

Increasing intersystem functionalities validations

efficiency thanks to

Model-Based Design

Authors:

Pedro Moreno Lahore, Yves Touzeau & Olivier Guetta (RENAULT).

Introduction/context:
Since the late nineties, the number of ECUs (Electronic Control Units) used in our

vehicles has been growing steadily to reach about from thirty up to sixty ECUs for a

premium vehicle.

The methodologies used in the development of the ECUs are far from being

homogeneous in an automotive company due to the following non-exhaustive list of

causes (More or less related between them):

• Distance in organizational charts (Ex: Vehicle and Power-train departments)

• Physical distance (Ex: Location in different technical centers often not in the same

cities/countries)

• Controlled Systems technology and functional needs differences

• Technical background & skills of development teams

• Human & economic resources dedicated to the systems’ development

Nowadays we can observe that the methodologies used for the ECUs development have

strongly diverged.

Some examples, little isolated teams use high-level text specifications for ECU

development as other teams use Model-Based Design development process and tool-

chains. Some teams use the reduced distance between them to create together accurate

MBD inter-system tools used for high-level requirements validations. As a result, nearly

all the teams are using or developing their own processes, rules and tools for ECU

development. Therefore, they often have to correct errors made by other teams in their

own company.

ECUs functionalities become more inter-related and complex. The schema in which each

developer uses its own rules, process and tools is no longer valid: these functionalities

have to be validated before the physical ECUs are available in order to reduce time to

market and costs.

Theory 1: Analysis of the tasks used in the V development cycle
In order to understand the difference between the development technologies, we will

present a global analysis of the different tasks, methodologies and tools that the

Software designers can use along the development process. We will also explain the

limitations and advantages of the different tasks.

In this figure, we can see a variant of the classic V development process for the

ascending phase.

Coding

SW Design

Integration

In
te
g
ra
ti
o
n
 &
 t
e
s
ts

High level
Requirements

(ECU level)

Functional Modeling

Functional Architecture
(Requirements allocation)

MIL Module

tests

+ RE-USE

Unit tests +

Verifications

INTEGRATORINTEGRATOR

SUPPLIERSUPPLIER

+ Traceability
+ High level
Validation Plans

+ Modular software
+ Traceability

+ Lower level
Validation Plans

+ Guidelines

+ Libraries

+ Model-checker

+ Dictionary

+ Diversity
management

+ Tools

+ Coverage

Model

architecture
tests
+ Tools

+ Formal verif

+ Formal verif+ Req. Traceability

+ Tools
+ Formal verif

Model Full

ECU tests

+ ACG

+ Code
optimizations

+ Code
architecture verifs

SIL Module

tests

+ Coverage

+ Formal verif

Target
coding

PIL Module
tests

+ Coverage

+ Formal verif

+ Offline Calibration

+ Formal verif

Full-

prototype

+ Coverage

+ Formal verif

Partial-

prototype

+ Requirement
verif

+ Offline Calib

Partial

Mock-up

+ Requirement
verif

+ Offline Calib

Full Mock-up

+ Coverage

+ Formal verif

+ Traceability
+ High level
Validation Plans

Top level

Requirements
(Intersystem)

D-EIPF (Digital

Electronic
Integration
PlatForm)

EIPF(Electronic
Integration
Platform)

Transversal Management traceability tools

+ Traceability
+ Change Request

+ Baseline

MBD

Generic

Final Product

+ Cheap, fast

+ Reliable

Validation &
Calibration

Techniques

+ Process

During the V descent phase, we can identify several phases related to later validation

steps:

• Top level Requirements: Definition of the requirements for each of the

components which are part of the system. Those system requirements need to be

validated with predictive or final means predictive of the whole vehicle high

potential electronic via the use of power test benches

• High level Requirements: Exhaustive definition of each ECU requirements. They

need to be validated and accepted both in format and content. These requirement

validations are performed with predictive or final means of the ECU high potential

electronic environment

• Functional architecture: In this step it is necessary to distinguish the

requirements allocated to the ECU platform (Hardware + Basis software) and the

applicative software. The applicative software requirements must be allocated

within functionalities using system architecture criteria. A detailed development

phase will allow the definition of the final requirements allocated to each SWC

(Software Components), inputs/outputs and each SWC behavior constrains.

