SoCKET: A HW/SW Co-Design Flow: Presentation
& feedbacks from aeronautic and space application
domains

Vincent LEFFTZ®, Pierre MOREAU$
¢Astrium Satellites S.A.S. (Toulouse, FR), § Airbus Operations S.A.S. (Toulouse, FR)

Abstract—The SoCKET project (SoC! toolKit for critical
Embedded sysTems)’ gathered industrial and academic partners
to address the issue of design methodologies for critical embedded
systems. They worked towards the definition of a ‘“‘seamless”
design flow which integrates qualification and certification, from
the system level to integrated circuits and to software. This paper
sketches such a design flow and the associated methodologies, and
details the industrial experimentations on this flow and associated
tools in the aeronautic and space application domains.

I. INTRODUCTION OF THE SOCKET PROJECT

The evolution of technology (SoC integration) and applica-
tion needs leads to design more and more complex embedded
systems both at hardware and software levels. So, companies
in the field of critical embedded systems (aeronautics, space,
automotive, health applications) have to face some technical
and industrial challenges. Mastering this complexity, in order
to improve the time to market and life cycle, the costs of the
design, and the validation/certification of the critical embedded
systems, is a key point to ensure the success of future industrial
projects. For example, in aeronautics, the deployment of
distributed miniaturized computers should decrease drastically
the wiring complexity and cost, and the overall mass. In space
industry, the increase of embedded computing power thanks
to miniaturization and high level of integration will allow new
missions.

By combining the efforts of industrial and academic part-
ners, the SOCKET project (French FUI funded) main goal
was to define a "seamless” development flow, integrating the
equipment qualification/certification, from the system level to
the Integrated Circuits (ICs) and the associated embedded
software, compliant with the applicable standards (such as
DO/ARP for aeronautic and ECSS for space).

This ”seamless” flow requires some formalisms unification
(elimination of semantic holes in HW/SW interfaces), the
availability of models transformation operators (skeleton gen-
eration, requirements traceability), and tools interoperability.
This ”seamless” design flow is built upon technical pillars:

o High Level Synthesis (under time or resources con-
straints).

SoC: System on Chip
2See http://socket.imag.fr/

« Heterogeneous simulation techniques (SystemC/TLM [1],
[2], [3], [4], LT, AT and CABA abstraction levels, ISS
generation and integration).

o IPs encapsulation and interoperability (IP-XACT).

o Validation techniques (semi-formal methods, mutation
analysis techniques, test cases automatic generation).

After introducing the SOCKET HW/SW Co-Design flow

and the associated methodologies, we will provide the return
of experience regarding the experimentations of this flow on
representative case studies of aeronautics and space application
domains.

II. HW/SW Co-DESIGN FLOW
A. Overall Description

The design flow defined in the SoCKET project targets
the design of critical embedded systems. It covers important
steps as system architecture exploration, and the definition
of virtual prototypes at different levels of abstraction to
support early embedded software development, verification of
hardware blocks, and preparation of qualification/certification
activities.

1) A Design Flow Relying on Standards: In the embedded
system world, it is quite common to integrate IPs from various
providers, and to deliver (sub)systems to third parties. As the
need to exchange models is rising, it is key to guarantee model
and tools interoperability, and rely on well understood and
stable interfaces for the models. Industrial applications in the
aerospace domains also require durability and stability of the
flow among the years, and can not have strong dependency on
one given tool from a specific vendor. The flow is therefore
based on standards.

Several standards are defined for modeling and verifying
embedded systems. The IP-XACT standard (IEEE 1685) [5]
defines a XML schema to describe IP interfaces and facilitates
model exchange and integration by offering a common format
to be used by integration or net listing tools.

The SystemC language (more precisely a set of classes
on top of C++, plus a simulation kernel) is now defined
as the IEEE 1666-2005 standard [6]. It offers primitives to
model hardware systems, with modules, ports, synchronization
mechanisms and processes to model the behavior of the IPs.
As a complement, communication APIs at the transactional
level have been defined by the SystemC consortium in the
TLM 1.0 and TLM 2.0 standards (Transaction Level Model-
ing) [7]. They will be integrated in the 2011 revision of IEEE
1666 standard.

To address verification needs, the Property Specification
Language (PSL) has been standardized as IEEE 1850-2005
[8]. All these standards are used in the flow depicted below.

