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Abstract 

Safety critical software requires rigorous processes in order to achieve a high degree of integrity. These processes 

include so-called “verification of verification”. In the case of Model Based Development and Verification, DO-

178C/DO-331 requires model coverage analysis. This paper reminds the objectives of model coverage analysis 

and the difference with structural code coverage analysis. It proposes coverage criteria suited to data flow models. 

These criteria are a generalization of the functional masking effect and also take into account modularity and in-

lining of the model operators.  It presents a tool supporting model coverage analysis according to these criteria. It 

concludes with industry field experience and future extensions. 

Keywords Coverage, Model, Data flow, Tool, Qualification, Safety, Embedded, Software, DO-178C/ED-12C, 

DO-331, DO-330, EN 50128, IEC 61508, IEC 60880, ISO 26262. 

1 Regulatory Context 

Safety critical software requires a high degree of rigor in its development and verification processes. These 

processes are regulated by standards such as DO-178C/ED-12C [1] for airborne software, EN 50128 [2] for railway 

equipment, IEC 61508 [3] for industry, ISO 26262 [4] for automotive, ECSS (in particular Q80, E40) [5] for 

European space and IEC 60880 [6] for the nuclear industry. These standards are based on process assurance, with 

a strong emphasis on verification activities: reviews, analyzes, and testing.  

These processes include so-called “verification of verification”. In the case of Model Based Development and 

Verification, DO-331 [7] requires model coverage analysis of so-called “design models”, i.e. models describing 

Low-Level Requirements. This paper reminds the objectives of model coverage analysis and the difference with 

structural code coverage analysis.  

1.1 Role of Testing and Coverage Analysis in the Safety Standards 

In addition to review and analysis, safety standards require dynamic verification. Simulation can be used as a 

means for verifying compliance of models to their higher-level requirements and algorithm accuracy. Testing is 

used for verification of the executable object code.  

Safety standards require various types of coverage analysis. For instance DO-178C requires the following 

categories of coverage analysis: 

 High-Level Requirements Coverage analysis (6.4.4.1), with full coverage required by table A-7 objective 3. 

 Low-Level Requirements Coverage analysis (6.4.4.1), with full coverage required by table A-7 objective 4. 

In case of model-based development, the Low-Level Requirements are contained in a model and LLR 

coverage is model coverage (DO-331 MB 6.4.7). 

 Structural [Code] Coverage analysis (6.4.4.2), with full coverage required by table A-7 objectives 5, 6, 7 and 

8. 

Several aspects of coverage analysis have to be emphasized: 

1) Coverage analysis in general (requirements coverage and structural coverage) is not a goal per se, it is a means 

for verifying that verification activities are thorough and complete (“verification of verification”). 
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2) One should apply requirements-based testing assessed with structural coverage analysis, and not structural 

testing. As explained by DO-248C [8] FAQ#44, “Whereas structural testing is the process of exercising 

software with test scenarios written from the Source Code, DO-178C/DO-278A section 6.4.4.2 explains that 

structural coverage analysis determines which code structure, including interfaces between components, was 

not exercised by the requirements-based test procedures…. Since the starting point for developing structural 

test cases is the code itself, there is no way of finding requirements (high-level, low-level, or derived) not 

implemented in the code through structural tests. It is a natural tendency to consider outputs of the actual 

code (which is de facto the reference for structural testing) as the expected results. This bias is avoided when 

expected outputs of a tested piece of code are determined by analysis of the requirements. " 

1.2 Objectives of Model Coverage Analysis 

1.2.1 Objectives of Model Coverage Analysis 

As stated in DO-331 6.7, model coverage analysis determines which requirements expressed by the model were 

not exercised by verification based on the requirements from which the model was developed. Model coverage 

analysis is a means to assess thoroughness of the model verification activities. Model coverage gaps may reveal: 

a) Shortcomings in requirements-based verification cases or procedures 

b) Inadequacies or shortcomings in requirements from which the Model was developed 

c) Derived requirements expressed by the Model 

d) Deactivated functionality expressed by the Model 

e) Unintended functionality expressed by a Model 

1.2.2 Difference with Structural Coverage Analysis 

Model coverage analysis should not be confounded with structural [code] coverage analysis. Model coverage 

analysis concerns the Low-Level Requirements expressed by a model, and is at a higher level of abstraction than 

structural coverage analysis. Model coverage analysis concerns the functional aspects of the model regardless of 

the code that implements this model, which structure is highly dependent on the coding technique. Also, the code 

coverage criteria that are required by standards and supported by tools are limited to control structures and Boolean 

expressions: they do not address very important functional aspects such as the definition and use of data.  

