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1. INTRODUCTION 
 
The growing complexity of applications increases the challenge of the System-On-Chip design. The most efficient way 
to produce area and power efficient circuits is to design fully dedicated architectures for ASIC or FPGA technologies. 
However, such approach is unsuited with the “time to market” constraint due to times for design and verification. 
Moreover, this approach has a lack of flexibility: a modification in the application specification can require new design 
flow iterations. Another way to implement applications under “time to market” pressure is based on high-end processor 
usage. Nowadays, General-Purpose Processors (GPP) or Digital Signal Processors (DSP) provides high computation 
performance. Moreover, programming languages and compiler tools provide high flexibility degree for these 
approaches. However, general processors are not relevant in the embedded market. 
 
There are another architectural solutions that combine design, flexibility and time to market. One of these approaches 
consists to adapt low-cost GPP cores by adding domain specific instructions. Such processor architectures named 
Application-Specific Instruction-set Processors (ASIP) efficiently improve application performances (throughput, 
latency, etc.) thanks to dedicated hardware instructions. 
 
Several ASIP design automation flows [1, 2, 3] and ASIP case of studies [4, 5, 6, 7, 8] have been proposed. They work 
on processor customization, identify and instantiate custom instructions in the processor. In this paper, we present an 
alternative approach. It enables to produce more efficient architectures in terms of hardware complexity. The objective 
is to obtain area cost reduction compared to original softcore processor. To achieve this objective, application's source 
code is first analyzed to identify useless processor instructions. Based on this instruction analysis, parts of the processor 
(useless ones) are removed before the logical synthesis process. 
 
Study presented in this article is based on the SPARC v8 processor for two reasons. The first one is that the ISA is free 
of patents and thus the customization of the processor instruction set does not need licenses. The second one is that 
VHDL source codes of the SPARC v8 architecture called LEON-3 are available under the GPL/LGPL licenses. 
Processor source code allows us to modify the processor architecture according to the proposed methodology and to 
validate the modifications on FPGA boards. 
 
The paper is structured as follows. In Section 2, we present some ASIP designs, ASIP methodology and discussion 
about presented work motivations. Section 3 presents the proposed design methodology used to reduce the instruction 
set. Finally, Section 4 gives experimental results with signal processing benchmarks on ACTEL ProASIC-3 target.  
 
2. RELATED WORKS 
 
A. Processor customization (ASIP) 
 
Nowadays, most application domains - signal and video processing, digital communications, cryptograph, etc. - need 
fast implementations of their algorithms to respect real time execution. Some works have study these applications and 
new instruction sets have been proposed to speed-up application execution. In [4, 5] authors have proposed new 
multimedia instructions to increase execution of video applications. Similar works [6, 7, 8] tried to increase 
cryptography or digital communication applications. All these works are based on hand made application analysis and 
hand made VHDL description. 
 
To speed-up the ASIP design time, automatic design flows have also been proposed [1, 2, 3]. Two main automatic ASIP 
design flows can be cited: 
- First one is based on the complete description of the processor core [2]. In such methodology a designer has to fully 

describe the processor core using a dedicated HDL language. Then a set of automated tools generates the processor 
description in a HDL language such as VHDL and a complete set of development tools. Using the processor 
description and the automatically generated compiler, the designer can execute its application on a fully customized 
processor. This approach enables efficient implementation. But it is complex because the processor core have to be 
fully described. 

- Second one is based on the reuse of a softcore processor [1, 3]. The main idea is to reuse an existing processor core 
by adding some custom instructions. Associated automatic methodologies perform (Figure 1): instruction 
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identification from application source code, instruction code generation (VHDL), processor modification and 
compiler tool chain adaptation. All these steps are specific problems. In practice, for real-life applications, heuristic 
based techniques are necessary. However these methodologies focus only on processor enrichment, in particularly 
they never try to optimize the “existing processor core” according to the application requirements. 

 

 
 

Fig. 1. Design flow for softcore processor customization 
 
B. Work motivation 
 
Hand-made and automatic ASIP methodologies help designers to generated dedicated processors. However, reused 
processor cores already contain instruction set, functional units, etc. All these resources may become useless for a 
specific application. These useless resources have drawback effects on processor enrichment possibilities and 
consequently on processor architecture performances: 
1. If reused softcore processor has a large instruction set, only a few custom instructions may be added. In the Leon-3 

ISA, there is only 8 free instructions (for arithmetic and logic instructions). This ISA constraint reduces drastically 
the design space exploration and performances. 

