
ERTS² 2012 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

1

Abstract— Tool integration is a key factor for improving

development efficiency and product quality during the

development of safety-relevant embedded systems. We present in

this work a demonstrator based on the most recent outcomes of

the CESAR project. The proposed integrated tool-chain aims at

better linking development activities together, thus improving

traceability during requirements engineering, system design,

safety analysis and V&V activities using a model-based

development approach. We analyze the proposed tool-chain from

three different points of view: (1) tool integrator, (2) technology

provider, and (3) end-user. These different points of view enable

the description of the different technologies used at the different

levels and the analysis of the benefits for the end-user.

Index Terms—CESAR, integrated tool-chains, functional

safety, ISO 26262

I. INTRODUCTION

MBEDDED systems are widely used in transportation

domains (e.g., automotive, avionics, aerospace, rail) in

order to reduce the costs, improve the existing functionalities

or even enable completely new functionalities. Electronic

control units are involved in safety-critical functionalities, and

proper development and analysis of the electrics, electronics

and software parts are strongly required in order to ensure the

required product safety. To that purpose, different functional

safety standards have been developed for a more rigorous

approach to the system modeling, design, analysis, verification

and validation such as DO178B [8] for the avionic domain,

EN50128 [9] for the railway domain, ISO 26262 [7] for the

automotive domain or IEC61508 [6].

A major challenge in the development of safety-relevant

embedded systems is the integration of the different disciplines

and the management of the traces between the different

activities. The CESAR
1
 project [5] has been started in this

context to improve the processes and methods for safety-

1 http://www.cesarproject.eu/

critical embedded systems development. In addition to

significantly improving tools and methods of the System

Engineering, this R&D project focuses on the development of

an interoperability platform, which is called the CESAR

Reference Technology Platform (RTP). The CESAR RTP

represents a conglomerate of entities which facilitate the

creation of integrated development environments for the

development of safety-relevant embedded systems for various

domains. These tool chains are called instances of the RTP.

The contribution of this work is to present an integrated

tool-chain for improving the development of automotive

embedded systems. A similar work for the aeronautics domain

is available in [18]. This paper represents a further

enhancement of the work presented in [1] and is based on the

latest developments within the CESAR project. In this work,

we discuss how the disciplines of requirements engineering

(requirement formalization, management, analysis) have been

integrated to system engineering disciplines (model-based

development, safety modeling) and to V&V disciplines

(simulation, evaluation) and what the benefits for the end-users

are. From a tool integration point of view, different strategies

have been used to integrate the different disciplines. The

proposed platform enables the evaluation of the different

integration approaches. The resulting tool-chain including

eight tools is illustrated in Figure 1.

The contribution is organized as follows: Section II focuses

on the tool-chain from the integrator point of view. In this

section, the integration platform and different integration

strategies (ModelBus platform, CMM API, model

transformation with QVT, ATL, or direct with Java) are

discussed. In Section III, the tool-chain from the technology

provider point of view is discussed and the innovations

regarding requirements engineering, system and safety

modeling and verification and validation are presented. In

Section IV the benefits of the proposed tool-chain from an

end-user point of view are evaluated. Finally, Section V

concludes this work.

Integrated tool-chain for improving traceability

during the development of automotive systems

E. Armengaud
1
, M. Biehl

2
, Q. Bourrouilh

1
, M. Breunig

3
, S. Farfeleder

4
, C. Hein

5
, M. Oertel

6
, A.

Wallner
1
, M. Zoier

7

1
AVL List GmbH, {eric.armengaud, quentin.bourrouilh, alfred.wallner}@avl.com

2
KTH, biehl@md.kth.se,

3
Infineon, michael.breunig@infineon.com,

4
TU Vienna, Stefan.farfeleder@tuwien.ac.at,

5
Fraunhofer Fokus, christian.hein@fokus.fraunhofer.de,

6
OFFIS, markus.oertel@offis.de

7
VIF, markus.zoier@v2c2.at

E

http://www.cesarproject.eu/

ERTS² 2012 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

2

II. TOOL-CHAIN FROM INTEGRATOR POINT OF VIEW

In terms of realizing an integrated tool-chain an engineer

has to deal with several problem domains. In the late 80’s

Wassermann [12] already identified the five dimensions for

tool integration: platform, presentation, data, control and

process. This approach was extended by [13]. However, in

today’s business of tool integration, the main focus is on data

and process integration, in particular the creation of a seamless

integrated tool-chain in which data can be exchanged between

different tools according to a defined development process in

order to reduce gaps between tools and mainly to bring as

much automation as possible into the development process.