1.2.3 Is Model Coverage Analysis a New Burden? 

Model coverage analysis is not an additional burden introduced by DO-331, it is just the appropriate term for LLR 

coverage analysis in case of model-based development and verification (MBDV). LLR coverage analysis has 

always been required by DO-178B, whether one uses traditional development or MBDV. For years, a number of 

applicants using MBDV used to assess coverage of their LLRs by manual means such as Excel tables or colored 

pencil on model diagrams, or using specific tools such as pioneering versions of SCADE MTC or Simulink. 

 

2 Challenge of Defining Appropriate Model Coverage Criteria 

2.1 The Scade Language and the SCADE Suite Environment 

Let us introduce the context, which is the Scade language and its supporting environment. The Scade language [9] 

is a synchronous data flow language [10] for reactive software. Its formal semantic foundation is the Lustre 

language [11], extended with state machines and iterators [12]. Scade is fundamentally a declarative language, 

which is not based on the notion of execution. A Scade model is a set of non-ordered equations combining 

flows/variables subject to formal clocks (i.e. conditions under which are defined). It is not a sequence of executable 

statements and it is the job of the code generator to transform purely declarative sets of equations into imperative 

statements. 

The Scade language supports a free combination of notations that are familiar to control engineers:  

 Block diagrams to specify the control algorithms (control laws, filters) 

 State machines to specify modes and transitions in an application (e.g., taking off, landing) with parallelism, 

hierarchy and preemption  

 Flowchart-like constructs (called clocked blocks) 
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The basic building block in Scade is called an operator. An operator is either a pre-defined operator (e.g., +, delay) 

or a user-defined operator that is built with predefined or user-defined operators. It is thus possible to build 

structured complex applications with high modularity. 

Elemnt Textual Form  Graphical Form 

Formal interface node IntegrFwd(U: real ; hidden 

TimeCycle: real)  

 returns (Y: real) ;  

 

Local variables 
declarations 

var  

delta : real ;  

last_y : real;  

 

Equations delta = u * TimeCycle ;  

y = delta + last_y ;  

last_y = fby(y , 1 , 0.0) ;  

 

Figure 1 Integrator in Graphical Scade Notation 

 

 

Figure 2: State Machine Combined with Data Flow 

SCADE Suite (Safety Critical Application Development Environment) support the development and verification 

of safety critical software based on the Scade language with: 

 Structured graphical editing 

 Semantic checks 

 Simulation and model coverage analysis 

 Formal verification 

 Automated code generation qualified for DO-178 level A and IEC 61508/EN 50128 SIL 3-4 

 Automated test execution 
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2.2 Is there a Standard Definition of Model Coverage Criteria? 

When writing DO-331, the SC205 SG-4 (subgroup defining the Model Based Development and Verification 

supplement) has taken into account the fact that there is a large diversity of modeling notations that differ 

significantly regarding: 

 Degree of formality: modeling notations range from non-formal (e.g. UML) to formal (e.g. Scade, SDL).  

 They may be based on various concepts and representations such as data flow, state machines, sequence charts. 

 They may be based on a synchronous basis (e.g. Scade) and/or an asynchronous basis (e.g. SDL, UML). 

And there may also be other notations in the future that are currently unknown. 

The committee agreed that it was not possible to impose specific model coverage criteria in DO-331, and the 

following approach was retained: 

1) DO-331 provides general principles for model coverage criteria (e.g. coverage of transitions in state machines) 

and requires model coverage criteria to be defined in each project’s software verification plan. 

2) Each applicant project defines in its SVP the model coverage criteria that it will apply. 

Thus, it was necessary to define relevant model coverage criteria for the Scade language. 

2.3 Are Structural Code Coverage Criteria Suited to Data Flow Model Coverage? 

Analysis of classical imperative code has been investigated and applied for decades. This type of analysis is 

supported by a number of tools. The most commonly used code coverage criteria are Statement Coverage, various 

forms of Branch Coverage, Decision Coverage (DC), Modified Decision Coverage (MC/DC) [13]. Note that 

statement coverage and branch coverage address the control structure, whilst DC and MC/DC are actually specific 

data flow criteria for Boolean expressions (a decision is NOT a branch as recalled by [14]. 

