
Safety Standards and WCET Analysis Tools

Daniel Kästner Christian Ferdinand
AbsInt GmbH, Science Park 1, D-66123 Saarbrücken, Germany

http://www.absint.com

Abstract

In automotive, railway, avionics, automation, and
healthcare industries more and more functionality is im-
plemented by embedded software. A failure of safety-
critical software may cause high costs or even endan-
ger human beings. Also for applications which are not
highly safety-critical, a software failure may necessitate
expensive updates.

Contemporary safety standards – including DO-178B,
DO-178C, IEC-61508, ISO-26262, and EN-50128 – re-
quire to identify potential functional and non-functional
hazards and to demonstrate that the software does not vi-
olate the relevant safety goals. For ensuring functional
program properties automatic or model-based testing,
and formal techniques like model checking become
more and more widely used. For non-functional prop-
erties like timing identifying a safe end-of-test crite-
rion is a hard problem since failures usually occur in
corner cases and full test coverage cannot be achieved.
For code-level timing analysis this problem is solved by
abstract-interpretation-based static analysis techniques
which provide full coverage and yield provably correct
results.

In this article we focus on static analyses of worst-
case execution time, which are increasingly adopted by
industry in the validation and certification process for
safety-critical software. First we will give an overview
of the most important safety standards with a focus
on the requirements for non-functional software prop-
erties. We then explain the methodology of abstract-
interpretation-based analysis tools and identify crite-
ria for their successful application. The integration of
static analyzers in the development process requires in-
terfaces to other development tools, like code genera-
tors or scheduling tools. Using them for certification re-
quires an appropriate tool qualification. We will address
each of these topics and report on industrial experience.

1 Introduction

The use of safety-critical embedded software in the au-
tomotive, avionics and healthcare industries is increas-
ing rapidly. Failures of such safety-critical embedded
systems may create high costs or even endanger hu-
man beings. Also for applications which are not highly
safety-critical, a software failure may necessitate expen-
sive updates. Therefore, utmost carefulness and state-

of-the-art techniques for verifying software safety re-
quirements have to be applied to make sure that an appli-
cation is working properly. To do so lies in the responsi-
bility of the system designers. Ensuring software safety
is one of the goals of safety standards like DO-178B,
DO-178C, IEC-61508, ISO-26262, or EN-50128. They
all require to identify functional and non-functional haz-
ards and to demonstrate that the software does not vio-
late the relevant safety goals.
Classical software validation methods like code review
and testing with debugging cannot really guarantee the
absence of errors. Formal verification methods provide
an alternative, in particular for safety-critical applica-
tions. One such method is abstract interpretation [2],
which allows to obtain statements that are valid for all
program runs with all inputs. Such statements may be
absence of violations of timing or space constraints, or
absence of runtime errors. Static analysis tools in indus-
trial use can detect stack overflows, violation of timing
constraints [20], and can prove the absence of runtime
errors [4].
The advantage of static analysis based techniques is that
they enable full test coverage, but at the same time can
reduce the test effort. Identifying end-of-test criteria
for non-functional program properties like timing, stack
size, and runtime errors is an unsolved problem. In con-
sequence, the required test effort is high, the tests re-
quire access to the physical hardware and the results are
not complete. In contrast, static analyses can be run by
software developers from their workstation computer,
they can be integrated in the development process, e.g.,
in model-based code generators, and allow developers to
detect runtime errors as well as timing and space bugs
in early product stages.
From a methodological point of view, static analyses can
be seen as equivalent to testing with full coverage and,
as such, are candidates for meeting all testing require-
ments listed in the above-mentioned standards. Thus,
in the areas where validation by static analysis is tech-
nically feasible and applied in industry, e.g., for worst-
case execution time analysis, stack size analysis or run-
time error analysis, it defines the state-of-the-art testing
technology.
In the following we will give an overview of the most
important safety standards with a focus on the require-
ments for timing. Then we explain the basic methodol-
ogy of static worst-case execution time (WCET) analy-
sis and present the underlying concepts of our aiT tool.
Industrial experience is summarized in Sec. 7.

