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Abstract— Tool integration is a key factor for improving 

development efficiency and product quality during the 

development of safety-relevant embedded systems. We present in 

this work a demonstrator based on the most recent outcomes of 

the CESAR project. The proposed integrated tool-chain aims at 

better linking development activities together, thus improving 

traceability during requirements engineering, system design, 

safety analysis and V&V activities using a model-based 

development approach. We analyze the proposed tool-chain from 

three different points of view: (1) tool integrator, (2) technology 

provider, and (3) end-user. These different points of view enable 

the description of the different technologies used at the different 

levels and the analysis of the benefits for the end-user. 

 
Index Terms—CESAR, integrated tool-chains, functional 

safety, ISO 26262  

I. INTRODUCTION 

MBEDDED systems are widely used in transportation 

domains (e.g., automotive, avionics, aerospace, rail) in 

order to reduce the costs, improve the existing functionalities 

or even enable completely new functionalities. Electronic 

control units are involved in safety-critical functionalities, and 

proper development and analysis of the electrics, electronics 

and software parts are strongly required in order to ensure the 

required product safety. To that purpose, different functional 

safety standards have been developed for a more rigorous 

approach to the system modeling, design, analysis, verification 

and validation such as DO178B [8] for the avionic domain, 

EN50128 [9] for the railway domain, ISO 26262 [7] for the 

automotive domain or IEC61508 [6].   

A major challenge in the development of safety-relevant 

embedded systems is the integration of the different disciplines 

and the management of the traces between the different 

activities. The CESAR
1
 project [5] has been started in this 

context to improve the processes and methods for safety-

 
1 http://www.cesarproject.eu/  

critical embedded systems development. In addition to 

significantly improving tools and methods of the System 

Engineering, this R&D project focuses on the development of 

an interoperability platform, which is called the CESAR 

Reference Technology Platform (RTP). The CESAR RTP 

represents a conglomerate of entities which facilitate the 

creation of integrated development environments for the 

development of safety-relevant embedded systems for various 

domains. These tool chains are called instances of the RTP. 

The contribution of this work is to present an integrated 

tool-chain for improving the development of automotive 

embedded systems. A similar work for the aeronautics domain 

is available in [18]. This paper represents a further 

enhancement of the work presented in [1] and is based on the 

latest developments within the CESAR project. In this work, 

we discuss how the disciplines of requirements engineering 

(requirement formalization, management, analysis) have been 

integrated to system engineering disciplines (model-based 

development, safety modeling) and to V&V disciplines 

(simulation, evaluation) and what the benefits for the end-users 

are. From a tool integration point of view, different strategies 

have been used to integrate the different disciplines. The 

proposed platform enables the evaluation of the different 

integration approaches. The resulting tool-chain including 

eight tools is illustrated in Figure 1. 

The contribution is organized as follows: Section II focuses 

on the tool-chain from the integrator point of view. In this 

section, the integration platform and different integration 

strategies (ModelBus platform, CMM API, model 

transformation with QVT, ATL, or direct with Java) are 

discussed. In Section III, the tool-chain from the technology 

provider point of view is discussed and the innovations 

regarding requirements engineering, system and safety 

modeling and verification and validation are presented. In 

Section IV the benefits of the proposed tool-chain from an 

end-user point of view are evaluated. Finally, Section V 

concludes this work. 
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II. TOOL-CHAIN FROM INTEGRATOR POINT OF VIEW  

In terms of realizing an integrated tool-chain an engineer 

has to deal with several problem domains. In the late 80’s 

Wassermann [12] already identified the five dimensions for 

tool integration: platform, presentation, data, control and 

process. This approach was extended by [13]. However, in 

today’s business of tool integration, the main focus is on data 

and process integration, in particular the creation of a seamless 

integrated tool-chain in which data can be exchanged between 

different tools according to a defined development process in 

order to reduce gaps between tools and mainly to bring as 

much automation as possible into the development process.  

But how can tools be integrated at all? Unfortunately, there 

is no step-by-step approach available, due to the complexity of 

the problem. Nevertheless, several guidelines exist which 

provide useful information for integration engineer. 