2. After the softcore customization process, custom instructions are added to the processor architecture. Due to these 
custom instructions, some parts of the processor (instructions, functional units) may become useless. 

 
For these reasons, we proposed an automated design flow that removes useless instructions and associated hardware 
resources from softcore processors. This approach enables: 
- A better design space exploration because more instructions can be added in the processor ISA, 
- A decrease of architecture cost in terms of hardware complexity for the final ASIP. 
 
2. INSTRUCTION SET REDUCTION METHODOLOGY 
 
A. Optimization methodology for softcore processors 
 
The main objective is to study the application characteristics to (1) identify the useless parts of the processor: 
instructions, functional units, registers, etc. (2) to automatically remove them from the softcore hardware description. 
Proposed methodology for this task is shown in Figure 1. The application source code is first transformed into its binary 
representation using a software compiler dedicated to the processor target (like gcc). The generated executable file 
produced by the compiler contains the instructions that can be used by the softcore processor to execute the application 
behavior. 
 

 
 

Fig. 2. Proposed design flow for useless instruction detection and hardware removing 
 
The softcore transformation process that enables to reduce the hardware complexity is composed of the following steps: 
- Executable file is first disassembled and dead code (unused functions) are removed. 
- Instruction occurrences are counted and useless instructions (instruction that are never used) are identified. 
- Definitions of useless instruction are removed from the compiler source code for safety reason. Indeed if a designer 

modifies its application and uses removed instructions, the compiler will generate a compilation error. 
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- The hardware description of the softcore processor is modified. Source code lines that correspond to instruction 
processing or functional unit allocation are removed from the source code. By this way, logical synthesis tool won’t 
allocate useless logic and register resources. 

 
Finally, a dedicated version of the processor softcore requiring less hardware resources is obtained. This generic design 
flow reduces the hardware cost of processors. This technique can be used for softcore processors with or without 
custom instructions. However, it is important to note that instruction set reduction breaks the processor compatibility 
with other applications that require some of the removed instructions. 
 
B. Optimization methodology in an ASIP environment 
 
Design flow presented in previous section is applied just before logic synthesis. However, as described in the 
motivation section, removing instruction from a softcore processor may offer more optimization opportunities during 
the customization step. The global design flow including the processor customization and the instruction removing 
stages becomes iterative as presented in Figure 3. 
 

 
 

Fig. 3. Global design flow for well-sized ASIP design 
 
Instruction and resource-removing step is executed after the ASIP customization. If the ASIP customization process is 
stopped due to a lack of free instruction slots, then the processor customization process can iterate after instruction and 
resource removing. 
 
C. Improving unless instruction detection 
 
The proposed methodology is based on application binary executable file obtained after source code compilation. This 
generic approach is automatic and need a low computation time. However, obtained results are not optimum. The 
binary executable file contains the compiled application is composed of: 
- A trap table i.e. for the SPARC processors, gcc automatically generate a trap table which is used in software to 

catch processing errors (divide by zero, memory access error, unknown operation code, etc.). 
- Generic low-level functions used for processor and peripheral initialization. These functions and instructions are 

defined in standard and system libraries. They are automatically included during the linking step. 
- The dead code sections. They can be user-defined functions or functions declared in included libraries (stdio, 

math). This dead code is not removed in a standard compilation process. 
These unwanted code pieces could contain floating-point instructions even if the application source code was compiled 
using software implementation of floating point operations. In practice it won’t generate some errors during the 
application execution because they are unreachable code sections. However we do not have such information during the 
executable file analysis process. To improve instruction usage detection, a second method is available for processor 
execution trace files. In particularly, unused instruction detection is improved because unreachable code sections are 
discarded. 
 