• Functional modeling: Means the design of each SWC. The models produced will

have to validate both design rules and functional validation of the requirements.

Changes to the classic development process occur in the Ascending part of V cycle

phase, as three possibilities are available for the developers:

1st Ascending part of V cycle possibility: Use of Virtual models verification:

This technique is the base of Model Based Design, its main advantages are:

• Anticipation, as this verification can be done soon in the process before costly

phases

• Response time, implementing changes and checking their functional behavior can

be done within minutes

• Cost, only a computer with an algorithm design and simulation tool is necessary.

First limit to using this technique is the similarity between the algorithm model and the

algorithm real behavior in the ECU. In order to improve this similarity, the definition,

application and verification of design guidelines are necessary. The use of Automatic

Code Generation, in which few or no interpretation of the algorithm model is performed

manually by the coders, is very useful for this technique.

Second limit is the similarity and predictivity of the controlled system model providing

feedback of the ECU’s actions, used to close the loop. Difficulties using such controlled

systems models are:

-Low knowledge of the controlled system behavior (Typically in innovation

project)

- Controlled system complexity

- Controlled system model predictivity level lower than required for offline

development.

In the indicated previous cases this MBD methodology can not be used alone and the

next technique is necessary.

2nd Ascending part of V cycle possibility: Use of algorithm generic code to control the real

system (Prototype)

The main advantage of this technique is that no model of the controlled system is

necessary as the developer can use the generic code to control the real system. In order

to use this technique the developer compiles the model in a quick prototyping target.

The first limit is the fact that we have no insurance that the code behavior is equal to our

algorithm model behavior. In order to check it, a MIL-SIL (Model/Software in the loop)

validation is necessary.

The second limit is the fact that ECUs resources constraints are not taken into account,

as the compilation runs in a PC far more powerful than the vehicle ECUs.

The third limit is the cost of the associated vehicle tests used.

 3rd Ascending part of V cycle possibility: Use of the final integrated software in its

compilation target

This case consist in the use of the final physical ECU (Final product) for the validation. It

provide us a proper view of the ECU limitations via the use of PIL (Processor in the loop)

and of the high potential electronic via the use of power test benches.

Limitations of using this methodology alone without use of 1st & 2nd methodology are the

following:

• Bugs are found very late in the development process, leading to huge expenses

• The software is already integrated and manufactured. As a consequence the

corrections of bugs at this step will be expensive and can delay ECU time to market.

In the next chapter we will provide a return of experience for MBD development at a part

of the functional level

Return of experience 1: Shared simulation environment for
Particulate Filter MBD validation

1. Development Context
The sample concerns the development of the Diesel Particulate Filter control strategies,

now integrated on all the Diesel vehicles since the Euro 5 standard application; The main

requirement of this technology is to limit the pollutants emissions with the minimum

effect on car performances and the minimum impact on the client consumption.

However, the development of this system is very complex, different actors of the system

development need to be strongly linked together:

• Requirements definition,

• Strategies design,

• Tuning.

Requirement definition needs to take into account the variety of potential client

behaviors to verify that the system fulfills its objectives (particularly security and over

consumption linked to the PFT).

However, the potential client behaviors are very different (highway drivers versus city

drivers for example). As a consequence, some validation tests can be very expensive,

very long or even impossible! For example, in order to estimate the mean over-

consumption linked to the DPF for the average clients (and not only on the NMVEG

cycle), it should be necessary to take numerous vehicles that are representative of the

commercial vehicle and make them realize cycles that are representative of the clients

who buy this vehicle over the year (As climate changes have a huge impact on the

system performances): in fact, this kind of test is impossible because it would be too

long and expensive.