2) Flow Overview: The design flow represented in Fig. 1
starts from the system requirements, that can be captured
either in natural languages, or through specific languages
as UML/MARTE. From these requirements, the global SoC
specification is produced. System properties can be defined
from this step. They will be reused and refined as hardware
and software properties throughout the flow to check the
consistency of the models and their implementation.

The global SoC architecture is defined by system architects
from their expertise. Several complementary tools assist them
in this crucial task. To dimension correctly the interconnect
and the memory subsystem, bandwidth and latency are usually
key figures. Cycle accurate models are required to produce
these figures with the required level of accuracy. It is not
affordable for complex systems to model all the IPs at this
level of abstraction. So the strategy is to have a cycle accurate

Fig. 1: SoCKET design flow

model of the interconnect and the memory subsystem, and
generate traffic into the system by using traffic generators to
mimic the profiles of the actual IPs. High Level Synthesis tools
can also be adopted during this phase to get early figures of
the HW resources consumed by the implementation of the
various IPs. System architects loop on this iterative work until
they reach a situation where system performances constraints
are met.

A Virtual Prototype is developed as soon as the functional
specification of the IPs is available. IP models are implemented
first as Loosely Timed models, to enable early functional
software development and development of the verification
test suite for the hardware IPs. IP-XACT descriptions of the
various IPs are used as a pivot format to keep consistency
between the specification, the TLM models, and the software.
It is indeed possible to generate from them parts of the
TLM model, Interface Control documentation, header files for
the software, and sanity checks to be run both on the RTL
(Register Transfer Level) or the Silicon. IP-XACT descriptions
are also used to automate the platform integration process
and generate the top net list. In a second step, Approximately
Timed models are implemented to validate performance fig-
ures of the hardware + software system, and tune the real-
time aspects of the software implementation. This step can
be complemented further with TLM/RTL co-simulation or co-
emulation platforms, depending on the progressive availability
of RTL models.

Validation and faithfulness of the virtual prototype is ob-
viously a key concern. Validation should give good level of
confidence that the model is functionally correct, and will
enable pre-silicon software development. This software should
execute in the same conditions on the virtual prototype or
the actual device, with no modification. Moreover, the virtual
prototype should not be more permissive than the target, to
avoid any delay in the system bring-up. Assertions can be used
to validate the behavior of the virtual prototype, and can be
also reused to monitor the system in operation. Fault injection
into the Virtual Prototype is also be considered to assess the
robustness of the embedded software.

B. Methods and Tools

1) Modeling and Heterogeneous Simulation: Transaction-
level modeling (TLM) is a novel technique motivated by the
practical need of providing an early virtual prototype. These
models are written in SystemC [6], a class library on top of
C++, using the TLM standard communication APIs [7], with
the following features:

o High simulation speed: 100x to 1 000x improvement
compared to RTL as a matter of thumb are observed,
enabling pre-silicon software development and interactive
activities (e.g. software debug)

e Model accuracy: bit accuracy and register accuracy are
required, as well as the representation of the system
synchronization events [9]. Timing accuracy is not always
a strong requirement: functional software development
or functional validation may be operated with Loosely
Timed models, whereas time accurate models may be
required to optimize software implementation or deal
with some real-time aspects of the system.

o Early availability: to enable pre-silicon activities, high
level models must be available early.

Early development of SoC embedded software requires
processor models to be integrated in the virtual prototype.
Different solutions have been explored:

(1) Integration of an external ISS through a dedicated
SystemC wrapper,

(2) Use of the ISS provided by the CAD vendor tool-suite,
(3) Generate ad-hoc ISS from its Instruction Set Architecture
(ISA) description including some micro-architecture details
(see [10]).

2) IPs Encapsulation and Interoperability: The
methodology aspects (modeling, assembly, safety, validation,
certification, SoC and embedded SW) which are targeted in
SoCKET drive several needs, concerning IP encapsulation
and interoperability.

These needs have been split in four categories:

(1) Interfaces standardization for each IP used in a company,
to ease IP assembly and reuse and to enable models
interoperability,

(2) IP library management to provide the users with a set of
coherent IPs facilitating the assembly,

(3) IP configuration management is also required, with the
description of the configuration levels for the components of
the library,

(4) Automation and verification of the assembly

are simplified thanks to the IP-XACT (IEEE 1685) description
of the platform and its components. Thus the process can be
fully or partially automated and qualified.

3) High-Level Synthesis: HLS raises the abstraction level
by taking abstract specifications that focus on functionality
rather than cycle accuracy specified at the Register Transfer
Level (RTL). HLS tools allow designers to rapidly generate
complex RTL hardware architectures that are optimized to

various performance, area and power requirements.

