
DesyreML: a SysML profile for heterogeneous embedded systems*

ABSTRACT

We propose a novel language for the formal description of

heterogeneous embedded systems (DesyreML). As the main

contribution, the language is formally described in terms of

semantics and concrete syntax based on the SysML

language. We define the concept of thick connector to allow

for heterogeneous components communication and

computation for multiple semantic domains (synchronous

reactive, continuous time, discrete time, discrete-event). As

technological application, a verification flow based on

model-transformation techniques is described showing the

use of an enriched version of the SystemC-AMS simulation

kernel that is capable of simulating heterogeneous systems

containing combinatorial loops. Finally, the language and

the analysis flow are applied to a cruise control case study.

 Index Terms— Embedded systems, heterogeneous,

language, SysML, SystemC-AMS

1. INTRODUCTION

Embedded systems have become of common use in our

daily life. The trend shows an ever-increasing complexity of

such system that most of the time should guarantee high

performances, safety properties, low power consumption

and low costs. The design of new embedded systems

requires the integration of more components in a single chip

and the interaction of several devices located in different

places in the space. Often, the embedded system

architectures include a wide variety of heterogeneous

components: processors, application specific hardware,

DSPs, sensors, actuators, etc. Additionally, a large number

of actors are usually involved during the different phases of

the design process. Teams, spread all around the world,

contribute to the overall design, each one facing a particular

design problem and therefore using specific design

techniques and specific tools to solve it. The final design

result in a composition of heterogeneous modules based on

different Model of Computation (MoC) and characterized

by aperiodic and periodic computation, event-triggered and

time-triggered communication and so on. As a consequence,

the capability to support heterogeneity is necessary to deal

with the design of such systems. During the entire design

process, and especially during the very first development

steps, the heterogeneity nature of components should be

considered. During the last 10 years, different

methodologies, frameworks and tools have been proposed to

help the designer during the entire design process. However,

there is still the lack of a unique integration framework that

would be able to correctly compose models based on

different MoCs and to perform some analysis on the

resulting system. What is required is a standard

methodology to provide interoperability between models of

different nature and to cover the whole design flow, from

systems requirements to system implementation.

The paper is structured as follows: first a brief description of

related works and contributions is reported in section 2. The

syntax and semantics of the language are described in

section 3, a case study is presented to show how to use the

language to face a realistic design problem. Section 4

explains the analysis flow while the simulation backend is

reported in section 5. Finally, section 6 concludes the paper.

2. RELATED WORK AND CONTRIBUTIONS

The problem of formally capturing the structure and

behavior of heterogeneous systems has been already

addressed by several authors. The tagged signal model

approach proposes a theoretical framework for comparing

properties of different models of computation (MoCs) using

a denotational framework [1]. Based on this approach,

several other solutions have been proposed to specialize the

framework for an important subset of MoCs [2]. Different

specification languages and analyses frameworks have been

developed to allow designers capturing heterogeneous

systems. The PtolemyII and the Metropolis frameworks are

modeling and simulation environments based on the tagged

signal model theory [3],[4]. The SPEEDS HRC language

provides a common semantics and syntax to allow

heterogeneous components hosted-simulation [5][6][7]. The

MARTE UML profile constraints the semantics of the UML

language providing a well-defined notion of time and

supporting the specification of components exposing

different MoCs [8]. Other approaches uses the SystemC

modeling language as glue language for the coordination

and execution of heterogeneous components both using

interface elements bridging components exposing different

Alberto Ferrari

ALES S.r.l.
Via Barberini, 50, Roma

alberto.ferrari@ales.eu.com

Leonardo Mangeruca

ALES S.r.l.
Via Barberini, 50, Roma

leonardo.mangeruca@ales.eu.com

Orlando Ferrante

ALES S.r.l. & "Sapienza" University of Rome
Via Barberini, 50, Roma

orlando.ferrante@ales.eu.com

Alessandro Mignogna

ALES S.r.l. & Scuola Superiore Sant’Anna
Via Barberini, 50, Roma

alessandro.mignogna@ales.eu.com

*Approved for Public Release, Distribution Unlimited

MoCs [9] and extending the SystemC simulation

capabilities to capture heterogeneous specification [10].

