However, as described in the
motivation section, removing instruction from a softcore processor may offer more optimization opportunities during
the customization step. The global design flow including the processor customization and the instruction removing
stages becomes iterative as presented in Figure 3.

Fig. 3. Global design flow for well-sized ASIP design

Instruction and resource-removing step is executed after the ASIP customization. If the ASIP customization process is
stopped due to a lack of free instruction slots, then the processor customization process can iterate after instruction and
resource removing.

C. Improving unless instruction detection

The proposed methodology is based on application binary executable file obtained after source code compilation. This
generic approach is automatic and need a low computation time. However, obtained results are not optimum. The
binary executable file contains the compiled application is composed of:
- A trap table i.e. for the SPARC processors, gcc automatically generate a trap table which is used in software to

catch processing errors (divide by zero, memory access error, unknown operation code, etc.).
- Generic low-level functions used for processor and peripheral initialization. These functions and instructions are

defined in standard and system libraries. They are automatically included during the linking step.
- The dead code sections. They can be user-defined functions or functions declared in included libraries (stdio,

math). This dead code is not removed in a standard compilation process.
These unwanted code pieces could contain floating-point instructions even if the application source code was compiled
using software implementation of floating point operations. In practice it won’t generate some errors during the
application execution because they are unreachable code sections. However we do not have such information during the
executable file analysis process. To improve instruction usage detection, a second method is available for processor
execution trace files. In particularly, unused instruction detection is improved because unreachable code sections are
discarded.

3. EXPERIMENTAL RESULTS

Experimentations given in this section were done from a custom version of the Leon-3 processor. This custom version
(fully compatible with the SPARC v8 specification) was modified to speed-up custom instruction insertion. Modified
Leon-3 architecture currently up to 1024 custom instructions. Custom instructions can be combinatory (executed in one
clock cycle), pipeline or sequential (executed in more than one clock cycle) or asynchronous (working like an
independent co-processor). A set of GPL software configuration tools enables to automatically configure the VHDL
architecture description. Moreover, this design flow automatically adapts the compiler (GCC) source files to enables
custom instruction use.

Application
source code

Processor
description

Processor ISA

ASIP customization
methodology

Generated
architecture

Modified
source code

Compiler
(gcc)

Binary
code

ISA
modification

 4

The experimental results for a Leon-3 softcore processor demonstrate the interest of the proposed approach. To verify
the methodology independence from the application domain, a benchmark composed of 26 applications was used. This
large set of domains targets cryptography, video and signal processing, digital communications and control based
applications. The various application domains require different instructions sets. Most of the application source codes
come from literature benchmarks [9-10, 12] and open-source projects like the Helix MP3 decoder [11]. The latest ones
are hand made applications that were validated during previous research projects. This application list is detailed in
Table 1. Information on application characteristics, operation requirements and source code origins are listed.

Table 1. Application set used for methodology evaluation.

Validation of the optimized processor designs for these applications has been done by simulation using the ModelSim
tool. For each couple (optimized processor core, application), assembler execution traces and functional results have
been compared to ones obtained using the initial processor core.

Results1 provided in Figure 4 shows that more than half of the instruction set of the LEON-3 processor is never used for
the different applications that have been investigated. However, as explained in the previous section, we can see that in
function of the analysis technique (using the binary executable or profiling information), the useless instruction
detection does not provide the same results. Indeed, the binary executable analysis detects from 20% to 58% (average =
52%) of useless instructions. These detection performances are lower compared to the profiling based ones (minimum =
58%, maximum = 74%, average = 69%). However they are obtained more quickly without complex application
profiling requirements. If some instructions are never used, most instructions are necessary: cryptographic applications
exclusively required logical instructions to the detriment of arithmetic ones though for video applications it is the
opposite. Finally, for applications {5, 9, 12}, the assembler analysis step does not generate optimal results. Indeed, these
applications contain array of constants. These arrays are transformed into “wrong” processor instruction during the
disassembling process. These false instructions produce sub-optimal results during the useless instruction analysis.