In this case, simulation is not only a way to reduce tests, but the only way to evaluate

parameters influence in the requirement target

2. Shared environment Application for MBD validation

In order to response to these development complexities, Renault Power-train

department developed a simulation environment tool which is shared by all the entities

working on after-treatment systems (strategy conception, calibration definition but also

after-treatment requirement definition and validation team).

The objective of this simulation platform is to have a common simulation environment

which allows us to:

• Define the exhaust line technical definition (PFT volume, material, positions, …),

• Develop and validate the control strategies,

• Tune these strategies,

These calculations have to be made:

• For a representative amount of clients (approximately 200 client) ~= 6 millions

kilometers, in different cities and times of the year.

• In a short time ~= 2h00 min

The development/simulation & validation environment has a fixed structure

(Independently of the functionality tested) composed by 5 main items.

• Stimuli: External & independent of the studied control system signals. It is part of the

requirement definition job to indicate in which conditions the functionality must be

tested. In after treatment we use a client statistic behavior database, which allows us

to be representative of the way all our clients drive.

• Studied specifications: Model of the algorithms developed to be used in the ECM.

Algorithm design is responsibility of the designers while calibrations are defined by

the tuning team

• Studied specifications environment: Model of the controlled system which allows us

to predict the impact of the software actions and the client behavior on the modeled

systems (PFT, injectors, etc). Share of responsibility for this block is complex:

Hypothesis accepted for controlled system model should be defined by requirement

team. Model is made or bought by algorithm design team or a modification team

close to it. "Check: lessons learnt, controlled system model handling"

• Post-treatment: Result box, acceptance criteria defined by requirement team is

checked in this box

The use of a shared simulation environment improves cooperation as each team is

responsible of a well defined part of model which can be used as an output of their work.

2. Lessons learnt
SILVER (Shared environment tool name) started as an innovation project and is now

applied with some difficulties in after treatment systems developments since 2009. The

analyses of these difficulties are the key for the successful application of these MBD

validation techniques to all electronic systems development.

1st: Differences between the control algorithm and the ECU behavior + difficulties for

simulating different control algorithm (~Software Components) together.

Fact: In 2008 when the experience was performed, our design rules did not take into

account:

a) Initializations and NVM (Non Volatile Memory) values handling properly. Simulation

start was assumed as vehicle key-on and simulation end as key-off. In order to simulate

thousands of kilometers we needed to take into account the key-on-off-on events, which

meant that all the strategies used needed to be modified (Different from the ones sent to

the coder)

b) Ensuring that two different SWC (Software components) could be simulated together.

c) Possible differences between algorithms and the final software appearing typically at

the coding step

Solution: This first difficulty is solved by the definition and application of shared strict

design rules which takes into account the functionalities that need to be simulated. Using

rules which ensure the compatibility with Automatic Code Generation reduces the

differences between the algorithms and final software.

2nd: Offline simulation time

Fact: Initially we thought it will be the main issue, simulations would take too long

Solution: Thanks to some design modifications, we made our strategies compatible with

compilation; we were able to build a quick simulation executable which solved the issue.

The use of design rules compatible with ACG definitely solves this issue. The increase of

computer resources available seems to grow quicker than the software size allowing us

to think that it should not become an issue in the future..

3rd: Difficulties for re-using the simulation environments, mainly due to management of

the controlled system models

Fact: The controlled system model is normally developed during the innovation phases in

which we increase our knowledge of the controlled system behavior. Its parameters are

obtained via some targeted tests for one specific application. The problem comes when

we want to reuse the simulation environment for another application. These controlled

systems models need to be parameterized for the new application and sometimes the

models adapted

Solution: Controlled systems models need to be managed in version with a proper

parameterization methodology as the one used for the algorithm in the ECU. A huge

organizational effort is necessary to achieve this goal

4rd: Data exchanges

Fact: Using the right software calibrations and variables attributes is difficult. Many

issues appeared because in the simulation environment the right calibrations or data

where not used.

Solution: Creation of a global database dictionary for ECM in which the information are

unique.

Theory 2: Anticipation of intersystem functionalities validation
thanks to MBD

As said in the introduction, the vehicle intersystem functionalities allocated in the

different ECUs become more complex with time.

