
A new UML tool-based Methodology for the Software Requirements Analysis

Thomas Weyrath
Elektroniksystem- und Logistik-GmbH

Email: Thomas.Weyrath@eurocopter.com

Berthold Schinnerl
German Federal Armed Forces

Email: Berthold.Schinnerl@eurocopter.com

Franz Schöttl
Elektroniksystem- und Logistik-GmbH

Email: Franz.Schoettl@eurocopter.com

Herbert Schreyer
Eurocopter Deutschland GmbH
Email: Herbert.Schreyer@eurocopter.com

Abstract

Current standards in avionic (e.g. DO-178C) and auto-
motive (e.g. ISO 26262) address model-based software en-
gineering techniques. Hence, it is obvious to deal with these
techniques methodically in the corresponding development
processes. This article describes a new UML tool-based
methodology to create the software requirements analysis.
The methodology is use case driven and uses natural lan-
guage requirements as well as UML diagrams. The later
stages of the development process, e.g. software design, are
not covered in this paper.

Keywords: UML, Methodology, Software Requirements
Specification.

1 Introduction

The System Support Centre NH90/Tiger (SSC) is a co-
operative organisation of German Federal Armed Forces,
Eurocopter, ESG, Cassidian and MBDA. It comprises a
team of 200 engineers. Its main task is the avionic soft-
ware maintenance and modification of the military heli-
copters NH90 and UH Tiger. The maintenance comprises
more than 12.000.000 lines of code in 16 avionic comput-
ers, including the ground support system. Additionally, the
documentation of the development is immense. It contains
over 500 documents of specifications and design descrip-
tions. Most of them have hundreds of pages, some of them
over a thousand. In view of the fact that the helicopters have
a life cycle of more than 40 years, the software maintenance
and modification is a challenge.

Another challenge is the obsolescence problem occur-
ring with used tools, databases and formats of electronic
documents. The avionic software of both helicopters was
developed in the 1990s and it is difficult to keep the exper-
tise of the past and present.

1.1 What are the objectives of SSC?

Over the years the helicopter software will be changed
due to modifications in the software environment, new
customer requirements or simply by fixing errors. These
changes will have to be done efficiently and reliably. This
includes that all state of the art processes and methodologies
of software maintenance and modification have to be well
known. These processes have to be improved continuously
and adequate software tools have to be applied. Hence, it
has to be ensured that the software stays long-term main-
tainable because of the long life cycle of the helicopters. If
the maintainability is not given, it has to be established.

1.2 Why does the SSC use UML?

UML is standardized [15] and defines a set of graphi-
cal notation techniques that are well documented. It sup-
ports the application of well-accepted software concepts,
like modularization, structuring and abstraction. These con-
cepts improve the understanding of the system and help
(new) employees to familiarize themselves with the heli-
copter software (see [14]).

In addition the SSC wants to introduce UML for the fol-
lowing reasons:

1. As regards the Tiger: UML could help to avoid the
obsolescence problem because most of the Tiger spec-
ifications based on Structured Analysis (SA), a method
that was state of the art in the 1980s. The tools are no
longer supported and no appropriate successors exist.

2. As regards the NH90: Most of the existing NH90
specifications are text-based and use non-standardized
graphics to illustrate the textual requirements only.
The use of UML as a formal method should a) har-
monize the different graphic styles and b) increase the
understanding of the software functionalities.

With the help of external consultants, the SSC has es-
tablished a customized UML methodology for software re-
quirements analysis and design, which refines an EADS



Figure 1. Meta model of the software use case modelling.

guideline for using UML (see [11]). After this, those con-
sultants have trained SSC employees in both UML and
UML methodology. In addition, the methodology has been
successfully applied in the context of a redesign of an em-
bedded avionic computer. Furthermore, it has been in sev-
eral software projects of the SSC that aim at improving the
testing environment of the airborne computers.

2 Software Requirements Analysis

The objective of the software requirements analysis is
to elicit stakeholders needs and expectations (in particular:
users and customers), that constitute an understanding of
what will satisfy the stakeholders [1]. This outcome leads
to high-level requirements that describe the software system
from customer (or black box) view.

