
ERTS Feb 2012 1

MODERNIZING SYSTEM DEVELOPMENT: REQUIREMENTS-BASED,
MODEL-DRIVEN DESIGN, IMPLEMENTATION, AND TEST

Bill Chown and Michelle Lange, System Level Engineering Division, Mentor Graphics Corp.

Abstract

With no end in sight, mechatronic system complexity
continues to increase, worsening the challenges that have
already plagued systems designers for years. Incomplete or
volatile requirements, poorly specified and managed
interfaces, integration testing finding problems at the very
last stages of a program, development and analysis in
disconnected domains, multi-domain expertise in short
supply, and coordinating work and status across multi-
level supply chains – these are all problems commonly
discussed among systems developers. These challenges are
further compounded in highly regulated domains, such as
aerospace, automotive, and medical, where the end system
must also be proven safe and conform to pertinent policy.

In this paper, we discuss the root causes of system
design challenges, and how the industry is responding with
more effective design methods, tools, and collaboration
mechanisms.

Introduction
 Across every industry, demanding customers are
expecting more intelligence and functionality at less cost.
The result is increasingly complex mechatronic systems,
where electronics and software control the mechanical
aspects. A 2008 Aberdeen Group study [1] describes this
as a “growing trend to blend mechanical, electro-
mechanics, digital control systems, and electronic design
elements into an integrated system.” The study sites a
number of common problems in developing systems of
such complexity, and concludes that “How effectively
companies are able to address these challenges carries with
it a significant impact on a company’s ability to meet key
targets that drive product profitability.”

Very similar words were expressed by Dr. Donald T.
Ward, Systems Architecture and Virtual Integration
(SAVI) Program Manager during a presentation at the
2011 FAA National Conference for Software and Airborne
Electronic Hardware [2], where he described the
“distinctly unpleasant experience in several recent projects
where problems were found too late.” The SAVI
organization, which is a program under the Aerospace
Vehicle Systems Institute (AVSI) [3], is focused on
establishing a new way of specifying and integrating
increasingly complex aerospace systems to reduce cost and
schedule, while increasing quality, safety and performance.
At the 2011 Safe & Secure Systems & Software

Symposium, Dr. Ward gave a similar presentation on
behalf of SAVI [4], citing schedule delays and rising costs
as disturbing trends leading to a situation where complex
system designs – if continuing to be developed as they are
today – will simply to be too expensive to be practical.

 As another data point, a 2008 United States
Government Accountability Office (GAO) report on
complex weapons systems [5] determined that the DOD is
not receiving expected returns on its large investment in
weapon systems and that cost and schedule performance of
recent programs is getting worse. In terms of delays, the
report summarizes the situation as follows:

 Whether weapons systems, aircraft, medical devices, or
similar, the stakes are very high (and growing) in these
expensive programs. A single miscalculation,
miscommunication, or misunderstanding in such complex
programs can lead to cost overruns, schedule delays,
reliability problems, or worse. Every engineer and
manager worries about risks like these and takes measures
to avoid them.

 The problem is that these sorts of problems are nearly
inevitable in today’s complex systems. Even well-run
companies can struggle in their development programs,
simply because overwhelming complexity is rendering
previously “best practice” processes outdated and
ineffective.

 The SAVI organization, its member companies, and
many others in industries that are creating complex
systems understand that change of the development
process is needed to ensure safe and cost-effective systems
of the future. But in order to enact that change, it is
essential to have a thorough understanding of the
underlying problems that are driving the complexities and

ERTS Feb 2012 2

corresponding challenges in the systems arena. These key
challenges are described in the following subsections.

Multi-Domain Development

Expertise in the each of the various development
domains is a precious commodity. Multi-domain expertise
is even more rare and valuable. Capturing that knowledge
and utilizing it not only in each discrete domain but also
across domains is essential. A common problem in today’s
programs is that development teams work as isolated
islands, each focusing on their own unique piece or aspect
of the system, but few if any people really focused on the
whole. The organization, tools, and process are often
completely separated across chip, board, software,
controls, power systems, mechanical design, etc.

Bringing this domain expertise together as
appropriate throughout the development is imperative for
project success. Allowing disconnected development and
waiting until the latest program stages to perform systems
integration and connect all the pieces is a high risk
situation, yet one all too common in today’s product
realization process. This is a key cause of problems being
found too late to be economically feasible to fix.