HLS tools transform an untimed (or partially timed)
high-level specification into a fully timed implementation
[11], [12].

They automatically or semi-automatically generate a
potentially pipelined architecture.

In addition to memory banks, and communication interfaces,
the generated architecture is described at the RT Level and
contains a data-path (registers, multiplexers, functional units,
buses) and a controller as required by the given specification
and the design constraints.

SystemC simulation models are also generated at both Cycle
accurate and Transactional (TLM) level of abstraction for fast
virtual prototyping.

4) Verification — Monitoring Temporal Properties:
Assertion-Based Verification (ABV) aims at guaranteeing that
designs obey properties, usually expressed as logico-temporal
assertions that capture the design intent [13].

These assertions can be checked using static (model-checking)
or dynamic (simulation-based) techniques.

The shortcoming of runtime methods is that they do not enable
an exhaustive check, but the advantage is that they are not
limited by the design complexity.

The SoCKET design flow makes use of dynamic ABV
solutions, based on the construction of observation monitors
from PSL [8] assertions.

At the transactional (TLM) level, we thus check assertions
that express properties regarding transactions in any kind
of communication channels (for instance, a given transfer
eventually completes, data are transferred at the right place,
etc.) [14].

At the RTL level, we monitor more accurate properties on
the design signals [15].

III. ASTRIUM’S EXPERIMENTATIONS

A. Overview

Astrium’s use case was in the Guidance/Navigation/Control
domain, specified as an image processing algorithm supporting
mobile object extraction/tracking. The main goal was to define
the optimal data processing architectures for different sets of
parameters of this algorithm.

.

Fig. 2: Astrium Use Case Algorithm

In a first phase, we focused on the Design space Exploration
(using SystemC/TLM modeling), with fast prototyping of
HW functions (using HLS), and then on the verification of
major HW IPs at TLM level (using Monitoring Temporal
Properties techniques). The capture of all HW/SW interfaces
are performed into IP-XACT formalism, and used to auto-code
skeletons for SystemC/TLM, OBSW and HDL models.

We focused on the two following architectures:

APB Bus

Lfl J"”T’"l 1]

iqleu_ﬂﬂlq_-mrq]_m‘-lq;_-hbelmr b el el e

Procesang Accelerator Core

SORAM Comboler

LECN 3 CPU

AHB Bus

1]

il

Fig. 3: Accelerator Architecture

In this first architecture (Fig. 3), we mapped a complete
algorithm step into a HW accelerator. The full algorithm
dataflow is a sequence of SW steps interlacing with HW steps.

Instruction P Data
TCM L TcM

&

\—S\ Smart

DMA Engine

External
Memory

Controller

Local Bus

e ||| [

External Memory

Local Bus

Fig. 4: Streamed Operators Architecture

In this second targeted architecture (Fig. 4), the SW is in
charge of the full algorithm pipeline by using shared streamed
operators to accelerate the processing.

The main evaluation criteria (improvements) are the overall
performance and power consumption, but also the equipment
testability, and mainly the smoothing of the collaboration
between the various involved development teams.

To this day, dedicated numerical simulators for on-board
software and avionics validation were used. Another major
evaluation criteria was to build them from the SystemC
models, instead of using paper HW specification documents.

B. Golden Model creation

The SoCKET flow is built upon the principle that each

refinement step is validated from the result/testbench of the
previous one (incremental flow).
The entry point of Astrium’s use case is a functional model
built in Mathworks Matlab™(and a paper specification). To
check easily the behavior of a given step with the test-
bench of the previous one, we need a bit accurate check-
ing. So, a C functional model has been written from the
Matlab™implementation in order to use this C model as a
reference (Golden Model) for the functional and bit accuracy
behavior for the full incremental flow. This model has been
validated against the Matlab™one thanks to test scenarii with
quality criteria and intermediate (inter algorithm stages) results
(e.g: floating to fixed point migration).

C. High Level Synthesis techniques

Astrium used HLS technology (GAUT) in order to fast
prototype the cost (achieved performance, silicon surface,..)
of dedicated parts of the overall algorithm candidate to an
HW implementation. This step allows also to optimize the
HW/SW interfaces by prototyping earlier in the design flow,
the inefficient round-trips between the HW and SW part.

We use also HLS tool to identify common factorisable oper-
ators between the algorithm stages by using Data Flow Graph

and internal representation Abstract Syntax Tree produced by
GAUT tool.