Since the software requirements analysis is a difficult
process, the methodology of the SSC breaks it down into
two smaller, well-defined steps: the software use case mod-
elling and the software domain analysis modelling.

The methodology is exemplarily shown by modelling a
simplified flight management system as described in [19].

2.1 Software Use Case Modelling

The software use case modelling establishes the system’s
functional requirements. It provides a way for engineers
and developers to get to a common understanding with cus-
tomers and users.

Figure 1 shows a summary of the key concepts used
in the software use case modelling. Key concepts are the
use cases, use case diagrams, actions and activity diagrams.
The activity diagrams model the use case scenarios. These

key concepts modell functional requirements, which can be
translated in natural language requirements.

2.1.1 Step 1: Divide the software system into func-
tional components

Avionic software systems are very complex. Hence, there
is a need to divide their functionality into functional com-
ponents (or functional partition, see [1]) to handle the com-
plexity of the model. This is analogous to the decomposi-
tion of the software system into software components and
-modules later in the software design modelling.

The customized methodology of SSC for the modelling
of this functional decomposition is:

1. Create a package with name ”Functions of the Sys-
tem” and provide a brief description of the system in
the documentation field of this package.

2. For each identified functional component 〈FC〉 do:

(a) Create a package with name 〈FC〉 and describe
the task of 〈FC〉 in its documentation field.

(b) Perform a use case analysis (see step 2).

3. Create a class diagram with name ”Functions of the
System” to visualize the functional components as
packages.

Figure 2 shows the class diagram to model the func-
tional components of the example flight management sys-
tem. The system is divided into the functional components
navigation, flight planning, trajectory predictions, perfor-
mance computations, and guidance (see [19]). The grey
filled package shows the parts, which are refined in the ex-
ample.

2



Figure 3. Use case diagram for the flight planning function.

Figure 2. Package ”Functions of the System”.

2.1.2 Step 2: Perform a use case analysis

After the functional decomposition of the software system
(step 1), a use case analysis is used to identify its require-
ments.

Use cases capture system functionality and requirements
[16] of a software system. They can be seen as a contract
between the stakeholders of a system about its behavior
[5, 6]. Each use case specifies a set of actions to yield an
observable result of value to an actor [4, 18]. It describes
the functionality from a black box view. That means that the
system is determined by describing its behavior. Only its in-
puts and outputs, respectively the interactions with external
actors, are considered without seeing the inner working of
the system.

The customized methodology of SSC for the use case
analysis is:

1. Identify use cases and actors by name and provide a
brief description in the corresponding documentation
fields (see step 2a).

2. Create the use cases and group them under1 the pack-
ages of the functional components (from step 1).

3. For each functional component 〈FC〉 create a use case
diagram with name 〈FC〉 in the package of 〈FC〉 and
structure its use cases graphically (see step 2b).

4. For each use case 〈UC〉 do:

(a) Create a textual description of 〈UC〉 (see step 2c).

(b) Create one activity diagram 〈AC〉 with name
〈UC〉 under 〈UC〉. The activity diagram 〈AC〉
models the main scenario (incl. alternative sce-
narios) of 〈UC〉 (see step 3).

5. If 〈AC〉 does not model the use case complete then cre-
ate further requirements (functional or non-functional)
that enrich 〈AC〉 and its actions with further specifics
(see step 6).

Step 2a: Identify use cases and actors
Finding use cases is often not easy. One way is to look
for steps in the business processes that the system has to
support. Another way is to identify the main functional-
ities of the system, i.e. the reason for using the system

1Because of the model has a tree structure, ”under” means ”as children
of”.

3



[13]. Figure 3 shows the use cases of the flight planning
function (from [19]). The diagram is illustrated exemplar-
ily by the use case ”modify the flight plan”. [19] serves as
a higher-level system specification: ”The flight plan mod-
ification can come from crew selections [. . . ]”, i.e. ”mod-
ify the flight plan” is initiated by the actor ”crew-member”.
”The flight plan is constructed by linking data stored in the
navigation database [. . . ]”, i.e. it is extended by the use
case ”insert pre-stored route data”. ”[. . . ] When the de-
sired changes have been made [. . . ] this modified flight plan
is activated by the crew.”, i.e. the use case is extended by
”activate the flight plan”.