3. EXPERIMENTAL RESULTS 
 
Experimentations given in this section were done from a custom version of the Leon-3 processor. This custom version 
(fully compatible with the SPARC v8 specification) was modified to speed-up custom instruction insertion. Modified 
Leon-3 architecture currently up to 1024 custom instructions. Custom instructions can be combinatory (executed in one 
clock cycle), pipeline or sequential (executed in more than one clock cycle) or asynchronous (working like an 
independent co-processor). A set of GPL software configuration tools enables to automatically configure the VHDL 
architecture description. Moreover, this design flow automatically adapts the compiler (GCC) source files to enables 
custom instruction use. 
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The experimental results for a Leon-3 softcore processor demonstrate the interest of the proposed approach. To verify 
the methodology independence from the application domain, a benchmark composed of 26 applications was used. This 
large set of domains targets cryptography, video and signal processing, digital communications and control based 
applications. The various application domains require different instructions sets. Most of the application source codes 
come from literature benchmarks [9-10, 12] and open-source projects like the Helix MP3 decoder [11]. The latest ones 
are hand made applications that were validated during previous research projects. This application list is detailed in 
Table 1. Information on application characteristics, operation requirements and source code origins are listed. 
 

 
Table 1. Application set used for methodology evaluation. 

 
Validation of the optimized processor designs for these applications has been done by simulation using the ModelSim 
tool. For each couple (optimized processor core, application), assembler execution traces and functional results have 
been compared to ones obtained using the initial processor core. 
 
Results1 provided in Figure 4 shows that more than half of the instruction set of the LEON-3 processor is never used for 
the different applications that have been investigated. However, as explained in the previous section, we can see that in 
function of the analysis technique (using the binary executable or profiling information), the useless instruction 
detection does not provide the same results. Indeed, the binary executable analysis detects from 20% to 58% (average = 
52%) of useless instructions. These detection performances are lower compared to the profiling based ones (minimum = 
58%, maximum = 74%, average = 69%). However they are obtained more quickly without complex application 
profiling requirements. If some instructions are never used, most instructions are necessary: cryptographic applications 
exclusively required logical instructions to the detriment of arithmetic ones though for video applications it is the 
opposite. Finally, for applications {5, 9, 12}, the assembler analysis step does not generate optimal results. Indeed, these 
applications contain array of constants. These arrays are transformed into “wrong” processor instruction during the 
disassembling process. These false instructions produce sub-optimal results during the useless instruction analysis. 
 
Thus, using this knowledge it becomes possible to efficiently reduce the processor cost in terms of hardware resources 
by removing from the processor architecture useless parts. Hardware saving estimation is obtained after logic synthesis 
using the Synopsys Synplify Pro tool with an ACTEL ProASIC 3 device. Figure 5 shows the design area in terms of 
ProASIC elements required. 
                                                             
1 X-axis values correspond to the application number provided in Table 1 

Type # Application Source Complex instr.

Digital 
communication 

applications

1 ADPCM enc./dec.

Digital 
communication 

applications

2 BCH (31,21) enc./dec.Digital 
communication 

applications
3 GOLAY enc./dec.

Digital 
communication 

applications 4 LDCP decoder

Digital 
communication 

applications

5 MP3 decoder

Cryptographic 
applications

6 CRC 32b

Cryptographic 
applications

7 MD5

Cryptographic 
applications

8 SHA-1
Cryptographic 

applications 9 SHA-2Cryptographic 
applications

10 ARC4 enc./dec.

Cryptographic 
applications

11 DES / 3-DES enc./dec.

Cryptographic 
applications

12 AES (128/512) enc./dec.

Control 
applications

13 Engine control

Control 
applications

14 Data sorting (bubble)

Control 
applications

15 Queens
Control 

applications 16 Pattern matching (text)Control 
applications

17 Text compresion (v42)

Control 
applications

18 g3fax - fax reception

Control 
applications

19 LCD controller

Signal   
processing 

applications

20 LMS filter processing
Signal   

processing 
applications

21 FIR filter processingSignal   
processing 

applications 22 FFT & iFFT (fixed p.)

