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ABSTRACT 

 

We propose a novel language for the formal description of 

heterogeneous embedded systems (DesyreML). As the main 

contribution, the language is formally described in terms of 

semantics and concrete syntax based on the SysML 

language. We define the concept of thick connector to allow 

for heterogeneous components communication and 

computation for multiple semantic domains (synchronous 

reactive, continuous time, discrete time, discrete-event). As  

technological application, a verification flow  based on 

model-transformation techniques is described showing the 

use of an enriched version of the SystemC-AMS simulation 

kernel that is capable of simulating heterogeneous systems 

containing combinatorial loops. Finally, the language and 

the analysis flow are applied to a cruise control case study. 

 

 Index Terms— Embedded systems, heterogeneous, 

language, SysML, SystemC-AMS 

1. INTRODUCTION 

Embedded systems have become of common use in our 

daily life. The trend shows an ever-increasing complexity of 

such system that most of the time should guarantee high 

performances, safety properties, low power consumption 

and low costs. The design of new embedded systems 

requires the integration of more components in a single chip 

and the interaction of several devices located in different 

places in the space. Often, the embedded system 

architectures include a wide variety of heterogeneous 

components: processors, application specific hardware, 

DSPs, sensors, actuators, etc. Additionally, a large number 

of actors are usually involved during the different phases of 

the design process. Teams, spread all around the world, 

contribute to the overall design, each one facing a particular 

design problem and therefore using specific design 

techniques and specific tools to solve it. The final design 

result in a composition of heterogeneous modules based on 

different Model of Computation (MoC) and characterized 

by aperiodic and periodic computation, event-triggered and 

time-triggered communication and so on. As a consequence, 

the capability to support heterogeneity is necessary to deal 

with the design of such systems. During the entire design 

process, and especially during the very first development 

steps, the heterogeneity nature of components should be 

considered. During the last 10 years, different 

methodologies, frameworks and tools have been proposed to 

help the designer during the entire design process. However, 

there is still the lack of a unique integration framework that 

would be able to correctly compose models based on 

different MoCs and to perform some analysis on the 

resulting system. What is required is a standard 

methodology to provide interoperability between models of 

different nature and to cover the whole design flow, from 

systems requirements to system implementation.  

The paper is structured as follows: first a brief description of 

related works and contributions is reported in section 2. The 

syntax and semantics of the language are described in 

section 3, a case study is presented to show how to use the 

language to face a realistic design problem. Section 4 

explains the analysis flow while the simulation backend is 

reported in section 5. Finally, section 6 concludes the paper.  

2. RELATED WORK AND CONTRIBUTIONS 

The problem of formally capturing the structure and 

behavior of heterogeneous systems has been already 

addressed by several authors. The tagged signal model 

approach proposes a theoretical framework for comparing 

properties of different models of computation (MoCs) using 

a denotational framework [1]. Based on this approach, 

several other solutions have been proposed to specialize the 

framework for an important subset of MoCs [2]. Different 

specification languages and analyses frameworks have been 

developed to allow designers capturing heterogeneous 

systems. The PtolemyII and the Metropolis  frameworks are 

modeling and simulation environments based on the tagged 

signal model theory [3],[4]. The SPEEDS HRC language  

provides a common semantics and syntax to allow 

heterogeneous components hosted-simulation [5][6][7]. The 

MARTE UML profile constraints the semantics of the UML 

language providing a well-defined notion of time and 

supporting the specification of components exposing 

different MoCs [8]. Other approaches uses the SystemC 

modeling language as glue language for the coordination 

and execution of heterogeneous components both using 

interface elements bridging components exposing different 
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MoCs [9] and extending the SystemC simulation 

capabilities to capture heterogeneous specification [10]. 

Most of the above approaches aim at providing a modeling 

and/or simulation environment for the specification and 

analysis of embedded systems. Exceptions are the tagged 

signal model, which provides a denotational framework for 

the definition of MoCs, rather than models, and the 

SPEEDS environment that defines a language and protocol 

to exchange models between different tools. 