Thus, using this knowledge it becomes possible to efficiently reduce the processor cost in terms of hardware resources
by removing from the processor architecture useless parts. Hardware saving estimation is obtained after logic synthesis
using the Synopsys Synplify Pro tool with an ACTEL ProASIC 3 device. Figure 5 shows the design area in terms of
ProASIC elements required.

1 X-axis values correspond to the application number provided in Table 1

Type # Application Source Complex instr.

Digital
communication

applications

1 ADPCM enc./dec.

Digital
communication

applications

2 BCH (31,21) enc./dec.Digital
communication

applications
3 GOLAY enc./dec.

Digital
communication

applications 4 LDCP decoder

Digital
communication

applications

5 MP3 decoder

Cryptographic
applications

6 CRC 32b

Cryptographic
applications

7 MD5

Cryptographic
applications

8 SHA-1
Cryptographic

applications 9 SHA-2Cryptographic
applications

10 ARC4 enc./dec.

Cryptographic
applications

11 DES / 3-DES enc./dec.

Cryptographic
applications

12 AES (128/512) enc./dec.

Control
applications

13 Engine control

Control
applications

14 Data sorting (bubble)

Control
applications

15 Queens
Control

applications 16 Pattern matching (text)Control
applications

17 Text compresion (v42)

Control
applications

18 g3fax - fax reception

Control
applications

19 LCD controller

Signal
processing

applications

20 LMS filter processing
Signal

processing
applications

21 FIR filter processingSignal
processing

applications 22 FFT & iFFT (fixed p.)

Signal
processing

applications
23 Echo cancellation

Video
processing

applications

24 JPEG decoderVideo
processing

applications
25 Motion detection

Video
processing

applications 26 Contrast egalization

MiBench [9] Mult, Shift
[12] Shift, Div
[12] Shift

Hand written Shift
Helix [11] Mult, Shift, Div
TRAP [10] Shift

Fast DES kit Shift
MiBench [9] Shift

OpenSSL lib. Shift
OpenSSL lib. Shift
Fast DES kit Shift
OpenSSL lib. Shift

TRAP [10] Mult, Shift, Div
TRAP [10] Shift
TRAP [10] Shift
TRAP [10] Shift
TRAP [10] Mult, Shift, Div
TRAP [10] Shift

Hand written Shift
Hand written Mult, Shift, Div
TRAP [10] Mult, Shift
FFTW src Mult, Shift
LibGSM Shift, Div

TRAP [10] Mult, Shift
Hand written Shift
Hand written Mult, Shift, Div

 5

Fig 4. Useless-instruction rate depending on the applications (LEON-3 processor)

Gain in terms of hardware complexity obtained for an ACTEL ProASIC device (Figure 5) is at least 6% for the
complete MP3 decoder application and grows up to 48% for the Queens application. Estimated gains for the overall
benchmarks are equal to is 33% while considering the profiling-based analysis and to 28% for the assembler-based one.

Fig 5. Experimental results (Leon-3 softcore synthetized on a ACTEL ProASIC device)

The most important part of the decrease is due to the costly ALU removing (multiplier, divider and barrel shifter
resources). However hardware gains are not only obtained for applications that do not use these resources. Indeed, if we
only consider applications that require multiplication, division and shifting resources the average hardware gain is 12%.
This interesting result is only due to low-complexity resource removing (instruction decoding logic, etc.).

Fig 6. Comparison of hardware gains on the processor core.

