
A Simulator based on QEMU and SystemC
for Robustness Testing of a Networked

Linux-based Fire Detection and Alarm System
Massimiliano D’Angelo∗, Alberto Ferrari∗, Ommund Ogaard†, Claudio Pinello‡ and Alessandro Ulisse∗

∗Advanced Laboratory on Embedded Systems (ALES S.r.l.), Rome, Italy
Email: {massimiliano.dangelo,alberto.ferrari,alessandro.ulisse}@ales.eu.com

†Autronica Fire and Security, Trondheim, Norway
Email: ommund.ogaard@autronicafire.no

‡United Technologies Research Center (UTRC), Berkeley, California, USA
Email: Claudio.Pinello@utrc.utc.com

Abstract—In this paper, we present a simulation framework
based on SystemC and QEMU applied to the robustness testing
of the communication layers in the AutroSafe fire alarm system
from Autronica Fire and Security. This is a distributed large scale
fire detection and alarm system. The system is based on state-
of-the-art redundant protocols and embedded Linux operating
systems. To achieve good confidence about the correctness and the
robustness of the system, a simulation environment is used to run
the target software using virtual execution platforms with timing
variability. These platform variations allow simulating a range
of system conditions, hence several possible interactions among
the nodes and the network protocols, to which the application
must be resilient. QEMU is used to execute the target software,
while accurate models of the network protocols and topologies
are provided in a SystemC-based simulation framework called
DESYRE. The novel contribution described in this work is
the integration of these environments for the simulation of a
networked system with control of time execution accuracy and
variability, as well as the application to the robustness testing of
the industrial application.

I. INTRODUCTION

Virtual engineering techniques are increasingly popular in
several application domains. Models of the system components
(seen as ”virtual components”) are used to assess the behaviour
and performance of a subsystem unit without the need of a
physical prototype. This capability is usually exploited

• in the specification of the subsystem components to
compare different design alternatives and select the best
design option.

• in the verification flow, where the satisfaction of re-
quirements can be assessed on a virtual prototype. This
approach allows starting the verification process earlier
in the design flow so as to detect and correct errors
that would otherwise propagate along the chain up to the
implementation. Moreover, with respect to hardware, it is
typically easier to access and modify the internal state of
the virtual prototypes, so a comprehensive fault injection
campaign and fault tolerance assessment can be carried
out.

The larger adoption of these techniques is correlated with a
development of modeling languages and tools to satisfy the
requirements of designers. In the simulation domain, there
is an evolution from simulation tools focused on particular
system aspects to modeling environments able to capture large
portions of the system at different levels of refinement. The
development of system level modeling languages (e.g., Sys-
temC [1]) and techniques for the integration of heterogeneous
models/tools (co-simulation, hosted simulation [2]) are only
few clues of this trend. Full system simulators [3] can be
positioned in the same picture.

The distinctive feature of a full system simulator is the
modeling of a system platform at a level of refinement that
allows the execution of the actual software and operating
system running on the modeled architecture. The computa-
tional complexity of the models is kept reasonably low to
not prevent the simulation of large systems. In the domain
of networked architectures, a full system simulator provides
a notable improvement with respect to a traditional network
simulator, enabling the execution of the real application and
protocol stack on the node in place of more abstract traffic
generators and protocol models.

In this paper a full system simulation environment based
on QEMU and SystemC is proposed. The simulator is applied
to the robustness testing of the communication layers in
the Autronica AutroSafe product, a large scale fire detection
and alarm system. The system is distributed and networked.
The network is based on a redundant Ethernet architecture,
managed by a proprietary protocol running inside the nodes
on top of a Linux operating system. The virtual platform is
used to run the target software to achieve a good confidence
about the correctness and robustness of the system. QEMU
runs the Linux operating system and software components
deployed on the nodes, whereas an accurate model of the
redundant network is captured in SystemC in the Desyre [4]
modeling framework. The testing process on the simulator has
been performed in parallel to the traditional verification pro-
cedures based on physical testbeds. The comparison between



virtual and physical testing environments has highlighted both
benefits and limitations of the proposed simulation platform.

This paper is structured as follows. Section II summarizes
the related contributions in literature and highlights the distinc-
tive elements of the work. Section III describes the industrial
case study, whereas the simulator environment is depicted
in section IV. The AutroSafe system model is described in
Section V, together with numerical results to characterize
the model accuracy and simulation times. Section VI details
how the simulator has been used for robustness testing of
the AutroSafe system, and compares its capabilities with
traditional physical testbeds.

II. RELATED WORKS AND CONTRIBUTION

Simulation technologies that can support the full system
simulation of networked embedded systems are already avail-
able. Wind River Simics [5] is a commercial product with
promising features in terms of modeling and support for
analysis. System models can be defined in different languages,
among which SystemC TLM2.0, and can leverage a rich
library of CPU architecture emulators. The Open Virtual Plat-
form (OVP) [6] provides models of CPUs which can execute
binaries, together with other components like memories and
buses, which allow the description of a computational architec-
ture. OVP models can be integrated with external simulators
or imported in a SystemC TLM2.0 modeling environment.
Other solutions for full system simulation include M5 [7] and
UNISIM [8], but they are at a less mature stage.