Signal   
processing 

applications
23 Echo cancellation

Video    
processing 

applications

24 JPEG decoderVideo    
processing 

applications
25 Motion detection

Video    
processing 

applications 26 Contrast egalization

MiBench [9] Mult, Shift
[12] Shift, Div
[12] Shift

Hand written Shift
Helix [11] Mult, Shift, Div
TRAP [10] Shift

Fast DES kit Shift
MiBench [9] Shift

OpenSSL lib. Shift
OpenSSL lib. Shift
Fast DES kit Shift
OpenSSL lib. Shift

TRAP [10] Mult, Shift, Div
TRAP [10] Shift
TRAP [10] Shift
TRAP [10] Shift
TRAP [10] Mult, Shift, Div
TRAP [10] Shift

Hand written Shift
Hand written Mult, Shift, Div
TRAP [10] Mult, Shift
FFTW src Mult, Shift
LibGSM Shift, Div

TRAP [10] Mult, Shift
Hand written Shift
Hand written Mult, Shift, Div
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Fig 4. Useless-instruction rate depending on the applications (LEON-3 processor) 

 
Gain in terms of hardware complexity obtained for an ACTEL ProASIC device (Figure 5) is at least 6% for the 
complete MP3 decoder application and grows up to 48% for the Queens application. Estimated gains for the overall 
benchmarks are equal to is 33% while considering the profiling-based analysis and to 28% for the assembler-based one. 
 

 
Fig 5. Experimental results (Leon-3 softcore synthetized on a ACTEL ProASIC device) 

 
The most important part of the decrease is due to the costly ALU removing (multiplier, divider and barrel shifter 
resources). However hardware gains are not only obtained for applications that do not use these resources. Indeed, if we 
only consider applications that require multiplication, division and shifting resources the average hardware gain is 12%. 
This interesting result is only due to low-complexity resource removing (instruction decoding logic, etc.). 
 

 
Fig 6. Comparison of hardware gains on the processor core. 

 

Benchmark (Integer Unit))
SoftwareSoftware INTITIAL SOFTCOREINTITIAL SOFTCOREINTITIAL SOFTCORE BINARY FILE ANALYSISBINARY FILE ANALYSISBINARY FILE ANALYSISBINARY FILE ANALYSIS EXECUTION TRACE ANALYSISEXECUTION TRACE ANALYSISEXECUTION TRACE ANALYSISEXECUTION TRACE ANALYSIS

RUN OK ? # INSTR. Proc3 IU # INSTR. Proc3 IU Proc3 IU # INSTR. Proc3 IU Proc3 IU IMP

Digital 
communication 
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GSM (adcpm)
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communication 
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BCH(31,21) dec.Digital 
communication 

applications
GOLAY (enc)decoder
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communication 

applications LDCP decoder

Digital 
communication 

applications

MP3 decoder

Cryptography 
applications

CRC 32 (v2)

Cryptography 
applications

MD5 Hash

Cryptography 
applications

SHA-1 Hash
Cryptography 
applications SHA-2 HashCryptography 
applications

ARC4

Cryptography 
applications

DES / Triple-DES

Cryptography 
applications

AES (128b/512b)

Control 
dominated 

applications

Engine control

Control 
dominated 

applications

Vector Sort
Control 

dominated 
applications

QueensControl 
dominated 

applications Pattern searching 

Control 
dominated 

applications
WEB server

Control 
dominated 

applications

text dec/comp. (v42)
g3fax

lcd control

Signal 
processing 

kernels

LMS filter
Signal 

processing 
kernels

FIR filterSignal 
processing 

kernels FFT fixed

Signal 
processing 

kernels
Echo cancellation

Video 
applications

LWT (JPEG-2k)