Benchmark (Integer Unit))
SoftwareSoftware INTITIAL SOFTCOREINTITIAL SOFTCOREINTITIAL SOFTCORE BINARY FILE ANALYSISBINARY FILE ANALYSISBINARY FILE ANALYSISBINARY FILE ANALYSIS EXECUTION TRACE ANALYSISEXECUTION TRACE ANALYSISEXECUTION TRACE ANALYSISEXECUTION TRACE ANALYSIS

RUN OK ? # INSTR. Proc3 IU # INSTR. Proc3 IU Proc3 IU # INSTR. Proc3 IU Proc3 IU IMP

Digital
communication

applications

GSM (adcpm)

Digital
communication

applications

BCH(31,21) dec.Digital
communication

applications
GOLAY (enc)decoder

Digital
communication

applications LDCP decoder

Digital
communication

applications

MP3 decoder

Cryptography
applications

CRC 32 (v2)

Cryptography
applications

MD5 Hash

Cryptography
applications

SHA-1 Hash
Cryptography
applications SHA-2 HashCryptography
applications

ARC4

Cryptography
applications

DES / Triple-DES

Cryptography
applications

AES (128b/512b)

Control
dominated

applications

Engine control

Control
dominated

applications

Vector Sort
Control

dominated
applications

QueensControl
dominated

applications Pattern searching

Control
dominated

applications
WEB server

Control
dominated

applications

text dec/comp. (v42)
g3fax

lcd control

Signal
processing

kernels

LMS filter
Signal

processing
kernels

FIR filterSignal
processing

kernels FFT fixed

Signal
processing

kernels
Echo cancellation

Video
applications

LWT (JPEG-2k)