Our approach is based on the following pillars: 1) a model 

integration language that supports multiple models of 

computation, also within the same model; 2) a denotational 

semantics for the definition of different models of 

computation and their integration; 3) an operational 

semantics for the integration of executable models for 

analysis purposes. The integration language, denotational 

and operational semantics are connected through the 

concept of “tag domain” and “tag domain constraints”, 

introduced in section 3.  

The focus of the present paper is to describe the model 

integration language and a simulation framework to 

demonstrate how the language is connected to analysis. We 

also provide a synthetic view of the denotational and 

operational semantics. The integration language, called 

DesyreML, is an extension of the SysML language. Each 

component is described in terms of its interface, which is 

enriched with MoC information. The specification of 

component behavior is supported in three modalities: clear-

box behavior expressed in the SysML language, white-box 

behavior expressed using external languages such as 

Simulink, Modelica, etc., and black-box behavior given as 

executable representations of the component in C/C++ 

language or in binary form. The integration between 

different MoCs is specified using special connectors called 

thick connectors. Our approach places emphasis on the 

integration capabilities of the language more than on the 

capability of capturing a super-set of common semantics as 

already done in previous work. Moreover, we describe a 

simulation backend for heterogeneous systems based on the 

DESYREII simulation engine to which a DesyreML model 

is mapped using a model transformation process. 

3. DESYREML PROJECT AND LANGUAGE 

DESCRIPTION 

3.1 DesyreML Language semantics 

The semantics of the DesyreML language is structured in 

two parts, a denotational semantics aimed at providing 

formal underpinning to the language and an operational 

semantics that is defined to provide cross-tool and cross-

language integration capabilities at the analysis level. 

3.1.1 Denotational semantics  

The denotational semantics is defined based on a refinement 

of the Tagged Signal Model (TSM). Let K denote a set of 

tag domains. Each tag domain D  K is defined over a set 

of tag values TD, for example the set of real numbers, the set 

of natural numbers, etc. A tag is defined as a function : K 

 ⋃DKTD{}, such that (D)  TD{}, where the 

symbol  denotes absence of value. Let T denote the set of 

such tags. An event is defined as a pair (,v)  T  V = E, 

where v is an element from a value set V. A signal is 

defined as a subset of events, s  E, such that (1,v1), (2,v2) 

 s  D  K, 1(D) =   2(D) = . In other words, all 

events of a signal are defined over the same tag domains. 

Let  denote a set of ports. A behavior is a function :  

 2
E
, that assigns a signal to each port. We define a 

composition operator || over sets of behaviors: let 1 and 2 

be two sets of ports, E1 and E2 two sets of events, 1  {1: 

1  2
E1} and 2  {2: 2  2

E2} corresponding sets of 

behaviors. We define 1||2 = {: 12  2
E1E2 | |1  

1 and |2  2}, where the symbol |1 means the 

function  restricted to 1. A process is defined as a subset 

of behaviors. The composition of two processes is defined 

as the composition of the corresponding subsets of 

behaviors. 

 3.1.2 Operational semantics  

Fig.1 shows the four layers of the operational semantics: 1) 

the system specification layer; 2) the domain specific layer; 

3) the cross-domain resolution layer; 4) the non-

determinism resolution layer. The first layer defines the 

components that compose the system representation. 

Components can be homogeneous or heterogeneous. 

Homogeneous components are specified according their 

own MoC and their operational semantics is defined by the 

corresponding MoC specification. Interactions between 

homogeneous components within the same MoC are 

resolved in the domain specific layer. Heterogeneous 

components can be specified over multiple MoCs and can 

be defined according to their operational semantics, as well 

as the cross-domain operational semantics. The cross-

domain layer provides primitives to specify static and 

dynamic constraints over tag domains and serves as a layer 

for ordering and synchronizing the different tag domains, in 

a similar fashion as MARTE does with clock constraints. 

The non-determinism resolution layer is used to resolve the 

behavioral non-determinism required to achieve a 

deterministic simulation. This layer may use different 

strategies according to user’s needs. Further details on the 

denotational and operational semantics are outside the scope 

of this paper, which is focused on the integration language. 