Requirements and Interface Management

Complex systems have several tiers of requirements,
derived from stakeholder needs, starting at the System of
Systems level and culminating with component
specifications. Managing/tracing requirements through the
various stages of design evolution, levels of hierarchy, and
supply chain boundaries is no easy task. Far too often this
aspect of design is document-based.

Many companies do have requirements capture
systems, but the common problem with these systems is
that the process of “requirements management” is limited
to working on a database and is thus separate from the
actual development activities. A database stores
requirements and an expert on the database tool (or
requirements management) is usually in charge of keeping
this data in order. Also, each of the isolated development
domains may use their own tools and processes for
managing the requirements for their domains. Even when a
tool is used at the top level, or within various groups,
communicating down or across the project still often relies
too heavily on documents, which far too often are out of
date or out of reach.

A more modern approach utilizes strategies and tools
that link the requirements databases to the development
environment and activities – across all development
domains, making requirements-driven design (including
management and traceability) the responsibility of
development, safety, verification, and test engineers, in

other words, the people actually doing the development
work.

The problems with interface management are quite
similar to the problems of managing requirements. In fact,
a more integrated approach to management of
requirements can help with interface management as well.
For example, one approach is labeling requirements as
“interface” requirements and identifying the interface
stakeholders (i.e. people, groups, organizations, etc.) who
need to be involved with changes. These interface
requirements are linked with the systems engineering
source database, which with appropriate tools can then be
propagated with verifiable digital continuity down the
design and verification pathways of hardware, software,
and test organizations.

The Development Process Itself

The V-Diagram is probably one of the most common
ways to express a system design process. An example is
presented here.

The wording of the individual stages may vary
somewhat, but ultimately the process begins by some sort
of system definition and proceeds into a preliminary
design or architecture phase, which feeds into
implementation of the items that make up the system
(namely, the components, chips, printed circuit boards,
software, controls, and mechanical parts). Once the pieces
are implemented, they are then integrated and the whole
system is tested.

The biggest problem with a process such as this is
that it is inherently sequential. While there are certainly
iterations within and between the processes, in general, the
flow is from left to right, as the “time” axis indicates. This
means that in the most traditional flows, proof that the
design works is reserved for the very final stage of the
process – testing the physical, integrated system. While
this model may have served as a guide for the development

ERTS Feb 2012 3

of simple systems, with today’s complex system
developments, following a sequential process and not
verifying the system operation until the end of the process
is a recipe for disaster. The more complex the system, the
less likely this approach will result in a working design,
developed within schedule and budget. In fact, the
comments and data presented earlier corroborate this.

Another factor concerning the V-Diagram process is
the disconnect of the design development itself from the
lifecycle process and data. The use of Product Lifecycle
Management (PLM) solutions, which provide enterprise
level business solutions for requirements management,
product data management, configuration management,
program and project management, is on the rise. And yet
adoption of PLM solutions does not always lead to the
seamless, collaborative development environment that is
needed to bring multi-disciplinary teams and development
data together. Critical gaps still exist.

The process itself must be improved with more
concurrency, earlier validation and verification,
development integration, and process collaboration. The
resulting V-Diagram representing such improved processes
must be completely re-evaluated and modernized.

Increased Regulation

System complexity and the associated risks and
concerns have been the driving forces behind new or
updated regulatory requirements for system design in
several domains. In aeronautics, the newly published ARP
4754A mandates systems design companies take a more
structured and rigorous approach to system development.
Requirements-driven design and validation/verification
throughout the process are two key elements of the new
ARP 4754A document.

In automotive, the all-encompassing ISO 26262
process governs development of all safety-related
electronics in the entire vehicle. Here too, requirements
management and verification play a key role, with an
added emphasis on the safety analysis aspects of the
program.

The medical field is very similar, with FDA
regulations originating from 21 CFR 820.30 Design
Controls and further supported by ISO 13485 and ISO
14971. These regulations govern the complete
development process including requirements management,
design, verification and validation and safety risk
management.

Other industries as well, such as Nuclear, Industrial,
Transportation, Space, and Military have similar regulation
and/or requirements to ensure the safety or mission-critical
aspects of their systems. After all, it is one thing to be late
or over budget, but it is an entirely different thing to
produce a system with flaws that ends up killing people.