But how can tools be integrated at all? Unfortunately, there

is no step-by-step approach available, due to the complexity of

the problem. Nevertheless, several guidelines exist which

provide useful information for integration engineer.

Accordingly, an integrator has to answer different questions

like which tools should be integrated, what kind of data should

be shared with others or what functions can be separated.

However, all these guidelines and useful questions don’t

answer the most difficult question how to achieve the best

interoperability in a tool-chain. Therefore, we have analyzed

and implemented different integration approaches in our tool-

chain.

Figure 1: Proposed tool-chain

Figure 1 illustrates the proposed approach. In this platform,

direct tool integration using the CMM-API has been provided

for the requirements engineering part. This approach enables

tight integration from the semantic point of view since all tools

use the same meta-model (same structure of the exchanged

data). Further, the ModelBus technology has been used as

SOA platform for the integration of the system design, safety

analysis and V&V parts. In this integration platform, the

provision of a common semantic understanding has been

achieved relying on EAST-ADL2 and providing model-

transformation using different technologies such as QVT, ATL

or direct Java code. The model transformation service is

executed either as platform service (e.g., QVT transformation)

or integrated in the tool adapter.

A. ModelBus and QVT engine

ModelBus [15] is the underlying integration framework for

the described tool-chain. ModelBus is based on SOA principle

and in particular developed for model-driven tool-chains in

which models are the central artifacts. According to SOA

principles, functions and methods are provided as services

which are useful for other stakeholders of the tool-chain. In a

model-driven tool-chain typical modeling services are

transformation, verification or report generation.

In the proposed tool-chain several model transformation

services are used. One of these transformations is the QVT

transformation service. QVT stands for Query, View,

Transformation which is a specification provided by the OMG

[14]. The benefit of using a QVT based transformation is the

possibility to transform models in an incremental way.

Incremental means that only updates or changes are

transformed, instead of transforming the complete model

whenever a change happens. In addition to that, it supports

also bi-directional transformation by using transformation

ERTS² 2012 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

rules which are formulated as relations between models and

model elements.

In order to provide these features the QVT engine creates a

traceability model for each transformation according to the

defined transformation rules. The traceability model will also

be stored in the model repository together with all other

models which will be produced during development time

within the tool-chain. The traceability model can also be used

by other services like coverage analysis or report generation

services.

In the proposed tool-chain the model-to-model

transformation from requirements in CMM format to EAST-

ADL2 is realized by QVT. Transformation rules mapping the

CMM model elements to the corresponding EAST-ADL2

elements have been designed, also taking into account that not

all elements are available in both meta-models (e.g., EAST-

ADL2 has no dedicated object for boilerplates). The QVT

engine takes source- and target meta-model, the transformation

rules and an initial predefined trace model containing the

information, where to insert the requirements model into the

overall EAST-ADL system model. The execution of the

transformation is triggered by the workflow engine of the

ModelBus platform, the trace model stores the relations

between source and target model elements for each

incremental transformation.

B. CMM API

The CMM-API[16] shall support the user with two different

aspects of interoperability: Ease the integration of new tools

and repositories in a tool landscape by providing access and

editing methods for data and provide a semantically unified

view on the different data formats.

In this use-case CMM-APIs establish the interoperability

between the requirements engineering tools. As an example it

enables the DODT and the PatternEditor to connect to

RequisitePro to exchange requirements. Being a library for

system engineering data, it provides methods to handle

requirements and other system artifacts regardless of the target

data repository and the native data format. This means that a

client tool does not need to know any specifics of

RequisitePro. If the requirements repository would be changed

to IBM DOORS there is no need to change a single line of

code in the tools using the CMM API.

The main benefit of the CMM-API is the support of

multiple engineering data repositories in a transparent way.

Requirements can be seamlessly and simultaneously retrieved

from tools such as Requisite Pro or DOORS as well as from

files being stored in a file-based repository like the ModelBus

repository. This provides a unified homogeneous and traceable

view on all distributed and heterogeneous engineering data

that is involved in a system engineering process. The CESAR

Meta-Model (CMM) is used for this representation. Figure 2

illustrates this view vividly in form of the CMM glasses.

Different tools use different representations to store and

present their data. Simulink, EAST-ADL and AUTOSAR are

some common design technologies, RequisitePro and DOORS

are typical tools for Requirements engineering. The CMM

glasses provide a view that allows getting all elements as

CMM objects, creating and viewing links across tool borders

and creating a unified look and feel for the whole system. The

CMM-APIs are exactly these glasses for the tool that wants to

interact in a Reference Technology Platform (RTP).