Accordingly, an integrator has to answer different questions 

like which tools should be integrated, what kind of data should 

be shared with others or what functions can be separated. 

However, all these guidelines and useful questions don’t 

answer the most difficult question how to achieve the best 

interoperability in a tool-chain. Therefore, we have analyzed 

and implemented different integration approaches in our tool-

chain.  

 
Figure 1: Proposed tool-chain 

 

Figure 1 illustrates the proposed approach. In this platform, 

direct tool integration using the CMM-API has been provided 

for the requirements engineering part. This approach enables 

tight integration from the semantic point of view since all tools 

use the same meta-model (same structure of the exchanged 

data). Further, the ModelBus technology has been used as 

SOA platform for the integration of the system design, safety 

analysis and V&V parts. In this integration platform, the 

provision of a common semantic understanding has been 

achieved relying on EAST-ADL2 and providing model-

transformation using different technologies such as QVT, ATL 

or direct Java code. The model transformation service is 

executed either as platform service (e.g., QVT transformation) 

or integrated in the tool adapter.   

A. ModelBus and QVT engine 

ModelBus [15] is the underlying integration framework for 

the described tool-chain. ModelBus is based on SOA principle 

and in particular developed for model-driven tool-chains in 

which models are the central artifacts. According to SOA 

principles, functions and methods are provided as services 

which are useful for other stakeholders of the tool-chain. In a 

model-driven tool-chain typical modeling services are 

transformation, verification or report generation. 

In the proposed tool-chain several model transformation 

services are used. One of these transformations is the QVT 

transformation service. QVT stands for Query, View, 

Transformation which is a specification provided by the OMG 

[14]. The benefit of using a QVT based transformation is the 

possibility to transform models in an incremental way. 

Incremental means that only updates or changes are 

transformed, instead of transforming the complete model 

whenever a change happens. In addition to that, it supports 

also bi-directional transformation by using transformation 
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rules which are formulated as relations between models and 

model elements. 

In order to provide these features the QVT engine creates a 

traceability model for each transformation according to the 

defined transformation rules. The traceability model will also 

be stored in the model repository together with all other 

models which will be produced during development time 

within the tool-chain. The traceability model can also be used 

by other services like coverage analysis or report generation 

services. 

In the proposed tool-chain the model-to-model 

transformation from requirements in CMM format to EAST-

ADL2 is realized by QVT. Transformation rules mapping the 

CMM model elements to the corresponding EAST-ADL2 

elements have been designed, also taking into account that not 

all elements are available in both meta-models (e.g., EAST-

ADL2 has no dedicated object for boilerplates). The QVT 

engine takes source- and target meta-model, the transformation 

rules and an initial predefined trace model containing the 

information, where to insert the requirements model into the 

overall EAST-ADL system model. The execution of the 

transformation is triggered by the workflow engine of the 

ModelBus platform, the trace model stores the relations 

between source and target model elements for each 

incremental transformation. 

B. CMM API 

The CMM-API[16] shall support the user with two different 

aspects of interoperability: Ease the integration of new tools 

and repositories in a tool landscape by providing access and 

editing methods for data and provide a semantically unified 

view on the different data formats.  

In this use-case CMM-APIs establish the interoperability 

between the requirements engineering tools. As an example it 

enables the DODT and the PatternEditor to connect to 

RequisitePro to exchange requirements. Being a library for 

system engineering data, it provides methods to handle 

requirements and other system artifacts regardless of the target 

data repository and the native data format. This means that a 

client tool does not need to know any specifics of 

RequisitePro. If the requirements repository would be changed 

to IBM DOORS there is no need to change a single line of 

code in the tools using the CMM API.  

The main benefit of the CMM-API is the support of 

multiple engineering data repositories in a transparent way. 

Requirements can be seamlessly and simultaneously retrieved 

from tools such as Requisite Pro or DOORS as well as from 

files being stored in a file-based repository like the ModelBus 

repository. This provides a unified homogeneous and traceable 

view on all distributed and heterogeneous engineering data 

that is involved in a system engineering process. The CESAR 

Meta-Model (CMM) is used for this representation. Figure 2 

illustrates this view vividly in form of the CMM glasses. 