Video 
applications

EPIC enc/decoder
Video 

applications
WEBP dec.Video 

applications JPEG-dec
Video 

applications

Motion detection

Video 
applications

Contrast egalization

OK OK 101 18990 9859 45 16328 8808 14,0 % 10,7 % 29 15943 8426 16,0 % 14,5 % 2,0 %

OK OK 101 18990 9859 44 10061 8418 47,0 % 14,6 % 32 9819 8243 48,3 % 16,4 % 1,3 %

OK OK 101 18990 9859 44 16538 8857 12,9 % 10,2 % 28 15903 8403 16,3 % 14,8 % 3,3 %

OK OK 101 18990 9859 44 9907 8283 47,8 % 16,0 % 30 9756 8126 48,6 % 17,6 % 0,8 %

OK NOK 101 18990 9859 79 18585 9380 2,1 % 4,9 % 42 17845 8853 6,0 % 10,2 % 3,9 %

OK OK 101 18990 9859 47 10012 8440 47,3 % 14,4 % 33 9946 8342 47,6 % 15,4 % 0,3 %

OK OK 101 18990 9859 46 10114 8528 46,7 % 13,5 % 32 10053 8431 47,1 % 14,5 % 0,3 %

OK OK 101 18990 9859 44 9907 8283 47,8 % 16,0 % 30 9917 8284 47,8 % 16,0 % -0,1 %

OK OK 101 18990 9859 81 18913 9779 0,0 % 0,0 % 34 9967 8363 47,5 % 15,2 % 47,5 %

OK OK 101 18990 9859 44 10334 8366 45,6 % 15,1 % 29 9920 8300 47,8 % 15,8 % 2,2 %

OK OK 101 18990 9859 44 10061 8418 47,0 % 14,6 % 33 9873 8311 48,0 % 15,7 % 1,0 %

OK OK 101 18990 9859 70 18291 9187 3,7 % 6,8 % 31 10161 8395 46,5 % 14,8 % 42,8 %

OK OK 101 18990 9859 47 18040 8980 5,0 % 8,9 % 34 17800 8810 6,3 % 10,6 % 1,3 %

OK OK 101 18990 9859 42 10311 8571 45,7 % 13,1 % 30 9897 8135 47,9 % 17,5 % 2,2 %

OK OK 101 18990 9859 42 10311 8571 45,7 % 13,1 % 26 9779 8101 48,5 % 17,8 % 2,8 %

OK OK 101 18990 9859 44 10061 8418 47,0 % 14,6 % 31 9925 8337 47,7 % 15,4 % 0,7 %

OK NOK 101 18990 9859 --- --- --- --- --- -- --- --- --- --- ---

OK OK 101 18990 9859 45 16328 8808 14,0 % 10,7 % 30 16129 8479 15,1 % 14,0 % 1,0 %

OK OK 101 18990 9859 43 9952 8340 47,6 % 15,4 % 30 9927 8264 47,7 % 16,2 % 0,1 %

OK OK 101 18990 9859 -- --- --- --- --- -- --- --- --- --- ---

OK OK 101 18990 9859 43 16409 8724 13,6 % 11,5 % 28 15955 8438 16,0 % 14,4 % 2,4 %

OK OK 101 18990 9859 43 16409 8724 13,6 % 11,5 % 29 16217 8620 14,6 % 12,6 % 1,0 %

OK OK 101 18990 9859 49 17783 8817 6,4 % 10,6 % 34 16489 8602 13,2 % 12,7 % 6,8 %

OK OK 101 18990 9859 45 9962 8383 47,5 % 15,0 % 32 9895 8236 47,9 % 16,5 % 0,4 %

NOK NOK 101 18990 9859 --- --- --- --- --- -- --- --- --- --- ---

NOK NOK 101 18990 9859 --- --- --- --- --- -- --- --- --- --- ---

OK NOK 101 18990 9859 --- --- --- --- --- -- --- --- --- --- ---

OK OK 101 18990 9859 45 16297 8709 14,2 % 11,7 % 32 16114 8584 15,1 % 12,9 % 1,0 %

OK OK 101 18990 9859 44 16538 8857 12,9 % 10,2 % 31 16253 8698 14,4 % 11,8 % 1,5 %

OK OK 101 18990 9859 45 17882 8889 5,8 % 9,8 % 32 17741 8691 6,6 % 11,8 % 0,7 %

27,2 % 11,7 % 32,3 % 14,6 %

Gains en surface (Integer unit)
AREA COSTS (IU)AREA COSTS (IU)AREA COSTS (IU) AREA SAVING (IU)AREA SAVING (IU)

Original ASM Profiling ASM Profiling
1 GSM (adcpm)
2 BCH(31,21) dec.
3 GOLAY (enc)decoder
4 LDCP decoder
5 MP3 decoder
6 CRC 32 (v2)
7 MD5 Hash
8 SHA-1 Hash
9 SHA-2 Hash
10 ARC4
11 DES / Triple-DES
12 AES (128b/512b)
13 Engine control
14 Vector Sort
15 Queens
16 Pattern searching 
17 text dec/comp. (v42)
18 g3fax
19 lcd control
20 LMS filter
21 FIR filter
22 FFT fixed
23 Echo cancellation
24 JPEG-dec
25 Motion detection
26 Contrast egalization