 



 

Figure 1 - Operational semantics structure 

3.2 DesyreML Language syntax 

The DesyreML language syntax has been defined exploiting 

the extensibility natively offered by the UML and SysML 

languages with the profile mechanism [11]. SysML is the 

OMG System Modeling Language and it represents the 

standard de facto for the modeling of complex systems 

architecture in both academic and industrial projects. A 

profile is a lightweight extension of the language that allows 

specializing its syntax using stereotypes that represents both 

a well-defined syntactic element and a set of additional 

semantic constraints for each stereotyped metaclass. There 

are several advantages in using stereotypes for the design of 

the DesyreML language. First, the lightweight nature of the 

profile allows enriching the semantics of the language 

without modifying its basic semantics tenets and this 

permits the language to be easily accepted by the SysML 

designers’ community. Second, the profile can be encoded 

using the OMG standard interchange format (XMI) and the 

modeling tools that support the standard are immediately 

capable of importing the profile and applying it to existing 

SysML models. Using this mechanism, the DesyreML 

profile allows the specification of different semantic 

domains and gives to the designer the capability of declaring 

the semantic domain of a precise subset of model elements. 

The following subsections provide a brief review of the 

main syntactic elements introduced by the profile. 

3.2.1 Semantic domains  

MoC, called semantic domains in the DesyreML language, 

are defined as first class model elements. Each of them may 

need parameters to be specified to be completely 

determinate (as the period for the periodic discrete time 

semantic domain). The profile allows the designer to 

identify different instances of semantic domains with their 

specific parameter values. We decided to define the 

DESYREML::SemanticDomain stereotype to specify an 

abstract semantic domain extending the SysML Block 

metaclass. Each semantic domain has been modeled using a 

specific stereotype that inherits from the abstract one. 

Among the different stereotypes we cite the 

DESYREML::ContinuousTimeDomain and the 

DESYREML::DiscreteTimeDomain that allow the 

description of continuous and periodic discrete time 

domains, respectively, and the 

DESYREML::DiscreteEventDomain for the description of 

the discrete event model of computation (MoC). An 

additional set of stereotypes (DESYREML::CTDVDomain 

and DESYREML::SRDomain) are used to identify the 

synchronous model of computation defined by the 

synchronous HRC language.  

3.2.2 DesyreML blocks and DesyreML system  

In a DesyreML design there is exactly one block declared as 

a root component using the stereotype DESYREML::System 

which may contain one or more blocks (tagged by the 

DESYREML::Block stereotype). A DesyreML block may 

contain a reference to a specific semantic domain, 

constraining the semantics supported by its part or may not 

specify this information, declaring itself to be multi-domain. 

In the latter case, the resolution of the semantic domain of 

the component's parts is delegated to the composing blocks.  

3.2.3 DesyreML  flows and DesyreML thick connectors 

The language supports the communication between block 

instances (parts) by specializing the SysML flow ports. A 

DesyreML flow port (stereotype DESYREML::Flow) is an 

extension of the SysML flow port which contains 

information about the semantic domain it supports. 

DesyreML flows may inherits the semantic domain of the 

owner block or explicitly declare a specific semantic 

domain. This approach allows the modeling of 

heterogeneous components that may support different 

models of computation for different communication end 

points. A connection between flows supporting the same 

semantic domain is, intuitively speaking, equivalent to a 

classical SysML connector, whereas in case the connector is 

relating flows supporting different semantics an adaptation 

mechanism is needed. To explicitly declare this mechanism 

we introduced the thick connector concept. A thick 

connector is a profile of the SysML connector 

(DESYREML::ThickConnector)   that is used to identify the 

need of an adapting mechanism between flow ports that 

support different MoCs. The DesyreML profile provides a 

predefined list of thick connectors covering a set of adaption 

layers. Nevertheless, custom thick connectors can be easily 

introduced using the profile mechanism. As an example of 

predefined connectors, consider the 

DESYREML::DT2CTThickConnector and 

DESYREML::CT2DTThickConnector used to adapt the 

continuous and the discrete time MoCs. Each connector may 

provide a set of parameters to the designer to better specify 

the adapting mechanism. For example for the 

DT2CTConnector the interpolation method (zero-hold, 

linear, etc.) is aconnector’s parameter. 