Different tools use different representations to store and 

present their data. Simulink, EAST-ADL and AUTOSAR are 

some common design technologies, RequisitePro and DOORS 

are typical tools for Requirements engineering. The CMM 

glasses provide a view that allows getting all elements as 

CMM objects, creating and viewing links across tool borders 

and creating a unified look and feel for the whole system. The 

CMM-APIs are exactly these glasses for the tool that wants to 

interact in a Reference Technology Platform (RTP).  

 

 
Figure 2: The CMM API provides a unified view on the whole system 

 

Concluding: The CMM-APIs enable the designer to relate 

and trace the different elements across the whole system. This 

is not limited to requirements only. A further benefit is the fact 

that data is not duplicated. The API interacts “live” with the 

target repository. It is still possible though to modify and add 

requirements in RequisitePro manually. Changes are 

automatically available in all CMM-API connected tools. 

The unified view on system models and the tool 

connectivity are an important part of the use case. 

Requirements needed to be linked to model elements stored in 

an EAST-ADL file. Through the CMM-API the EAST-ADL 

file looks like CMM and could be processed by the satisfy-link 

tool. Storing and processing requirement in RequisitePro, 

DODT and the PatternEditor was made easy. The problems of 

different file formats and tool interactions vanish, the 

engineering activity itself gains the focus. 

C. Integration HiP-HOPS, ATL 

To integrate the safety analysis tool HiP-HOPS into the 

CESAR RTP, we create a ModelBus-conform tool adapter. 

The tool adapter handles several tool integration aspects [4], 

both control integration and data integration. The tool adapter 

implements the ModelBus tool adapter interface, ensuring that 

it can be integrated into the ModelBus and register for 

ModelBus events.  

To realize control integration, the tool adapter listens to 

checkin-events in the ModelBus repository, specifically 

changes on Papyrus UML files. If such a change is detected, 

the Papyrus model is fetched from the ModelBus repository, 

transformed into a HiP-HOPS representation, the HiP-HOPS 

analysis for FMEA and FTA is started and finally the results 
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are displayed graphically. 

 
Figure 3: Model Transformation Chain for the Integration of the HiP-HOPS 

Tool  

 

To realize data integration, the tool adapter implements 

model transformations. The model transformations automate 

the translation between EAST-ADL2 and HiP-HOPS. The 

model transformation is decomposed into two parts, (1) a 

semantic mapping transformation from EAST-ADL2 to an 

intermediate representation and (2) a representation 

transformation from the intermediate representation to 

HiPHOPS.  

Semantic Mapping Transformation: The first 

transformation step is a model-to-model transformation written 

in ATL [17]. It transforms an EAST-ADL2 model that was 

created in the Papyrus UML modeling environment into an 

intermediate model. The structure of the intermediate model 

resembles the HiP-HOPS grammar, so it is close to the 

structure of the desired output. This stage performs the 

semantic mapping between the domains of EAST-ADL2 and 

that of HiP-HOPS. However, this stage is not concerned with 

the actual representation of the data.  
 

 

 
Figure 4: meta-model integration 

 

Representation Transformation: The second 

transformation step, is a model-to-text transformation, it takes 

the intermediate model and creates the input file for the HiP-

HOPS program. This step is mainly concerned with the 

representation of the information according to the concrete 

syntax required by HiP-HOPS. 

Discussion: Our solution separates two different concerns of 

the transformation from EAST-ADL2 to HiP-HOPS: (1) the 

semantic mapping between the domains of EAST-ADL2 and 

that of HiP-HOPS and (2) the details of the concrete syntax of 

the HiP-HOPS input file. Each transformation is a separate, 

self-contained module, which can be developed, changed and 

tested independently. This decomposition into two separate 

transformations allows us to parallelize the work on the two 

transformations and reduce development time. It also allows 

the two transformations to evolve independently without 

affecting each other, e.g. a change in the HiP-HOPS grammar 

will only affect the representation transformation. As a result, 

the robustness and maintainability of the transformation is 

improved. 