Simulators based on the integration of QEMU with SystemC
have been proposed in literature. QEMU provides an open-
source emulation platform, which can be modified to fit into
the modeling framework and enhanced to suit the modeling
requirements. The execution of the target code is based on
dynamic translation and is hence faster than traditional instruc-
tion set simulators. This enables the execution of operating
systems and large application processes, as well as the de-
scription of models with several instances of QEMU, without
incurring in prohibitive slow down of the simulation. In [9],
the PCI/AMBA bus in QEMU is interfaced with SystemC
to model hardware peripherals. The interaction between the
modeling environments is based on synchronous transactions,
initiated by QEMU. QEMU is frozen while the SystemC
simulation performs the transaction. A similar approach is pro-
posed in [10] to integrate a GPU model with QEMU. A more
refined integration between QEMU and a SystemC model of
a peripheral is proposed in [11], where the communication
with the external module is transparent to the peripheral driver
running in the virtual machine. In [12], QEMU and SystemC
are combined to implement a fast cycle-accurate instruction set
simulator. The instructions executed in QEMU are simulated at
the cycle accurate level in SystemC. QEMU sends to SystemC
all the information (instruction types, register values, memory
accesses) about the instructions to be executed.

A possible approach to use QEMU for networked system
modeling is to resort to the Virtual Distributed Ethernet (VDE)
project [13], which provides models to build a virtual ethernet

network among the virtual machines. The network is interfaced
with QEMU using native capabilities of the virtual machine.
The models enable the exchange of network frames among
the machines, but capture the behaviour of the network at a
very abstract level, with little or no notion of time.

The original contribution of this paper is twofold:
• A simulator based on SystemC and QEMU is proposed.

Differently from the works available in literature, the
simulator addresses a networked system, in which sev-
eral QEMU instances are coordinated by the SystemC
scheduler. Both the QEMU and SystemC components can
generate events in their internal time representation, and
a suitable approach is needed to mantain a chronological
relationship among these events.

• An application of the simulator for robustness testing
of a state of the art fire detection and alarm system is
described. The usage of the simulator in an industrial
context allows exercising the simulator capabilities to a
larger extent than with ad-hoc case studies. The analysis
of the verification process of a safety critical system
points out the role, the benefits and the limitations of
a virtual engineering platform with respect to traditional
physical testbeds.

III. INDUSTRIAL APPLICATION: DETECTION AND ALARM
SYSTEM

The AutroSafe [14] product family is the high-end fire de-
tection system in the Autronica Fire and Security [15] product
portfolio. It targets the on-shore market (buildings, industrial
facilities), the maritime market (ships) and the petrochemical
oil&gas market. Similarly to other fire detection systems, an
AutroSafe installation is composed of a set of Control and
Indicating Equipments (CIE). A CIE is responsible for con-
trolling a particular area of the installation plant. It manages
the inputs received by a set of near-by detection devices (e.g.,
smoke detectors) and may trigger the activation of alarm and
protection devices (e.g., strobes, sounders, fire doors, fans).
Moreover, a CIE may have a user interface (LCD screen and
keyboard) to show the status of the system and to get inputs
from a fire security operator (e.g., reset an alarm, modify the
system configuration).

CIEs communicate with each other to share their local status
and coordinate their actions in the event of a fire. A fire
detection in a particular area of a building, for instance, may
require the activation of alarm devices all over the building,
possibly in a phased order. In the AutroSafe version that was
tested, the interconnection among the CIEs is guaranteed by a
redundant ethernet network, where all the network components
are duplicated to achieve tolerance to faults. The redundant
connection is managed by a proprietary protocol, AutroNet.
This network architecture is one of the most relevant novelties
introduced in this system.

The functionalities to perform detection, alarm and protec-
tion functionalities, as well as the AutroNet protocol, are all
implemented by software components running inside a CIE on
top of a Linux operating system. In terms of computational



capabilities, each CIE has an Atmel AVR32 microcontroller
as main computational unit.

In the design process of a new fire detection and alarm
system, the testing of the software components takes a large
percentage of time on the overall project duration. Errors in
the software implementation might compromise the system
functionalities and its reliability, and would be costly to be
fixed when several installations have been already put in place.
In Autronica, the testing procedure involves several steps and
is performed on different testing infrastructures. Testing in the
early development stage is performed running the software
components on a standard Linux PC, used as an emulator of
a stand-alone CIE. It provides a convenient testbed for the
developers to verify their implementation on the same machine
where the components are being developed. Nevertheless,
testing is limited at this stage to functionalities which can
be exercised on an isolated node, and may require some
modification of the original code to remove any dependency
from particular features of the actual hardware platform.

A more refined testing infrastructure is composed of a set
of test boards, connected by an Ethernet network. Compared
to the actual CIE, each test board has a microcontroller
with the same instruction set architecture, different board
characteristics and lower overall performance. Moreover, each
board provides two ethernet network interfaces to setup the
redundant connection. This testbed can properly exercise all
the software components which exchange data on the inter-
CIE link, as well as the AutroNet protocol which manages the
network redundancy. In Autronica, engineers usually have a
small scale testbed on their desks to perform some preliminary
testing over a networked system. In addition, a single larger
testbed with 64 boards is available for extensive tests.