3.3 Cruise Control case study 

We consider as a case study the design of a cruise control 

system represented by a DesyreML system. The structure of 

the system has been captured using a block definition 



diagram and the connections between flow ports have been described in an internal block diagram (Fig. 2).  

 

 

Figure 2 – Cruise Control Internal Block Diagram 

The cruise control system is decomposed into five blocks. 

The Slope block models a sensor of the road profile and 

slope, the EngineCar block represents the dynamics of the 

engine, the Vehicle block captures the dynamics of the 

vehicle, the ECU block represents the main controller and 

the Dashboard block represents the visual panel of the 

system. Table 1 summarizes the semantic domains of each 

block/flow port. 

Table 1: Semantic domains 

Block Flow port Semantic domain 

Slope road_profile Continuous Time 

 road_slope Discrete Time 

ECU any Synchronous (HRC) 

EngineCar any Continuous Time 

Dashboard Any Discrete Event 

Vehicle Any Continuous Time 

4. ANALYSIS FLOW 

The DesyreML profile has been used as input language for 

an analysis flow based on a verification environment for 

heterogeneous systems. The entire analysis flow is depicted 

in Fig. 3. As a starting point a model of the system is 

described in SysML using the DesyreML profile defining 

the semantic domains of each block and flow port. The 

model is then elaborated using a model transformation step 

producing an intermediate model which can be used to 

generate an executable representation of the input model 

based on a simulation framework called DESYREII. 

Finally, a simulator is automatically built and run. 

DESYREII is a distributed embedded system simulator for 

performance analysis and verification developed by 

A.L.E.S. S.r.l. [12]. DESYREII is based on SystemC and 

integrates different technologies such as SPIRIT IP-XACT 

schema, SPEEDS HRC Metamodels. It provides the 

capability of importing, MATLAB Simulink and SystemC-

AMS models. A DESYRE simulator is described adopting 

the Platform Based Design (PDB) methodology consisting 

of a layered structure where each layer provides services to 

the upper layer and relays on services offered by the lower 

layers. The framework provides a set of libraries and IPs to 

model system communication (busses, controllers, protocols 

stack), system computation (RTOS) and function-to-

architecture mapping. Application functionalities can be 

directly defined by the user, using C++/SystemC (referred to 

as black-box components) or can be imported from other 

tools such as MATLAB Simulink ® (referred to as white-

box components), using dedicated import flows. The 

structure of the system to simulate is completely described 

using IP-XACT compliant XML files. Those file are then 

passed to the DESYREII model builder that instantiates, 

interconnects and configures the required IPs, without the 

need of re-compiling any component. Once the entire netlist 

has been instantiated, the DESYRE core invokes the 

SystemC kernel to simulate the system. 

DESYRE supports a model-based representation of systems 

using an internal meta-model. A system is composed by 

components exposing a well-defined interface in terms of 

interaction points. Each component is part of a library of 

model elements and may have attached an executable 

behavior which should be compliant with the DESYRE 

simulation protocol in order to be imported in the simulator 

and that can be part of a library of model elements. 

4.1 Model transformation  

The transformation process has two objectives. On one hand 

it produces a structurally equivalent DESYRE 

representation of the input model. On the other hand it 

introduces components in the target model in order to 



support the semantic adaptation specified in the thick 

connectors and needed to coordinate heterogeneous 

components.  

The technology used to perform the model transformation 

step is an internally developed Java embodiment of the 

OMG Query/View/Transformation (QVT) language called 

JQVT [13]. The JQVT library aims at providing an industry-

level operational implementation of the QVT language. It 

supports the definition of QVT mappings and the definition 

of mappings inheritance, disjunction and merging. JQVT 

allows capturing the mapping relation that links a source 

model element to a target model element and it supports the 

resolve and resolveIn operators to retrieve the set of 

mapping source model elements from a given mapped target 

model element. JQVT does not support the entire QVT 

specification. However, it has been extensively used as 

translation infrastructure of different tools for the translation 

of industry-level sized models. 

Continuing with the description of the analysis flow, after 

the target model is generated, a model to text process 

produces the simulator artifacts. In particular, the file system 

structure of the simulator is build and for each component a 

suitable DESYRE wrapper is generated to import the 

behavior of the component provided as executable artifact 

(C/C++ code or dll files). Finally an IP-XACT 

representation of the interconnection is automatically 

generated as well as the support files for the simulator 

compilation and linking processes. 