III. TOOL-CHAIN FROM TECHNOLOGY PROVIDER POINT OF 

VIEW 

The proposed development process is illustrated in Figure 5 

and covers different development activities such as 

requirements engineering, system design, safety analysis and 

V&V activities. 

A. Requirements engineering 

Through safety standards like the ISO26262, emerging 

complexity in automotive embedded systems and a highly 

competitive market the amount and variety of requirements on 

a product and the development process itself increased rapidly. 

Technologies for ensuring full traceability, high quality of 

requirements and easy analyzability are demanded.  

In the requirements engineering part of this use case 

requirements get formalized from natural language text to 

semi-formal boilerplates using DODT und finally to formal 

patterns using the PatternEditor. The requirements are stored 

in the RequisitePro tool. Traceability between all artifacts is 

established through the CMM API described in section II.B. 
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Rational RequisitePro is a requirements management tool 

marketed by IBM. A wrapper library translates CMM API 

commands into invocations of the RequisitePro Extensibility 

API and vice versa. As a result this allows storing and 

retrieving natural language, boilerplate and pattern 

requirements without loss of information. Requirements in 

RequisitePro are grouped into different types; this 

implementation uses three different types: one for the 

requirements themselves, one for the boilerplate templates and 

the last one for the CMM data which is shared between several 

requirements, e.g., stakeholders. The adapter also allows 

storing links to entities stored outside of RequisitePro, e.g., a 

model component stored In the ModelBus repository.  

 

 
Figure 5: Resulting development process 

 

DODT (domain ontology design tool) is a requirements 

elicitation tool. Its main purpose is to support the requirements 

engineer in specifying and analyzing requirements. DODT 

supports natural language and boilerplate requirements. A 

boilerplate is a template for a natural language requirement, 

consisting of fixed syntax elements and variable parts, the 

attributes, that need to be filled by the requirements engineer. 

The following is an example for a boilerplate requirement (the 

fixed syntax elements are highlighted with bold font): 

 

The Hybrid system shall keep the temperature of HV 

battery within 10 and 30 °C. 

 

A suggestion functionality is available to help refining 

existing natural language requirements into boilerplate 

requirements [10]. 

A domain ontology contains the concepts and relations of 

the problem domain. Using this knowledge, DODT is able to 

make proposals during the specification of requirements [11] 

and to analyze existing requirements with regards to 

completeness, consistency and ambiguity. The tool also gives 

suggestions on how to improve those requirements. The 

domain concepts in a requirement are highlighted which helps 

seeing important parts of a requirement. An ontology editor is 

included that allows creating and editing the domain ontology 

information used by DODT; alternatively an external editor 

like Protégé can be used. 

After having stated the requirements as structured text using 

DODT a further formalization to patterns can be performed 

through the PatternEditor. Patterns consist of static text 

elements and attributes being filled in by the requirements 

engineer. Each pattern has a well defined semantic in order to 

ensure a consistent interpretation of the written system 

specification across all project participants. On the one hand 

this limits the possibilities of writing a requirement on the 

other hand it prevents misunderstandings regarding the 

interpretation of the sentences. To gain a set of quality 

requirements this limitation is necessary especially to allow a 

guided and automated verification of the system against the 

requirements (generating observers, automatic test case 

generation). However writing requirements shall still be 

possible in an intuitive way. Patterns allow the writing of 

natural sounding requirements with defined semantics while 

being expressive enough to formalize complex requirements. 

DODT stores additional information from the ontology with 

the requirements itself giving the PatternEditor the possibility 

to identify elements like events or conditions. Based on this 

information the selection process for the best fitting pattern 

can be guided. Also the filling of the attribute values can be 

assisted. A pattern that is used in the hybrid vehicle use case 

expressing the braking delay of the e-drive looks like this: 

 
whenever recuperate occurs 

(brakeForceDrive == 1) holds during 

[0ms,20ms] 

 

Having this kind of specification of the components of the 

electric braking system it is possible to formally check the 

requirements against higher level requirements in the 

requirements structure. Most safety standards require 
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traceability between requirements and demand checks to 

ensure that requirements are split up correctly. With the 

entailment analysis this check can be automated. In this use 

case we have a high level safety requirement related to the 

Anti-lock braking system (ABS) functionality stating that there 

shall be a timeframe of 20ms within the next 40ms after slip is 

detected on the wheels, where steering should be possible.  