The first natural approach is to consider traditional structural coverage criteria as candidates for the basis of model 

coverage criteria. But this approach would not work with Scade for the following reasons: 

 It would be highly implementation-dependent 

 It would not capture the essence of the functional flows expressed at the model level 

 The traditional criteria are based on execution concepts for imperative languages, whilst Scade is a 

declarative language, not based on the notion of execution (it is the job of the code generator to transform 

purely declarative sets of equations into imperative statements). 

3 Data Flow Coverage Criteria for the Scade Language 

3.1 Principles of the Model Coverage Criteria Defined for the Scade Language 

The principles of the proposed model coverage criteria are based on two related considerations: 

 Good testing practice: an experienced tester develops requirement-based tests checking that the effect of input 

data values on observed data complies with the requirements. In order to be under appropriate 

controllability/observability situations, the tester sets the software in conditions where this influence occurs 

for each concerned data of interest. The proposed model coverage criteria assess that these conditions are met 

during testing. 

 Theoretical basis:  a synthesis of Definition-Use analysis is provided in [15]. More specifically, [16] proposes 

coverage criteria for the Lustre language (on which Scade is based). In this paper, we have chosen a definition 

sharing with it some aspects of path activity. In addition it consistently takes into account masking MC/DC, 

Arithmetic, Structured data handling, Iterators, Reset, Clocked blocks and State machines. 

A data path from one point of the data flow graph to another one is active when its Activation Condition (AC) is 

true. For instance on Figure 3, B influences Z when C2 is true and C1 is false.  

 



ERTS 2016 Data Flow Model Coverage Principles and Practice  p 5/10 

 

Figure 3: Example 1 Data Flow Activity and Influence 

Several coverage criteria all based on this activity concept are defined, as summarized in Table 1. 

 

Table 1: Coverage Criteria Summary 

Coverage Criterion Synopsis  

Basic Coverage (BC) Every element has been on an active path. 

Decision Coverage (DC) Every Boolean expression outcome has toggled while on an active path. 

Modified Condition /Decision 

Coverage (MC/DC) 

Every condition of every Boolean expression’s has toggled while on an 

active path (shows independent effect of the conditions). 

Control coupling Every state/transition, clocked block, activate branch has been active 

Data coupling Every input flow to every user operator instance has changed value. 

Operator feature Every characteristic feature (e.g. saturation, reset) has been active. 

 

In order to match industrial practice regarding code coverage analysis, the current approach considers the flows 

occurring in the current instant (i.e. memories are part of the inputs/outputs). 

3.2 Application of the Influence Principle to Logic and State Machines 

The principles presented above are very general. In the case of Boolean expressions, the activation condition is 

actually the negation of the masking effect which concerns any level of abstraction (requirements, code, or 

hardware) as explained by [13]. On example 2, the influence of In1 is masked if its activation condition (In2 and 

not In3) is not satisfied. Note that our definition, matches masking MC/DC as defined in [17] and [13]. This differs 

from [16]. Indeed, for X= Y and Z, the AC of the path Y to X is defined as Z in our definition: whereas it is defined 

as (not Y and Z) in [16]. 

, 

Figure 4: Example 2 Masking and Activation Condition in a Boolean Expression 

Z

C1

C2 A

B

D

E

1

1
2

In1

In2

In3

Out

PATH1 {In1, Out}

PATH2 {In2, Out}

PATH3 {In3, Out}
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The masking effect is also taken into account for coverage analysis of higher-level constructs such as state 

machines, where the influence of data depends on conditions related to the state, flows from/to states and 

transitions guards and priorities. 

3.3 Position with Respect to Structural Coverage 

Let us take example 1 to show the difference with structural coverage. The code that implements this model part 

may typically be implemented in three ways, shown in Table 2 in the form of pseudo-code. 

Table 2: Implementation of Example 1 

Implementation A Implementation B Implementation C 

X = if_block(C2,B,D); 

 

Y = plus_block(X, E); 

 

Z = if_block(C1,A,Y); 

 

if (C2) { 

    X = B; 

  } 

  else { 

    X = D; 

  } 

  Y = X + E; 

 

if (C1) { 

    Z = A; 

  } 

  else { 

    Z = Y; 

  } 

if (C1) { 

    Z = A; 

  } 

  else { 

    if (C2) { 

      tmp = B; 

    } 

    else { 

      tmp = D; 

    } 

    Z = tmp + E; 

  } 

 

 

Implementation A can be structurally covered just with just one execution cycle; it is obvious that such a test case 

does not cover the LLRs expressed in this model and is very poor. Implementation B can be covered just with the 

following set of test cases for C1/C2= {T/T, F/F}, which does not test the effect of B on Z. 