Using HLS helps to get an early confidence in the de-
sign, and to delay the design freeze thanks to the ease of
iteration process. Another interest is to ease the IP mainte-
nance/evolution.

Using HLS requires both hardware know-how and SW
skills: Handling IO exchanges (FIFO, Cache, prefetch, ...)
and data organization in memory remains one of the main
challenge.

D. IP-XACT and skeletons/documentation generation

When designing an embedded system, one of the ma-

jor source of issues is the misunderstanding at interfaces
(HW/HW and HW/SW).
The use of IP-XACT, as proposed by SoOCKET flow, allows
to capture, in a well defined and standardized formalism, all
the semantics of these interfaces (with vendor extensions if
needed). These descriptions can be shared between HW and
SW teams.

The first usage of IP-XACT is for platform assembly (virtual
(SystemC/TLM) or physical (HDL) one) by generating top
file, checking for any interfaces incoherences, and instantiating
required interface adapters.

At Astrium, we focused on skeletons and documentation
generation. Indeed, thanks to M2T (Model to Text) trans-
formations (the Magillem ToolSuite evaluated in the frame
of SoCKET project is built upon Eclipse and Template Jet
mechanisms), we are able to automatically generate skeletons
for SystemC/TLM components, HDL ones, and also any
header files for low level on-board Software HW abstraction
layer. By automating this transformation, we insure the full
coherency between the HW and SW understanding (address
mapping/decoding, bit-fields meaning, ...).

The need of requirements traceability, common to all critical
embedded systems domains, can be supported by generating
the correct tags into the methods headers (for parsing by
traceability tools like Reqtify).

In the same way, most part of the datasheet, and user’s
manual documentation can be generated from this IP-XACT
description.

Due to its history, IP-XACT standard needs some extensions
to be able to capture all HW/SW interface semantics (e.g:
Reset on Read characterisation for bit field, or the ability
to describe (keep the link to) the description of the different
modes of the IPs and how to configure them).

In an other hand, in order to ease the deployment of an
IP-XACT based flow, it is mandatory that all IP providers
distribute also their IP-XACT descriptions.

E. Modeling techniques

Regarding modeling techniques, Astrium’s activities fo-
cused on 2 subjects:

« define a modeling infrastructure (coding rules on models,
building environment, existing IPs library with a focus on
bus model, convenience functions hiding the complexity
of generic TLM interfaces, accelerating the simulation,...)

¢ define the proper way to add some timing annotation on
pure functional models.

As described into the SOCKET flow (see Fig. 1), modeling
techniques are used at different steps:

« architecture exploration: In this case, we need mainly to
have a Cycle Accurate Bit Accurate interconnect model
with some traffic generator miming the external (bus
exchange) behavior of the given IPs, in order to identify
any bottlenecks in the architecture.

e HW/SW co simulation (functional Validation): In this
case, the models of the platform shall be fully bit accurate
(address map and registers mapping fully representative).
The time modeling is minimal in order to run an Oper-
ating System.

o Performance Validation: In this case, the models shall
mimic the temporal behavior to be able to extract some
performance trends.

At Astrium, regarding time modeling, we developed a solution
based on the separation of functional and non-functional aspect
in transactional level models [16]. With this solution, name
TTP (Timed TLM Protocol), for each IP, we have a pure
functional model coupled with a timed one. The switching
between the phase PV (Programmer View) and T (Timed)
are made when all functional models reached a SSP (system
Synchronization Point: given register access, interrupt and
all state alternating accesses). During the functional phase,
the Timed models record any transactions with their related
meaningful information (address, exchange size, ...). During
Timed phase, the T models replay the last execution PV phase
by simulating the time following the records.

We validated this concept on multi-port memory controller
(with timing information extracted from well defined test cases
running on the real HDL model). The TTP solution has the big
advantage to allow the independent development and debug
of PV and T models. In an other hand, the modeling is more
abstracted, so more complex , and sporadic events (IRQs) are
harder to model. In its current form, TTP cannot be used on
an industrial scale. After this experiment, we conclude that
heterogeneous simulations (mixing SystemC/TLM model with
HDL ones) are more fitted to fulfill the need of performance
validation.

We experimented also the HW-In-The-Loop co-emulation
solution with two objectives:

(1) Deploying an incremental validation flow (SC/TLM test-
bench, some sub-blocks running on FPGA hardware, the
others ones still running as SC functional models).

(2) Improving the simulation speed.