Most of the above approaches aim at providing a modeling

and/or simulation environment for the specification and

analysis of embedded systems. Exceptions are the tagged

signal model, which provides a denotational framework for

the definition of MoCs, rather than models, and the

SPEEDS environment that defines a language and protocol

to exchange models between different tools.

Our approach is based on the following pillars: 1) a model

integration language that supports multiple models of

computation, also within the same model; 2) a denotational

semantics for the definition of different models of

computation and their integration; 3) an operational

semantics for the integration of executable models for

analysis purposes. The integration language, denotational

and operational semantics are connected through the

concept of “tag domain” and “tag domain constraints”,

introduced in section 3.

The focus of the present paper is to describe the model

integration language and a simulation framework to

demonstrate how the language is connected to analysis. We

also provide a synthetic view of the denotational and

operational semantics. The integration language, called

DesyreML, is an extension of the SysML language. Each

component is described in terms of its interface, which is

enriched with MoC information. The specification of

component behavior is supported in three modalities: clear-

box behavior expressed in the SysML language, white-box

behavior expressed using external languages such as

Simulink, Modelica, etc., and black-box behavior given as

executable representations of the component in C/C++

language or in binary form. The integration between

different MoCs is specified using special connectors called

thick connectors. Our approach places emphasis on the

integration capabilities of the language more than on the

capability of capturing a super-set of common semantics as

already done in previous work. Moreover, we describe a

simulation backend for heterogeneous systems based on the

DESYREII simulation engine to which a DesyreML model

is mapped using a model transformation process.

3. DESYREML PROJECT AND LANGUAGE

DESCRIPTION

3.1 DesyreML Language semantics

The semantics of the DesyreML language is structured in

two parts, a denotational semantics aimed at providing

formal underpinning to the language and an operational

semantics that is defined to provide cross-tool and cross-

language integration capabilities at the analysis level.

3.1.1 Denotational semantics

The denotational semantics is defined based on a refinement

of the Tagged Signal Model (TSM). Let K denote a set of

tag domains. Each tag domain D K is defined over a set

of tag values TD, for example the set of real numbers, the set

of natural numbers, etc. A tag is defined as a function : K

 ⋃DKTD{}, such that (D) TD{}, where the

symbol denotes absence of value. Let T denote the set of

such tags. An event is defined as a pair (,v) T V = E,

where v is an element from a value set V. A signal is

defined as a subset of events, s E, such that (1,v1), (2,v2)

 s D K, 1(D) = 2(D) = . In other words, all

events of a signal are defined over the same tag domains.

Let denote a set of ports. A behavior is a function :

 2
E
, that assigns a signal to each port. We define a

composition operator || over sets of behaviors: let 1 and 2

be two sets of ports, E1 and E2 two sets of events, 1 {1:

1 2
E1} and 2 {2: 2 2

E2} corresponding sets of

behaviors. We define 1||2 = {: 12 2
E1E2 | |1

1 and |2 2}, where the symbol |1 means the

function restricted to 1. A process is defined as a subset

of behaviors. The composition of two processes is defined

as the composition of the corresponding subsets of

behaviors.

 3.1.2 Operational semantics

Fig.1 shows the four layers of the operational semantics: 1)

the system specification layer; 2) the domain specific layer;

3) the cross-domain resolution layer; 4) the non-

determinism resolution layer. The first layer defines the

components that compose the system representation.

Components can be homogeneous or heterogeneous.