The regulators of course only care about the latter. The
systems companies producing these devices must care
about both.

Summary of the Challenges

In their most basic form, the challenges of system
design all really stem from three basic problems. 1)
development processes that are sequential as opposed to
concurrent, 2) processes that are driven by static
documents as opposed to live data, and 3) development
work that is done in isolation as opposed to in
collaboration.

The symptom of any or all of these problems is that
major problems are found much too late in the process to
economically solve.

Failing to recognize and address these challenges can
have an adverse effect on the schedule and cost of a system
development program, and this can have a serious impact
on a company’s profitability or even ongoing viability. The
convers is also true. Addressing one or more of these
challenges, by modernizing the design process, results in
notable benefits.

The Remedy: A Collaborative Model-
Driven Development Process

A temptation is to look for a single solution to what
in fact is a complex combination of challenges, and can
only be effectively addressed with an integrated
combination of capabilities, working together. In other
words, no single bullet can eliminate all concerns.
However, a modernized approach to system design
encompasses nearly all aspects of the flow, and serves to
address most of the key concerns expressed here.

The Model Driven Development (MDD) process
brings key aspects of these solutions together, utilizing
models to describe needed capabilities, and also to drive
through the process and connect intent and
implementation. This involves languages able to describe
needs in linked and in disparate domains, a methodology

ERTS Feb 2012 4

that recognizes the separate needs, but the necessary
connection points, and focused tools that serve key steps
through this flow.

MDD technologies with a greater focus on
architecture and corresponding automation yield higher
levels of abstraction in the development process. This
abstraction promotes simpler models with a greater focus
on problem space. Combined with executable semantics
this elevates the total level of automation possible.

The Object Management Group (OMG) [6] has
developed a set of standards called Model Driven
Architecture (MDA) [7], building a foundation for this
advanced architecture-focused approach. By applying the
wide reaching and integrated automation possible under
MDA, engineers using these technologies have found
dramatic increases in both total productivity and quality in
their development projects.

What is Model-Driven Development?
The models are key to an MDD approach. A model is

a simplified or abstracted representation used to explain
the workings of a system or element of a system, then
applied in a Model Driven Development process to the
eventual creation of an implemented result. In this
approach, the model becomes the communication vehicle
to describe and even demonstrate the product from early
stage conceptual design through implementation.

So, why model? A model helps to capture the subject
matter, and then enable operating upon or using that model
to gain knowledge, and answer questions about the system
it describes. Further, a graphical model, such as the UML
(Unified Modeling Language) model shown below, adds to
the understanding through visualization.

With models in hand, developers can “see” and even
“animate” the system requirements, understand and
manage interfaces between functionality, assess design

decisions, ask questions, try out alternatives, and
demonstrate to other stakeholders the intended product.

Starting with requirements, or rather the concepts
behind those initial requirements, models help elaborate
and validate the real system needs. The model can then be
the vehicle to communicate the requirements to the ever-
broader team needed for implementation. And it is their
interpretation of those requirements that will actually
shape the product that eventually emerges from the
process. Good models significantly aid in maintaining a
consistent view and interpretation.

The model then demonstrates what the sum of
requirements really means, and seeks to deliver a
presentation of the requirements, in an active form, that
can be assessed and adjusted, from the beginning of the
overall design process.

The ability to not just document, but demonstrate, is
a pervasive part of any successful MDD flow, and needs to
be in place from the very beginning. It enables the parties
to this great design to ask the questions that need to be
asked at the beginning of the story, and obtain meaningful
answers at the same level of detail available at this design
stage.

In a traditional system development process,
assignment of functionality to an implementation path is
often performed very early in the design process, and is
therefore without sufficient information to make a truly
informed decision. Furthermore, once selected, the chosen
architecture tends to become the only choice; later learning
is very hard to incorporate and so the design architecture is
prematurely frozen.

Typically, early design stages do not offer enough
detail to enable optimum partitioning choices. To improve
this step, and enable a more effective and more flexible
flow, more information is essential, as is an architecture of
the process that will enable change.

Here the use of models, the fundamental premise of
MDD, can make the crucial difference. Models can
exercise the proposed partitioning and answer the next set
of questions.