The main concern for this co-emulation activity is how to

manage the clock. The easiest implementation, uncontrolled
mode, requires to decouple HW blocks (FIFO interconnec-
tions), but blocks with strong timing requirements on IO are
hardly compatible with this principle. Another feedback is to
use a standard API like SceMi for co-emulation in order to
capitalize on transactors reuse.

Regarding modeling by itself, our experimentation highlight
the fact that an upper abstraction layer (read/write like) upon
TLM 2 one is mandatory for architect use, in order to mask all
low level transaction mechanisms provided by TLM library.
TLM 2 is currently a memory mapped platform oriented
protocol. We need to have some abstraction to model easily
interrupts and streamed data exchange.

Having a building environment supporting fast iteration during
architecture exploration phase is also a must have (pure IP-
XACT based solution requires IP-XACT description that are
not available during architecture exploration phase for new
IPs).

Moreover, some well defined modeling guidelines have been
proposed in order to insure model exchange and maintenance.

Astrium’s On-Board SW validation process is based since
several years on Virtual Platform built on C models coded
from HW paper specification.

Another return of experience of the SOCKET project is to use
of SC models (representative by construction of the final HW)
as golden model for these C models validation.

SystemC/TLM modeling is today deployed in Astrium for
feasibility study and architecture exploration activities. The
produced Virtual Platform is provided as annex of the paper
specification for disambiguate/clarify it. The use of this plat-
form into the HW IPs verification flow is under consolidation.

F. Assertion Based Verification techniques

At different phases of the SOCKET design flow (see Fig. 1),
the satisfaction of dedicated properties has to be guaranteed
(namely at the System level, and after HW/SW partitioning).
Some of these requirements, originally provided as textual
descriptions, can be fully disambiguated when translated into
PSL assertions.

The ultimate goal of Astrium is to verify these properties at
the System Level using TLM-based Virtual Platforms, but also
at the implementation level using RTL designs. The ISIS tool
fits the Functional Validation and SW Performance Validation
steps.

Following the standard validation (test) process, we usually
run one or more test scenarii (related to a given requirement)
and check the results. The ABV approach gives the possibility
to complement this process by automatically instrumenting the
virtual platform code with functional properties in order to
check them while executing the full non-regression test suite
(e.g., to verify that a client does not read data in a DMA
destination area when a transfer is on-going).

After these experiments, Astrium issued a first noticeable
return of experience, summarized as follows:

« the expressivity of PSL is fine, and the benefits provided
by the Modeling layer are undoubtable,

o the moderate overhead induced by the ISIS monitors is
attractive (5-8%),

o there is a need to define strict rules for the textual
(natural language) description of the properties (obser-
vation/connection points identification, disambiguation
of transaction meaning in terms of function calls and
parameters involved, ...)

Regarding ABV technologies, our future works include the
refinement of these property definition rules. We will also
focus on the relation between such PSL properties at the TLM
level and their counterparts at the Register Transfer level, as
well as on prototyping the embedding of the automatically
generated monitors into the final design in order to mitigate
the space radiation environment effects at the architecture level
(today, most of the mitigation is performed at the silicon
technology level).

G. Conclusion

For Astrium, thanks to the SOCKET project, we matured our
design flow based upon models, and how to use these models
in order to improve and smooth the communication between
involved teams (functional algorithm definition, system, SW
and HW development teams) for a new payload processing
mission.

IV. AIRBUS’ EXPERIMENTATIONS
A. Overview

AIRBUS Avionics and Simulation Products Department
aims to design a flight control remote module.

Auto-pilot l
A—
Fly By wire
Computer
v 5 (6

Aircraft
move

F®
Control surface _
position

L/W\-E PILOT Ordel

Fig. 5: Case Study Environment

This Avionics Computer is dedicated to process data from
sensors and to control actuators according to predefined flight
laws. The goal was to implement the architecture in a SoC
technologies in a Hardware & Software critical avionics con-
text (DO-254 and DO-178 : DAL A).

- Control

Acquisition

DSP DATA CODE

Fig. 6: Functional description & Targeted

Due to SoC targeted solution, new certification issues and
specific safety requirements must be taken into account.

The focus of the first phase is on requirements validation at
the platform level, in order to mature IP specifications (golden
model concept), and to allow earlier software development by
providing virtual platform (SystemC/TLM) to SW designers.
Second, we reuse these golden models in order to verify design
results using co-simulation. One of the objectives was also to
integrate and validate safety requirements by using Assertion
Based Verification.