The proposed model coverage criteria (even the most basic one) require at least C1/C2= {T/x, F/F, F/T} (where x 

stands for don’t care) in order to activate the effect of A, B, D and E on Z; more specifically, C1/C2= {F/F,F/T} 

shows the effect of B on Z . Note that this is also what is required for implementation C. 

One can see that even on a very simple example, the proposed model coverage criteria capture the functional 

activation at model level regardless of the code that will implement it, whereas structural coverage, which is limited 

to control structures does not address functional flows aspects. This difference is of course amplified when 

analyzing more complex modeling constructs, such as complex data flow combinations or state machines. 

In [18] it is shown that there is a subsumption (a kind of implication) hierarchy between data flow coverage and 

statement coverage. Intuitively, one understands that in order to activate a Definition-Use data flow, one needs to 

execute the related imperative statements in the generated C code, whereas execution of statements does not 

guarantee Definition-Use activation, as shown in the implementations A and B of Table 2. It has been verified in 

practice for complex models that tests covering the model also cover the code generated from that model, except 

few systematic cases which are predictable and justifiable. Formal demonstration of implication of code coverage 

by model coverage require some additional refinement of model coverage criteria (see conclusion of this paper). 

3.4 Handling Structured Models 

A Scade operator can be considered either as a black box or just as a syntactical/graphical device (it is said to be 

expanded or in-lined). This choice (which can expressed at model level as well as at code generation time) is a 

design choice. It is reflected by the code generator both in terms of causality analysis (i.e. any data shall be 

produced before being consumed) and in the architecture of the generated code: a non-expanded operator is 

implemented as a C function, whereas an expanded operator is in-lined as part of the function corresponding to 

the nearest non-expanded parent. 
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There are a number of possible approaches for handling such hierarchies such as: 

a) Fully expand all operators of the model: this ideal analysis is supported by SCADE, and works for small 

models, but is impractical for large models both regarding the testing effort and machine resources. 

b) Expand no operator at all, and consider each of them as pure black boxes. This was supported by historical 

versions of SCADE. 

c) Selectively expand at model level consistently with the expansion selected for code generation and abstract 

non-expanded operators by considering their interfaces as atomic. This is supported by SCADE R16 and is 

the most typical use case. 

d) The definition provided in [19] proposes a definition that abstracts non-expanded operators with a fine-grained 

dependency between their inputs/outputs. 

e) Abstract specific operators with user-defined criteria. For instance for the integrator shown on Figure 5 , each 

instance of the integrator can be abstracted from its caller perspective as four objectives to cover: Reset, 

Normal integration, Low saturation and High Saturation. This analysis, supported by SCADE, is well suited 

to library operators. 

 

  Figure 5: Example 4 Integrator Library Component 

In the case of example 3, if node NASA_Example1 is not expanded, there are two Boolean expressions with 3 

non-independent conditions each, if it is expanded there is one single expression with 5 conditions.  

 

Figure 6: Example 3 Cascaded Operators with Boolean Expressions  

 

4 Tool Support Overview 

A toolchain called MTC (for Model Test Coverage) version 6.4.7 supporting of the above described criteria has 

been developed. Using appropriate observers, it runs test cases and collects model coverage information during 

simulation. The coverage results can be displayed in graphical form (e.g. Figure 7) or textual form. For applicants 

wanting to provide direct evidence of structural coverage, there is also a feature supporting direct measurement of 

structural code coverage of the source code that will be embedded, under execution of the same test cases as those 

used for model coverage analysis and with the corresponding coverage criteria (DC, MC/DC). The toolset has 

been qualified according to Tool Qualification Level TQL-5 of DO-330 [20]. 
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Figure 7: Model Coverage Browser 

5 Industrial Return of Experience 

Model coverage analysis tools based on simpler criteria have been used since 2005 on many industry projects.  

The first versions supporting the new criteria described in this paper have been released by mid-2014 and used 

recently in several industrial projects in avionics and nuclear industry. The current version is MTC 6.4.7a. 