Homogeneous components are specified according their

own MoC and their operational semantics is defined by the

corresponding MoC specification. Interactions between

homogeneous components within the same MoC are

resolved in the domain specific layer. Heterogeneous

components can be specified over multiple MoCs and can

be defined according to their operational semantics, as well

as the cross-domain operational semantics. The cross-

domain layer provides primitives to specify static and

dynamic constraints over tag domains and serves as a layer

for ordering and synchronizing the different tag domains, in

a similar fashion as MARTE does with clock constraints.

The non-determinism resolution layer is used to resolve the

behavioral non-determinism required to achieve a

deterministic simulation. This layer may use different

strategies according to user’s needs. Further details on the

denotational and operational semantics are outside the scope

of this paper, which is focused on the integration language.

Figure 1 - Operational semantics structure

3.2 DesyreML Language syntax

The DesyreML language syntax has been defined exploiting

the extensibility natively offered by the UML and SysML

languages with the profile mechanism [11]. SysML is the

OMG System Modeling Language and it represents the

standard de facto for the modeling of complex systems

architecture in both academic and industrial projects. A

profile is a lightweight extension of the language that allows

specializing its syntax using stereotypes that represents both

a well-defined syntactic element and a set of additional

semantic constraints for each stereotyped metaclass. There

are several advantages in using stereotypes for the design of

the DesyreML language. First, the lightweight nature of the

profile allows enriching the semantics of the language

without modifying its basic semantics tenets and this

permits the language to be easily accepted by the SysML

designers’ community. Second, the profile can be encoded

using the OMG standard interchange format (XMI) and the

modeling tools that support the standard are immediately

capable of importing the profile and applying it to existing

SysML models. Using this mechanism, the DesyreML

profile allows the specification of different semantic

domains and gives to the designer the capability of declaring

the semantic domain of a precise subset of model elements.

The following subsections provide a brief review of the

main syntactic elements introduced by the profile.

3.2.1 Semantic domains

MoC, called semantic domains in the DesyreML language,

are defined as first class model elements. Each of them may

need parameters to be specified to be completely

determinate (as the period for the periodic discrete time

semantic domain). The profile allows the designer to

identify different instances of semantic domains with their

specific parameter values. We decided to define the

DESYREML::SemanticDomain stereotype to specify an

abstract semantic domain extending the SysML Block

metaclass. Each semantic domain has been modeled using a

specific stereotype that inherits from the abstract one.

Among the different stereotypes we cite the

DESYREML::ContinuousTimeDomain and the

DESYREML::DiscreteTimeDomain that allow the

description of continuous and periodic discrete time

domains, respectively, and the

DESYREML::DiscreteEventDomain for the description of

the discrete event model of computation (MoC). An

additional set of stereotypes (DESYREML::CTDVDomain

and DESYREML::SRDomain) are used to identify the

synchronous model of computation defined by the

synchronous HRC language.

3.2.2 DesyreML blocks and DesyreML system

In a DesyreML design there is exactly one block declared as

a root component using the stereotype DESYREML::System

which may contain one or more blocks (tagged by the

DESYREML::Block stereotype). A DesyreML block may

contain a reference to a specific semantic domain,

constraining the semantics supported by its part or may not

specify this information, declaring itself to be multi-domain.

In the latter case, the resolution of the semantic domain of

the component's parts is delegated to the composing blocks.

3.2.3 DesyreML flows and DesyreML thick connectors

The language supports the communication between block

instances (parts) by specializing the SysML flow ports. A

DesyreML flow port (stereotype DESYREML::Flow) is an

extension of the SysML flow port which contains

information about the semantic domain it supports.