Throughout this design process, DO-254 and DO-178 certi-
fication compliance must be achieved (e.g., requirements trace-
ability). This will contribute to highlight relevant evidences for
future SoC certification review.

Faster specification maturity achievement was expected and
improved exchanges between designer teams are foreseen by
using shared formalisms and standards.

B. Modeling techniques

The following figure gives an overview of the Socket Flow
application perimeter for Airbus case study:

System
Properiies

System requirements

Global SoC spec.

Piatform

HW
Properties

Functionality

Header
generation sw
e Properties

L Clorwasm

Fig. 7: SoCKET Flow application perimeter for Airbus case
study

The main Airbus axes of the SocKET flow application were:

o« HW/SW architecture Requirements capture

o Functional requirement modeling in a virtual executable
specification (code generation, makefile, netlist,etc,...)

« HW/SW Functional Validation based on the virtual plat-
form

« Safety requirements capture in assertion

o Requirements Traceability

C. SystemC/TLM Virtual Platform Development

The first phase of the experiment began with the de-
velopment of different modules that constitute the platform
of the case study. To ensure interoperability between these
modules and other modules developed by third parties, the
SystemC/TLM transactional interface library was used to
develop the models of the platform. The modeling approach
chosen is functional LT (Loosely Timed).

During the project, several possibilities were investigated in
order to find a CPU model to execute the platform of the case
study. For example, the trap-gen tool allows the generation of
processor models (ISS) from the description of the instruction
set and architecture files (Python).

With TLM2, SystemC language presents a new and im-
portant step, and more and more models are available with
this interface. In our case study, the model of the bus and
the CPU, from third-party development, could be connected
to those developed in-house without difficulty. However, to
allow a better and easy use of SystemC, the library should be
completed to facilitate the construction of transactional model,
like the concepts in the library SCML2.

The second phase of the experimentation was used to
assess the ability of IP-XACT formalism to describe the
components and assembly of the platform. The possibilities
for code generation, supplied with the tool Magillem, were
also explored.

The modeling step of the platform has removed some am-
biguities (clarity, completeness, consistency, etc.) against the

requirements specification of the case study. With the vir-
tual platform, the different stakeholders HW / SW has an
executable specification that allows a first validation of the
structure and dynamics of the system.

D. Requirement Traceability with IP-XACT format

One of Avionics item is to prove that no requirement is
forgotten through the design process and that there is a perfect
match between customer specification requirements and the
design implementation. Therefore Requirements Traceability
must be fulfilled in order to achieve DO-254 and DO-178
certification compliance. Each requirement is allocated, refined
and verified throughout the design process (Figure 1). In
addition to requirements coverage, traceability can also allow
to perform impact analysis upon requirement modifications.

Level N+1

b

Level N

Traceabiity inks
#Link_to

Level N-1

Fig. 8: General Traceability flow

More than ever in the System On Chip design context,
involved requirements are heterogeneous (hardware, soft-
ware,...). They include also requirements for Safety which
must be taken into account in the development. It is necessary
to achieve traceability between all kinds of requirements. Tools
involved in the SOCKET project take traceability into account.

Magillem provides an Eclipse-based framework which
mainly relies on the IP-XACT formalism (IEEE 1685). In
order to cope with traceability issues, a specific flow has
been defined. This framework allows to integrate requirements
inside the global design flow defined by the SOCKET project.

wrapper
skeleton

Fig. 9: SoCKET Traceability flow

The first step is to be able to import specification require-
ments into the Magillem framework, and then to build the
solution architecture based on IP-XACT complying with these
requirements. Magillem framework must provide ability: (1)

to define design requirements, (2) to map them on the IP
blocks defined in the architecture, and (3) to link them with
the appropriate specification requirements.

This enables a dedicated tool to cross check the requirements
between the specifications, the preliminary design document,
the source codes, and the verification manuals.

IP-XACT requirements description allows only one single
source along the flow, during conception, implementation and
verification steps. It also makes possible to automate document
generation (especially the generation of preliminary design
document) and the generation of code (Netlist, Wrapper,
Skeleton) with requirement tags included.

In order to implement these features, the IP-XACT standard
has to be extended with the concept of requirement. In addition
the Magillem framework has to be upgraded in order to
manage this concept and to provide interface with requirement
management tools like Reqtify (GeenSoft).