Taking the functional requirements of the system into 

account the entailment analysis is capable of determining if the 

safety goal can be fulfilled. If there are cases where the safety 

goal can be violated the analysis provides a possible failure 

scenario. In this use case it has not been considered in the 

specification that the road conditions may change very quick 

(e.g. driving on cobblestones) and this fact would lead to 

permanent brake force activation and a deactivation of the 

ABS. 

The proposed two stage approach using structured text in 

combination with formal representations and ensuring 

traceability through the CMM-API allows reducing the effort 

for consistent and complete specification. Furthermore 

mistakes in the specification can be detected very early in the 

design process, by either running the ontology based analyzes 

or formal requirement checks at selected parts of the system. 

 

B. System design and safety analysis 

Facing the challenge of developing increasingly 

advanced safety-critical systems, the automotive industry has a 

growing demand for the seamless integration of safety analysis 

tools into the model-based development tool-chain for 

embedded systems. Such an integrated solution will allow 

iterative and incremental development of safety critical 

systems and is a step towards fulfilling the demands of 

the upcoming standard for safety-critical road vehicles, ISO-

26262. This highlights the need for (1) the rigorous modeling 

of automotive functions including safety related-aspect and (2) 

the seamless integration of safety analysis into the 

development process. 

EAST-ADL2 is an architecture description language for 

modeling automotive embedded systems [3]. It can be used to 

describe hardware (electronics), software and the environment 

(mechanics) of an embedded system.  The goals of modeling 

with EAST-ADL2 are to handle complexity and improve 

safety, reliability, cost, and development efficiency through 

model-based development. A primary feature of EAST-ADL2 

is its capability to structure a model into different abstraction 

levels. All these levels describe the same system, but on 

different levels of abstraction and from different viewpoints. 

Each level is associated with a different stage of the 

development process. EAST-ADL2 specifies a domain model, 

which is implemented as a UML profile depending on UML 

and SysML. Using the EAST-ADL2 profile for UML, it is 

possible to create EAST-ADL2 models in a UML design tool, 

i.e. the Eclipse-based Papyrus UML tool. The EAST-ADL2 

domain model contains concepts for modeling the anomalies 

of a system in a so called error model, which describes the 

failure semantics of a system by relating the occurrences of 

internal errors and the propagations of such errors. These error 

modeling constructs are separated from the constructs used for 

the nominal system definition, to clearly separate their 

different natures: error models are purely descriptive while 

nominal models are prescriptive and may be used for code 

generation. We will make use of the EAST-ADL2 error model 

in the following tool integration. 

Safety is a cross-cutting system property that has to be 

considered from the start and throughout the development of 

the system. Safety engineering is an iterative process. It starts 

with determining the risks, proceeds with identifying the 

causes of failures and deriving the safety requirements and 

concludes with developing safety solutions. One of the first 

steps in safety analysis is a hazard analysis, i.e. an analysis of 

the risks exposed by the system under study. This is typically 

accomplished by FMEA (Failure Modes and Effects Analysis) 

or the FTA (Fault Tree Analysis).  However, creating the 

FMEA and the FTA by hand is a very laborious and error-

prone task, hindering the safety design process. However, 

safety considerations should be built into the design right from 

the start and an iterative safety analysis needs to be performed 

during the design. HiP-HOPS [2] (Hierarchically Performed 

Hazard Origin and Propagation Studies) can support such an 

iterative safety design by automating FTA and FMEA and 

even combining the results. This analysis data can also be the 

basis for an optimization of the security and reliability of the 

system. HiP-HOPS expects a model describing the topology of 

the system (components and their subcomponents) including 

information about how individual components can fail as well 

as how failures are propagated. Among other functionalities, 

HiP-HOPS creates local fault trees, combines them to a system 

fault tree and calculates a minimum cutset.  