1

http://www.absint.com


2 Safety Standards

Safety standards like DO-178B [18], DO-178C, IEC-
61508 [14], ISO-26262 [15] and EN-50128 [1] require
to identify functional and non-functional hazards and to
demonstrate that the software does not violate the rel-
evant safety goals. These standards mention explicitly
three important non-functional safety-relevant software
characteristics: Absence of runtime errors, execution
time, and memory consumption. In the following, we
will focus on execution time. Depending on the critical-
ity level of the software the absence of safety hazards
has to be demonstrated by formal methods or testing
with sufficient coverage.

In the following, we give a short overview on the as-
sessment of timing properties by the safety standards
for avionics, space, automotive and railway systems,
for general Electric/Electronic systems, and for medical
software products.

2.1 DO-178B/DO-178C

Published in 1992, the DO-178B [18] (“Software Con-
siderations in Airborne Systems and Equipment Certi-
fication”), is the primary document by which the cer-
tification authorities such as FAA, EASA, and Trans-
port Canada will approve all commercial software-based
aerospace systems. The purpose of D0-178B is “to pro-
vide guidelines for the production of software for air-
borne systems and equipment that performs its intended
function with a level of confidence in safety that com-
plies with airworthiness requirements.” The criticality
levels defined are Level A (most critical) to Level E
(least critical).

The DO-178B emphasizes the importance of software
verification. Verification is defined as a technical as-
sessment of the results of both the software development
processes and the software verification process. Sec. 6.0
of the DO-178B states that “verification is not simply
testing. Testing, in general, cannot show the absence of
errors.” The standard consequently uses the term ”ver-
ify” instead of ”test” when the software verification pro-
cess objectives being discussed are typically a combina-
tion of reviews, analyses and test. The purpose of the
software verification process is to detect and report er-
rors that may have been introduced during the software
development processes. Removal of the errors is an ac-
tivity of the software development processes. The gen-
eral objectives of the software verification process are to
verify that the requirements of the system level, the ar-
chitecture level, the source code level and the executable
object code level are satisfied, and that the means used to
satisfy these objectives are technically correct and com-
plete. At the code level the objective is to detect and
report errors that may have been introduced during the
software coding process. Non-functional safety proper-
ties are explicitly mentioned, including worst-case exe-

cution time.
The DO-178C, due to be finalized in 2011, will be a re-
vision of DO-178B to bring it up to date with respect
to current software development and verification tech-
nologies. It specifically focuses on model-based soft-
ware development, object-oriented software, the use and
qualification of software tools and the use of formal
methods to complement or replace dynamic testing (the-
orem proving, model checking, and abstract interpreta-
tion).

2.2 IEC-61508 Edition 2.0

In 2010 a new revision of the functional safety stan-
dard IEC-61508 has been published, called Edition 2.0
[14]. It sets out a generic approach for all safety lifecy-
cle activities for systems comprised of electrical and/or
electronic and/or programmable electronic (E/E/PE) el-
ements that are used to perform safety functions. The
safety integrity levels are called SIL1 (least critical) to
SIL4 (most critical). The timing properties are part of
the software safety requirements specification and list
response time and best case and worst-case execution
time.
The IEC-61508 states that verification includes test-
ing and analysis. In the software verification stage,
static analysis techniques are recommended for SIL1
and highly recommended for SIL2-SIL4. Among these
techniques, static worst-case execution time analysis is
recommended in SIL1-4. Among the criteria to be con-
sidered for selecting specific techniques is the complete-
ness and repeatability of testing, so where testing is
used, completeness has to be demonstrated. The results
of abstract-interpretation-based static analyses are con-
sidered a mathematical proof; their reliability is rated
maximal (R3). The IEC-61508 also provides require-
ments for mixed-criticality systems: “Where the soft-
ware is to implement safety functions of different safety
integrity levels, then all of the software shall be treated
as belonging to the highest safety integrity level, unless
adequate independence between the safety functions of
the different safety integrity levels can be shown in the
design. It shall be demonstrated either (1) that inde-
pendence is achieved by both in the spatial and tempo-
ral domains, or (2) that any violation of independence
is controlled. The justification for independence shall
be documented”. This has significant consequences
for hardware selection and system configuration: it has
to be ensured that there are no unpredictable timing-
related interferences which might affect real-time func-
tions. Cache-related preemption costs, pipeline effects,
and timing anomalies have to be taken into account. For
multicore processors it has to be shown that there are no
inherent timing interferences between cores – which are
quite common, e.g., due to collisions on shared memory
buses between cores, or due to shared cache levels [3].
For achieving temporal independence the standard sug-
gests deterministic scheduling methods. One sugges-