5.1 MTU Experience Example 

MTU develops emergency diesel engines for nuclear power plants. This function is very critical in case of failure 

of the electrical network. MTU develops the digital engine control unit for such engines. This unit shall in 

particular maintain safe state requested by user. The applicable standard are IEC60880 and IEC61508:2010 (SIL 

3 for the software). 

The previous experience of MTU about coverage concerns: 

 Structural coverage with Cantata++ 

 Scade coverage with earlier versions of MTC: 

The new MTC has been in use for more than a year (but not continuously). The main conclusion are the following: 

 There is short learning time, 

 It allows inspection of missing activation conditions and paths, 

 

Coverage result 

view 

Localisation in the model 

Detaillled view Detailed view with activation 

conditions and coverage cases 
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 There are potential improvement in the presentation of missing activations, since the reason of missing 

activations is sometimes hard to understand. 

5.2 General Return of Experience 

The new MTC has been used on complex airborne software systems (FADEC, flight control sub systems). The 

main feedback is the following: 

 Model coverage analysis supports detection of insufficient testing and dead or deactivated model elements. 

The detection can be done early in the software lifecycle, which reduces cost and time for software 

development. 

 There is a focus shift from code level to model level both for design and coverage analysis.  

 There is a paradigm change from the traditional imperative mindset (statements, branching) to a data flow 

mindset (definition/use), which is more efficient but requires appropriate user training.  

 The tools were able to handle complex software (3000 user operators, 100 000 model coverage points, 50 000 

code coverage points). The ability to handle efficiently incremental software changes will be improved. The 

user interface will be improved for more comfortable navigation in large data sets. 

 It is recommended to perform model coverage analysis early in the lifecycle, in order to detect and fix dead 

and/or non-optimal model elements and take full benefit of model coverage analysis. 

6 Conclusion and Future Work 

Model coverage analysis was a pioneering approach 10 years ago. It is now explicitly required and/or recognized 

as an alternate means for checking testing activities completeness in domains such as avionics (DO-331) or 

automotive (ISO 26262). The combination of the Scade language and of SCADE tools with appropriate model 

coverage criteria described in this paper allows software engineers to consistently shift their focus from code level 

to model level. Usage on large industry projects showed that it is an efficient means for detecting insufficient 

testing and dead or deactivated model elements.  

Future work will provide additional benefits. For instance further refinements for addressing numeric aspects 

would allow performing analysis of singular points. Handling delays such as in [21] would allow assessment of 

sequential logic. Providing formal evidence of model to code coverage implication would allow application of 

DO-331 FAQ#11, definitely eliminating need to handle double-check of structural coverage. 
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1. INTRODUCTION 

The main difference between the new standard for software development in civil aviation, DO-178C (see [1]), 
and its predecessor, DO-178B, is that the new one has standard supplements that provide a greater scope 
for using new software development methods. The most important standard supplements are DO-331 (see 
[2]) on model-based development and model-based verification and DO-333 (see [3]) on the use of formal 
methods, such as model checking and abstract interpretation. These key software design techniques offer 
enormous potential for making software development in the aerospace sector highly efficient. At the same 
time, they not only maintain the high quality and observe the safety requirements for software, but actually 
improve them. These methods are seamlessly integrated in the development scheme of DO-178C, which is 
shown in a simplified form in Figure 1. 

 

Figure 1: Important design and verification activities according to DO-178C (architecture design and 
verification have been omitted). 
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2. OVERVIEW OF THE MODEL-BASED TOOL CHAIN FOR DO-178C, DO-331, AND DO-333 

This article describes how to use a model-based tool chain including Simulink
®
/Stateflow

®
 ([4]), dSPACE 

TargetLink
®
 ([5]), and tools by BTC Embedded Systems ([6]) to develop software right up to DO-178C Level 

A by using the standard supplements DO-331 and DO-333, see [7].  