Video
applications

EPIC enc/decoder
Video

applications
WEBP dec.Video

applications JPEG-dec
Video

applications

Motion detection

Video
applications

Contrast egalization

OK OK 101 18990 9859 45 16328 8808 14,0 % 10,7 % 29 15943 8426 16,0 % 14,5 % 2,0 %

OK OK 101 18990 9859 44 10061 8418 47,0 % 14,6 % 32 9819 8243 48,3 % 16,4 % 1,3 %

OK OK 101 18990 9859 44 16538 8857 12,9 % 10,2 % 28 15903 8403 16,3 % 14,8 % 3,3 %

OK OK 101 18990 9859 44 9907 8283 47,8 % 16,0 % 30 9756 8126 48,6 % 17,6 % 0,8 %

OK NOK 101 18990 9859 79 18585 9380 2,1 % 4,9 % 42 17845 8853 6,0 % 10,2 % 3,9 %

OK OK 101 18990 9859 47 10012 8440 47,3 % 14,4 % 33 9946 8342 47,6 % 15,4 % 0,3 %

OK OK 101 18990 9859 46 10114 8528 46,7 % 13,5 % 32 10053 8431 47,1 % 14,5 % 0,3 %

OK OK 101 18990 9859 44 9907 8283 47,8 % 16,0 % 30 9917 8284 47,8 % 16,0 % -0,1 %

OK OK 101 18990 9859 81 18913 9779 0,0 % 0,0 % 34 9967 8363 47,5 % 15,2 % 47,5 %

OK OK 101 18990 9859 44 10334 8366 45,6 % 15,1 % 29 9920 8300 47,8 % 15,8 % 2,2 %

OK OK 101 18990 9859 44 10061 8418 47,0 % 14,6 % 33 9873 8311 48,0 % 15,7 % 1,0 %

OK OK 101 18990 9859 70 18291 9187 3,7 % 6,8 % 31 10161 8395 46,5 % 14,8 % 42,8 %

OK OK 101 18990 9859 47 18040 8980 5,0 % 8,9 % 34 17800 8810 6,3 % 10,6 % 1,3 %

OK OK 101 18990 9859 42 10311 8571 45,7 % 13,1 % 30 9897 8135 47,9 % 17,5 % 2,2 %

OK OK 101 18990 9859 42 10311 8571 45,7 % 13,1 % 26 9779 8101 48,5 % 17,8 % 2,8 %

OK OK 101 18990 9859 44 10061 8418 47,0 % 14,6 % 31 9925 8337 47,7 % 15,4 % 0,7 %

OK NOK 101 18990 9859 --- --- --- --- --- -- --- --- --- --- ---

OK OK 101 18990 9859 45 16328 8808 14,0 % 10,7 % 30 16129 8479 15,1 % 14,0 % 1,0 %

OK OK 101 18990 9859 43 9952 8340 47,6 % 15,4 % 30 9927 8264 47,7 % 16,2 % 0,1 %

OK OK 101 18990 9859 -- --- --- --- --- -- --- --- --- --- ---

OK OK 101 18990 9859 43 16409 8724 13,6 % 11,5 % 28 15955 8438 16,0 % 14,4 % 2,4 %

OK OK 101 18990 9859 43 16409 8724 13,6 % 11,5 % 29 16217 8620 14,6 % 12,6 % 1,0 %

OK OK 101 18990 9859 49 17783 8817 6,4 % 10,6 % 34 16489 8602 13,2 % 12,7 % 6,8 %

OK OK 101 18990 9859 45 9962 8383 47,5 % 15,0 % 32 9895 8236 47,9 % 16,5 % 0,4 %

NOK NOK 101 18990 9859 --- --- --- --- --- -- --- --- --- --- ---

NOK NOK 101 18990 9859 --- --- --- --- --- -- --- --- --- --- ---

OK NOK 101 18990 9859 --- --- --- --- --- -- --- --- --- --- ---

OK OK 101 18990 9859 45 16297 8709 14,2 % 11,7 % 32 16114 8584 15,1 % 12,9 % 1,0 %

OK OK 101 18990 9859 44 16538 8857 12,9 % 10,2 % 31 16253 8698 14,4 % 11,8 % 1,5 %

OK OK 101 18990 9859 45 17882 8889 5,8 % 9,8 % 32 17741 8691 6,6 % 11,8 % 0,7 %

27,2 % 11,7 % 32,3 % 14,6 %

Gains en surface (Integer unit)
AREA COSTS (IU)AREA COSTS (IU)AREA COSTS (IU) AREA SAVING (IU)AREA SAVING (IU)

Original ASM Profiling ASM Profiling
1 GSM (adcpm)
2 BCH(31,21) dec.
3 GOLAY (enc)decoder
4 LDCP decoder
5 MP3 decoder
6 CRC 32 (v2)
7 MD5 Hash
8 SHA-1 Hash
9 SHA-2 Hash
10 ARC4
11 DES / Triple-DES
12 AES (128b/512b)
13 Engine control
14 Vector Sort
15 Queens
16 Pattern searching
17 text dec/comp. (v42)
18 g3fax
19 lcd control
20 LMS filter
21 FIR filter
22 FFT fixed
23 Echo cancellation
24 JPEG-dec
25 Motion detection
26 Contrast egalization

9859 8808 8426 10,7 % 14,5 %

9859 8418 8243 14,6 % 16,4 %

9859 8857 8403 10,2 % 14,8 %

9859 8283 8126 16,0 % 17,6 %

9859 9380 8853 4,9 % 10,2 %

9859 8440 8342 14,4 % 15,4 %

9859 8528 8431 13,5 % 14,5 %

9859 8283 8284 16,0 % 16,0 %

9859 9779 8363 0,8 % 15,2 %

9859 8366 8300 15,1 % 15,8 %

9859 8418 8311 14,6 % 15,7 %

9859 9187 8395 6,8 % 14,8 %

9859 8980 8810 8,9 % 10,6 %

9859 8571 8135 13,1 % 17,5 %

9859 8571 8101 13,1 % 17,8 %

9859 8418 8337 14,6 % 15,4 %

9859 8808 8479 10,7 % 14,0 %

9859 8340 8264 15,4 % 16,2 %

9859 8340 8264 15,4 % 16,2 %

9859 8724 8438 11,5 % 14,4 %

9859 8724 8620 11,5 % 12,6 %

9859 8817 8602 10,6 % 12,7 %

9859 8383 8236 15,0 % 16,5 %

9859 8709 8584 11,7 % 12,9 %

9859 8857 8698 10,2 % 11,8 %

9859 8889 8691 9,8 % 11,8 %

0

2500

5000

7500

10000

G
SM

 (
ad

cp
m

)

BC
H

(3
1,

21
)

de
c.