The first “front view” of the V development cycle can be completed with a second “side

view” (see next picture) showing the different objects (From ECUs to Software

Components) used in the vehicle intersystem development. Historically each of this ECU

followed its own V adapted development cycle.

In the figure, we can see two hypothetical functionalities that are allocated along

different ECUs.

In order to validate those functionalities the EIPF (Electronic Integration PlatForm) is

historically used, in the platform we find all the physical ECUs connected. The EIPF

methodology is a possible task in the 3rd Ascending part of V cycle phase of the

development process, with all limitations already described for these tasks.

Schema of traditional validation in EIPF,

only SWC are validated via MBD;

Functionalities crossing SWCs and

intersystem functionalities are validated

once coding & integration of each ECM is

performed.

To reduce the number of validations made with this expensive technique, we would like

to apply the same MBD techniques currently used in some single ECUs to the

intersystem functionalities validation. This mean of validation is called in Renault the D-

EIPF (Digital Electronic Integration PlatForm). The objective of this platform is to detect

all functional specification design bugs in order to anticipate algorithm corrections before

coding and integration, which leads to costs reduction. The use of D-EIPF should limit

EIPF validations to high potential electronic bug validation.

Schema of D-EIPF use. Validations for

each granularity level are performed

initially at MBD level, reducing the

number of validations to be performed

with the final object. Require a strong

work in requirement definition and

validation plans

Using a D-EIPF efficiently is not easy, as we need to ensure that:

1. - All ECUs used in the D-EIPF can be simulated alone, or in a deteriorated form use

their code as black box in the simulation

2. - All ECUs can be simulated together

3. – Computers used are powerful enough to design and validate models of that huge

size.

4. - ECUs tasks coordination is similar to the one used in the vehicles

5. – We can use software components not developed by our OEM in D-EIPF even if they

are black boxes, in worst case develop a simplified model of the ECU

Conditions 1 to 3 means that all ECU algorithm designs must have a degree of maturity

close to the one needed for Automatic Code Generation. Most of these ECUs are

developed by teams using their own methodologies. In order to ensure ECUs

communication a change in their developments methods is necessary.

For those not meeting this level of maturity, changes are necessary and sometimes not

accepted by the teams: many of the rules, tools and processes that those teams have

been developing for years can no longer be used, and must be common among all the

developers involved in order to ensure the efficient use of the D-EIPF platform.

Driving this change is one of the challenges of the Renault Embedded Software expertise

domain.

The first steps of this challenge are:

- the analysis of strengths and weaknesses of the different teams

- the identification of blocking points for the deployment of common procedures.

These blocking points may be categorized as technical, economical or human factors. For

this last one, convincing such a large panel of developers of changing the way they work

is often more difficult than solving technical issues.

In the next chapter we will provide a return of experience of D-EIPF experience

Return of experience 2: The D-EIPF experience.

Description of D-EIPF concept
D-EIPF consists on building a simulated system integration platform upstream in the V-

Cycle, in order to validate E/E system design and integration of the whole vehicle

In a model-based-design process, the ECU specifications are models. Different types of

validation are done with the model:

• Model in the loop validation: Its aim is to validate the specification before

sending them to supplier for autocoding. The same test plan is played on MIL

than on HIL after reception of ECU from supplier

• D-EIPF validation: The D-EIPF “Digital Electronic Integration PlatForm” is used to

validate the integration of ECU in the electric architecture.

The D-EIPF is especially used for validation of distributed functions (functions that

are embedded in several ECU). One again those validation are done before

sending models to supplier.

D-EIPF allows synchronous co-simulation. In fact, different models from different

languages (Matlab Simulink, Statemate, CANoe…) communicate together and share the

same clock.

The validation is done by gathering all the runnable specifications of each ECU from the

different departments (chassis, body, engine…) and simulating them together including

environment models (electrical distribution, vehicle dynamic…). The CAN network is also

simulated in order to be predictive in terms of communication.