 
The main components of the tool chain are: 

 Simulink/TargetLink for the graphical, model-based development environment 

 BTC EmbeddedSpecifier (optional) for formalizing requirements  

 TargetLink for automatic production code generation  

 BTC EmbeddedTester and BTC EmbeddedValidator for meeting different verification and testing 
objectives 
 

The above tools cover the following essential steps in the software development process in accordance with 
DO-178C/DO-331, see Figure 2: 

 Specifying high-level requirements in the form of Simulink/TargetLink models, which then constitute 
specification models according to DO-331  

 High-level requirements in the form of specification models can also be developed by using 
EmbeddedSpecifier, which is particularly attractive for converting existing textual requirements to formal 
requirements 

 Representing low-level requirements in the form of Simulink/TargetLink models, which thereby constitute 
design models according to DO-331 

 Automatically generating source code with TargetLink in order to convert the Simulink/TargetLink design 
models directly to high-quality ANSI C code 

 Achieving various verification objectives of DO-331 via model-based testing with BTC EmbeddedTester 
and BTC EmbeddedValidator to efficiently create requirements-based test cases, automatically execute 
them in the Simulink/TargetLink environment, and determine coverage metrics such as MC/DC at the 
code level and model coverage to determine requirements coverage. 

 Using BTC EmbeddedValidator for model checking as a formal method in the sense of DO-333 to 
demonstrate that the models comply with formalized requirements developed using BTC 
EmbeddedSpecifier. 

 

 

Figure 2: Model-based design tool chain for DO-178C/DO-331-compliant development. 
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3. MODELS AS A DOOR-OPENER FOR EFFICIENT SOFTWARE DEVELOPMENT 

A key milestone for efficient and high-quality software development is representing requirements and 
specifications by models according to DO-331. A transition from purely textual to formalized requirements in 
the form of models opens up a wealth of possibilities for automated analysis, source code generation and 
verification, as will be demonstrated in this article.  

Software requirements in DO-178C exist in two different forms, either as  

• High-level requirements (HLR) 
Simply put, they describe what the software is supposed to do but not how it should do it ("black box" view of 
the software). HLRs are derived from requirements for the entire system or subsystem, which are set up in 
the system process, e.g., as described in ARP 4754. 

• Low-level requirements (LLR) 
They describe the inner workings of the software, i.e., how the software is supposed to implement the HLRs 
("white box" view of the software) and they must comply with the HLRs. It must be possible to translate LLRs 
directly into source code, which is later translated into the executable object code. 

Models in the sense of DO-331 can now be used to represent requirements on these two levels (models for 
software architecture, e.g., in the form of UML models, are not discussed here but are widely used in practice 
and also covered by DO-331). In the case of HLRs, DO-331 speaks of specification models, whereas models 
for representing LLRs are referred to as design models. 

3.1. Specification Models for High-Level Requirements 

For some functional HLRs, it is best to use dedicated tools, such as BTC EmbeddedSpecifier, that support 
specific formalized patterns for expressing requirements. This is particularly the case when requirements are 
not written as a set of mathematical equations or “pseudo code” but come in the form of rather simple signal 
dependencies and conditions. BTC EmbeddedSpecifier is specifically geared towards requirements of such a 
form. Therefore, a very generic requirements design pattern in the form of a state machine is used which 
includes trigger conditions for the requirement as well as actions (see Figure 3). Timing dependencies can be 
expressed in the requirements design pattern as well. The tool is particularly helpful for the step-by-step 
transformation of informal textual requirements to formalized patterns in an intuitive process. For this 
purpose, informal signal names are replaced by actual interfaces in Simulink/TargetLink models and the 
meaning of the text is translated into the requirements pattern. The tool thereby simplifies the transition from 
informal to formal requirements with a clearly defined syntax and semantics, which lets users later use 
verification methods like model checking and automatic test case generation. Moreover, due to the formal 
nature of the requirements pattern, there is a precise definition for “requirements coverage” to identify 
whether developed test cases have covered all requirements. 

 

  
 

Figure 3: Converting informal textual requirements into formalized requirements. 
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HLRs can also be expressed by block diagrams and state diagrams in the form of Simulink/TargetLink 
models (see Figure 4). This is particularly useful if such models are already available from the system 
process. TargetLink automatically makes sure that only a “safe subset” of Simulink and Stateflow is used 
during the design process to avoid problems with certain modeling constructs. Moreover, compliance with 
company-specific standards for specification models can be verified by using automatic style checkers. 
 

 
 

Figure 4: Simulink/TargetLink specification models for representing high-level software requirements. 
 

 

3.2. Design Models for Low-Level Requirements 

By nature, representing low-level requirements (LLRs) in the form of Simulink/TargetLink models is 
particularly popular, as source code can be generated from them automatically in subsequent steps (Figure 
5). Such design models not only describe the actual functionality but also the necessary details of the 
software, such as internal data structures, distribution across different functions, control flow information, and, 
in some cases, fixed-point representations. 