In the latest stage of the development process, testing is
completed on an exact replica of a system installation, where
the test boards are replaced by the hardware of the actual
CIE. A CIE provides the whole set of peripherals that must
be managed by the software components, which can hence be
fully executed without the need for stubs.

Robustness testing

Robustness is defined as the degree to which a system
operates correctly in the presence of exceptional inputs or
stressful environmental conditions [16]. Dependable systems
must be proven to be robust.

The key to robustness testing is to develop test cases and
test environments where the robustness of a system can be
assessed. Testing is usually focused on software components,
which are more likely to fail when unintended conditions
occur. The test cases must cover standard and exceptional,
but legal, operating conditions. The system must work when
fed with intended and unintended inputs, in different operating
scenarios and architectural configurations. Safety critical sys-
tems may also require a certain degree of robustness to fault
conditions.

The verification process in Autronica includes an assess-
ment of the system robustness. Test procedures describe se-

quences of operations to be performed on the system, and
the expected status of the system after each operation. The
actions performed include powering up the nodes in different
sequences and with random delays, rebooting or shutting down
a subset of the nodes, disconnecting some cables. Moreover,
the system inputs are fed by hardware emulators of the CIE
peripherals, which may generate critical sequences of data.

The system model that will be described in the next sections
complements the testing infrastructure of the AutroSafe system
by providing the chance to alter to a larger extent the platform
on which the AutroSafe software components are running. A
model is based on an abstraction of the system platform, and
mimics its behaviour up to a certain extent. While a good
correlation with the real system is desirable to position the
model in the reference operating condition, perturbations of
the execution flow, due to model approximations or injected
intentionally allow testing the robustness of the system. A
virtual testing platform provides more opportunities to intro-
duce variability, and guarantees a higher observability with
respect to a physical testbed. System architectures can be
easily reconfigured in the virtual domain to capture alternative
configurations; faults that are difficult to be injected in a
physical system can be more easily introduced in the system
model. The availability of probing facilities in the simulator
allows inspection of the status of all the components in the
system, and identification of unintended behaviours that might
be latent on the physical testbed.

IV. SIMULATION FRAMEWORK DESCRIPTION

The simulator framework is built by integrating the QEMU
virtual machine with the Desyre simulation framework.
QEMU executes the operating system and the application
processes running on a node of the system. Multiple instances
of QEMU are interconnected by a model of the network
architecture captured in the SystemC language in the Desyre
framework. The integration has required the definition of a
specific interface between the two environments, so as to
enable data exchange and execution coordination. In particular,
the internal times in Desyre and QEMU are synchronized to
maintain the correct chronological relationship between the
events in the two different timing domains. More details will
be provided in the following subsections.

A. QEMU

QEMU is an open-source machine emulator and virtualizer.
It can emulate several instruction set architectures; currenty,
the set of emulated architectures contains x86, PowerPC,
Sparc32/64, MIPS, ARM and Coldfire. Emulation is based
on dynamic (run-time) translation of basic blocks of the target
CPU instructions into the host instruction set. QEMU has two
operating modes:

• Full system emulation. In this mode, QEMU emulates a
full system, including a processor and various peripher-
als. A QEMU system platform can be used to execute
different operating systems.



• User mode emulation. In this mode, QEMU can launch
processes (not OSes) compiled for one CPU on another
CPU, whereas compatibility is needed between the appli-
cation and the hosting operating system where QEMU is
running.

To implement the full system emulation, QEMU provides a set
of predefined system platforms, characterized by a particular
instruction set architecture and by a set of emulated devices.
The list of system platforms includes (but is not limited to) a
PC system based on the x86 emulator, a PREP or PowerMac
PowerPC system with a PowerPC cpu, a UltraSPARC machine
based on sparc64, several boards based on ARM. The emulated
devices available for each platform can be binded to host
devices, redirected to files, or configured to be accessible from
other processes in the host system, e.g., by sockets.

B. Desyre

The Desyre framework [4] is a SystemC-based virtual pro-
totyping environment. In this framework, the virtual prototype
is composed of a set of modeling components, instantiated
out of model libraries which may cover functional and archi-
tectural aspects of the system (e.g., protocol models, com-
munication channels, computational platforms). The virtual
prototype is specified as a hierarchical netlist with a set of
parameterized configuration input files, compliant to the IP-
XACT format [17]. These files define and instantiate the
model components, and connect them together to specify the
model of the entire system. To facilitate the generation of the
system netlists for complex designs and for the design space
exploration, Desyre provides an exploration language (EL) to
describe in a more concise form, as parameter sets and pa-
rameter relations, the different configurations to be simulated.
The EL specification is used to automatically generate and
parameterize the IP-XACT file sets, representing the selected
scenarios. The designer has the freedom to run selectively
the simulation of a scenario or of all scenarios as a batch
exploration. A simulation is performed in three phases:

1) Netlist elaboration and component loading;
2) Simulation;
3) Data post-processing and visualization.