tion is using a cyclic scheduling algorithm which gives
each element a defined time slice supported by worst-
case execution time analysis of each element to demon-
strate statically that the timing requirements for each el-
ement are met. Other suggestions are using time trig-
gered architectures, or strict priority based scheduling
implemented by a real-time executive [14].

2.3 ISO-26262

ISO-26262 (Road vehicles – Functional safety) [15] is
the adaptation of the Functional Safety standard IEC
61508 for Automotive Electric/Electronic Systems. It
has been published as an international standard in Au-
gust 2011, replacing the IEC 61508 as formal legal norm
for road vehicles.
Although the standard addresses functional safety the
ISO-26262 also takes non-functional requirements into
account. Concerning software validation it requires to
identify functional and non-functional hazards and to
demonstrate that the software does not violate the rel-
evant safety goals.
The ISO-26262 demands that the timing constraints of
time-critical functions have to be covered by the speci-
fication of the software safety requirements. Here, both
the worst-case execution time at the code level, and the
response time at the system level has to be considered.
Temporal constraints also are a part of the software ar-
chitectural design (Sec. 7.4.5), especially the worst-case
execution time. An important requirement is to estab-
lish “appropriate scheduling properties” which is highly
recommended for all ASIL levels. Since without knowl-
edge of upper bounds on the worst-case execution time
no safe schedulability analysis is possible the availabil-
ity of upper bounds of the WCET can be considered
such a basic scheduling property. Furthermore, freedom
of interference has to be ensured and, as in the IEC-
61508, the software is subject to the hightes ASIL level
used when temporal independence between the safety
functions cannot be established (Sec. 7.4.10). Also dur-
ing unit testing and integration testing upper bounds on
the execution time have to be established.
While the ISO-26262 does not enforce specific testing
and verification methods, the importance of static veri-
fication is emphasized; e.g. it is considered one of the
three goals of the software unit design and implemen-
tation stage. Static analysis is explicitly listed among
the methods for software unit design and implementa-
tions and variations of static analysis are (highly) rec-
ommended for all ASIL levels (Sec. 8, Table 9).

2.4 CENELEC prEN 50128

The CENELEC EN-50128 [1] also has been subject to a
revision which was published in 2011. It provides a set
of requirements with which the development, deploy-
ment and maintenance of any safety-related software in-

tended for railway control and protection applications
shall comply. It addresses five software safety integrity
levels and identifies and lists appropriate techniques and
measures for each level of software safety integrity.

Static analysis based on abstract interpretation, e.g.,
worst-case execution time analysis, belongs to the rec-
ommended testing and verification techniques. It is
highly recommended for SIL 3/4, recommended for SIL
1/2 and should be applied throughout the development
process: in the software validation stage, the software
integration test, software/hardware integration test, and
software component test.

2.5 Regulations for Medical Software

Standards relevant for medical software are the EN-
60601 and IEC-62304. The EN-60601 formulates re-
quirements for the software lifecycle and risk manage-
ment [5]. The standard IEC-62304 describes a lifecycle
for software development with a focus on maintenance
and on component-oriented software architectures [6].