 

Figure 5: Design models in Simulink/TargetLink represent low-level requirements.  
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4. GENERATING SOURCE CODE FROM DESIGN MODELS 

Design models representing low-level requirements offer a direct route to creating the source code – by using 
automatic code generation instead of manual coding. Automatic code generators, such as TargetLink, that 
transform Simulink/TargetLink models directly into ANSI C code are far superior in terms of quality and 
reliability compared to human programmers. The source code they produce  

 Is generated deterministically 

 Is very readable and suitable for review. This is ensured by extensive source code commenting, easily 
understandable symbol names and the use of a proper subset of the C programming language. 

 Can be traced back directly to the individual parts of the design model from which the code was 
generated.  

 Contains references to the requirements of the design model. This increases requirement traceability, 
which represents an important part of any software development process. 

 Is highly configurable in terms of how to generate code, e.g., to meet company-specific coding guidelines 
and to integrate easily with the interfaces of the software architecture, library functions and legacy code.  

 Is approximately as efficient as handwritten code. Individual optimizations on a detailed level let users 
specify the extent to which the code will be optimized, ranging from completely unoptimized to fully 
optimized code. 

In addition to generating the actual source code, the code generator can generates other items, thereby 
assuring consistency between all the artifacts. Typical examples include: 

 Additional documentation files adjusted specifically to special purposes 

 Files with traceability information in order to support reviews and analysis of the source code 

 Information on the requirements implemented by the source code to build a requirements traceability 
matrix 

Using TargetLink for automatic production code generation from Simulink/Stateflow models has been widely 
used for many years, especially in the automotive sector, but also in DO-178B Level A projects (see [8]).  

 
 

5. INNOVATIVE TECHNIQUES FOR VERIFICATION  

The great advantages of using models to specify requirements (HLRs and LLRs) are evident not only in 
automatic production code generation but also in other areas, such as verification. Particularly important 
activities are: 

1. Verifying that models for HLRs and LLRs accurately implement the requirements from which they were 
developed 

2. Verifying that models and source code comply with specific modeling guidelines and coding guidelines  

3. Verifying that the source code exactly implements the requirements contained in the design model 

4. Verifying that the executable object code implements HLRs and LLRs 

The model-based approach combined with the formalization of the requirements in this case provides very 
powerful mechanisms to facilitate the verification steps, as will be shown in the following subsections. 

 

5.1. Verifying Requirement-Model Compliance 

A combination of model simulation, coverage analysis, and test case generation is especially well-suited for 
verifying the compliance between the requirements and the models that implement them. DO-178B and DO-
178C state that test cases have to be created solely on the basis of requirements whose definitions directly 
include the required result. If a requirement is itself expressed as a model, e.g., a Simulink/TargetLink model, 
techniques for automatic test case generation, such as those provided by BTC EmbeddedTester, can be 
used to automatically generate test cases from the specification model (see [10]). If high-level requirements 
were expressed formally in BTC EmbeddedSpecifier, then automatic test case generation can also be used 
for those. Naturally, test cases can also be developed manually or semi-automatically based on the 
requirements. To check the compliance of a model against the requirements from which it was developed, 
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the previously generated or developed test cases/stimulus values are executed with the model by means of 
model simulation. The Simulink/TargetLink/BTC environment makes it easy to run the model simulations and 
check the simulation results against the previously developed test cases. Moreover, model coverage analysis 
is used to investigate whether the various model elements are all covered completely (Figure 6) in order to 
identify undesired functionality in the model.  

 

Figure 6: Model coverage and code coverage reports. 

 

Although the simulation capabilities of models help verify the compliance between requirements and models, 
the traditional execution of even a high number of test cases is always incomplete in a certain sense. If a 
proof is desired or all requirements are to be verified simultaneously during all simulation runs, different 
verification methods can be used as long as the requirements were specified formally in BTC 
EmbeddedSpecifier. By using the model checking functionality of BTC EmbeddedValidator, users can prove 
or disprove compliance between the formally specified requirements and the design model. In particular, the 
model checking engine of EmbeddedValidator is fully capable of handling not just boolean and integer data 
types but also floating-point design models. Model checking is one of the techniques considered in the formal 
methods supplement DO-333 of DO-178C. Providing a proof of correctness is of course very appealing, but 
the usual limitations of model checking need to be considered, like a potential explosion of the state space 
with increasing complexity of the design model. If a model checking approach is not feasible, formal 
requirements specifications can nonetheless be very helpful to generate requirement observers, which verify 
all requirements simultaneously during all simulation runs. 