Rarely is the first architecture the best architecture.
Learning during the flow, acknowledging new derived
requirements, and dealing with an ever-changing
marketplace (i.e., requirements volatility throughout the
program) all drive the need for a flexible process. To have
the time to execute a significant iteration, the MDD
process has to deliver real improvements in the
information at hand at each stage, and readily support the
consequences of a change. The ability to execute, or
simulate, the specification of the expected design behavior
becomes crucial to having that flexibility in the process.
This idea of being able to both validate and verify design

ERTS Feb 2012 5

function carries through in an MDD process to every stage
of development.

Within the BridgePoint UML tool, two concepts are
introduced that really deliver value in the MDD flow: 1)
executable models [8] (i.e., the “x” in xtUML), and 2)
integral translation (i.e., the “t” in xtUML).

Executable models make possible the Executable
Specification, in turn enabling a far more effective process
to confirm “what” is being designed. From first concepts,
ideas can be refined, potential solutions can be exchanged
with other team members, and intentions can be
demonstrated through model execution. By contrast with
other - more static - drawing or document-driven flows,
the dynamic ability to execute the model has been proven
to clarify understanding and reduce design iterations
significantly. The result is a clearer understanding of the
actual system needs, and a specification that can be used to
make comparisons throughout the flow. MDD is a
significant driver in the move from static documents to a
dynamic and synchronized data-driven process.

Another key feature of Model Driven Development,
that of driving this data consistently through from step to
step in the process, is supported by the Translation aspect
of the BridgePoint tool. Taking the model, with design
decomposition, interfaces, data and behavior, and passing
that forward to both the next stage and tools in the design
flow, removes manual conversion errors, and in turn
enables a data-driven design process that can be shared
across teams and disciplines.

A strong MDD process supports making informed
design decisions, asking key questions about design
choices, and properly understanding what is being
developed (i.e., the function), where partitioning choices
are made (i.e., the architecture), and how it will be
implemented. In addition, MDD supports verifying the
model at each stage of design and thus reducing reliance
on late stage physical integration and testing as the primary
means to validate the system.

The Idea and Value of a Virtual Prototype
The questions asked (and answered) at the conceptual

design stage relate to overall system functionality and
behavior, at a high abstraction level, and independent of
[most of] the impacts and constraints of the eventual
implementation. In practice, the design as conceived and
modeled up to this point will be implemented in many
teams, most likely focused upon their specific
implementation technology domain, such as digital control
electronics, analog sensors, system or application software,
etc. Model translation facilitates deriving the appropriate
set of requirements for those domain needs, and also
conversion of the initial model to other forms that enable
further questions to be asked, and answered.

To determine if the design has assembled the full set
of required elements and if they interact with each other as
expected is the role of a Virtual Platform (or Virtual
Prototype). Initially, the Virtual Platform does not need
great detail (e.g., timing or similar constraints), but does
need to enable rapid execution to exercise all the
functionality. What the Virtual Platform enables, and at a
significant and important stage in the process, is the
checkpoint between these partitioned disciplines to ensure
continuing consistency. The desired goal of working
concurrently, and across design disciplines, is unattainable
without mechanisms to bring those domains together at
relevant stages through the flow.

But functional behavior is only part of the design
goals. Performance, power, real-world interactions, and
overall system capability must also be assessed. Often, this
can only be done once the first physical prototype is built,
but waiting for this to be done is not optimal. Instead, a
much more productive process involves using a System
Virtual Prototype, whereby the hardware platform,
software applications that must run on it and deliver the
system behavior, and the external sensors, actuators and
real-world interfaces can all be exercised together.

A multi-physics environment, such as that provided
by Mentor Graphics SystemVision®, enables a System
Virtual Prototype that can include different discuplines,
provide simulation and analysis, and be used to address
these questions. At this stage, the model contains sufficient
detail to start looking at performance, to identify
bottlenecks; assess power consumption, in various
different conditions; and even test boundaries of
constraints that may limit the real system. This is the right
time to start asking those sorts of detailed questions.

ERTS Feb 2012 6

Benefits of a Modern, Model-Driven
Development Flow

So MDD is not just a good idea. It actually helps
improve productivity in the design process. It makes it
possible to use models all the way down the flow,
automatically generating parts of the design and thus
improving the design’s quality by bringing in repeatability
and facilitating the process steps necessary in many
instances for standards compliance. It enables actions such
as eliminating physical prototypes from the process, by
instead simulating digital and analog elements working
together and with the control software operating the
system. It can also eliminate or significantly reduce the
paper trail, instead automating the creation of pertinent and
necessary documents (for compliance, for example) from
live design data.