Beyond these standards country-specific requirements
have to be respected. In the following we will shortly
discuss the American and German regulations. The pre-
sentation of the US regulations follows [9]. Software
validation is a requirement of the Quality System regu-
lation (cf. Title 21 Code of Federal Regulations (CFR)
Part 820, and 61 Federal Register (FR) 52602, respec-
tively). Validation requirements apply to software used
as components in medical devices, to software that is
itself a medical device, and to production software. Ver-
ification means “confirmation by examination and pro-
vision of objective evidence that specified requirements
have been fulfilled” [8]. In a software development en-
vironment, software verification is confirmation that the
output of a particular phase of development meets all of
the input requirements for that phase. While software
testing is a necessary activity, in most cases software
testing by itself is not considered sufficient to establish
confidence that the software is fit for its intended use.
Additional verification activities are required, including
static analysis.

In Europe, the validation of medical software has to fol-
low the EU-directive 2007/47/EC [19], which, in Ger-
many has been incorporated into national law in 2010
[17]. It states that software in its own right, when specif-
ically intended to be used for medical purpose, has to be
considered a medical device. For devices which incor-
porate software or which are medical software in them-
selves, the software must be validated according to the
state of the art.

3 Abstract Interpretation

Static data flow analyses compute invariants for all
program points by fixed point iteration over the pro-



gram structure or the control-flow graph. The theory
of abstract interpretation [2] offers a semantics-based
methodology for static program analyses. The concrete
semantics is mapped to an abstract semantics by abstrac-
tion functions. While most interesting program prop-
erties are undecidable in the concrete semantics, the
abstract semantics can be chosen for them to be com-
putable. The static analysis is computed with respect
to that abstract semantics. Compared to an analysis of
the concrete semantics, the analysis result may be less
precise but the computation may be significantly faster.
By skillful definition of the abstract domains a suitable
trade-off between precision and efficiency can be at-
tained.
For program validation there are two essential proper-
ties of static analyzers: soundness and safety. A static
analysis is called sound if the computed results hold for
any possible program execution. Abstract interpretation
supports formal correctness proofs: it can be proved that
an analysis will terminate and that it is sound, i.e., that it
computes an overapproximation of the concrete seman-
tics. Imprecisions can occur, but they will always be on
the safe side.
In WCET analysis, soundness means that the computed
WCET bound holds for any possible program execu-
tion. Safety means that the only imprecision occurring
is overestimation: the WCET must never be underesti-
mated.

4 WCET Analysis: Worst-Case
Execution Time Prediction

Many tasks in safety-critical embedded systems have
hard real-time characteristics. Failure to meet deadlines
may be as harmful as producing wrong output or failure
to work at all. Yet the determination of the Worst-Case
Execution Time (WCET) of a task is a difficult problem
because of the characteristics of modern software and
hardware [22].
Embedded control software (e.g., in the automotive in-
dustries) tends to be large and complex. The software in
a single electronic control unit typically has to provide
different kinds of functionality. It is usually developed
by several people, several groups or even several dif-
ferent providers. Code generator tools are widely used.
They usually hide implementation details to the devel-
opers and make an understanding of the timing behavior
of the code more difficult. The code is typically com-
bined with third party software such as real-time oper-
ating systems and/or communication libraries.
Concerning hardware, there is typically a large gap be-
tween the cycle times of modern microprocessors and
the access times of main memory. Caches and branch
target buffers are used to overcome this gap in virtually
all performance-oriented processors (including high-
performance micro-controllers and DSPs). Pipelines en-

able acceleration by overlapping the executions of dif-
ferent instructions. Consequently the execution behav-
ior of the instructions cannot be analyzed separately
since it depends on the execution history. Cache mem-
ories usually work very well, but under some circum-
stances minimal changes in the program code or pro-
gram input may lead to dramatic changes in cache be-
havior. For (hard) real-time systems, this is undesirable
and possibly even hazardous. Making the safe yet – for
the most part – unrealistic assumption that all memory
references lead to cache misses results in the execution
time being overestimated by several hundred percent.

The widely used classical methods of predicting ex-
ecution times are not generally applicable. Software
monitoring and dual-loop benchmarks modify the code,
which in turn changes the cache behavior. Hardware
simulation, emulation, or direct measurement with logic
analyzers can only determine the execution time for
some fixed inputs. They cannot be used to infer the ex-
ecution times for all possible inputs in general.