Figure 2: The CMM API provides a unified view on the whole system

Concluding: The CMM-APIs enable the designer to relate

and trace the different elements across the whole system. This

is not limited to requirements only. A further benefit is the fact

that data is not duplicated. The API interacts “live” with the

target repository. It is still possible though to modify and add

requirements in RequisitePro manually. Changes are

automatically available in all CMM-API connected tools.

The unified view on system models and the tool

connectivity are an important part of the use case.

Requirements needed to be linked to model elements stored in

an EAST-ADL file. Through the CMM-API the EAST-ADL

file looks like CMM and could be processed by the satisfy-link

tool. Storing and processing requirement in RequisitePro,

DODT and the PatternEditor was made easy. The problems of

different file formats and tool interactions vanish, the

engineering activity itself gains the focus.

C. Integration HiP-HOPS, ATL

To integrate the safety analysis tool HiP-HOPS into the

CESAR RTP, we create a ModelBus-conform tool adapter.

The tool adapter handles several tool integration aspects [4],

both control integration and data integration. The tool adapter

implements the ModelBus tool adapter interface, ensuring that

it can be integrated into the ModelBus and register for

ModelBus events.

To realize control integration, the tool adapter listens to

checkin-events in the ModelBus repository, specifically

changes on Papyrus UML files. If such a change is detected,

the Papyrus model is fetched from the ModelBus repository,

transformed into a HiP-HOPS representation, the HiP-HOPS

analysis for FMEA and FTA is started and finally the results

ERTS² 2012 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

are displayed graphically.

Figure 3: Model Transformation Chain for the Integration of the HiP-HOPS

Tool

To realize data integration, the tool adapter implements

model transformations. The model transformations automate

the translation between EAST-ADL2 and HiP-HOPS. The

model transformation is decomposed into two parts, (1) a

semantic mapping transformation from EAST-ADL2 to an

intermediate representation and (2) a representation

transformation from the intermediate representation to

HiPHOPS.

Semantic Mapping Transformation: The first

transformation step is a model-to-model transformation written

in ATL [17]. It transforms an EAST-ADL2 model that was

created in the Papyrus UML modeling environment into an

intermediate model. The structure of the intermediate model

resembles the HiP-HOPS grammar, so it is close to the

structure of the desired output. This stage performs the

semantic mapping between the domains of EAST-ADL2 and

that of HiP-HOPS. However, this stage is not concerned with

the actual representation of the data.

Figure 4: meta-model integration

Representation Transformation: The second

transformation step, is a model-to-text transformation, it takes

the intermediate model and creates the input file for the HiP-

HOPS program. This step is mainly concerned with the

representation of the information according to the concrete

syntax required by HiP-HOPS.

Discussion: Our solution separates two different concerns of

the transformation from EAST-ADL2 to HiP-HOPS: (1) the

semantic mapping between the domains of EAST-ADL2 and

that of HiP-HOPS and (2) the details of the concrete syntax of

the HiP-HOPS input file. Each transformation is a separate,

self-contained module, which can be developed, changed and

tested independently. This decomposition into two separate

transformations allows us to parallelize the work on the two

transformations and reduce development time. It also allows

the two transformations to evolve independently without

affecting each other, e.g. a change in the HiP-HOPS grammar

will only affect the representation transformation. As a result,

the robustness and maintainability of the transformation is

improved.

III. TOOL-CHAIN FROM TECHNOLOGY PROVIDER POINT OF

VIEW

The proposed development process is illustrated in Figure 5

and covers different development activities such as

requirements engineering, system design, safety analysis and

V&V activities.

A. Requirements engineering

Through safety standards like the ISO26262, emerging

complexity in automotive embedded systems and a highly

competitive market the amount and variety of requirements on

a product and the development process itself increased rapidly.

Technologies for ensuring full traceability, high quality of

requirements and easy analyzability are demanded.

In the requirements engineering part of this use case

requirements get formalized from natural language text to

semi-formal boilerplates using DODT und finally to formal

patterns using the PatternEditor. The requirements are stored

in the RequisitePro tool. Traceability between all artifacts is

established through the CMM API described in section II.B.