DesyreML flows may inherits the semantic domain of the

owner block or explicitly declare a specific semantic

domain. This approach allows the modeling of

heterogeneous components that may support different

models of computation for different communication end

points. A connection between flows supporting the same

semantic domain is, intuitively speaking, equivalent to a

classical SysML connector, whereas in case the connector is

relating flows supporting different semantics an adaptation

mechanism is needed. To explicitly declare this mechanism

we introduced the thick connector concept. A thick

connector is a profile of the SysML connector

(DESYREML::ThickConnector) that is used to identify the

need of an adapting mechanism between flow ports that

support different MoCs. The DesyreML profile provides a

predefined list of thick connectors covering a set of adaption

layers. Nevertheless, custom thick connectors can be easily

introduced using the profile mechanism. As an example of

predefined connectors, consider the

DESYREML::DT2CTThickConnector and

DESYREML::CT2DTThickConnector used to adapt the

continuous and the discrete time MoCs. Each connector may

provide a set of parameters to the designer to better specify

the adapting mechanism. For example for the

DT2CTConnector the interpolation method (zero-hold,

linear, etc.) is aconnector’s parameter.

3.3 Cruise Control case study

We consider as a case study the design of a cruise control

system represented by a DesyreML system. The structure of

the system has been captured using a block definition

diagram and the connections between flow ports have been described in an internal block diagram (Fig. 2).

Figure 2 – Cruise Control Internal Block Diagram

The cruise control system is decomposed into five blocks.

The Slope block models a sensor of the road profile and

slope, the EngineCar block represents the dynamics of the

engine, the Vehicle block captures the dynamics of the

vehicle, the ECU block represents the main controller and

the Dashboard block represents the visual panel of the

system. Table 1 summarizes the semantic domains of each

block/flow port.

Table 1: Semantic domains

Block Flow port Semantic domain

Slope road_profile Continuous Time

 road_slope Discrete Time

ECU any Synchronous (HRC)

EngineCar any Continuous Time

Dashboard Any Discrete Event

Vehicle Any Continuous Time

4. ANALYSIS FLOW

The DesyreML profile has been used as input language for

an analysis flow based on a verification environment for

heterogeneous systems. The entire analysis flow is depicted

in Fig. 3. As a starting point a model of the system is

described in SysML using the DesyreML profile defining

the semantic domains of each block and flow port. The

model is then elaborated using a model transformation step

producing an intermediate model which can be used to

generate an executable representation of the input model

based on a simulation framework called DESYREII.

Finally, a simulator is automatically built and run.

DESYREII is a distributed embedded system simulator for

performance analysis and verification developed by

A.L.E.S. S.r.l. [12]. DESYREII is based on SystemC and

integrates different technologies such as SPIRIT IP-XACT

schema, SPEEDS HRC Metamodels. It provides the

capability of importing, MATLAB Simulink and SystemC-

AMS models. A DESYRE simulator is described adopting

the Platform Based Design (PDB) methodology consisting

of a layered structure where each layer provides services to

the upper layer and relays on services offered by the lower

layers. The framework provides a set of libraries and IPs to

model system communication (busses, controllers, protocols

stack), system computation (RTOS) and function-to-

architecture mapping. Application functionalities can be

directly defined by the user, using C++/SystemC (referred to

as black-box components) or can be imported from other

tools such as MATLAB Simulink ® (referred to as white-

box components), using dedicated import flows. The

structure of the system to simulate is completely described

using IP-XACT compliant XML files. Those file are then

passed to the DESYREII model builder that instantiates,

interconnects and configures the required IPs, without the

need of re-compiling any component. Once the entire netlist

has been instantiated, the DESYRE core invokes the

SystemC kernel to simulate the system.

DESYRE supports a model-based representation of systems

using an internal meta-model. A system is composed by

components exposing a well-defined interface in terms of

interaction points. Each component is part of a library of

model elements and may have attached an executable

behavior which should be compliant with the DESYRE

simulation protocol in order to be imported in the simulator

and that can be part of a library of model elements.

4.1 Model transformation

The transformation process has two objectives. On one hand

it produces a structurally equivalent DESYRE

representation of the input model. On the other hand it

introduces components in the target model in order to

support the semantic adaptation specified in the thick

connectors and needed to coordinate heterogeneous

components.