In contrast, abstract interpretation can be used to effi-
ciently compute a safe approximation for all possible
cache and pipeline states that can occur at a program
point in any program run with any input. These re-
sults can be combined with ILP (Integer Linear Pro-
gramming) techniques to safely predict the worst-case
execution time and a corresponding worst-case execu-
tion path. A survey of methods for WCET analysis and
of WCET tools is given in [23].

AbsInt’s timing verifier aiT [11] computes a safe upper
bound for the WCET of a task, assuming no interference
from the outside. Effects of interrupts, IO and timer (co-
)processors are not reflected in the predicted runtime
and have to be considered separately within system-
level timing analysis. The main input of aiT is the bi-
nary executable. The analysis does not require any code
modification and does not rely on debug information.
The results are independent from flaws in the debug out-
put and refer to exactly the same code as in the shipped
system. aiT determines the WCET of a program task
in several phases [12], which makes it possible to use
different methods tailored to each subtasks [21]. First,
the control-flow graph (CFG) is reconstructed from the
input file, the binary executable. Then value analysis
computes value ranges for registers and address ranges
for instructions accessing memory; a loop bound analy-
sis determines upper bounds for the number of iterations
of simple loops. Subsequently, a cache analysis classi-
fies memory references as cache misses or hits [10] and
a pipeline analysis predicts the behavior of the program
on the processor pipeline [16]. Finally the path analy-
sis determines a worst-case execution path of the pro-
gram [21].

The results of aiT are reported as annotations in call
graphs and control-flow graphs (cf. Fig. 1,2), and as re-
port files in text format and XML format. The overall
WCET bounds/estimations for sequential code pieces



Figure 1: Call graph with WCET results

can also be communicated to the system-level analyzer
SymTA/S [13], which computes worst-case response
times from the sequential WCETs, taking into account
interrupts and task preemptions.

Figure 2: Basic-block graph with WCET results

aiT is available for various microcontrollers with the fol-
lowing cores: ARM7, Infineon C16x/ST10, Texas In-
struments C33, Motorola HC11, HCS12/STAR12, In-
tel i386, i486, LEON2, LEON3, Motorola M68020,
Freescale MPC 5xx, MPC603e, MPC55xx, MPC755,
Infineon TriCore, NEC V850.

In general, the availability of safe worst-case execution
time bounds depends on the predictability of the execu-
tion platform. Especially multi-core architectures may
exhibit poor predictability because of essentially non-
deterministic interferences on shared resources which
can cause high variations in execution time. [3] gives a
more detailed overview and suggests example configu-
rations for available multi-cores to support static timing
analysis.

5 Integration in the Development
Process

Static analysis tools are not only applicable at the vali-
dation stage but also at the development stage. One ad-
vantage of static analysis methods is that no testing on
physical hardware is required. Thus the analyses can be
called just like a compiler from a workstation computer
after the linking stage of the project. aiT can be used
in batch mode facilitating the integration in a general
automated build process. This enables developers to in-
stantly assess the effects of program changes on WCET
bounds. Potential problem/defects are detected early, so
that late-stage integration problems can be avoided.

In general, static analysis tools can be smoothly cou-
pled with other development tools. There are couplings
of aiT with model-based code generators like Esterel
SCADE [7], dspace TargetLink (currently in develop-
ment), and ETAS ASCET. The timing analysis can be
invoked from the modeling level, and the analysis re-
sults can be reported back to the modeling level. As an
example, with the SCADE integration, the worst-case
execution time can be displayed for each model compo-
nent and each SCADE operator. Also a tool coupling
to the system-level scheduling analyzer SymTA/S (e.g.
SymTA/S [13]) is available. With this coupling, both
the code-level and the system-level timing aspects are
seamlessly covered.

6 Tool Qualification

Many safety standards require a dedicated tool qualifi-
cation to demonstrate the a given software tool works
correctly in the operational context of the user. aiT has
successfully been qualified as analysis tool according to
DO-178B. The qualification process can be automated
to a large degree by Qualification Support Kits.