G
O

LA
Y

 (
en

c)
de

co
de

r

LD
C

P
de

co
de

r

M
P3

 d
ec

od
er

C
R

C
 3

2
(v

2)

M
D

5
H

as
h

SH
A

-1
 H

as
h

SH
A

-2
 H

as
h

A
R

C
4

D
ES

 /
Tr

ip
le

-D
ES

A
ES

 (
12

8b
/5

12
b)

En
gi

ne
 c

on
tr

ol

Ve
ct

or
 S

or
t

Q
ue

en
s

Pa
tt

er
n

se
ar

ch
in

g

te
xt

 d
ec

/c
om

p.
 (

v4
2)

g3
fa

x

lc
d

co
nt

ro
l

LM
S

fil
te

r

FI
R

 fi
lte

r

FF
T

 fi
xe

d

Ec
ho

 c
an

ce
lla

tio
n

GAIN EN OCCUPATION (# DE SLICES)

Original ASM

Evolution du nombre d'instructions
OF INSTRUCTIONS# OF INSTRUCTIONS# OF INSTRUCTIONS INSTR. SAVINGINSTR. SAVING

Original ASM Profiling
Assembler

based
analysis

Profiling
based

analysis
1 GSM (adcpm)
2 BCH(31,21) dec.
3 GOLAY (enc)decoder
4 LDCP decoder
5 MP3 decoder
6 CRC 32 (v2)
7 MD5 Hash
8 SHA-1 Hash
9 SHA-2 Hash

10 ARC4
11 DES / Triple-DES
12 AES (128b/512b)
13 Engine control
14 Vector Sort
15 Queens
16 Pattern searching
17 text dec/comp. (v42)
18 g3fax
19 lcd control
20 LMS filter
21 FIR filter
22 FFT fixed
23 Echo cancellation
24 JPEG-dec
25 Motion detection
26 Contrast egalization

101 45 29 55 % 71 %

101 44 32 56 % 68 %

101 44 28 56 % 72 %

101 44 30 56 % 70 %

101 79 42 22 % 58 %

101 47 33 53 % 67 %

101 46 32 54 % 68 %

101 44 30 56 % 70 %

101 81 34 20 % 66 %

101 44 29 56 % 71 %

101 44 33 56 % 67 %

101 70 31 31 % 69 %

101 47 34 53 % 66 %

101 42 30 58 % 70 %

101 42 26 58 % 74 %

101 44 31 56 % 69 %

101 45 30 55 % 70 %

101 43 30 57 % 70 %

101 43 30 57 % 70 %

101 43 28 57 % 72 %

101 43 29 57 % 71 %

101 49 34 51 % 66 %

101 45 32 55 % 68 %

101 45 32 55 % 68 %

101 44 31 56 % 69 %

101 45 32 55 % 68 %

0

27,5

55

82,5

110

GSM
 (a

dc
pm

)

BCH(31
,21

) d
ec

.

GOLA
Y (e

nc
)de

co
de

r

LD
CP d

ec
ode

r

MP3
 de

co
de

r

CRC 32
 (v

2)

MD5 H
ash

SH
A-1

Hash

SH
A-2

Hash
ARC4

DES
 / T

rip
le-

DES

AES
 (1

28
b/5

12
b)

En
gin

e c
ontr

ol

Ve
cto

r S
ort

Que
en

s

Pa
tte

rn
sea

rch
ing

tex
t d

ec
/co

mp. (
v4

2)
g3

fax

lcd
 co

ntr
ol

LM
S f

ilte
r

FIR
 fil

ter

FF
T fix

ed

Ec
ho

 ca
nc

ell
ati

on

JPE
G-de

c

Motio
n d

ete
cti

on

Contr
ast

 eg
aliz

ati
on

NOMBRE D’INSTRUCTIONS NÉCESSAIRE AU PROCESSEUR (FONCTION DE LA MÉTHODE)

Original ASM Profiling

0 %

25 %

50 %

75 %

100 %

GSM
 (a

dc
pm

)

BCH(31
,21

) d
ec

.