The first two phases are repeated for each of the chosen
scenarios. In the elaboration and loading phase, according
to the designer’s netlists, the model builder of DESYRE
dynamically creates in memory the system model by parsing
the IP-XACT files and loading the required SystemC models
(compiled and present in the library). In simulation, the created
system model is executed and the output traces are produced.
In the data post-processing, traces are analyzed to aggregate
and/or verify the performance and the functional data.

The dynamic technique for the model creation facilitates
the design space exploration by 1) removing the need for
the compilation of the different SystemC netlists (the flow
is compiler free); 2) enabling the designer to quickly derive
additional scenarios by parameterizing the EL or IP-XACT
files.

DESYRE

QEMU

netif IP 

(1)

nic1

tt
y
S

0

E
x
e

c
 

lo
o

p

Process 

instantiation

adapter

...

netif IP 

(N)

nicN

Network model

... qemu IP

Fig. 1. Interface between QEMU and Desyre

C. Architecture of the Desyre - QEMU integration

Desyre and the QEMU instances run as distinct processes
on a Linux host system. QEMU is configured in full system
emulation mode, with a parametrized number of network
interfaces and a serial port. The creation of the multi-process
environment is managed through Desyre, and is based on a
description of the system model in the IP-XACT metamodel.
The interaction with an external QEMU process is managed
by an adapter (Figure 1), composed of the following Desyre
modules:

• A qemu IP, which is responsible for instantiating a
QEMU process at the simulation start-up. During the
simulation, the module schedules the execution of the
QEMU instance and keeps the internal time of QEMU
synchronized with the Desyre time. The module may also
issue the execution of a command at a particular time in
the console of the guest operating system, accessed by
the emulated serial port (ttyS0 in Figure 1) connected
to a socket. At the end of the simulation, it performs
the shutdown of the virtual machine and collects the
(eventual) logs generated inside the virtual machine and
stored on the virtual disk. The configuration of QEMU
(parameter values and emulated devices to be instanti-
ated) is captured in the IP-XACT files, as parameters of
the QEMU IP.

• A netif IP, which acts as an adapter between the emulated
network interface card in QEMU and the model of the
network in Desyre.

Notice that the partitioning of the functionalities in two
different modules keeps the QEMU IP orthogonal from the
particular model being interfaced with QEMU, and permits
reusing this IP when different or additional parts of the systems
(e.g., node peripherals) will be captured in Desyre.



The integration has required several modifications of the
QEMU source code. The flow of execution of the target
instructions has been modified to enable its suspension and
resuming. More in detail, the virtual machine can be executed
for an amount of virtual time ∆T before suspending: say t
the internal time of the machine when execution is granted
for ∆T time, the machine will suspend when its internal time
will be t+ ∆T . The control of the execution flow is exposed
by QEMU on a unix socket (exec loop in Figure 1) to which
a QEMU IP is connected.

The emulated network card in QEMU can be natively
redirected to a socket, where network frames can be exchanged
with an external process. This mechanism is exploited, for
instance, by VDE. However, the transmission of a frame in
QEMU is modeled at a purely functional level, with no notion
of time. Modifications have been introduced in the emulated
card to expose the transmission delays assessed in the Desyre
model to the virtual machine. In the modified QEMU, a
delay is introduced in the virtual machine time between the
request of a transmission and the interrupt which signals to the
emulated CPU that the frame has been actually transmitted.
The amount of time required for the transmission is assessed
by Desyre and is notified to the virtual machine. Besides the
transmission and reception of frames, the interaction between
the emulated NIC and the Desyre model has been enhanced to
synchronize the status and configuration of the cards (e.g., for
an Ethernet network card, power on/power off state, promiscu-
ous mode enabled/disabled, link state, multicast masks). The
exchange of information is managed on the Desyre side by
the netif IP, and is performed through a UNIX socket (nic1 to
nicN in Figure 1). All the messages exchanged on the socket
are tagged with a timestamp in the sender time.

The architecture of the simulator facilitates distribution of
the processes involved in the simulation on a set of intercon-
nected hosting machines, so as to build a distributed simulation
platform. Communication among the simulation processes
over the network may lead to longer simulation times. Tech-
niques to mitigate performance penalties and enable large-
scale highly-distributed simulations are under investigation by
the authors in the context of the SPRINT EU project [18]. The
first results on synchronization algorithms have been injected
in the current version of the simulator, so as to allow the user
to select the best trade-off between synchronization overhead
and accuracy.

D. Time synchronization

The execution of each QEMU instance is controlled by
Desyre to make time progress in the two environments in a
consistent way. Two different approaches have been imple-
mented in the QEMU IP to schedule the execution of the
virtual machine:

• Fixed step execution. At time ti, each QEMU instance
is scheduled for execution for a fixed amount of time
∆Tf . When all the QEMU instances have reached time
ti + ∆Tf , Desyre advances its time up to time ti + ∆Tf .
At this point, a new scheduling round is started.