A use case must be initiated by someone or something
outside the scope of the use case [16]. This is called an
actor. An actor does not need to be a human. It can be any
external system. All actors should be defined centrally in
the package ”Actors” of the Domain model (for details, see
step 4).

Step 2b: Structure the use cases graphically
The use case diagram structures the use cases graphically
and describes the relations between use cases, actors and
the system.

The customized methodology of SSC is:

1. Draw a system boundary box. The boundary box in-
dicates the scope of the system (the subject) and any-
thing not realized by the subject is considered outside
the system boundaries and should be modeled as an
actor [16].

2. For each use case 〈UC〉 identified in step 2a do:

(a) Draw the use case with name 〈UC〉 inside the
boundary box .

(b) If an actor with name 〈U〉 is involved in 〈UC〉
(active or passive) then draw the actor 〈U〉 (from
package ”Actors”) outside of the boundary box
and draw an association to 〈UC〉.

(c) If 〈U〉 triggers or initiate 〈UC〉, add the stereotype
〈〈initiate〉〉 to the association.

3. If the behavior of use case 〈UC1〉 is adopted completely
in another use case 〈UC2〉 then use the 〈〈include〉〉 re-
lationship (〈UC2〉→〈UC1〉).

4. If use case 〈UC1〉 extends another use case 〈UC2〉 then
use the 〈〈extend〉〉 relationship (〈UC1〉→〈UC2〉). The
extend relationship shall include the condition that
must be satisfied and reference to the extension points
which defines the locations in the extended 〈UC2〉.

Figure 3 shows the result of the use case diagram for
the functional component ”Flight Planning” of the example
system.

Step 2c: Describe use cases textually
The use case description shall give a raw (but valid) survey

Use case name modify the flight plan
Purpose The flight plan has to be modified because of crew

selections. The use case does not consider that the
flight plan is modified via data link. The modified
flight plan is stored in the navigation database.

Actors crew member, navigation database
Trigger The crew selects the command to modify the

flight plan.
Preconditions 1. A flight plan exists and is activated.

Basic

1. The system creates a modified (temporary)
copy of the active flight plan.
2. The crew does changes in the flight plan (insert
/ edit / delete route data).

scenario 3. The system performs the trajectory predictions
on the modified flight plan.
4. The crew activate the modified flight plan.
5. The use case ends.

Alternative

4.a. If the changes should be dismissed then
4.a.1. The crew aborts the modification.

scenarios 4.a.2. The system closes the flight plan modifica-
tion page.
4.a.2. Go to 5

Postconditions
1. The modified flight plan is activated.
2. The modified flight plan is stored in the navi-
gation database.
3. The modified flight plan is displayed on the
primary flight display.

Failures If the flight database is full then an error message
occurs.

Non-functional The crew can modify the flight plan at any time.

Table 1. Example of a use case description

about the functional goal. It is described by the following
list of properties.2

Use case name see step 2a.

Actors list of actors that are involved, see step 2a.

Purpose describes, what the user intends to achieve with
the use case.

Trigger describes the event that initiates the use case.

Preconditions must be true before initiating the use case.

Basic scenario defines the typical scenario (the most com-
mon case) as a sequence of enumerated actions, e.g.

1. <action 1>

2. <action 2>

3. <action 3> [...]

4. the use case ends.

2In the methodology of SSC these properties are captured as ”free text”
entries in the TOPCASED requirement module that are attached to the use
case.

4



Figure 4. Activity diagram for the use case ”modify the flight plan”.

Note: If the use case terminates, the last action is called
”the use case ends”. Otherwise, it means that the use
case does not terminate and runs endless.

Alternative scenarios are variants that differ from the ba-
sic scenario in form of conditional statements as se-
quence of enumerated, prefixed actions, e.g.

2.a. if <condition> then

2.a.1. <action a1>

2.a.2. <action a2> [...]

2.a.3. go to 4

Postconditions occur i) when the use case is successfully
completed and ii) when the use case has been termi-
nated due to an exceptional condition.