GOLA
Y (e

nc
)de

co
de

r

LD
CP d

ec
ode

r

MP3
 de

co
de

r

CRC 32
 (v

2)

MD5 H
ash

SH
A-1

Hash

SH
A-2

Hash
ARC4

DES
 / T

rip
le-

DES

AES
 (1

28
b/5

12
b)

En
gin

e c
ontr

ol

Ve
cto

r S
ort

Que
en

s

Pa
tte

rn
sea

rch
ing

tex
t d

ec
/co

mp. (
v4

2)
g3

fax

lcd
 co

ntr
ol

LM
S f

ilte
r

FIR
 fil

ter

FF
T fix

ed

Ec
ho

 ca
nc

ell
ati

on

JPE
G-de

c

Motio
n d

ete
cti

on

Contr
ast

 eg
aliz

ati
on

RÉDUCTION DU NOMBRE D’INSTRUCTIONS DU PROCESSEUR (%)

Assembler based analysis
Profiling based analysis

0 %

5,0 %

10,0 %

15,0 %

20,0 %

GSM
 (a

dc
pm

)

BCH(31
,21

) d
ec

.

GOLA
Y (e

nc
)de

co
de

r

LD
CP d

ec
ode

r

MP3
 de

co
de

r

CRC 32
 (v

2)

MD5 H
ash

SH
A-1

Hash

SH
A-2

Hash
ARC4

DES
 / T

rip
le-

DES

AES
 (1

28
b/5

12
b)

En
gin

e c
ontr

ol

Ve
cto

r S
ort

Que
en

s

Pa
tte

rn
sea

rch
ing

tex
t d

ec
/co

mp. (
v4

2)
g3

fax

lcd
 co

ntr
ol

LM
S f

ilte
r

FIR
 fil

ter

FF
T fix

ed

Ec
ho

 ca
nc

ell
ati

on

GAIN EN OCCUPATION (# DE SLICES)

ASM Profiling

Gains en surface (Proc3)-1
AREA COSTS (IU)AREA COSTS (IU)AREA COSTS (IU) AREA SAVING (IU)AREA SAVING (IU)

Original
design

Optimized
design
(ASM

based)

Optimized
design

(Profiling
based)

ASM

Area
saving

over the
complete
processor

Area
saving

over the
processor
core only

1 GSM (adcpm)
2 BCH(31,21) dec.
3 GOLAY (enc)decoder
4 LDCP decoder
5 MP3 decoder
6 CRC 32 (v2)
7 MD5 Hash
8 SHA-1 Hash
9 SHA-2 Hash
10 ARC4
11 DES / Triple-DES
12 AES (128b/512b)
13 Engine control
14 Vector Sort
15 Queens
16 Pattern searching
17 text dec/comp. (v42)
18 g3fax
19 lcd control
20 LMS filter
21 FIR filter
22 FFT fixed
23 Echo cancellation
24 JPEG-dec
25 Motion detection
26 Contrast egalization