ERTS² 2012 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

5

Rational RequisitePro is a requirements management tool

marketed by IBM. A wrapper library translates CMM API

commands into invocations of the RequisitePro Extensibility

API and vice versa. As a result this allows storing and

retrieving natural language, boilerplate and pattern

requirements without loss of information. Requirements in

RequisitePro are grouped into different types; this

implementation uses three different types: one for the

requirements themselves, one for the boilerplate templates and

the last one for the CMM data which is shared between several

requirements, e.g., stakeholders. The adapter also allows

storing links to entities stored outside of RequisitePro, e.g., a

model component stored In the ModelBus repository.

Figure 5: Resulting development process

DODT (domain ontology design tool) is a requirements

elicitation tool. Its main purpose is to support the requirements

engineer in specifying and analyzing requirements. DODT

supports natural language and boilerplate requirements. A

boilerplate is a template for a natural language requirement,

consisting of fixed syntax elements and variable parts, the

attributes, that need to be filled by the requirements engineer.

The following is an example for a boilerplate requirement (the

fixed syntax elements are highlighted with bold font):

The Hybrid system shall keep the temperature of HV

battery within 10 and 30 °C.

A suggestion functionality is available to help refining

existing natural language requirements into boilerplate

requirements [10].

A domain ontology contains the concepts and relations of

the problem domain. Using this knowledge, DODT is able to

make proposals during the specification of requirements [11]

and to analyze existing requirements with regards to

completeness, consistency and ambiguity. The tool also gives

suggestions on how to improve those requirements. The

domain concepts in a requirement are highlighted which helps

seeing important parts of a requirement. An ontology editor is

included that allows creating and editing the domain ontology

information used by DODT; alternatively an external editor

like Protégé can be used.

After having stated the requirements as structured text using

DODT a further formalization to patterns can be performed

through the PatternEditor. Patterns consist of static text

elements and attributes being filled in by the requirements

engineer. Each pattern has a well defined semantic in order to

ensure a consistent interpretation of the written system

specification across all project participants. On the one hand

this limits the possibilities of writing a requirement on the

other hand it prevents misunderstandings regarding the

interpretation of the sentences. To gain a set of quality

requirements this limitation is necessary especially to allow a

guided and automated verification of the system against the

requirements (generating observers, automatic test case

generation). However writing requirements shall still be

possible in an intuitive way. Patterns allow the writing of

natural sounding requirements with defined semantics while

being expressive enough to formalize complex requirements.

DODT stores additional information from the ontology with

the requirements itself giving the PatternEditor the possibility

to identify elements like events or conditions. Based on this

information the selection process for the best fitting pattern

can be guided. Also the filling of the attribute values can be

assisted. A pattern that is used in the hybrid vehicle use case

expressing the braking delay of the e-drive looks like this:

whenever recuperate occurs

(brakeForceDrive == 1) holds during

[0ms,20ms]

Having this kind of specification of the components of the

electric braking system it is possible to formally check the

requirements against higher level requirements in the

requirements structure. Most safety standards require

ERTS² 2012 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

6

traceability between requirements and demand checks to

ensure that requirements are split up correctly. With the

entailment analysis this check can be automated. In this use

case we have a high level safety requirement related to the

Anti-lock braking system (ABS) functionality stating that there

shall be a timeframe of 20ms within the next 40ms after slip is

detected on the wheels, where steering should be possible.

Taking the functional requirements of the system into

account the entailment analysis is capable of determining if the

safety goal can be fulfilled. If there are cases where the safety

goal can be violated the analysis provides a possible failure

scenario. In this use case it has not been considered in the

specification that the road conditions may change very quick

(e.g. driving on cobblestones) and this fact would lead to

permanent brake force activation and a deactivation of the

ABS.

The proposed two stage approach using structured text in

combination with formal representations and ensuring

traceability through the CMM-API allows reducing the effort

for consistent and complete specification. Furthermore

mistakes in the specification can be detected very early in the

design process, by either running the ontology based analyzes

or formal requirement checks at selected parts of the system.

B. System design and safety analysis

Facing the challenge of developing increasingly

advanced safety-critical systems, the automotive industry has a

growing demand for the seamless integration of safety analysis

tools into the model-based development tool-chain for

embedded systems. Such an integrated solution will allow

iterative and incremental development of safety critical

systems and is a step towards fulfilling the demands of

the upcoming standard for safety-critical road vehicles, ISO-

26262. This highlights the need for (1) the rigorous modeling

of automotive functions including safety related-aspect and (2)

the seamless integration of safety analysis into the

development process.