Failures describe exceptional conditions of the use case
and its processing.

Non-functional specify constraints of the use case (e.g.
timing conditions).

The table 1 shows an example for the description of the
use case ”modify the flight plan”.

2.1.3 Step 3: Model an activity diagram

Use case descriptions do not replace formal requirements,
because they are too raw and maybe incomplete. To develop
requirements, each use case should be modelled by an ac-
tivity diagram that describes the main scenario functionally
and completely including the variants and the failure pro-
cessing.

The customized methodology of SSC is:

1. For each involved actor 〈U〉 and the system 〈S〉 create a
swim lane. The swim lanes of 〈U〉 is represented by the
corresponding actor of the domain model, respectively
the swim lane of 〈S〉 by the corresponding class.

2. Start the activity diagram with an initial node. After
that, continue with the first action of the scenario. The
trigger of the use case is not modelled. Instead of that a
requirement for the trigger is attached to the activity or

5



(if the trigger is more complex) an additional activity
diagram is modelled in the package ”Trigger”.

3. For each action 〈A〉 of the basic scenario and the al-
ternative scenarios, put an action with name 〈A〉 in the
corresponding swim lane. More precisely:

(a) Place a user interaction into the swim lane of the
user, e.g. ”press key: NEXT” in figure 4. This
corresponds to the natural language requirement:
”The system shall provide the user with the abil-
ity to press key NEXT.”

(b) Place an internal system action into the swim
lane of the system, e.g. ”select next route data”
in figure 4. This corresponds to the natural lan-
guage requirement: ”The system shall select the
next route data.”

(c) Place a system action to the user on the line be-
tween the human actor and system, e.g. ”display
flight plan” in figure 4. This corresponds to the
natural language requirement: ”The system shall
display the flight plan to the crew member.”

(d) Place an interface action to an external system
on the line between the system and the external
system, e.g. ”send route data” in figure 4. This
corresponds to the natural language requirement:
”The system shall be able to send the route data
to the navigation database.”

4. Special case: for modelling user interactions put an in-
terruptible activity region in the user’s swim lane. All
user interactions are modelled as event actions and are
connected with system actions outside the region. The
system action that can be interrupted (e.g. ”display”,
”wait”) should be put in this region.

5. Special case: each included or extended use case is
represented by a call behavior action whose behavior is
linked with the activity of the corresponding use case.

6. For each variant that branches from the basic course
put a decision node and label the branches from the
decision node to the following actions with conditional
statements. If variants come back to the basic course,
connect them with a merge node.

7. Model concurrent actions using join nodes and fork
nodes.

8. Finalize the activity diagram with one or more final
node.

As shown, each action – together with his connections
to other actions – can be translated into a corresponding
natural language requirement. Hence, the activity diagram
itself represents all these requirements altogether. Figure
4 shows the activity diagram for the use case ”modify the
flight plan”.

Figure 5. Model structure.

2.1.4 Structuring the Model

The customized methodology of the SSC defines the main
structure of the UML model. The reason for this is that
the SRS document generator (see section 3) needs in part
a fixed model structure. In addtion, the comparable model
structure improves the readability and the understanding.

Figure 5 shows a part of the model structure of the re-
quirements analysis. It consists basically of the packages
”Domain Model”, ”Functions of the System”, and ”Exter-
nal Interfaces”.

2.2 Software Domain Analysis Modelling

The software domain analysis modelling refines the re-
sults of the use case analysis to high-level requirements that
are correct, unambiguous, complete, consistent, verifiable,
modifiable and traceable [3, 17].

The software domain analysis is performed as an ex-
panded use case analysis with focus on a functional ap-
proach (not as an object-oriented analysis). For the SSC
the functional aspects of the software are most important
and this is closer to the used development standards, DOD-
2167A and DO178(A/B) ([7]).

Figure 6 shows a summery of the key concepts used in
the software domain analysis modelling. The key concepts
are the domain model (consisting of actors, terms and data

6



Figure 6. Meta model of the software domain analysis modelling.