The technology used to perform the model transformation

step is an internally developed Java embodiment of the

OMG Query/View/Transformation (QVT) language called

JQVT [13]. The JQVT library aims at providing an industry-

level operational implementation of the QVT language. It

supports the definition of QVT mappings and the definition

of mappings inheritance, disjunction and merging. JQVT

allows capturing the mapping relation that links a source

model element to a target model element and it supports the

resolve and resolveIn operators to retrieve the set of

mapping source model elements from a given mapped target

model element. JQVT does not support the entire QVT

specification. However, it has been extensively used as

translation infrastructure of different tools for the translation

of industry-level sized models.

Continuing with the description of the analysis flow, after

the target model is generated, a model to text process

produces the simulator artifacts. In particular, the file system

structure of the simulator is build and for each component a

suitable DESYRE wrapper is generated to import the

behavior of the component provided as executable artifact

(C/C++ code or dll files). Finally an IP-XACT

representation of the interconnection is automatically

generated as well as the support files for the simulator

compilation and linking processes.

Figure 3 – Analysis Flow

4.2 Application to cruise control case study

To better describe the transformation process, we consider

its execution to the cruise control case study. Each SysML

block has been translated to a DESYRE component and

each port's flow to a DESYRE interaction point. Thick

connectors have been translated to instances of specific

adapters. Finally for each component, a wrapper of its

executable specification is generated as well as its IP-XACT

description producing, after a compilation step, an

executable simulator.

5. DESYREII SIMULATION BACKEND FOR

DESYREML

As introduced in Section 4, the DESYREII framework is

used to simulate and analyze the behavior of the DesyreML

System. The framework has been integrated with the SysML

import flow and a set of basic components (such as the

Thick Connectors) to correctly support the import and the

simulation of DesyreML compliant systems.

5.1 Backend Architecture for DesyreML

The DESYRE backend architecture for the DesyreML

project integrates the semantics of SPEEDS with the

Continuous Time (CT), Discrete Time (DT) and Discrete

Event (DE) models of computation (MoC) supported by

SystemC and SystemC-Ams. A set of possibly

interconnected components defined over the same MoC will

be called a cluster. The SPEEDS operational semantics

permits to solve combinational loops between components

that are part of the same SPEEDS cluster by fixed point

semantics, when possible, as described in [14]. The

SPEEDS semantics comprises two different MoCs: the

Continuous Time Discrete Value (CTDV) and the

Synchronous Reactive (SR). Fig. 4 shows the logical

layered architecture of the DESYRE backend for

DesyreML. Each model relies on the scheduler associated

with its MoC. The different schedulers execute in an

autonomous fashion. The DesyreML Synchronization layer

has the purpose of synchronizing the different schedulers.

Whenever an event occurs at the boundary between two

components based on two different MoCs, the

Synchronization layer ensures that the schedulers schedule

the components in the correct order.

Figure 4 - DESYREII / DESYREML Layered

Architecture

Future work will be done to support other MoCs such as

Static and Dynamic Data Flow, Asynchronous Systems and

Stochastic Hybrid Systems.

5.2 Implementation of operational semantics

To implement the operational semantics in DESYRE two

main aspects have been considered: the scheduling of the

different MoCs and the interconnections and adaptations of

signal exchanged between components based on different

MoCs. A component consists of two main parts: the body

and the wrapper. The body is the part of the component

containing the specification of the model behavior and it

shall be compliant with the component specific MoC. The

wrapper is the part that allows the component to be handled

by the DESYRE backend. Depending on the MoC, the

component’s body can assume different forms.

Continuous Time (CT) models consist of a composition of

different continuous time object provided by the SystemC-

Ams library, such as: adders, subtracters, integrators,

derivators, transfer function and so on.

Discrete Time (DT) models are modeled as SystemC-Ams

Time Discrete Function (TDF) modules. The processing()

method of the module contains the body behavior definition

while the set_attribute() method is used to set the

component period and the I/O signals rate and delay.