EAST-ADL2 is an architecture description language for

modeling automotive embedded systems [3]. It can be used to

describe hardware (electronics), software and the environment

(mechanics) of an embedded system. The goals of modeling

with EAST-ADL2 are to handle complexity and improve

safety, reliability, cost, and development efficiency through

model-based development. A primary feature of EAST-ADL2

is its capability to structure a model into different abstraction

levels. All these levels describe the same system, but on

different levels of abstraction and from different viewpoints.

Each level is associated with a different stage of the

development process. EAST-ADL2 specifies a domain model,

which is implemented as a UML profile depending on UML

and SysML. Using the EAST-ADL2 profile for UML, it is

possible to create EAST-ADL2 models in a UML design tool,

i.e. the Eclipse-based Papyrus UML tool. The EAST-ADL2

domain model contains concepts for modeling the anomalies

of a system in a so called error model, which describes the

failure semantics of a system by relating the occurrences of

internal errors and the propagations of such errors. These error

modeling constructs are separated from the constructs used for

the nominal system definition, to clearly separate their

different natures: error models are purely descriptive while

nominal models are prescriptive and may be used for code

generation. We will make use of the EAST-ADL2 error model

in the following tool integration.

Safety is a cross-cutting system property that has to be

considered from the start and throughout the development of

the system. Safety engineering is an iterative process. It starts

with determining the risks, proceeds with identifying the

causes of failures and deriving the safety requirements and

concludes with developing safety solutions. One of the first

steps in safety analysis is a hazard analysis, i.e. an analysis of

the risks exposed by the system under study. This is typically

accomplished by FMEA (Failure Modes and Effects Analysis)

or the FTA (Fault Tree Analysis). However, creating the

FMEA and the FTA by hand is a very laborious and error-

prone task, hindering the safety design process. However,

safety considerations should be built into the design right from

the start and an iterative safety analysis needs to be performed

during the design. HiP-HOPS [2] (Hierarchically Performed

Hazard Origin and Propagation Studies) can support such an

iterative safety design by automating FTA and FMEA and

even combining the results. This analysis data can also be the

basis for an optimization of the security and reliability of the

system. HiP-HOPS expects a model describing the topology of

the system (components and their subcomponents) including

information about how individual components can fail as well

as how failures are propagated. Among other functionalities,

HiP-HOPS creates local fault trees, combines them to a system

fault tree and calculates a minimum cutset.

Integrating safety analysis into the development of

automotive embedded systems requires translating concepts of

the automotive domain to the generic safety and error analysis

domain. We assume a model-based development process

where automotive concepts are represented by the EAST-

ADL2 architecture description language, which supports

system design on multiple levels of abstraction. The concepts

of the error analysis domain are represented by the safety

analysis tool HiP-HOPS. We automate the translation from

EAST-ADL2 to HiP-HOPS by using model transformations.

We leverage the advantages of different model transformation

techniques by decomposing the translation into two distinct

phases, and using an appropriate technique for each phase:

A phase for conceptual mapping between the domains

followed by a phase for representing the output in the desired

concrete syntax. The automotive safety engineer can perform

the safety analysis repeatedly on refined models with minimal

effort due to tight integration of the safety analysis tool and the

model-based development environment. This is compliant with

the iterative design activities requiring to invoke the analysis

after each change in the system design.

ERTS² 2012 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

7

Figure 6: FMEA and FTA generation with HiP-HOPS

C. Verification and validation

One important challenge while testing automotive

embedded systems is the complexity of the components and

the complex interactions with its environment. Hence, the

electronic control unit directly interacts with mechanical

counterparts (e.g., E-motor, engine), that are further integrated

in a vehicle driving on a road and controlled by a driver. This

complex multi-physics simulation and the complex interactions

with the electronics require the use of advanced simulation and

evaluation tools. The proposed approach enables more

complete evaluation according to complex validation rules,

reduces the risk of human error and speed-up the processing

time.

As explained in previous chapters, at the beginning of the

workflow via the “Automotive tool-chain” in hand,

requirements are elicited, refined and formalized. After doing

this, a further challenge in this workflow is an automated

verification & validation of these requirements, i.e. a check,

whether requirements are fulfilled by the system – or not.

Thereby the traceability from requirements definition via

testing and test result validation must be ensured.

In a rough overview, the Verification & Validation sub-

workflow comprises three activities:

1. Modeling the test cases and corresponding

validation cases which are needed for validating

the requirements (by means of Papyrus).

2. Performing automated test runs (by means of the

simulation tool AVL InMotion), which yield

characteristic test results of the system to be

validated.

3. Automated checking of the generated test results

against previously defined requirements (by means

of the V&V tool AVL VEVAT).