Figure 7. Domain model: external (avionic) systems.

types) and the external interfaces, especially the software
interfaces (consisting of the static and dynamic descrip-
tions).

2.2.1 Step 4: Create a domain model

The domain model describes the vocabulary and the domain
specific knowledge of the problem domain. It consists of the
following parts:

Actors consist of all human actors (e.g. users) of the sys-

tem and external systems that communicate with the
system.

Terms define the technical terminology and business con-
cepts, e.g. tangible objects, roles that objects play, ob-
jects that contain other objects, processes, events.

Primitive types define predefined data types, e.g. boolean,
int, float.

Enumerations and composite types define sets of named
values and composite types that are derived from more
than one primitive type .

Process words define the meaning of often-used verbs,
e.g. store, display, send.

The customized methodology of SSC to create the do-
main model is:

1. Create a package ”Domain Model” that contains all the
following packages.

2. Create a package ”Actors” and a use case diagram with
all identified actors (see example in figure 7).

3. Create a package ”Primitive types” and a class diagram
with all required primitive types.

4. Create a package ”Enumerations and composite types”
and a class diagram.

(a) For each set of named values create an enumera-
tion and add each value as enumeration literal.

(b) For each composite type create a data type and
add each value as property with a primitive type
or another composite type.

7



5. Create a package ”Terms” and a class diagram. For
each identified term create a class and add attributes as
property with an enumeration, primitive or composite
type (see example in figure 8).

6. Model relationships between the terms as association,
generalization, aggregation or composition. Name
each association with either an association name or
role names or both and add it with multiplicities.

7. Create a package ”Process words” and a class diagram.
For each identified process word create a class.

8. Give a textual definition of all terms, data types and
actors in the corresponding documentation field.

It is important that all used entities are defined and that
each characteristic [of the software systems] should be de-
scribed using a single unique term [3].

All textual definitions should be written using sen-
tence patterns (see [17]). The pattern for terms and ac-
tors is: ”In the system 〈name〉 〈term〉 shall be defined as
〈explanation〉.” The pattern for process word is: ”In the
system 〈name〉 to 〈process word〉 shall be defined as the
process of 〈explanation〉.” Synonyms (e.g. ”to save” and
”to store”) should be defined, too.

Figure 8. Domain model: Terms.

2.2.2 Step 5: Model external interfaces

The external interface description in the SRS addresses how
the software interact with people, the system’s hardware,
other hardware, and other software[3]. The interface mod-
elling is limited to the software interfaces that describe the
data inputs and outputs between the software system itself
and its external software systems.

The customized methodology of SSC is:

1. For each external software system 〈X〉 with a software
interface create a package with name 〈X〉. The external
software system shall be already defined as actor in the
domain model.

2. For each identified interface 〈I〉 create a package with
name 〈I〉. Provide a brief description of the interface
in the package documentation field.

3. In the package 〈I〉 create the package ”Input/Output”
and describe the static aspects of the interface:

(a) Create a class diagram with name 〈I〉
(b) Create two new classes with name 〈I〉+”Input

data” and 〈I〉+”Output data”.

(c) Put all classes from the domain model (terms) in
this diagram, that describe the data exchange be-
tween the system and the external system and as-
sign them to the classes ”input / output data” via
aggregation depending on whether they are in-
puts or outputs of the system.

4. In the package 〈X〉 create the package ”Functionality”
and describe the dynamic aspects of the interface:

(a) Create a use case diagram and a use case with
name 〈I〉 that define the interface functionality.

(b) Draw the actor of the external system from pack-
age ”Actors” and assign it with an association.

(c) Create a simple activity diagram 〈AC〉 with name
〈I〉 under the use case.

(d) Put two activity parameter in the activity diagram
〈AC〉 and assign them to the input (respectively
output) classes.

(e) If needed add timing requirements, e.g. in form
of accept time event action.

5. Put the interface activity as call behavior action’ in the
activity diagram of the use case.

Figure 9 shows the model of the external interface de-
scription ”send rout data” to the navigation database. The
activity consists of an signal action ”send data”, which is
connected to the input activity parameter via an input pin.
After the route data have been sent, The event action ”re-
ceive return value” waits for the answer of the navigation
database. The result value is returned to the output activity
parameter via the output pin. Concurrently, after timeout an
error value is returned.