A productive MDD process incorporates tools and
capabilities that facilitate uncovering critical problems
early in the development cycle, well before system
integration begins.

MDD provides a structure for managing complexity
while, at each design stage, making it possible to directly
link design functionality back to the program’s original
requirements and functional specifications. A virtual
prototyping infrastructure, in which models from different
domains can be integrated at each stage of the design
lifecycle, allows system integration issues to be identified
and addressed earlier in the process.

Four cornerstones of a modern flow enable these
results.

Considering the process gaps discussed earlier,
solutions for improvement can be focused on these four
areas:

1) Working across disciplines.
2) Developing concurrently as opposed to

sequentially.

3) Having design data (as opposed to documents)
drive development and communication.

4) Having a process that supports asking questions
about the design – and getting answers – earlier,
when decisions and changes are economically
feasible.

Improvements in all or even any of these areas can
yield notable benefits in managing system design
complexity. MDD supports improvements in all four areas.

The Next Stage of Process Evolution: Product-
Centric Lifecycle Collaboration

Bringing order to the complex and often chaotic mass
of information contained in the data of a product is a
perennial and growing challenge. Design data and the
design process are intertwined, and connections throughout
the flow are hard to follow and maintain.

Companies creating electronic systems are looking
for a system development solution that will help them
manage the process, the product itself (and future
revisions), along with the product development.

Key required attributes include managing product
requirements (with functional, performance, interface,
safety, certification, and other aspects), communicating
and coordinating project status and activities, across
disciplines and from concept to implementation,
maintaining continuity and synchronization of data, and
facilitating needed regulatory compliance. Requirements-
driven design and validation/verification throughout the
process are two key elements of the processes required to
satisfy many regulatory specifications.

An effective solution links lifecycle tools, such as
requirements management, defect and change tracking,
quality measures, etc. with the design tools and flow,
without getting in the way of the normal flow of those
activities and tasks.

Communication becomes an integral part of the
design flow, and many inter-discipline disconnects are
bridged, helping to make possible a concurrent design flow
that has a real reason to share data and progress.

ERTS Feb 2012 7

Critical questions arise towards the completion of a
project. Is the product ready to go out? Is it in actuality
what it was supposed to be? Could the development
process be repeated? Could it have been developed better?
Documenting all that went on in the MDD process is
essential and leads to the ability to continuously improve
and innovate. Having a mechanism to enable this
information sharing within an MDD approach is key.

Examples of Companies Modernizing
their Systems Design Approach

Companies either feeling tremendous pain or
recognizing tremendous opportunity are motivated to
change. Those that have taken steps to modernize their
systems development processes – even if it is simply
addressing one key issue listed previously-- have seen
notable benefits.

For example, a large government contractor
developing smart munitions was faced with the challenge
of having to demonstrate a design concept in order to win a
contract. Instead of building and demonstrating a physical
prototype of a precision guided munitions device, as they
would have done in the past, they used an MDD approach
with VHDL-AMS in SystemVision to develop a model of
the device, which involved complex interactions between
electronics, electro-mechanics and the power system.
Through the use of a virtual prototype, they were able to
quickly iterate on the design virtually via the model.

Initially they used the model to prove the concept and
win the contract. Later, in the actual development phase,
they were able to use the model to very accurately predict
the behavior of the system. Prior to using an MDD
approach, they would have had to build actual prototype
devices and validate them by test firing and measuring the
results (an extremely expensive and logistically
challenging situation).

The benefits of an MDD approach continued into a
subsequent program where they were tasked with

developing a similar but variant device. They were able to
reuse much of the design, validate the new/different
requirements, and develop it very quickly by leveraging
their previous work in developing the model. The result
was that they produced a working variant design, in short
order, and with reduced cost.

Other examples have involved the development of
medical devices, which may sound completely contrary to
weapons development but at their core are very similar
systems involving hardware, software, and mechanical
aspects. Two different companies – one doing incubator
designs and another developing pacemakers – have seen
very similar benefits from adopting MDD flows.