These steps (incl. involved tools and rough data flows) are

shown in the graphics below:

Figure 7: V&V - Workflow survey

The first activity (modelling the test cases and

corresponding validation cases) is the enhancement of the

EAST-ADL2 model with description of the test cases, test

campaigns and validation cases in Papyrus by the V&V

manager. Thereby, in order to ensure traceability, links are

created between requirements, InMotion test cases (simulation

runs with parameter variations) generated test results and

VEVAT validation cases and validation results. The following

graphics shows a section of the enhanced EAST-ADL model

(incl. links between VEVAT validation procedures, InMotion

test results and VEVAT validation results.

Figure 8: V&V – Model enhancement

Based on this information, the test scripts for the simulation

tool AVL InMotion are generated by the test engineer and the

validation procedures for the V&V tool AVL VEVAT are

generated by the V&V engineer.

Now the scripts for the simulation can be automatically

executed by AVL InMotion. Thereby the links to the generated

InMotion test results (result-IDs of simulated waveforms) are

stored in the model – to be transferred afterwards (together

with the system requirements) into a so-called “Requirements

file” to the VEVAT tool.

Currently this “VEVAT Requirements file” is an Excel file,

which is generated automatically by the VEVAT RTP-adapter,

ERTS² 2012 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

8

i.e. the requirements are fetched from the model bus and a

transformation from EAST-ADL to Excel (current VEVAT

input format) is performed.

After completion of InMotion simulation runs, the V&V

engineer gets notified that new test results are available for

validation. He starts the V&V tool AVL VEVAT, which

automatically performs evaluation of the simulation results

according to predefined test- and validation criteria. Thereby

VEVAT detects resp. calculates significant system behavior

properties from simulated data (e.g. vehicle deceleration

during energy recuperation, battery temperature and SOC etc.)

and compares them to predefined system requirements.

During evaluation, the analyzed signals optionally might be

visualized – as shown in the picture below. Thereby the areas

of interest (e.g. recuperation phases of a hybrid vehicle) appear

highlighted in the graphics.

Figure 9: V&V – Graphics of analyzed data

After validation, VEVAT inserts the validation results

(Passed/Failed flags, comments, detected signal ranges) of

each requirement into the Requirements file.

The following picture shows an example of a VEVAT

Requirements file after performing the requirements

validation, i.e. it contains not only the requirement definitions

but additionally the validation results.

After performing the requirements validation, the VEVAT

requirements file contains not only the requirement definitions,

but shows evidently the validation status of each checked

requirement (PASSED (green), doubtful (yellow), FAILED

(red) in addition. Furthermore it provides reason for failures,

detected and demanded values etc.

Figure 10: V&V – Requirements list incl. validation results

Finally the results of this automated validation are stored

(individually for each requirement) back to the model bus resp.

RTP-repository (via transformation of a subset of Excel-data

to EAST-ADL). Now the requirements manager might track

the status of all requirements directly in the model (via the

Papyrus tool).

IV. END-USER POINT OF VIEW / EVALUATION

The evaluation has been performed according to four

different perspectives: Efficiency (%), Quality (%),

Complexity (%), and Cost / Effort (%). A list of 22 metrics has

been developed for the first three perspectives for the

automotive domain, see Figure 11. Notice that the fourth

perspective (cost / effort) is directly dependent from the

efficiency, quality and complexity goals.

For the evaluation, a recuperation function for an electric /

hybrid vehicle as pilot application has been used [1]. This

function is a key feature in order to achieve the targeted fuel

economy and emissions reduction. The basic operation of this

function is following: when a negative torque is requested, the

electric motor is then working as generator and the kinetic

energy of the vehicle is transformed into electrical energy.

This function has safety critical aspects: indeed, it has an

impact on the dynamic of the vehicle (e.g., unintended

recuperation and therefore braking while driving at a high

speed). The function has also an effect on the storage of the

electrical energy with for example the possibility of high

voltage battery overloading (leading to fire or explosion). The

development of such a recuperation function for an electric /

hybrid vehicle provides some rooms for improvement. The

engineering activities of the development process, in particular

for the definition of the system requirements and the design of

the system architecture, are not harmonized regarding to the

methods and tools used. Therefore the transfer of information

is still often based on Office documents and human data

transformations, which is the source of ambiguity and

misunderstanding in larger teams. Another problem is the lack

of traceability between the exchanged data through the

development, e.g. between requirements, system components,

test cases and test results.

The proposed tool-chain demonstrator provides the

following key features

 Formalized requirements enabling better quality and

early validation of the system specification

 Semi-formal architecture specification enabling

higher quality in the system description and

mapping between the different system viewpoints.