Integrating safety analysis into the development of 

automotive embedded systems requires translating concepts of 

the automotive domain to the generic safety and error analysis 

domain. We assume a model-based development process 

where automotive concepts are represented by the EAST-

ADL2 architecture description language, which supports 

system design on multiple levels of abstraction. The concepts 

of the error analysis domain are represented by the safety 

analysis tool HiP-HOPS. We automate the translation from 

EAST-ADL2 to HiP-HOPS by using model transformations. 

We leverage the advantages of different model transformation 

techniques by decomposing the translation into two distinct 

phases, and using an appropriate technique for each phase: 

A phase for conceptual mapping between the domains 

followed by a phase for representing the output in the desired 

concrete syntax. The automotive safety engineer can perform 

the safety analysis repeatedly on refined models with minimal 

effort due to tight integration of the safety analysis tool and the 

model-based development environment. This is compliant with 

the iterative design activities requiring to invoke the analysis 

after each change in the system design. 
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Figure 6: FMEA and FTA generation with HiP-HOPS 

 

C. Verification and validation 

One important challenge while testing automotive 

embedded systems is the complexity of the components and 

the complex interactions with its environment. Hence, the 

electronic control unit directly interacts with mechanical 

counterparts (e.g., E-motor, engine), that are further integrated 

in a vehicle driving on a road and controlled by a driver. This 

complex multi-physics simulation and the complex interactions 

with the electronics require the use of advanced simulation and 

evaluation tools. The proposed approach enables more 

complete evaluation according to complex validation rules, 

reduces the risk of human error and speed-up the processing 

time. 

As explained in previous chapters, at the beginning of the 

workflow via the “Automotive tool-chain” in hand, 

requirements are elicited, refined and formalized. After doing 

this, a further challenge in this workflow is an automated 

verification & validation of these requirements, i.e. a check, 

whether requirements are fulfilled by the system – or not. 

Thereby the traceability from requirements definition via 

testing and test result validation must be ensured. 

In a rough overview, the Verification & Validation sub-

workflow comprises three activities: 

1. Modeling the test cases and corresponding 

validation cases which are needed for validating 

the requirements (by means of Papyrus). 

2. Performing automated test runs (by means of the 

simulation tool AVL InMotion), which yield 

characteristic test results of the system to be 

validated. 

3. Automated checking of the generated test results 

against previously defined requirements (by means 

of the V&V tool AVL VEVAT). 

These steps (incl. involved tools and rough data flows) are 

shown in the graphics below: 

  
Figure 7: V&V - Workflow survey 

 

The first activity (modelling the test cases and 

corresponding validation cases) is the enhancement of the 

EAST-ADL2 model with description of the test cases, test 

campaigns and validation cases in Papyrus by the V&V 

manager. Thereby, in order to ensure traceability, links are 

created between requirements, InMotion test cases (simulation 

runs with parameter variations) generated test results and 

VEVAT validation cases and validation results.  The following 

graphics shows a section of the enhanced EAST-ADL model 

(incl. links between VEVAT validation procedures, InMotion 

test results and VEVAT validation results. 

 
Figure 8: V&V – Model enhancement 

Based on this information, the test scripts for the simulation 

tool AVL InMotion are generated by the test engineer and the 

validation procedures for the V&V tool AVL VEVAT are 

generated by the V&V engineer. 

Now the scripts for the simulation can be automatically 

executed by AVL InMotion. Thereby the links to the generated 

InMotion test results (result-IDs of simulated waveforms) are 

stored in the model – to be transferred afterwards (together 

with the system requirements) into a so-called “Requirements 

file” to the VEVAT tool. 

Currently this “VEVAT Requirements file” is an Excel file, 

which is generated automatically by the VEVAT RTP-adapter, 
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i.e. the requirements are fetched from the model bus and a 

transformation from EAST-ADL to Excel (current VEVAT 

input format) is performed.  