E. Assertion Based Verification techniques for Safety Require-
ments

One target of Socket project was to define methods and

tools to verify that the HW/SW requirements developed in
compliance with Safety Requirements.
The methodology of SoCKET Project is to translate the
Safety requirements in functional properties, based on the
PLS standard language. With the tool ISIS of TIMA, we can
then generate SystemC monitors from these properties, and
integrate them into the virtual platform. During the execution
of the platform and instrumented, the traces produced by the
monitors, inform us of any violations of the properties.

Specification

Hardware Virtual Platform

ISIS
-

Check Req SDF

Check Req SDF
]
SystemC Model

SystemC Model|

Fig. 10: SystemC Monitors Generation

After a selection of safety requirements, we had to re-
fine these requirements so that they are easily translated
into PSL properties. For example, the functional behaviors
requirements, such as monitoring requirements are easy to
translate into language PSL. For experimentation with the
tool ISIS from TIMA, Safety requirements for the integrity
of the memory of the DSP CoeffMem were selected. All
of the Safety requirements can not be expressed directly in
PSL properties. They must first be translated according to the

chosen implementation in the platform. Modelling with the
layer of PSL, it is possible to use C++ expressions to facilitate
the writing of the property.

We then generate the monitors using the ISIS tool TIMA
and integrate these models into the platform. We were then
able to simulate various erroneous functions in the hardware
monitoring mechanism in order to check the reactivity of
monitors generated with ISIS and to validate the robustness
of safety requirements. (ex : HW & SW fault injection).

E Conclusion

The experiment conducted in the Airbus case study allowed
to highlight some advantages to using the SOCKET Flow and
the virtual prototyping in the development phase.

1) Data obsolescence management: The use of standard
(SystemC / TLM, IP-XACT, PSL) guarantees a certain conti-
nuity of data required in the aviation context. The standards
also limit the dependence on the suppliers of tool.

2) Complexity management: The validation of the archi-
tecture and functional specifications of the system is more
efficient because the virtual platform is a shared reference
between the HW and SW teams. This executable specification
can remove some ambiguities, unclear, and other inconsisten-
cies that can be encountered in a specification document text.
The observability offered by the virtual platform is enhanced
and offers new features such as the ability to freeze the
implementation of the platform, or change the condition of
equipment at any time. In addition, the monitors generated
by assertions can be used to verify properties at the system
level, and ensuring the right functional behaviour of hard and
soft. The use of the platform makes it possible to provide
an additional improvement in terms of safety and certification
context.

3) Productivity gain: In the validation phase of HW/SW
requirements, the use of the platform can reduce the iterations,
because the development of a TLM platform is shorter than
at RTL. By having the virtual platform in phase advance of
the equipment, software development environment (compiler,
debugger) can be prepared. Also in parallel with hardware
design, software layers depend on the material can be devel-
oped on the virtual platform. The maturity of the software is
improved when the physical platform is available.

V. GLOBAL CONCLUSION

The SoCKET flow provides a real improvement regarding
HW/SW co-design methods. Moreover, the usage of Open
Source standards, such as SystemC/TLM, IP-XACT and PSL,
insures data continuity. these standards limits also the depen-
dence with tools vendors.

The main objective of SOCKET flow was to transmit to critical
embedded systems companies the know-how of semiconductor
ones in order to define an automated flow with adequate tools.

An efficient deployment of such flow requires the build-
ing of a substantial toolbox, including standard models li-
brary (processor core, local bus, DMA, peripherals,...), a
mature development/assembling/debugging environment, and
also all coding rules and other guidelines for using HLS,
SystemC/TLM modeling and ABV techniques.

The evaluated academics tools are high quality ones, an-
swering the expressed needs. Some improvement linked with
SoCKET flow have been identified, and their deeper and
smother integration in the flow will be studied.

In the frame of critical embedded systems, the experi-
mentation highlighted the interest of Virtual Platforms in the
development phase. The architecture solution validation and
the functional specification of the system are more efficient,
since the virtual platform is the shared reference between
HW and SW teams. This executable specification allows to
remove any remaining ambiguities, incoherences and clarify
fuzzy points often met with textual paper specifications.

The SoCKET project has also investigated the propagation
of traceability tags between the paper specification and the
virtual platform thanks to the definition of some “vendor ex-
tensions” for the IP-XACT standard. It would be interesting to
have these extension, related to traceability support, included
into next release of IP-XACT standard. The participation of
System Companies to normalisation bodies/consortium such
as Accellera/OSCI for IP-XACT and SystemC/TLM could be
a way to insure the taking into account of these needs.