An incubator is a safety-critical device leveraging
hardware, software, and mechanical elements to create a
life sustaining environment for newborns. One company
developing such devices decided to design the whole
complex system virtually. They developed models of the
analog and digital hardware, including the sensors,
actuators, and plant using SystemVision. They used
SystemVision conneXion, or SVX, to enable execution of
C++ code on the virtual prototype. The early software and
hardware/software integration testing gave them the
opportunity to review and validate design choices in light
of executed behavior, and improve the design to address
limitations of the initial concept.

A maker of implantable devices was motivated to
reduce their design cycle, and they found a way to shave
months off the back-end test process. Instead of waiting to
for the device to be built before creating and validating the
test set (which was general practice), they decided to
develop the test set from the requirements at the early
stages of the program. This required developing a model of
the system in which to run and validate the test set.

The benefits of this approach were not only a
reduction of several months from the back-end of the
process, but verification of the device via the model at the
very early stages of design.

The system being modeled was quite complex and
included a specialized low power SoC device. The process
included modeling the hardware specific platform to verify
both firmware and application software. This process used
BridgePoint to model the system in UML at a relatively
high abstraction level, and explore design options by
executing the xtUML model directly in the Bridgepoint
Verifier. Then the models were used to generate SystemC
models of the hardware blocks and C modules for the
software. These SystemC models describe hardware
functionality at a transaction level, which were then run in
the Vista virtual platform environment to go into greater
depth, assessing hardware/software interactions and
performing initial performance analysis.

ERTS Feb 2012 8

Similar engagements with companies modeling
secure military communication systems, automotive power
systems targeting maximum fuel efficiency, aircraft wiring
between systems, and other complex multi-discipline
systems all demonstrate the same key benefits despite the
variation of end uses. Modernizing processes by using a
model-driven development process, and leveraging virtual
prototypes, enables early system validation and
verification and provides the ability to connect and analyze
the disparate domains of development far earlier and with
far less expense than a traditional prototype. The next step
in this evolution is to integrate this modernized
development approach into a transparently collaborative
product development environment. This will close the final
gap between design development and the lifecycle
processes.

Conclusion
Something has got to change. It is becoming too

costly and risky to develop complex, multi-discipline
systems using processes of the past. Working sequentially
and in isolation, waiting for late stage testing to
validate/verify the product, and relying on static
documents to drive the process are outdated methods that
are yielding late, costly, and malfunctioning systems.

This paper explored a more modern approach to
system development built on a model-driven development
approach. MDD provides a way to use models throughout
the flow from executable specification, to concept
refinement, to demonstration/validation, through
implementation and testing. It can support evaluation of
architectural trade-offs and the model can evolve from a
functional virtual platform to a system virtual platform,
supporting detailed physical mechatronic systems. By
employing an MDD approach, iterations are fast and easy,
and concurrent design, validation, and verification occur at
each stage of design evolution. Requirements traceability
and documentation are inherent and synchronous parts of
the flow, and not afterthoughts. The model itself becomes
both knowledge about the design and a living reference to
the intended implementation goal, inherently connecting
the disparate groups and disciplines initially by
communication/demonstration and later by simulation.

MDD directly addresses the three key challenges of
systems design – sequential design, document driven, and
isolated development. The concurrent, data-driven, and
connected environment of MDD results in higher quality
systems developed more quickly and at less cost. It creates
an environment where appropriate questions can be asked
and the model can be used to demonstrate the answer.
This, capability, as part of the overall verification and
validation that MDD introduces at each stage of design,
reduces reliance on late stage integration testing and

minimizes the chances of finding serious problems too late
to salvage the program.

References
[1] “System Design: New Product Development for
Mechatronics.” Aberdeen Group Report, January 2008.

[2] 2011 National Software and Airborne Electronic
Hardware (SW&AEH) Conference,
http://www.faa.gov/aircraft/air_cert/design_approvals/air_
software/conference/

[3] www.avsi.aero

[4] D. Ward, S. Helton, “Growing the SAVI Paradigm,”
presented at the 2011 Safe & Secure Systems & Software
Symposium

[5] GAO Report to Congressional Committees (GAO-08-
467SP), “Defense Acquisitions: Assessments of Selected
Weapon Programs,” March 2008

[6] Object Management Group (OMG), www.omg.org

[7] K. Scott, A. Uhl, D. Weise, MDA Distilled. Addison
Wesley, 2004

[8] S. Mellor, M. Balcer, Executable UML, a Foundation
for Model-Driven Architecture, Addison Wesley, 2002