After completion of InMotion simulation runs, the V&V 

engineer gets notified that new test results are available for 

validation. He starts the V&V tool AVL VEVAT, which 

automatically performs evaluation of the simulation results 

according to predefined test- and validation criteria. Thereby 

VEVAT detects resp. calculates significant system behavior 

properties from simulated data (e.g. vehicle deceleration 

during energy recuperation, battery temperature and SOC etc.) 

and compares them to predefined system requirements.  

During evaluation, the analyzed signals optionally might be 

visualized – as shown in the picture below. Thereby the areas 

of interest (e.g. recuperation phases of a hybrid vehicle) appear 

highlighted in the graphics. 

 

 
Figure 9: V&V – Graphics of analyzed data 

 

After validation, VEVAT inserts the validation results 

(Passed/Failed flags, comments, detected signal ranges) of 

each requirement into the Requirements file. 

The following picture shows an example of a VEVAT 

Requirements file after performing the requirements 

validation, i.e. it contains not only the requirement definitions 

but additionally the validation results. 

After performing the requirements validation, the VEVAT 

requirements file contains not only the requirement definitions, 

but shows evidently the validation status of each checked 

requirement (PASSED (green), doubtful (yellow), FAILED 

(red) in addition. Furthermore it provides reason for failures, 

detected and demanded values etc. 

 

 
Figure 10: V&V – Requirements list incl. validation results 

Finally the results of this automated validation are stored 

(individually for each requirement) back to the model bus resp. 

RTP-repository (via transformation of a subset of Excel-data 

to EAST-ADL). Now the requirements manager might track 

the status of all requirements directly in the model (via the 

Papyrus tool). 

IV. END-USER POINT OF VIEW / EVALUATION  

The evaluation has been performed according to four 

different perspectives: Efficiency (%), Quality (%), 

Complexity (%), and Cost / Effort (%). A list of 22 metrics has 

been developed for the first three perspectives for the 

automotive domain, see Figure 11. Notice that the fourth 

perspective (cost / effort) is directly dependent from the 

efficiency, quality and complexity goals.  

For the evaluation, a recuperation function for an electric / 

hybrid vehicle as pilot application has been used [1]. This 

function is a key feature in order to achieve the targeted fuel 

economy and emissions reduction. The basic operation of this 

function is following: when a negative torque is requested, the 

electric motor is then working as generator and the kinetic 

energy of the vehicle is transformed into electrical energy. 

This function has safety critical aspects: indeed, it has an 

impact on the dynamic of the vehicle (e.g., unintended 

recuperation and therefore braking while driving at a high 

speed). The function has also an effect on the storage of the 

electrical energy with for example the possibility of high 

voltage battery overloading (leading to fire or explosion). The 

development of such a recuperation function for an electric / 

hybrid vehicle provides some rooms for improvement. The 

engineering activities of the development process, in particular 

for the definition of the system requirements and the design of 

the system architecture, are not harmonized regarding to the 

methods and tools used. Therefore the transfer of information 

is still often based on Office documents and human data 

transformations, which is the source of ambiguity and 

misunderstanding in larger teams. Another problem is the lack 

of traceability between the exchanged data through the 

development, e.g. between requirements, system components, 

test cases and test results. 

The proposed tool-chain demonstrator provides the 

following key features 

 Formalized requirements enabling better quality and 

early validation of the system specification 

 Semi-formal architecture specification enabling 

higher quality in the system description and 

mapping between the different system viewpoints.  

 Automated generation of safety analysis (based on 

semi-formal architecture description) enabling 

earlier system improvements 

 Automated test case execution and evaluation, thus 

enabling regression test and saving time during 

system evaluation and improving test and 

validation coverage.  

 .Traceability: A major benefit is routed in the 
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traceability between requirements, system 

components, test cases and test results. This has 

been enabled by the meta-model covering the 

entire development process. 

 Automated notification facilitating coordination 

within the development team. 

Model transformation enabling automated data transfers 

between the tools and thus reducing development time and 

human error at tool boundaries. 