18990 16328 15943 14,0 % 16,0 % 14,5 %

18990 10061 9819 47,0 % 48,3 % 16,4 %

18990 16538 15903 12,9 % 16,3 % 14,8 %

18990 9907 9756 47,8 % 48,6 % 17,6 %

18990 18585 17845 2,1 % 6,0 % 10,2 %

18990 10012 9946 47,3 % 47,6 % 15,4 %

18990 10114 10053 46,7 % 47,1 % 14,5 %

18990 9907 9917 47,8 % 47,8 % 16,0 %

18990 18913 9967 0,4 % 47,5 % 15,2 %

18990 10334 9920 45,6 % 47,8 % 15,8 %

18990 10061 9873 47,0 % 48,0 % 15,7 %

18990 18291 10161 3,7 % 46,5 % 14,8 %

18990 18040 17800 5,0 % 6,3 % 10,6 %

18990 10311 9897 45,7 % 47,9 % 17,5 %

18990 10311 9779 45,7 % 48,5 % 17,8 %

18990 10061 9925 47,0 % 47,7 % 15,4 %

18990 16328 16129 14,0 % 15,1 % 14,0 %

18990 9952 9927 47,6 % 47,7 % 16,2 %

18990 9952 9927 47,6 % 47,7 % 16,2 %

18990 16409 15955 13,6 % 16,0 % 14,4 %

18990 16409 16217 13,6 % 14,6 % 12,6 %

18990 17783 16489 6,4 % 13,2 % 12,7 %

18990 9962 9895 47,5 % 47,9 % 16,5 %

18990 16297 16114 14,2 % 15,1 % 12,9 %

18990 16538 16253 12,9 % 14,4 % 11,8 %

18990 17882 17741 5,8 % 6,6 % 11,8 %

0 %

5 %

10 %

15 %

20 %

25 %

1 3 5 7 9 11 13 15 17 19 21 23 25

0 %

20 %

40 %

60 %

80 %

100 %

1 3 5 7 9 11 13 15 17 19 21 23 25

0 %

10 %

20 %

30 %

40 %

50 %

60 %

1 3 5 7 9 11 13 15 17 19 21 23 25

Gain sur le cout de l’integer Unit

Gain sur le nombre d’instructions

Gain sur le cout en surface du processeur

Comparaison du gain (integer unit / processeur)

Cout en surface du processeur (optmisé / original)

0

4000

8000

12000

16000

20000

1 3 5 7 9 11 13 15 17 19 21 23 25

Optimized design (Profiling based)
Original design

0 %

8 %

17 %

25 %

33 %

42 %

50 %

1 3 5 7 9 11 13 15 17 19 21 23 25

Area saving over the complete processor
Area saving over the processor core only

Cout en surface du processeur (optmisé / original)

Gain sur le nombre d’instructions

0

4000

8000

12000

16000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Original design
Optimized design (ASM based)
Optimized design (Profiling based)

0 %

8 %

17 %

25 %

33 %

42 %

50 %

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Area saving over the complete processor
Area saving over the processor core only

0 %

20 %

40 %

60 %

80 %

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Assembler based analysis
Profiling based analysis

0

4000

8000

12000

16000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Original design
Optimized design (ASM based)
Optimized design (Profiling based)

0 %

8 %

17 %

25 %

33 %

42 %

50 %

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Hardware complexity decrease for the complete processor
Hardware complexity decrease for the processor core only

 6

Figure 6 shows the hardware gain obtained on the processor core (without the multiplier, divider and shifter ALUs).
Results demonstrate the efficient hardware complexity reduction obtained for the processor core (instruction decoding
stage, exception management, etc.).

Finally, hardware decrease saving obtained using the proposed methodology also impacts the power consumption of the
processor core. Indeed, removing hardware resources in the processor core reduces its power consumption. A lower
hardware complexity generates a lower static consumption. By this way, the hardware complexity reduction in the
instruction decoder, the pipeline controller, and the exception manager enables to reduce the switching activity during
processor execution. This switching reduction minimizes the dynamic power consumption of the processor core.

4. WORK PERSPECTIVES

In this work, we suppose that the processor optimization is performed thanks to a direct methodology. The optimization
process is performed after the software compilation step. The extension of this approach to an iterative one may
improve its efficiency. Indeed, software compilers were designed to use efficiently the overall processor instruction-set.
Processor architecture is considered as fixed irrespective of the generated executable code.

This assumption that can be verified for general-purpose processor and DSP ones helps developers to reduce the
algorithm complexity in software compilers. However, coupled with the proposed methodology, this can lead to sub-
optimal results in terms of hardware complexity. This sub-optimality is due to the fact that optimized processor
hardware complexity depends on the instruction-set used in software application. The reduction of the instruction-set
used by the software compiler may reduce the processor hardware cost.