QEMU

Desyre

ΔT

ES

Fig. 2. Events generated by Desyre are scheduled at the beginning of the
next scheduling slot in QEMU

• Variable step execution. At time ti, the Desyre simu-
lator retrieves the time of the next internal event ti+1.
QEMU is scheduled for execution for an amount of time
∆Tv = ti+1 − ti. When all the QEMU instances have
reached time ti+1, Desyre advances its time up to ti+1

(i.e., process the next event). The user can specify an
upper and lower bound for ∆Tv: the upper bound avoids
that the virtual machine and Desyre get largely out of
synchronization; the lower bound prevents an excessive
slow-down of the simulation.

The scheduling algorithm to be used can be selected by the
simulator user.

Notice that in both scheduling algorithms, QEMU gets
ahead in time with respect to Desyre. When QEMU passes
a message to Desyre (e.g., a packet transmission), Desyre can
properly schedule the processing of the message, because the
message has been generated in the future with respect to its
internal time. A message flowing on the other way will have
a timestamp in the past with respect to the QEMU time, and
will be processed at the beginning of the next scheduling slot
(Figure 2). This process introduces an approximation (Es) in
the scheduling of the events (synchronization approximation),
which can be reduced by using a smaller scheduling step
(∆T ). The variable step solution, by adapting the value of
∆T to the time of the Desyre events, aims at stopping the
virtual machine at the time instant when a message might be
notified by Desyre to QEMU (the notification of a message
is an event in Desyre). A numerical comparison of the two
scheduling policies is provided in Section V-B.

V. SYSTEM MODEL

The architecture of the system model is depicted in Figure 3.
A set of QEMU instances model the CIEs in the AutroSafe
system. Since QEMU does not currently support the emulation
of the AVR32 architecture, a x86 architecture emulator is
used. The application processes of the AutroSafe system must
hence be compiled for the x86 architecture to be executed
on the simulator. These processes run in QEMU on top of
a Linux operating system. The set of AutroSafe processes
ported on the simulator includes the proprietary protocol,
AutroNet, which manages the redundant connection. Each



QEMU

Redundant Ethernet network model

DESYRE

QEMU

AutroSafe

+

Linux OS

QEMU

...

CIE 2CIE 1 CIE N

AutroSafe

+

Linux OS

AutroSafe

+

Linux OS

Adapter Adapter Adapter

Fig. 3. Architecture of the AutroSafe system model

QEMU is configured to have two ethernet network interfaces.
Some peripherals of the CIE are currently not captured by
QEMU (e.g., interface for the loop of detectors and alarm
devices). Desyre is exploited to build a model of a redundant
ethernet network. The library of Ethernet network components
in Desyre has been defined based on the IEEE802.3 standard,
and covers both the MAC and PHY layers of the protocol. The
models are defined at the TLM level of abstraction, and allow
the simulator to achieve an accurate estimation of the most
relevant network metrics, like latency, throughput and queue
lengths.

An Ethernet frame flowing out of the network interface
card of QEMU is injected through the adapter in the Ethernet
network model, propagates through the network and is then
passed to the QEMU virtual machine modeling the intended
recipient.

A. Time model for software execution

The speed of execution in QEMU has been adjusted to
roughly mimic the computational performance of the actual
target platform. QEMU natively provides a parameter (icount)
for specifying the amount of virtual time (in ns) that each
instruction requires to be executed. Notice that the inverse
of the icount gives the number of instructions per second
(IPS) that the virtual machine can execute. When the icount
parameter is set, the progress of the virtual time is correlated
with the execution of the instructions.

The icount parameter has been calibrated to achieve the
best correlation with the AVR32 CPU on the target. The
CoreMark benchmark has been executed on the test board to
get a reference value; then, the benchmark has been executed
on QEMU to tune the icount value. The native icount value
in QEMU is constrained to be a power of 2; to achieve a
better resolution, QEMU has been modified to work with
integer icount values. A time for instruction of 17 ns yields
the benchmark score closest to the result on the test board.
Section V-B will provide a comparison of the estimated
execution times of the AutroNet process on the ”calibrated”
QEMU with the measurements taken on the test board. Note

that this calibration does not depend on the performance of
the host but rather on the performance of the emulated (x86)
platform.

B. Accuracy & performance assessment

The simulator has been exercised to characterize its correla-
tion with the physical testbed and its performance in terms of
ratio between simulation and simulated time. A system with
two CIEs interconnected by a redundant network has been
considered for comparison between the physical and virtual
testbed. The physical testbed is composed of two test boards,
connected by two Ethernet switches at 100 Mbit/s which serve
the primary and secondary connections. The same system
architecture has been modeled in the simulator.