 
Figure 11: Evaluation criteria 

 

The efficiency goal is mainly supported by the requirement 

formalization and component-based modeling according to the 

EAST-ADL methodology. The meta-model provides a 

specification of the data structure of the different assets (e.g., 

requirements, functions), as well as of the traceability links 

between the assets. This structure guides the designer to 

provide complete information and also supports tests of the 

data organization. This supports finding defects as soon as 

possible. The availability of explicit traceability links between 

the system assets (e.g., requirements, functions, test cases) 

further supports the understanding of the system by the 

engineers, thus simplifying system development. System 

maintainability is also improved using this semi-formal 

approach. Additionally, the automated generation of safety 

analysis (FTA, FMEA) enables fast assessment of the model 

being developed, thus enabling iterative development of 

safety-critical systems and finding defects early in the 

development process.  

Efficiency is also improved thanks to the requirement 

formalization part. Hence, the resulting requirements are more 

complete, comprehensible and correct, thus improving 

requirement stability and shortening validation. A further 

aspect to manage the efficiency is the support of notifications. 

Hence, after the completion of a development activity, a 

notification is sent to the next user to trigger the following 

activity. This notification service is useful to coordinate 

development within large teams and thus reduce coordination 

efforts. 

The quality goal is improved thanks (1) to the enhanced 

traceability of the requirements within the development 

process and above the tool boundaries, and (2) to the 

formalized requirements. Traceability during architecture 

description according to EAST-ADL with the Papyrus tool is 

provided by the methodology itself. The model 

transformations between requirements, system modeling 

(Papyrus), safety analysis (HiP-HOPS) and V&V (InMotion, 

VEVAT) provide traceability of selected assets between the 

tools. Hence, the information is automatically transformed 

from a tool to another thus (1) minimizing human error while 

transmitting the information and (2) enhancing the traceability 

above the tool boundaries. With this integrated tool-chain, the 

requirements are linked with the architecture description, test 

cases and test results information. Further, the improved 

quality of the requirements provides a better description / 

specification of the system.  

The complexity management goal is supported by the 

traceability within the development system as well as 

automatic generated safety analysis and the model-

transformation implementing the generation of test cases. 

Hence, test campaigns can be specified in EAST-ADL with 

different variation parameters (different possible values for 

inputs parameters). The transformation engine automatically 

generates one test case for each possible value of the input 

parameters. Additionally, the test results are automatically 

inserted in the system description during the second 

transformation. This eases the management of test campaigns. 

Furthermore, the ability to automatically generate FTA and 

FMEA improves the verification ability of the system. 

Regarding the cost / effort goal, an additional effort is 

required while introducing the semi-formal approach from 

EAST-ADL. Hence, performing requirement specification as 

well as system architecture definition with an UML tool 
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according to the EAST-ADL meta-model is more complex 

than entering free text requirements and performing 

architecture specification with a text editor or graphical tool. It 

is the same case for formalization of requirements – additional 

efforts are required for the formalization activity. However, 

the capability of formalizing requirement and system model 

directly improves the quality of the product. Further, we 

expect that the improved description quality will have a 

positive aspect for the later development activities in 

minimizing the number of defects and enabling detection and 

correction of the defects earlier in the development phase. 

V. CONCLUSION 

Tool integration is a key factor to reduce development costs 

and time of safety–relevant embedded systems while 

improving the product quality. However, different challenges 

are arising and the support of different experts is required in 

order to design, deploy and use such an integrated tool-chain. 

We proposed in this work a tool-chain demonstrator that 

highlights several main results of the CESAR project. The 

tool-chain was presented first from a tool integrator point of 

view in order to discuss the challenges of control flow (tool 

integration platform) and data flow (semantic understanding). 

Second, the tool-chain was presented from the technology 

provider point of view in order to illustrate main technical 

achievement of the CESAR project in the domain of 

requirements engineering and component-based design. 

Finally, the tool-chain was presented from the end-user point 

of view in order to analyze the expected benefits of such tool-

chains. The main outcomes of the evaluation was (1) the 

additional efforts at the beginning of the process for 

formalizing the system, leading however to (2) improved 

product quality and expected savings during the later 

development phase (due to test frontloading). Further, (3) the 

improved traceability along the development process as well 

as model transformation were also a key factor to improve 

system quality and development efficiency.  
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