Finally, optimization techniques used in software compiler may lead to an increase of instruction-set usage. For
example, during the compilation processor, a software compiler may decide to transform some assembler instructions to
improve execution speed: transforming a factor 2 multiplication by a left-shift operation. This usual optimization
involves to a processor complexity increase. Let’s consider an application requiring only a multiplier and an adder
resources. Transforming a constant multiplication to a shift-left operation increase the resource set (shifting resource)
while this factor 2 multiplications may be implemented to the multiplier or the adder.

A modification of the software compiler flow to support and extend the proposed methodology was out of the scope of
our current work. However, to improve the approach efficiency, software compiler aspects will be investigated.

5. CONCLUSION

In this paper, an original fully automated approach to reduce size of softcore processors (generic and ASIP ones) has
been proposed. The methodology uses applications characteristics to remove useless parts of the processor core
(instruction, hardware resources, etc.). Its objective is to minimize the hardware implementation cost. Proposed design
flow does not required manual modification of the hardware description. Finally, results show that on commonly used
applications, about half of Leon-3 instructions are useless. Removing them from the processor core provides area saving
from 10% to 25% on the overall processor core (ALU, registers, control, etc.). Future works will target instruction
models (more precision on hardware usage) and will consider ASIC targets.

REFERENCES

1. N. Clark, H. Zhong and S. Mahlke, “Processor Acceleration Through Automated Instruction Set Customization”. In

Proceedings of the 36th annual IEEE/ACM International Symposium on Microarchitecture (MICRO 36), 2003.
2. R. Klemm, J. P. Sabugo, H. Ahlendorf and G. Fettweis, “Using LISATek for the Design of an ASIP core including

Floating Point Operations”, Technical report, 2008.
3. R. R. Hoare et al., “Rapid VLIW Processor Customization for Signal Processing Applications Using Combinational

Hardware Functions”. EURASIP Journal on Applied Signal Processing, vol. 2006 ID 46472, 2010.
4. F. Tlili and A. Ghorbel, “ASIP Solution for Implementation of H.264 Multi Resolution Motion Estimation”. In the

International Journal of Communications, Network and System Sciences, Vol.3 No.5, May 2010.
5. P. Guironnet de Massas, P. Amblard and F. Pétrot, “On SPARC LEON-2 ISA Extensions Experiments for MPEG

Encoding Acceleration”. Journal VLSI Design, vol. 2007, ID 28686, 2007.
6. S. Tillich. “Instruction Set Extensions for Secret-Key Cryptography”. Poster Presentation at the Ph.D. Forum at the

9th Conference on Design, Automation and Test in Europe (DATE 2006), Munich, Germany, March 6, 2006.
7. F. Naessens, A. Bourdoux, A. Dejonghe, “A flexible ASIP decoder for combined binary and non-binary LDPC

codes”. 17th IEEE Symposium on Communications and Vehicular Technology (SCVT), 24-25 November 2010.
8. G. Kappen, L. Kurz, O. Priebe and T. G. Noll, “Design Space Exploration for an ASIP/Co-Processor Architecture

used in GNSS Receivers”. Journal of Signal Processing Systems, vol. 58 (1), pp. 41-51, 2010.

 7

9. M. Guthaus et al., “MiBench: A free, commercially representative embedded benchmark suite”, In Proc. IEEE 4th
Annu. Workshop Workload Characterisation, Dec. 2001, pp. 3–14.

10. TRAP benchmark suite for SystemC and TLM based Instruction Set Simulators (ISS),
http://code.google.com/p/trap-gen.

11. Helix MP3 Decoder (open-source), Real Networks Inc. https://helixcommunity.org
12. S. Lin and D. J. Costello, “Error Control Coding: Fundamentals and Applications”, 2nd edition, Prentice Hall:

Englewood Cliffs, NJ, 2004.