Discrete Event (DE) models are modeled using SystemC

methods sensitive to the events occurring on the input ports.

The method contains the behavior of the component and is

immediately executed whenever an event is notified.

Continuous Time Discrete Value (CTDV) models are the

equivalent of the SPEEDS component containing only

discrete flow ports. According to the SPEEDS MoC, those

models are time triggered models where the time interval

between two activations is not fixed and is decided by the

component. The most significant part of the body is

represented by the step() and the commit() functions. The

step() function computes the component’s outputs without

updating its state. The step() function is used to resolve the

fixed point semantics. The commit() function updates the

component’s state and communicates the output discrete

flow values to the interconnected components. The calling

order of those functions is decided by the SPEEDS

scheduler and is defined in the SPEEDS hosted simulation

protocol.

Synchronous Reactive Event (SRE) models are the

equivalent of SPEEDS component containing both discrete

and event flow ports. The body structure is similar to the

CTDV one, with the step() and commit() functions, with the

exception that event flows are communicated immediately

to the interconnected components by the step() function.

The wrapper has the purpose to adapt the body, defined with

different tools and languages, to the DESYRE framework.

For each I/O port of the body, the wrapper contains a

specific I/O port implementing an MoC-specific DESYREII

interface. As mentioned before, modules with different

MoCs exchange signals of different types in a different way.

As a result, a semantic adaptation is required to interconnect

two modules implementing two different MoCs. The

adaptation is provided by special components called Thick

Connectors that appear as simple parameterized connections

in the SysML internal block diagram, as they are added by

the model transformation flow.

For each pair of MoCs a specific Thick Connector has been

implemented. Only one example of Thick Connector

implementation will be reported in this article. Fig. 5 shows

the internal structure of the Continuous Time To Discrete

Time Thick Connector. The component consist of a first

module that periodically samples the continuous time input

signal and writes its value on a discrete time output signal of

type double. The “Type Casting” module performs a casting

from double to the data type of the DT port connected to the

Thick Connector output. The sampling period is

automatically set to the rate of the component connected to

DT output port.

Figure 5 - CT to DT Thick Connector Structure

5.3 Cruise Control Simulation and Results

Let us now turn our attention to how the DESYREII

framework is used to simulate and perform some analysis on

the proposed use-case. As reported in Section 3.3, the

DesyreML model transformation flow automatically

generates a set of base components and XML files. The

components represent the different modules that compose

the cruise control system, while the XML files describe how

those components are interconnected and configured. The

component structure is generated according to the

specifications reported in Section 4.1.

Continuous time modules have been simulated with an

integration step of 2ms while, discrete time modules have

been configured with a time period of 20ms.

The system has been simulated in steady state with an initial

velocity of 130km/h and an initial throttle aperture of 0.324;

the cruise control set point (desired velocity) is 130km/h.

The road slope component is responsible for changing the

status of the road slope during the simulation. Vehicle

dynamic depends on the slope of the road (positive = road

slanted upward, zero = flat road, negative = road slanted

downward). Fig. 6 shows the road slope simulation profile.

During the first 15 seconds, the road is flat. At 15 seconds

the road starts slanting downward with a slope of -0.02. At

30 seconds the road takes up a positive slope of 0.06 and

returns to a flat road after 15 seconds. Fig. 7 shows how the

throttle aperture is controlled by the Cruise Control System

in order to maintain the speed constant when the road slope

changes. Fig. 8 reports the value of the speed during the

simulation. It is possible to see that in coincidence of the

points where the road slope changes, the velocity presents

an overshoot or an undershoot and then is stabilized again to

the set point value.

Figure 6 – Cruise Control System - Road Slope

Figure 7 – Cruise Control System - Throttle Aperture

Figure 8 – Cruise Control System - Vehicle Speed

The simulation has been performed on an Intel® Core™2

Duo CPU P 9600 @ 2.66GHz with 4.00GB of RAM and

Windows Vista 32-bit operative system. DESYREII

required 1305ms to simulate 50seconds of the real system.