Qualification kits are available for various aiT ver-
sions/targets. The kits consist of a report package and
a test package. The report package lists all functional
requirements and contains a verification test plan de-
scribing one or more test cases to check each functional
requirement. The test package contains an extensible
set of test cases and a scripting system to automatically
execute all test cases and to evaluate the results. The
generated reports can be submitted to the certification
authority as part of the certification package.

7 Industrial Experience

In recent years tools based on static analysis have proved
their usability in industrial practice and, in consequence,
have increasingly been used by avionics, automotive
and healthcare industries. In the following we report
on experiences gained with the aiT WCET Analyzer.



Since the exact WCET is usually unknown for typi-
cal real-life applications, statements about the precision
of aiT are hard to obtain. For an automotive applica-
tion running on the MPC 555, the results of aiT are
5 – 10 % above the highest execution times observed in
a series of measurements (which may have missed the
real WCET). For an avionics application running on the
MPC 755, Airbus has noted that aiT’s WCET of a task
typically is about 25 % higher than some measured ex-
ecution times for the same task, the real but unknown
WCET being in between [20]. Measurements at AbsInt
have indicated overestimations ranging from 0 % (cycle-
exact prediction) till 10 % for a set of small programs
running on M32C, TMS320C33, and C166/ST10.

8 Conclusion

The quality assurance process for safety-critical embed-
ded software is of crucial importance. The cost for sys-
tem validation grows with increasing criticality level to
constitute a large fraction of the overall development
cost. The problem is twofold: system safety must be
ensured, yet this must be accomplishable with reason-
able effort.

Tools based on abstract interpretation can perform static
program analysis of embedded applications. Their re-
sults are determined without the need to change the code
and hold for all program runs with arbitrary inputs. Es-
pecially for non-functional program properties they are
highly attractive, since they provide full coverage and
can be seamlessly integrated in the development pro-
cess.

We have presented the static WCET analyzer aiT. It
allows to inspect the timing behavior of (time-critical
parts of) program tasks. It takes into account the combi-
nation of all the different hardware characteristics while
still obtaining tight upper bounds on the WCET of a
given program in reasonable time. aiT has been used
by Airbus in the development of various safety-critical
applications for the A380 (and other airplanes).

aiT can be used as analysis tools for the certification
according to development standards like DO-178B or
ISO 26262. The tool is used by many industry cus-
tomers from avionics and automotive industries and its
applicability has been proved in industrial practise. The
tool qualification process can be automated to a large
extent by dedicated Qualification Support Kits.

Acknowledgement

The work presented in this paper has been supported
by the European FP7 projects INTERESTED, ALL-
TIMES, and PREDATOR.

References
[1] CENELEC DRAFT prEN 50128. Railway applications

– Communication, signalling and processing systems
– Software for railway control and protection systems,
2009.

[2] P. Cousot and R. Cousot. Abstract Interpretation: A Uni-
fied Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints. In Pro-
ceedings of the 4th ACM Symposium on Principles of
Programming Languages, pages 238–252, Los Angeles,
California, 1977.

[3] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund,
C. Maiza (Burguière), J. Reineke, B. Triquet, S. We-
gener, and R. Wilhelm. Predictability Considera-
tions in the Design of Multi-Core Embedded Systems.
Ingénieurs de l’Automobile, 807:26–42, 2010.

[4] D. Delmas and J. Souyris. ASTRÉE: from Research
to Industry. In Proc. 14th International Static Analy-
sis Symposium (SAS2007), number 4634 in LNCS, pages
437–451, 2007.

[5] DIN EN 60601-1-4. Medizinische elektrische Geräte –
Teil 1–4: Allgemeine Festlegungen für die Sicherheit
– Ergänzungsnorm: Programmierbare elektrische medi-
zinische Systeme, 2001.

[6] DIN EN 62304. Medical device software – Software life
cycle processes, 2006.

[7] Esterel Technologies. SCADE Suite.
http://www.esterel-technologies.com/
products/scade-suite.

[8] FDA. US Food and Drug Administration. CFR –
Code of Federal Regulations Title 21. Part 820. Quality
System Regulation.
http://www.accessdata.fda.gov/
scripts/cdrh/cfdocs/cfCFR/CFRSearch.
cfm, 2010.