 

 

Figure 3 – Analysis Flow 

4.2 Application to cruise control case study 

To better describe the transformation process, we consider 

its execution to the cruise control case study. Each SysML 

block has been translated to a DESYRE component and 

each port's flow to a DESYRE interaction point. Thick 

connectors have been translated to instances of specific 

adapters. Finally for each component, a wrapper of its 

executable specification is generated as well as its IP-XACT 

description producing, after a compilation step, an 

executable simulator. 

5. DESYREII SIMULATION BACKEND FOR 

DESYREML  

As introduced in Section 4, the DESYREII framework is 

used to simulate and analyze the behavior of the DesyreML 

System. The framework has been integrated with the SysML 

import flow and a set of basic components (such as the 

Thick Connectors) to correctly support the import and the 

simulation of DesyreML compliant systems.  

5.1 Backend Architecture for DesyreML 

The DESYRE backend architecture for the DesyreML 

project integrates the semantics of SPEEDS with the 

Continuous Time (CT), Discrete Time (DT) and Discrete 

Event (DE) models of computation (MoC) supported by 

SystemC and SystemC-Ams.  A set of possibly 

interconnected components defined over the same MoC will 

be called a cluster. The SPEEDS operational semantics 

permits to solve combinational loops between components 

that are part of the same SPEEDS cluster by fixed point 

semantics, when possible, as described in [14]. The 

SPEEDS semantics comprises two different MoCs: the 

Continuous Time Discrete Value (CTDV) and the 

Synchronous Reactive (SR). Fig. 4 shows the logical 

layered architecture of the DESYRE backend for 

DesyreML. Each model relies on the scheduler associated 

with its MoC. The different schedulers execute in an 

autonomous fashion. The DesyreML Synchronization layer 

has the purpose of synchronizing the different schedulers. 

Whenever an event occurs at the boundary between two 

components based on two different MoCs, the 

Synchronization layer ensures that the schedulers schedule 

the components in the correct order. 

 

 

Figure 4 - DESYREII / DESYREML Layered 

Architecture 

Future work will be done to support other MoCs such as 

Static and Dynamic Data Flow, Asynchronous Systems and 

Stochastic Hybrid Systems. 

5.2 Implementation of operational semantics 

To implement the operational semantics in DESYRE two 

main aspects have been considered: the scheduling of the 

different MoCs and the interconnections and adaptations of 



signal exchanged between components based on different 

MoCs. A component consists of two main parts: the body 

and the wrapper. The body is the part of the component 

containing the specification of the model behavior and it 

shall be compliant with the component specific MoC. The 

wrapper is the part that allows the component to be handled 

by the DESYRE backend. Depending on the MoC, the 

component’s body can assume different forms.  

 

Continuous Time (CT) models consist of a composition of 

different continuous time object provided by the SystemC-

Ams library, such as: adders, subtracters, integrators, 

derivators, transfer function and so on.  

 

Discrete Time (DT) models are modeled as SystemC-Ams 

Time Discrete Function (TDF) modules. The processing() 

method of the module contains the body behavior definition 

while the set_attribute() method is used to set the 

component period and the I/O signals rate and delay.  

 

Discrete Event (DE) models are modeled using SystemC 

methods sensitive to the events occurring on the input ports. 

The method contains the behavior of the component and is 

immediately executed whenever an event is notified. 

 

Continuous Time Discrete Value (CTDV) models are the 

equivalent of the SPEEDS component containing only 

discrete flow ports. According to the SPEEDS MoC, those 

models are time triggered models where the time interval 

between two activations is not fixed and is decided by the 

component. The most significant part of the body is 

represented by the step() and the commit() functions. The 

step() function computes the component’s outputs without 

updating its state. The step() function is used to resolve the 

fixed point semantics. The commit() function updates the 

component’s state and communicates the output discrete 

flow values to the interconnected components. The calling 

order of those functions is decided by the SPEEDS 

scheduler and is defined in the SPEEDS hosted simulation 

protocol.  