6. CONCLUSIONS

In this paper we presented the DesyreML integration

language. The language allows for the integration of

heterogeneous components supporting several models of

computations (currently SR, DE, CT, DT, CTDV). The

language syntax is based on the SysML language, using the

profile mechanism to extend syntax and semantics. As an

application of the language we described an analysis flow

based on model transformation and the DESYRE analysis

platform, integrating SystemC and SystemC-AMS, showing

the capability of the language to describe an heterogeneous

system through the Cruise Control use case.

As future work, we plan to extend the language and the

analysis flow to allow the integration of other MoCs of

interest, such as Asynchronous Systems (GALS), Markov

Chain, Stochastic Hybrid Systems.

7. AKNOWLEDGMENT

This work was sponsored by DARPA under contract

#FA8650-10-C-7074. The views expressed are those of the

author and do not reflect the official policy or position of the

Department of Defense or the U.S. Government. The

authors thank Prof. Alberto L. Sangiovanni-Vincentelli and

the DARPA METAII project team for their valuable

comments and discussions on the subject of this paper.

8. REFERENCES

[1] E. A. Lee and A. Sangiovanni-Vincentelli, “A framework for

comparing models of computation”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol.

17, no. 12, pp. 1217–1229, December 1998.

[2] A. Benveniste, B. Caillaud, L. P. Carloni, P. Caspi, and A. L.

Sangiovanni-Vincentelli, "Composing heterogeneous reactive

systems", ACM Trans. Embed. Comput. Syst. 7, 4, Article 43,

August 2008.

[3] F. Balarin, A. Davare, M. D'Angelo, D.Densmore, T.

Meyerowitz, R. Passerone, A. Pinto, A.Sangiovanni-Vincentelli,

A.Simalatsar, Y. Watanabe, G. Yang, Q. Zhu, "Platform-Based

Design and Frameworks: Metropolis and Metro II" in Model-

Based Design for Embedded Systems, Boca Raton, Fl: CRC Press,

Taylor and Francis Group, 2009, p. 259-289

[4] J. T. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, "Ptolemy: A

Framework for Simulating and Prototyping Heterogeneous

Systems", Int. Journal in Computer Simulation, 1994

[5] L. Benvenuti, A. Ferrari, L. Mangeruca, E. Mazzi, R.

Passerone, and C. Sofronis, “A contract-based formalism for the

specification of heterogeneous systems” in FDL. IEEE, 2008, pp.

142–147.

[6] O. Ferrante, G. Codella, C. Sofronis, L. Mangeruca and A.

Ferrari, "Verify Contract-Based Designed Discrete Systems by

Simulation", INCOSE EuSEC May 2010.

[7] SPEEDS project, http://www.speeds.eu.com/.

[8] Gerard, Sebastien, Selic, Bran, "The UML MARTE

Standardized Profile", Proceedings of the 17th IFAC World

Congress, 2008.

[9] Herrera, F., Sánchez, P., and Villar, E. "Heterogeneous system-

level specification in SystemC". In Advances in Design and

Specification Languages for SoCs, P. Boulet, ed. Springer

[10] J. Zhu, I. Sander, and A. Jantsch. HetMoC: Heterogeneous

modeling in systemc. In Proceedings of the Forum on Design

Languages (FDL), Southhampton, UK, September 2010

[11] SysML language, http://www.omg.org/spec/SysML/1.2/

[12] ALES S.r.l., http://www.ales.eu.com/.

[13] QVT language, http://www.omg.org/spec/QVT/1.0.

[14] S. Edwards, E. Lee, “The Semantics and Execution of a

Synchronous Block-Diagram Language” in Science of Computer

Programming, 2003, vol. 48, no. 1, pp. 21–42.

http://www.omg.org/spec/QVT/1.0