The observability provided by the virtual platform is better

than on silicon one, and offers some added-value features, such
as platform execution freezing, or HW state modification at
any time.
Moreover, the usage of assertions, implemented by monitors,
allows to perform some properties checking at system level,
insuring the common behavioral correctness of SW and HW.
Then, the use of a Virtual Platform allows to add some
certification credentials against safety requirements. During
HW/SW requirements validation phase, a Virtual Platform
allows shortening the iterations cycle. Indeed, modeling at
transactional level is faster than at RTL one.

With a Virtual Platform available sooner than Silicon one,

the SW development environment (debugger, compiler, OS,
...) can be set up earlier.
In parallel with HW design phase, the HW dependent SW
layer can be developed and first debugged on the Virtual
Platform, improving the overall maturity of the SW, and also
the HW, by discovering any discrepancies earlier.

The performed experiments highlight that the SoCKET
flow (SystemC/TLM, ABV, HLS, ..) can be directly applied
also to a complete critical embedded equipment or at board
level. Indeed, this flow is not tightly coupled with to System
On Chip (SoC) technology.

A complementary analysis shall be made to challenge the
representativity of SystemC/TLM models to replace partially
or fully the physical verification against the requirements for
HW and SW certification(DO178 and DO254).

The space applicable standards (ECSS) will not
be impacted by the deployment of a such flow
(SoCKET). Indeed, ECSS documents describe mainly
the design/development/verification flow with a fully defined
documentation structure, and take already into account the
development/verification process based upon virtual platform.
The deployment of the SoCKET flow to other critical
embedded systems domains such as IEC 62566 (on-going)
for nuclear power industry, ISO TS16949, 1S026262 for
automotive domain, or CENELEC ENS50126/8/9 for rail
transport, should be straightforward.

In an other hand, as future work, we can identify the running
P project studying how to connect the SOCKET flow with a
more large System to SW/HW one.

REFERENCES

[11 IEEE Std 1666-2005, IEEE Standard System C Language Reference
Manual. 1EEE, 2005.

[2] T. Grotker, S. Liao, G. Martin, and S. Swan, System Design with
SystemC. Kluwer Academic Pub., 2002.

[3] D. Black and J. Donovan, SystemC: From the Ground Up. Springer,
2004.

[4] F. Ghenassia, Ed., Transaction-Level Modeling with SystemC. Springer,
2005.

[5] “Standard for IP-XACT, Standard Structure for Packaging,
Integrating and Re-Using IP Within Tool-Flows [online],”
http://standards.ieee.org/announcements/2010/pr_pr_1685.html.

[6] “IEEE Standard SystemC Language Reference Manual, [Online],”
http://standards.ieee.org/getieee/1666/download/1666-2005.pdf, Decem-
ber 2005.

[71 “TLM-2.0 Language Reference Manual [online],”
http://www.systemc.org/downloads/standards.

[8] IEEE Std 1850-2005, IEEE Standard for Property Specification Lan-
guage (PSL). 1EEE, 2005.

[9] M. Moy, F. Maraninchi, and L. Maillet-Contoz, “LusSy: an open tool
for the analysis of systems-on-a-chip at the transaction level,” Design
Automation for Embedded Systems, special issue on SystemC-based
systems, 2006.

[10] “TRAP TRansaction level Automatic Processor generator, [online],”
http://code.google.com/p/trap-gen.

[11] P. Coussy and A. Morawiec, High-Level Synthesis: From Algorithm to
Digital Circuits. Springer, 2008.

[12] P. Coussy and A. Takach, Special Issue on High-Level Synthesis, IEEE
Design and Test of Computers. 1EEE Computer Society, 2008, vol. 25.

[13] H. Foster, “Applied Assertion-Based Verification: An Industry Perspec-
tive,” Foundations and Trends in Electronic Design Automation, vol. 3,
no. 1, January 2009.

[14] L. Ferro and L. Pierre, Advances in Design Methods from Modeling
Languages for Embedded Systems and SoC'’s (Selected Contributions
from FDL’09). Springer, 2010, ch. ISIS: Runtime Verification of TLM
Platforms.

[15] K. Morin-Allory, Y. Oddos, and D. Borrione, “Horus: A tool for
Assertion-Based Verification and on-line testing,” in Proc. MEM-
OCODE’08, June 2008.

[16] J. Cornet, “Separation of functional and non-functional aspects in trans-
actional level models of systems-on-chip,” Ph.D. dissertation, Institut
National Polytechnique de Grenoble, 2008.