Figure 4 compares the average execution time of the
functions of the AutroNet process, assessed on the AVR32
microcontroller (physical testbed) and on QEMU with the
icount parameter set to 17 ns (Section V-A). The values shown
in the graphs are normalized with respect to the maximum
function duration on the AVR32. Execution times have been
measured by instrumenting the functions with the -finstrument-
function option provided by GCC [19]. No better alternatives
for function profiling are known to the authors that support
both a x86 architecture and an AVR32 architecture. The
perturbation introduced by the instrumentation on the function
execution time is about 4 us. Binaries to be executed have been
built with no optimization. Functions are partitioned according
to their position in the call tree, where level 0 is the root
(main function). Data about functions at level 2, level 3 and
level 4 have been collected. A function at a particular level
is identified on the graph by a function ID; a description
of the associated function is not provided for non-discloure
constraints. In this test, the simulator shows a good correlation
with the physical testbed. The normalized error, computed as
the difference between the execution time on QEMU and on
the AVR32 and normalized with respect to the value on the
AVR32, is always below 10 %. Similar correlation values are
achieved by the other AutroSafe processes executed on the
simulator.

Figure 5(a) shows the maximum throughput achieved in
a uni-directional communication between the two nodes in
the system. The throughput has been measured with the
IPERF benchmark [20], for both TCP and UDP transmissions
over Ethernet frames with minimum and maximum payload.
This test highlights a mis-correlation between the virtual and
physical testbeds, where the virtual testbed achieves higher
throughput values. The difference between them, expressed
in percentage with respect to the actual throughput value,
is below 70 % in almost all the scenarios, and reaches 230
% in the test with TCP and minimum payload. The same
test has been repeated with a hub at 10 Mbit/s in place
of the switches. The results in Figure 5(b) show a better
correlation; the difference is below 20 % in almost all the
scenarios, and reaches 55 % for the UDP transmission with
minimum payload. This suggests that the different throughput
values achieved by the two platforms are related to a mis-



correlation of the computational capabilities. The 10 Mbit/s
scenario shows a better agreement because the throughput is
bounded by the network, whereas the throughput at 100 Mbit/s
expresses the different computational capabilities of the two
platforms.

The results on the correlation of the function execution
times and on the throughput provide a different assessment of
the accuracy of the software time estimation of the simulator.
This apparent inconsistency has been investigated carefully;
the lack of a model of the cache in QEMU has resulted as
the most likely cause of the observed behaviour. The score
of the CoreMark benchmark used to measure the performance
of the AVR32, and taken as the reference value to tune the
QEMU icount, is highly affected by the cache; disabling the
caching on the AVR32 reduces the score of more than one
order of magnitude. The icount set to 17 ns hence models the
average time for instruction when the AVR32 is exploiting the
cache, and makes QEMU faster of the AVR32 when the target
platform incurs frequent cache misses, as in the case of the
reception of messages from the network [21]. The not very
accurate model of the computational platform in QEMU will
be assumed as an additional source of timing variability for
the robustness test.

Table I shows the relation among the scheduling approach of
the QEMU virtual machines, the ratio between the simulation
time (real time) and the simulated time (time penalty), and
the scheduling approximation (ES) of the events notified by
Desyre to QEMU (Section IV-D). A scenario with 16 nodes
is considered. Each node runs the AutroSafe processes under
test, and sends a message every 300 ms to all the nodes of
the network and gets a reply back. The message is managed
by AutroNet and flows on both the primary and secondary
connections. The system activity is simulated for 5 minutes of
virtual time, and includes the start-up process. The simulator
is running on a workstation with 2x Quad-Core Intel Xeon @
2.5 GHz and 48 GB of RAM.

The dynamic step scheduling policy is compared with a
fixed step approach, where the step size of the latter is set
equal to the upper bound value of the former. The values 12
µs, 100 µs and 600 µs have been considered for comparison;
the lower bound in the dynamic scheduling approach is always
set to 2 µs. The real time required to run a simulation is
affected by the size of the scheduling step, where a larger
step provides a faster simulation at the cost of a higher error.
Moving from the largest to the smallest scheduling step, the
ratio between simulation time and simulated time moves from
2 (2 min of real time to simulate 1 min of system behaviour) to
more than 70, whereas the error is reduced of about two orders
of magnitude. The dynamic scheduling step usually requires
longer simulation times, but provides a better accuracy with
respect to the fixed scheduling step. The difference between
the two approaches is emphasized in the scenario at 12 µs,
where the adaptive behaviour increases the simulation time by
about 25 %, but guarantees a reduction of the error of about
80 %. Simulation times for the dynamic step approach have
also been measured in a scenario with 64 CIEs, in the same

0 5 10 15 20 25 30 35 40 45
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

function ID

no
rm

al
iz

ed
 ti

m
e

 

 

Desyre+QEMU
Physical testbench

(a)

0 5 10 15 20 25 30 35 40
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

function ID

no
rm

al
iz

ed
 ti

m
e

 

 

Desyre+QEMU
Physical testbench

(b)

0 5 10 15 20 25
10

−3

10
−2

10
−1

10
0

function ID

no
rm

al
iz

ed
 ti

m
e

 

 

Desyre+QEMU
Physical testbench

(c)

Fig. 4. Normalized execution time of functions of the AutroNet process at
a) level 2, b) level 3, c) level 4 of the call tree (level 0 is the main function)

operating conditions. The configuration [2 µs, 100 µs] shows
a time penalty ratio of 47, the configuration [2 µs, 600 µs] a
penalty ratio of 10. The comparison of the results at 16 and
64 nodes suggests that simulation times scale almost linearly
with the number of nodes in the system. Clearly, the average
scheduling approximation error is not affected by the number
of nodes being simulated.