2.2.3 Step 6: Develop natural language requirements

Not all requirements can be modelled with UML. Either the
requirement is too involved to model or the requirement has
a non-functional character (see [12]). For this reason, it is
necessary to develop natural language requirements in par-
allel to the UML model. TOPCASED provides a way to
create textual requirements that refine the model elements
(see [9]).

Similar to the textual definitions all textual requirements
should be written using the following sentence pattern (see
[17]):

8



Figure 9. Activity diagram ”send route data”.

• For a system activtiy: ”[〈When?〉 〈Under what
conditions?〉] the system 〈name〉 shall 〈process〉
〈object〉 [〈additional details about the object〉].”

• For an user interaction: ”[〈When?〉 〈Under what
conditions?〉] the system 〈name〉 shall provide
〈whom?〉 with the ability to 〈process〉 〈object〉
[〈additional details about the object〉].”

• For an interface requirements: ”[〈When?〉 〈Under
what conditions?〉] the system 〈name〉 shall be able
to 〈process〉 〈object〉 [〈additional details about the
object〉] from 〈external system〉.”

Section 2.1.3 contains some examples of textual require-
ments.

3 Generating the Software Requirements
Specification (SRS)

The generation of the SRS forms the conclusion of the
software requirements analysis. Every UML tool should
provide a method to generate the documentation of the
model, which has been built. Within the SSC, the UML
tool TOPCASED is used. TOPCASED includes the doc-
ument generation Gendoc2 [10], which uses the model to
text transformation language Acceleo.

The creation of the document generator includes the fol-
lowing actions (see [2]):

1. Create a template for the SRS document according to
the used development standards, which determines the
content and structure of the development documents.

2. Insert a script part for the model specific content, i.e.:

(a) The template configuration 〈config〉 for the input
model and the output documentation path.

(b) The script context 〈context〉 for the model abso-
lute path, the path to the model element to start
(optional) and the list of external bundles to im-
port.

(c) The script content 〈gendoc〉 for headings, de-
scriptions (documentation fields), diagrams as
images and textual requirements.

3. Adapt the output parameter with the own project pa-
rameters (model name, output file) in the template
header and generate the document.

The following script snippet shows an extract of the SRS
template.

3.1 Actors
<context

model = ’${model}’
element = ’[...]/Domain Model/Actors’
importedBundles = [...]/>

<gendoc>
[for (p:Package|self.ownedElement)]

3.1.1 [p.name/]
[if (p.getAllDiagrams()->size()>0)]

[p.name/]
[for (s : String|
splitNewLine(p.getDocumentation()))]
[s/]

[/for]
<image object=[self.getDiagram()/]
keepW=true>
[p.name/]

</image>
[/if]

[/for]
</gendoc>

4 Training

UML is a language. This means it has both, syntax and
semantics. [. . . ] there are rules regarding how the elements
can be put together and what it means when they are or-
ganized in a certain way. [16]. But UML does not pro-
vide any procedures or methods how models should be cre-
ated and which diagrams should be used to build a clear
and understandable model of the software. For this reason
and with the help of external consultants the SSC have es-
tablished a customized UML methodology consistent with
the used standards and the maintenance and modification
processes. Other UML methodologies are for example the
Telelogic Harmony-SE, INCOSE Object-Oriented Systems
Engineering Method and IBM Rational Process for Systems
Engineering (RUP) (see [8]).

After that, the consultants have trainend a group of SSC
engineers that work currently in several software projects.
The most of them had no experience with UML before.

9



The training comprises of four periods: software use case
modelling, software domain analysis modelling, software
architectural design modelling and software detailed design
modelling. These parts represent the steps of the left side of
the ”V” in the V-Model. After each period a coaching for
the current software project was organized.