 

Synchronous Reactive Event (SRE) models are the 

equivalent of SPEEDS component containing both discrete 

and event flow ports. The body structure is similar to the 

CTDV one, with the step() and commit() functions, with the 

exception that event flows are communicated immediately 

to the interconnected components by the step() function.  

 

The wrapper has the purpose to adapt the body, defined with 

different tools and languages, to the DESYRE framework. 

For each I/O port of the body, the wrapper contains a 

specific I/O port implementing an MoC-specific DESYREII 

interface. As mentioned before, modules with different 

MoCs exchange signals of different types in a different way. 

As a result, a semantic adaptation is required to interconnect 

two modules implementing two different MoCs. The 

adaptation is provided by special components called Thick 

Connectors that appear as simple parameterized connections 

in the SysML internal block diagram, as they are added by 

the model transformation flow.  

For each pair of MoCs a specific Thick Connector has been 

implemented. Only one example of Thick Connector 

implementation will be reported in this article. Fig. 5 shows 

the internal structure of the Continuous Time To Discrete 

Time Thick Connector. The component consist of a first 

module that periodically samples the continuous time input 

signal and writes its value on a discrete time output signal of 

type double. The “Type Casting” module performs a casting 

from double to the data type of the DT port connected to the 

Thick Connector output. The sampling period is 

automatically set to the rate of the component connected to 

DT output port. 

 

 

Figure 5 - CT to DT Thick Connector Structure 

5.3 Cruise Control Simulation and Results 

Let us now turn our attention to how the DESYREII 

framework is used to simulate and perform some analysis on 

the proposed use-case. As reported in Section 3.3, the 

DesyreML  model transformation flow automatically 

generates a set of base components and XML files. The 

components represent the different modules that compose 

the cruise control system, while the XML files describe how 

those components are interconnected and configured. The 

component structure is generated according to the 

specifications reported in Section 4.1.  

Continuous time modules have been simulated with an 

integration step of 2ms while, discrete time modules have 

been configured with a time period of 20ms.  

The system has been simulated in steady state with an initial 

velocity of 130km/h and an initial throttle aperture of 0.324; 

the cruise control set point (desired velocity) is 130km/h. 

The road slope component is responsible for changing the 

status of the road slope during the simulation. Vehicle 

dynamic depends on the slope of the road (positive = road 

slanted upward, zero = flat road, negative = road slanted 

downward). Fig. 6 shows the road slope simulation profile. 

During the first 15 seconds, the road is flat. At 15 seconds 

the road starts slanting downward with a slope of -0.02. At 

30 seconds the road takes up a positive slope of 0.06 and 

returns to a flat road after 15 seconds. Fig. 7 shows how the 

throttle aperture is controlled by the Cruise Control System 

in order to maintain the speed constant when the road slope 

changes.  Fig. 8 reports the value of the speed during the 

simulation. It is possible to see that in coincidence of the 

points where the road slope changes, the velocity presents 



an overshoot or an undershoot and then is stabilized again to 

the set point value.  

 

 

Figure 6 – Cruise Control System - Road Slope 

 

Figure 7 – Cruise Control System - Throttle Aperture 

 

Figure 8 – Cruise Control System - Vehicle Speed 

 

The simulation has been performed on an Intel® Core™2 

Duo CPU P 9600 @ 2.66GHz with 4.00GB of RAM and 

Windows Vista 32-bit operative system. DESYREII 

required 1305ms to simulate 50seconds of the real system.  

6. CONCLUSIONS 

In this paper we presented the DesyreML integration 

language. The language allows for the integration of 

heterogeneous components supporting several models of 

computations (currently SR, DE, CT, DT, CTDV). The 

language syntax is based on the SysML language, using the 

profile mechanism to extend syntax and semantics. As an 

application of the language we described an analysis flow 

based on model transformation and the DESYRE analysis 

platform, integrating SystemC and SystemC-AMS, showing 

the capability of the language to describe an heterogeneous 

system through the Cruise Control use case. 

As future work, we plan to extend the language and the 

analysis flow to allow the integration of other MoCs of 

interest, such as Asynchronous Systems (GALS), Markov 

Chain, Stochastic Hybrid Systems.  
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