9859 8808 8426 10,7 % 14,5 %

9859 8418 8243 14,6 % 16,4 %

9859 8857 8403 10,2 % 14,8 %

9859 8283 8126 16,0 % 17,6 %

9859 9380 8853 4,9 % 10,2 %

9859 8440 8342 14,4 % 15,4 %

9859 8528 8431 13,5 % 14,5 %

9859 8283 8284 16,0 % 16,0 %

9859 9779 8363 0,8 % 15,2 %

9859 8366 8300 15,1 % 15,8 %

9859 8418 8311 14,6 % 15,7 %

9859 9187 8395 6,8 % 14,8 %

9859 8980 8810 8,9 % 10,6 %

9859 8571 8135 13,1 % 17,5 %

9859 8571 8101 13,1 % 17,8 %

9859 8418 8337 14,6 % 15,4 %

9859 8808 8479 10,7 % 14,0 %

9859 8340 8264 15,4 % 16,2 %

9859 8340 8264 15,4 % 16,2 %

9859 8724 8438 11,5 % 14,4 %

9859 8724 8620 11,5 % 12,6 %

9859 8817 8602 10,6 % 12,7 %

9859 8383 8236 15,0 % 16,5 %

9859 8709 8584 11,7 % 12,9 %
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Figure 6 shows the hardware gain obtained on the processor core (without the multiplier, divider and shifter ALUs). 
Results demonstrate the efficient hardware complexity reduction obtained for the processor core (instruction decoding 
stage, exception management, etc.). 
 
Finally, hardware decrease saving obtained using the proposed methodology also impacts the power consumption of the 
processor core. Indeed, removing hardware resources in the processor core reduces its power consumption. A lower 
hardware complexity generates a lower static consumption. By this way, the hardware complexity reduction in the 
instruction decoder, the pipeline controller, and the exception manager enables to reduce the switching activity during 
processor execution. This switching reduction minimizes the dynamic power consumption of the processor core. 
 
4. WORK PERSPECTIVES 
 
In this work, we suppose that the processor optimization is performed thanks to a direct methodology. The optimization 
process is performed after the software compilation step. The extension of this approach to an iterative one may 
improve its efficiency. Indeed, software compilers were designed to use efficiently the overall processor instruction-set. 
Processor architecture is considered as fixed irrespective of the generated executable code. 
 
This assumption that can be verified for general-purpose processor and DSP ones helps developers to reduce the 
algorithm complexity in software compilers. However, coupled with the proposed methodology, this can lead to sub-
optimal results in terms of hardware complexity. This sub-optimality is due to the fact that optimized processor 
hardware complexity depends on the instruction-set used in software application. The reduction of the instruction-set 
used by the software compiler may reduce the processor hardware cost. 
 
Finally, optimization techniques used in software compiler may lead to an increase of instruction-set usage. For 
example, during the compilation processor, a software compiler may decide to transform some assembler instructions to 
improve execution speed: transforming a factor 2 multiplication by a left-shift operation. This usual optimization 
involves to a processor complexity increase. Let’s consider an application requiring only a multiplier and an adder 
resources. Transforming a constant multiplication to a shift-left operation increase the resource set (shifting resource) 
while this factor 2 multiplications may be implemented to the multiplier or the adder. 
 
A modification of the software compiler flow to support and extend the proposed methodology was out of the scope of 
our current work. However, to improve the approach efficiency, software compiler aspects will be investigated. 
 
5. CONCLUSION 
 
In this paper, an original fully automated approach to reduce size of softcore processors (generic and ASIP ones) has 
been proposed. The methodology uses applications characteristics to remove useless parts of the processor core 
(instruction, hardware resources, etc.). Its objective is to minimize the hardware implementation cost. Proposed design 
flow does not required manual modification of the hardware description.  Finally, results show that on commonly used 
applications, about half of Leon-3 instructions are useless. Removing them from the processor core provides area saving 
from 10% to 25% on the overall processor core (ALU, registers, control, etc.). Future works will target instruction 
models (more precision on hardware usage) and will consider ASIC targets. 
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