 Automated generation of safety analysis (based on

semi-formal architecture description) enabling

earlier system improvements

 Automated test case execution and evaluation, thus

enabling regression test and saving time during

system evaluation and improving test and

validation coverage.

 .Traceability: A major benefit is routed in the

ERTS² 2012 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

9

traceability between requirements, system

components, test cases and test results. This has

been enabled by the meta-model covering the

entire development process.

 Automated notification facilitating coordination

within the development team.

Model transformation enabling automated data transfers

between the tools and thus reducing development time and

human error at tool boundaries.

Figure 11: Evaluation criteria

The efficiency goal is mainly supported by the requirement

formalization and component-based modeling according to the

EAST-ADL methodology. The meta-model provides a

specification of the data structure of the different assets (e.g.,

requirements, functions), as well as of the traceability links

between the assets. This structure guides the designer to

provide complete information and also supports tests of the

data organization. This supports finding defects as soon as

possible. The availability of explicit traceability links between

the system assets (e.g., requirements, functions, test cases)

further supports the understanding of the system by the

engineers, thus simplifying system development. System

maintainability is also improved using this semi-formal

approach. Additionally, the automated generation of safety

analysis (FTA, FMEA) enables fast assessment of the model

being developed, thus enabling iterative development of

safety-critical systems and finding defects early in the

development process.

Efficiency is also improved thanks to the requirement

formalization part. Hence, the resulting requirements are more

complete, comprehensible and correct, thus improving

requirement stability and shortening validation. A further

aspect to manage the efficiency is the support of notifications.

Hence, after the completion of a development activity, a

notification is sent to the next user to trigger the following

activity. This notification service is useful to coordinate

development within large teams and thus reduce coordination

efforts.

The quality goal is improved thanks (1) to the enhanced

traceability of the requirements within the development

process and above the tool boundaries, and (2) to the

formalized requirements. Traceability during architecture

description according to EAST-ADL with the Papyrus tool is

provided by the methodology itself. The model

transformations between requirements, system modeling

(Papyrus), safety analysis (HiP-HOPS) and V&V (InMotion,

VEVAT) provide traceability of selected assets between the

tools. Hence, the information is automatically transformed

from a tool to another thus (1) minimizing human error while

transmitting the information and (2) enhancing the traceability

above the tool boundaries. With this integrated tool-chain, the

requirements are linked with the architecture description, test

cases and test results information. Further, the improved

quality of the requirements provides a better description /

specification of the system.

The complexity management goal is supported by the

traceability within the development system as well as

automatic generated safety analysis and the model-

transformation implementing the generation of test cases.

Hence, test campaigns can be specified in EAST-ADL with

different variation parameters (different possible values for

inputs parameters). The transformation engine automatically

generates one test case for each possible value of the input

parameters. Additionally, the test results are automatically

inserted in the system description during the second

transformation. This eases the management of test campaigns.

Furthermore, the ability to automatically generate FTA and

FMEA improves the verification ability of the system.

Regarding the cost / effort goal, an additional effort is

required while introducing the semi-formal approach from

EAST-ADL. Hence, performing requirement specification as

well as system architecture definition with an UML tool

ERTS² 2012 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

10

according to the EAST-ADL meta-model is more complex

than entering free text requirements and performing

architecture specification with a text editor or graphical tool. It

is the same case for formalization of requirements – additional

efforts are required for the formalization activity. However,

the capability of formalizing requirement and system model

directly improves the quality of the product. Further, we

expect that the improved description quality will have a

positive aspect for the later development activities in

minimizing the number of defects and enabling detection and

correction of the defects earlier in the development phase.

V. CONCLUSION

Tool integration is a key factor to reduce development costs

and time of safety–relevant embedded systems while

improving the product quality. However, different challenges

are arising and the support of different experts is required in

order to design, deploy and use such an integrated tool-chain.

We proposed in this work a tool-chain demonstrator that

highlights several main results of the CESAR project. The

tool-chain was presented first from a tool integrator point of

view in order to discuss the challenges of control flow (tool

integration platform) and data flow (semantic understanding).

Second, the tool-chain was presented from the technology

provider point of view in order to illustrate main technical

achievement of the CESAR project in the domain of

requirements engineering and component-based design.

Finally, the tool-chain was presented from the end-user point

of view in order to analyze the expected benefits of such tool-

chains. The main outcomes of the evaluation was (1) the

additional efforts at the beginning of the process for

formalizing the system, leading however to (2) improved

product quality and expected savings during the later

development phase (due to test frontloading). Further, (3) the

improved traceability along the development process as well

as model transformation were also a key factor to improve

system quality and development efficiency.