For the synchronous co-simulation, a specific tool is used: RT-LAB Orchestra from OPAL-

RT company.

D-EIPF structure
In D-EIPF there are 3 different kinds of model:

• ECU full model: it is the runnable specifications of the Applicative part of the

ECU. Some ECU Service parts (simplified models of basic SW and HW parts) are

added to the model in order to

be able to validate the same

way ECU model and real ECU.

In fact, the I/O of the model

should correspond to the I/O of

the ECU.

• Plant models: it is model used

to simulate the ECU

environment. It can be a model

of sensor and actuator, or the

model of the CAN network

communication, or the engine

model if it is needed.

• Part ECU model: it is a simple representation of the behavior of the ECU but it is

not the specification itself. It is used to replace the ECU specification.

D-EIPF main goals

� Quality improvement

� More validation in design phases (short loops)

� Earlier integration of systems (Inter-system, Naming rules)

� Fault injection is easily made possible / Proposal to be changed into: Early

test of reduced mode

� Costs reduction

� Allowing to detect bugs in Specifications and System Integration far

upstream (before sending specifications to supplier) in the V-Cycle and

reducing physical validation phases

� Minimizing risk of remaining bugs.

� Development Time

� Test plan preparation in advance phases

� Mastery of the systems complexity

� Fast and economic investigation of various E/E Systems and architectures

Validations done on D-EIPF
It is very important to distinguish between MIL validation and D-EIPF validation.

MIL validation consists on the validation of the ECU itself by stimulation of its inputs

and outputs. The test plan used should be the same as HIL validation.

D-EIPF validation consists on integration tests. The tests played on D-EIPF are

customer-oriented tests. The aim is to validate the right integration of ECU in a vehicle

environment, the correct communication between the different ECUs and the

requirement compliance of functions distributed on several ECU. The stimuli of the tests

are customer actions (door opening, brake pedal pressing…).

Therefore, the anomalies found on D-EIPF are not the same as anomalies found on MIL

bench. In fact, the ECU model is validated before its integration on D-EIPF, thus the

anomaly found is incompatibility between different ECU specifications.

Example of anomaly found on D-EIPF

This anomaly was not found, as expected, on MIL ECU bench, as the predictions of the

intersystem were not precise enough (In fact, on MIL ECU bench, HFM ECU has been

validated with the expected behavior BCM ECU, and not the real behavior model BCM).

TITRE / Title : Cranking without pedal conditions

EFFET CLIENT / EFFET PRESTATION / Customer effect
After a nominal engine stop (not a "stop and start" engine stop), engine cranking isn't possible without to press
pedal (brake or clutch)

Conditions de test / Test conditions
START_WITH_PEDAL_PRESS_CF = True
Nominal stop engine (by start push button)
New engine cranking (by start push button) without press pedal

Comportement attendu ou Specifs RENAULT / Normal Case
HFM ECU send StartingRequest by CAN even if any pedal (clutch or brake) pressed

CONCLUSION: Embedded Software Expertise Domain actions to
improve intersystem functionality validation.

2 years ago, Renault top management decided to launch again some “Strategic Expertise

Area (SEA)” domains. One “Embedded Software Technology” domain was created,

showing the importance for an OEM to master software development due to the

increasing volume of embedded software in our cars. Experts and specialists from

several divisions (mechanical, vehicle, advanced engineering) have been appointed and

are now fully or partially dedicated to this transversal and Renault worldwide SEA. One

of the main missions consists in defining methods, process and tools to ease the

development of software and ensure transversality, consistency and deployment of best

practices, which are useful especially for little isolated teams.

Model Based Design is considered as a strategic project for Renault, many people both

from expertise and metier are involved. For instance, activities such as definition of a

new process for software design, definition of new rules for modeling and common

libraries, launch of a common and unique design verification tool, or launch of a global

database for requirements and validation plans, have started and are still on-going. The

main objectives are reduction of number of bugs found late in the development, and

reduction of time needed for the complete design and validation of these embedded

software. Furthermore, having common methods and tools used in every division of

Renault also eases the transfer of people from one team to another.