min Payload max Payload
0

10

20

30

40

50

60

70

80

90

100
M

bi
t/s

TCP throughput

 

 

min Payload max Payload
0

10

20

30

40

50

60

70

80

90

100

M
bi

t/s

UDP throughput

 

 

Desyre+QEMU
Physical testbed

Desyre+QEMU
Physical testbed

(a)

min Payload max Payload
0

1

2

3

4

5

6

7

8

9

10

M
bi

t/s

TCP throughput

 

 

min Payload max Payload
0

1

2

3

4

5

6

7

8

9

10

M
bi

t/s

UDP throughput

 

 

Desyre+QEMU
Physical testbed

Desyre+QEMU
Physical testbed

(b)

Fig. 5. Throughput on the point-to-point communication over a) a 100 Mbit/s
switched Ethernet b) a 10 Mbit/s Ethernet with hubs

Scheduling Time penalty ES

Dynamic time step [2 µs,12 µs] 87 x 1.4 µs
Fixed time step 12 µs 70 x 5.9 µs
Dynamic time step [2 µs,100 µs] 11 x 38.4 µs
Fixed time step 100 µs 9 x 57.3 µs
Dynamic time step [2 µs,600 µs] 2 x 351.8 µs
Fixed time step 600 µs 2 x 366.5 µs

TABLE I
SIMULATION TIME PENALTY AND SCHEDULING APPROXIMATION (ES )

FOR DIFFERENT SCHEDULING CONFIGURATIONS

VI. APPLICATION TO ROBUST TESTING

The simulator has been applied to the robustness testing of
the communication layers in the AutroSafe fire alarm system.
The AutroNet protocol and a set of software components
which manage the status of the connection have been exercised
on the simulator in different system configuration scenarios.
At the current stage, the simulator provides a system model
similar to the testbed. QEMU emulates the most relevant
peripherals (network cards, serial ports) available on the test
board, and all the configurations of the physical testbed (appli-
cations to be executed, network topologies) can be captured
as well in the system model. Therefore, the test procedures
defined for this physical testbed have been replicated on the
simulator to speed up the maturation of the code. Notice that
the simulator was not used as a substitute to the standard
prototype and CIE testing for validation.

The behaviour of the software components has been ob-
served in several operating conditions, like system start-up,
starting the CIEs sequentially with a variable delay between
them, in the event of CIE reboot, and under different traffic
conditions (generated by a network test application running in
QEMU on top of the AutroNet protocol). Different system
scales have been considered, up to configurations with 64
CIEs. Moreover, the simulator infrastructure has been ex-
ploited to perform fault injection, introducing bit errors, packet
drops, and connection drops on a variable subset of links.
The software components have been analyzed by running the
software through tools for memory checking, profiling and
tracing, so as to support a review and optimization process of
the source code.

A. Benefits of Virtual Prototyping

The usage of the simulator in the AutroSafe testing process
has pointed out some benefits of virtualizing the testbed
infrastructure. They are listed in the following:

• Larger exploration of system operating scenarios. The
simulator can exercise the system in operating scenarios
which are difficult to be replicated on a physical testbed.
The injection of faults at the bit level, for instance,
requires special hardware to be performed on the physical
testbed. Events in the model of the system (e.g., the
reboot of a node) can be precisely scheduled in time;
it is hence possible to investigate the effect of two events
occurring at the same exact time, or with a precise timing
relation between them.

• Larger test automation. Testing procedures can be com-
pletely automated on the simulator, and run without
human intervention. This guarantees repeatability of the
tests, which can be useful for investigating the causes of
a test failure. Moreover, it enables automatic regression
testing either for robustness or system integration to
support the software development.

• Increased observability. The usage of software models in
place of hardware components allows inserting probes
almost everywhere in the system. The features of the
physical testbed prevent the execution of tools for dy-
namic software analysis, which currently have little or
no support for the AVR32 architecture and have memory
requirements which exceed the capacity of both the test
board and of the final CIE. In the simulator, QEMU
emulates a x86 architecture, which is supported by several
tools; memory requirements can be fulfilled by setting the
RAM of the virtual machine to a proper value.

• Extendability. The simulator has the potential to capture
larger portions of the system. The introduction of models
of the CIE IO interfaces and devices would bring the
system model closer to the final system, and enable the
simulator usage even in the latest verification phases.

• Flexibility. Each simulator instance can model different
system configurations, in terms of, e.g., operating sce-
nario, system scale, network topology. A configuration
of the system model is stored in a set of XML files,



and can hence be quickly restored and shared among
the simulator users. In addition, the modeling framework
can accommodate any major change that the AutroSafe
system might experience in the future; the library of
models available in Desyre, for instance, will allow
capturing alternative network architectures.

• Convenience. The virtual testing infrastructure can be
easily replicated by installing the simulator on several
workstations, without the need to buy dedicated hardware.
Each developer can have a testing platform installed on
its own machine, which can be easily accessed and can
exercise the software to a larger extent.