ACKNOWLEDGMENT

The research leading to these results has received funding

from the ARTEMIS Joint Undertaking under grant agreement

Nr 100016, the Austrian BMVIT under the program

"Forschung, Innovation und Technologie für

Informationstechnologien" and from specific national

programs and / or funding authorities.

REFERENCES

[1] E. Armengaud, et al. (2011b). ‘Model-Based Toolchain for the Efficient

Development of safety-relevant Automotive Embedded Systems’. In

SAE2011 (2011-01-0056).

[2] Y. Papadopoulos and J. A. McDermid. Hierarchically performed hazard

origin and propagation studies. In M. Felici, K. Kanoun, and A.

Pasquini, editors, SAFECOMP, volume 1698 of Lecture Notes in

Computer Science, pages 139–152. Springer, 1999.

[3] D. Chen, R. Johansson, H. Lönn, Y. Papadopoulos, A. Sandberg, F.

Törner, and M. Törngren. Modelling support for design of safety critical

automotive embedded systems. In Computer Safety, Reliability, and

Security, Lecture Notes in Computer Science SAFECOMP2008, 2008.

[4] A. I. Wasserman. Tool integration in software engineering

environments. In F. Long, editor, Software Engineering Environments,

International Workshop on Environments Proceedings, number 467 in

Lecture Notes in Computer Science, pages 137–149. Springer-Verlag,

September 1989.

[5] G. Griessnig, et al. (2010). “CESAR: Cost-Efficient Methods and

Processes for Safety Relevant Embedded Systems”. Embedded World

2010- ARTEMIS Session.

[6] IEC 61508 Edition 2.0, Functional Safety of Electrical/ Electronic/

Programmable Electronic Safety-Related Systems, part 1-7’, 2010.

[7] ISO/FDIS 26262, Road vehicles – Functional safety, part 1-10,

[8] DO178B---RCTA/DO-178B/ED-12B, "Software Considerations in

Airborne Systems and Equipment," Federal Aviation Administration

software standard, RTCA Inc., December 1992.

[9] CENELEC (2001): Railway Applications - Software for Railway

Control and Protection Systems. EN50128

[10] Farfeleder, Moser, Krall, Stålhane, Zojer and Panis, DODT: Increasing

Requirements Formalism using Domain Ontologies for Improved

Embedded Systems Development. In DDECS 2011, pp . 271-274. 2011.

[11] Farfeleder, Moser, Krall, Stålhane, Omoronyia and Zojer, Ontology-

Driven Guidance for Requirements Elicitation. In ESWC 2011, pp. 212-

226. 2011.

[12] Wassermann, A.: Tool Integration in software engineering

environments. In The International Workshop on Environments

Software Engineering Environments), volume 647 of Lecture Notes in

Computer Sciences, pages 137-149, Springer-Verlag, Berlin, September

1989, Chinon, France

[13] Thomas, I., Nejmeh, B.: Definitions of Tool Integration for

Environments. IEEE Software, 9(2):29-35, March 1992

[14] OMG Specification: Query/View/Transformation, v1.1, formal/2011-

01-01, http://www.omg.org/spec/QVT/1.1/PDF/

[15] Aldazabal, A ., Baily, T., Nanclares, F., Sadovykh, A., Hein, C., Esser,

M., Ritter, T. :Automated Model Driven Development Processes;

Proceedings of the ECMDA workshop on Model Driven Tool and

Process Integration, Fraunhofer IRB Verlag, Stuttgart, 2008, ISBN: 978-

3-8167-7645-1

[16] Baumgart, A., Ellen, C., Oertel, M., Rehkop, P.: A reference technology

platform with common interfaces for distributed heterogeneous data

models; Proceedings of the EmbeddedWorld Conference, Nürnberg, (in

press) 2012.

[17] F. Jouault, F. Allilaire, J. Bezivin, and I. Kurtev: A Model

Transformation Tool, Science of Computer Programming, vol. 72, pp.

31-39, Jun. 2008.

[18] O. Laurent, I. Viglietti, F. Paganelli; S. Bonnet , G. Cristau, N.

Priggouris, P. Baufreton : Customization principles of an aeronautics

SLM environment and an illustration on aeronautics use cases, the doors

management system and the flight control system, ERTS² 2012

http://www.omg.org/spec/QVT/1.1/PDF/