[9] General Principles of Software Validation; Final Guid-
ance for Industry and FDA Staff. U.S. Department of
Health and Human Services, Food and Drug Adminis-
tration; Center for Devices and Radiological Health, Of-
fice of Device Evaluation, Office of In Vitro Diagnostics;
Center for Biologics Evaluation and Research, Office of
Blood Research and Review, 2005.

[10] C. Ferdinand. Cache Behavior Prediction for Real-Time
Systems. PhD thesis, Saarland University, 1997.

[11] C. Ferdinand and R. Heckmann. Worst-case execu-
tion time – a tool provider’s perspective. In 11th IEEE
International Symposium on Object/component/service-
oriented Real-time distributed Computing ISORC 2008,
Orlando, Florida, USA, May 2008.

[12] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm.
Reliable and precise WCET determination for a real-life
processor. In Proceedings of EMSOFT 2001, First Work-
shop on Embedded Software, volume 2211 of Lecture
Notes in Computer Science, pages 469–485. Springer-
Verlag, 2001.

[13] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter,
and R. Ernst. System level performance analysis – the
SymTA/S approach. IEEE Proceedings on Computers
and Digital Techniques, 152(2), Mar. 2005.

http://www.esterel-technologies.com/products/scade-suite
http://www.esterel-technologies.com/products/scade-suite
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm


[14] IEC 61508. Functional safety of electri-
cal/electronic/programmable electronic safety-related
systems, 2010.

[15] ISO 26262-WD. Road vehicles – Functional safety,
2009.

[16] M. Langenbach, S. Thesing, and R. Heckmann. Pipeline
modeling for timing analysis. In Proceedings of the 9th
International Static Analysis Symposium SAS 2002, vol-
ume 2477 of Lecture Notes in Computer Science, pages
294–309. Springer-Verlag, 2002.

[17] Medizinproduktegesetz in der Fassung der Bekannt-
machung vom 7. August 2002 (BGBl. I S. 3146); zuletzt
geändert durch Artikel 12 des Gesetzes vom 24. Juli
2010 (BGBl. I S. 983).

[18] Radio Technical Commission for Aeronautics. RTCA
DO-178B. Software Considerations in Airborne Systems
and Equipment Certification.

[19] Richtlinie 2007/47/EG des Europäischen Parlaments
und des Rates vom 5. September 2007 zur Änderung
der Richtlinien 90/385/EWG des Rates zur An-
gleichung der Rechtsvorschriften der Mitgliedstaaten
über aktive implantierbare medizinische Geräte und
93/42/EWG des Rates über Medizinprodukte sowie
der Richtlinie 98/8/EG über das Inverkehrbringen von
Biozid-Produkten.

[20] J. Souyris, E. Le Pavec, G. Himbert, V. Jégu, G. Borios,
and R. Heckmann. Computing the worst case execution
time of an avionics program by abstract interpretation.
In Proceedings of the 5th Intl Workshop on Worst-Case
Execution Time (WCET) Analysis, pages 21–24, 2005.

[21] H. Theiling and C. Ferdinand. Combining abstract inter-
pretation and ILP for microarchitecture modelling and
program path analysis. In Proceedings of the 19th IEEE
Real-Time Systems Symposium, pages 144–153, Madrid,
Spain, Dec. 1998.

[22] R. Wilhelm. Determining bounds on execution times. In
R. Zurawski, editor, Handbook on Embedded Systems,
pages 14–1 – 14–23. CRC Press, 2005.

[23] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner,
J. Staschulat, and P. Stenström. The worst-case
execution-time problem—overview of methods and sur-
vey of tools. ACM Transactions on Embedded Comput-
ing Systems, 7(3):1–53, 2008.


	Title
	Introduction
	Safety Standards
	DO-178B/DO-178C
	IEC-61508 Edition 2.0
	ISO-26262
	CENELEC prEN 50128
	Regulations for Medical Software

	Abstract Interpretation
	WCET Analysis: Worst-Case Execution Time Prediction
	Integration in the Development Process
	Tool Qualification
	Industrial Experience
	Conclusion
	Acknowledgement