5 Conclusion

This article describes a new UML tool-based method-
ology to create the software requirements analysis. The
methodology is use case driven and uses natural language
requirements as well as UML diagrams. The methodol-
ogy was established specifically for the SSC and should be
applied in future for the software modification and main-
tenance of helicopters NH90 and Tiger. External consul-
tants have trained SSC employees in both UML and UML
methodology. The article shows how the UML model is
build step by step with the aim of generating the software
requirements specification. The later stages of the develop-
ment process are not covered in this paper. But the UML
methodology for the software design was already estab-
lished.

Acknowledgement

The authors would like to thank all colleagues in the SSC
for their feedbacks and advices. Especially, the two consul-
tants of the SOPHIST GmbH for helping us to establish the
described UML methodology and for their excellent train-
ing.

References

[1] CMMI for Development, Version 1.2 – Improving processes
for better products. Carnegie Mellon University, 2006.

[2] TOPCASED Gendoc2 v1.5.0 tutorial, 2011. available at:
http://www.topcased.org/ (visited 2011-12-01).

[3] IEEE Recommended Practice for Software Requirements
Specifications, IEEE-830-1998.

[4] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language User Guide. Addison Wesley, 1999.

[5] A. Cockburn. Structuring use cases with goals. Journal of
Object-Oriented Programming, Sep-Oct 1997.

[6] A. Cockburn. Writing Effective Use Cases. Addison-Wesley,
2000.

[7] DO-178B. Software Considerations in Airborne Systems
and Equipment Certification, December 1992.

[8] J. A. Estefan. Survey of model-based systems engineering
(mbse) methodologies. Jet Propulsion, 25:1–70, 2008.

[9] R. Faudou, T. Faure, S. Gabel, and C. Mertz. Topcased
requirement: a model driven, open-source and generic so-
lution to manage requirement traceability. In European
Congress Embedded Real Time Software (ERTS), Toulouse,
France, 2010.

[10] T. Faure, A. Haugommard, and J. F. Rolland. Gendoc2, gen-
erating ODT and DOCX documents from EMF models with
TOPCASED. In First TOPCASED Days, Toulouse, France,
Februar 2011.

[11] P. Gast and O. Bender. EADS GUIDELINE – using UML
for software analysis and design. EADS internal paper,
2009.

[12] M. Glinz. On non-functional requirements. 15th IEEE Inter-
national Requirements Engineering Conference (RE 2007),
pages 21–26, 2007.

[13] J. Gorman. Use cases – an introduction, 2006. available at:
www.parlezuml.com (visited 2011-11-07).

[14] J. Killguss. Prozessverbesserung UML. SSC internal paper,
2010.

[15] Object Management Group. Unified Modeling Language:
Superstructure Version 2.3. Number formal/2010-05-05.
May 2010.

[16] D. Pilone. UML 2.0 in a Nutshell. O’Reilly, 2. edition, 2005.
[17] C. Rupp and die SOPHISTen. Requirements-Engineering

und –Management. Hanser Verlag, 5. edition, 2009.
[18] C. Rupp, S. Queins, and B. Zengler. UML 2 glasklar. Hanser

Verlag, 3. edition, 2007.
[19] R. Walter. Flight management systems. In Cary R. Spitzer:

The avionics handbook, chapter 15. CRC Press LLC, 2001.

Author’s Biography

Thomas Weyrath is project manager in the department
for Integrated Systems in the Business Area Aviation
at ESG. Since 2009, he has been working in the SSC
and manages the process improvement project UML.
Previously, he worked in the Automotive Area at ESG as
software engineer and project manager for 9 years.

Berthold Schinnerl is army aviation officer and
systems engineer in SSC. He worked as development
engineer for the TIGER. Beside systems engineering
he received his PhD in Electrical Drives and Actuators
in 2009 awarded with two research prizes in 2007 and 2009.

Franz Schöttl was working on the aviation system de-
velopment of the Tiger helicopter between 1990 and 1996.
Between 2000 and 2004 he was working on specifying the
ASAAC Standard for future aviation projects. Since 2009
he has been working on the process improvement project
UML within the SSC.

Herbert Schreyer works on the aviation system devel-
opment of the Tiger and NH90 helicopters since 1995. 2005
he joined the SSC where he took over the role of a system
architect. Since several years he is charge of evaluation and
introduction of new methods of avionic definition.

10