VII. CONCLUSIONS AND FUTURE WORKS

This work has proposed a simulation framework for net-
worked embedded systems, based on QEMU and SystemC,
which shows the capability to execute the same operating
system and application processes running on the nodes of the
network. The simulator has been used for robustness testing
of a subset of the software components of the Autronica
AutroSafe fire detection and alarm system. Numerical results
on the accuracy and performance of the simulator have been
provided. They show that the level of abstraction at which
QEMU captures the computational platform makes simulation
up to the maximum system scale affordable; simulation times
can be tuned according to the required granularity of the
synchronization between SystemC and QEMU. While the
correlation between the actual architecture and the virtual
machine in terms of software execution time is generally good
(less than 10% error observed on application code) it may be
poor in particular scenarios. In the industrial application, the
simulator has provided a convenient testbed platform, with
larger capabilities in terms of observability and exploration of
operating scenarios than the physical testbeds.

Future enhancements of the simulator infrastructure will be
devoted to support the design activity to a larger extent. The
correlation between the simulator and a target platform will
be improved, e.g., by the introduction of a cache model in
QEMU, to increase the accuracy of the simulator and enable
its usage for additional analysis (e.g., performance estima-
tion). Moreover, Desyre supports design space exploration by
providing a set of mechanisms such as parametric models
and model composition functionalities to capture families
of alternative system architectures, to simulate them and to
compare their performance. The same flexible mechanisms can
be used to capture particular system installations for feasibility
assessment or to investigate post-installation issues.

A larger set of the AutroSafe software components is being
ported for execution and testing into the virtual platform. The
architecture of QEMU allows enhancing the virtual machine
with models of peripherals that characterize a CIE, so as to
solve dependencies of particular components with the actual
hardware.

ACKNOWLEDGMENT

M. D’Angelo and A. Ferrari would like to acknowledge
the support of the SPRINT EU project (grant agreement no:
257909).

REFERENCES

[1] “SystemC,” http://www.systemc.org.
[2] G. Döhmen, “SPEEDS Methodology - a white paper,”

http://www.speeds.eu.com/downloads/SPEEDS WhitePaper.pdf.
[3] J. Engblom, “Full-System Simulation Technology,” Extended abstract in

the proceedings of ESSES 2003 (European Summer School on Embedded
Systems), September 2003.

[4] A. Mignogna, O. Ferrante, M. Carloni, and A. Ferrari, “A fully
configurable rtos model for large scale distributed embedded systems
simulations based on systemc,” in ASM 2011 - Applied Simulation and
Modelling 2011, 2011.

[5] “Wind River Simics,” http://www.windriver.com/products/simics.
[6] “OVP - Open Virtual Platforms,” http://www.ovpworld.org.
[7] “The M5 Simulator System,” http://www.m5sim.org.
[8] “UNISIM: UNIted SIMulation environment,” http://unisim.org.
[9] M. Monton, A. Portero, M. Moreno, B. Martinez, and J. Carrabina,

“Mixed sw/systemc soc emulation framework,” in Industrial Electronics,
2007. ISIE 2007. IEEE International Symposium on, june 2007, pp. 2338
–2341.

[10] S.-T. Shen, S.-Y. Lee, and C.-H. Chen, “Full system simulation with
qemu: An approach to multi-view 3d gpu design,” in Circuits and
Systems (ISCAS), Proceedings of 2010 IEEE International Symposium
on, 30 2010-june 2 2010, pp. 3877 –3880.

[11] G. Di Guglielmo, F. Fummi, G. Pravadelli, M. Hampton, and
F. Letombe, “On the functional qualification of a platform model,” in
Defect and Fault Tolerance in VLSI Systems, 2009. DFT ’09. 24th IEEE
International Symposium on, 2009, pp. 182 –190.

[12] T.-C. Yeh, G.-F. Tseng, and M.-C. Chiang, “A fast cycle-accurate in-
struction set simulator based on qemu and systemc for soc development,”
in MELECON 2010 - 2010 15th IEEE Mediterranean Electrotechnical
Conference, 2010, pp. 1033 –1038.

[13] “VDE - Virtual Distributed Ethernet,” http://vde.sourceforge.net.
[14] “Autronica Fire and Security - AutroSafe 4 Prod-

uct Brochure,” http://www.autronicafire.com/utcfs/ws-
445/Assets/AutroSafe4ProductBrochure.pdf.

[15] “Autronica Fire and Security,” http://www.autronicafire.com.
[16] E. Iee, “IEEE Std 610.12-1990(R2002),” IEEE Standard Glossary of

Software Engineering Terminology, 1990.
[17] “The SPIRIT Consortium’s ESL-based IP-XACT 1.4 specification,”

http://www.spiritconsortium.org.
[18] “SPRINT EU Project - Software Platform for Integration of Engineering

and Things,” http://www.sprint-iot.eu.
[19] “GCC, the GNU Compiler Collection,” http://gcc.gnu.org/.
[20] “IPERF,” http://sourceforge.net/projects/iperf.
[21] W. Z. Aravind Menon, “Optimizing TCP Receive Performance,”

http://www.usenix.org/event/usenix08/tech/full papers/menon/menon html/paper.html.