5.2. Compliance of Models and Code with Modeling and Coding Standards 

In order to check whether models comply with their respective modeling standards, style checkers such as 
MXAM from Model Engineering Solutions (see [11]) or the Simulink Model Advisor are typically used. These 
tools support automatic guideline checking in order to simplify review activities on the different models. The 
compliance of the generated source code with coding guidelines is usually verified by using static source 
code analysis tools that are available on the market.  

5.3. Compliance of Source Code with Design Models 

In order to check that the automatically generated source correctly implements the design models from which 
code was generated, developers can use reviews and analyses, which is also facilitated by TargetLink. In 
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order to simplify code reviews, traceability information as well as hyperlinks between design model elements 
and the respective generated source code lines are provided. In addition, further analyses can be fully or 
partially automated. 

5.4. Compliance of Executable Object Code with High-Level and Low-Level Requirements 

A typical way to verify that the executable object code implements HLRs and LLRs according to Figure 1 is to 
execute it on the target platform. TargetLink provides powerful mechanisms for this in the form of processor-
in-the-loop simulation, in which the automatically generated code is translated directly by the target compiler 
and executed on an evaluation board with the target processor (Figure 7). Testing is performed in the 
Simulink/TargetLink environment and can be directly compared with the results of a model simulation (model-
in-the-loop simulation). This test design lets users reuse all test cases that were developed manually or 
generated automatically. BTC EmbeddedTester provides a powerful environment for performing the required 
tests, including the automatic comparison of model simulation and processor-in-the-loop simulation. The 
associated test reports are created completely automatically. BTC EmbeddedTester also supports code 
coverage analysis (MC/DC coverage, condition coverage, etc.), see Figure 6.  

 

 

Figure 7: Model simulation and tests in different simulation modes.  

 

 

6. TOOL QUALIFICATION ASPECTS, LIMITATIONS AND EFFECTIVENESS OF THE TOOL 

CHAIN 

The proposed tool chain is based on the Simulink/Stateflow modeling environment and TargetLink for 
automatic source code generation. But a code generator as powerful as TargetLink is very hard to qualify as 
a criteria 1 tool according to DO-330 (see [9]), the Software Tool Qualification Considerations supplement to 
DO-178C. Therefore, the idea is to use an unqualified code generator and instead perform verification steps 
as required by DO-178C/DO-331. However, the verification steps greatly benefit especially from the use of 
verification tools provided by BTC, be it for the source code or the object code. This means that tools like 
EmbeddedTester (criteria 3 tool) and the model checking engine in EmbeddedValidator (criteria 2 tool) would 
have to be qualified to claim certification credits for the application of the tools. 

Regarding the application of the tool chain, the following primary aspects and limitations should be 
considered: 

 Since the whole tool chain makes extensive use of Simulink/Stateflow, its application is primarily 
attractive where this environment seems most appropriate judged by the nature of the algorithms and the 
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software that is to be developed. Where algorithms are best described by block diagrams and state 
diagrams, the tool chain can boost efficiency. 

 Another limitation lies of course in the optional application of model checking to verify the compliance 
between models and the requirements from which the models were developed. The larger the model and 
the more complicated the requirement, the less likely it is that a model checking engine will be able to 
provide a proof in time. 

 
It should be noted that production code generators do not constitute a weakness in the tool chain. On the 
contrary, a modern production code generator like TargetLink produces code much more reliably and with 
much higher quality than a human programmer could.  
In summary, the tools provide powerful mechanisms not only for requirements definition and design, but 
especially for the various verification steps, making it possible to meet the objectives of DO-178C quite easily 
and with less effort than by using conventional techniques. 
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Introducing SCADE Model–Based Development into a Safety-Critical System Environment 

 

Abstract 

With the publishing of ED-12C and ED-218, an opportunity has been created in which Model-Based 

Development is better defined for a Safety Critical System Environment. This positioning paper 

describes the approach and methodology applied to move from a conventional development, to a 

Model-Based Development. The major issue of how to integrate the two development 

methodologies is discussed. 

Introduction 

Since the publication of ED-12B, advances and experience have been gained in model-based 

development and verification, their application, and supporting tools. As the use of this technology 

for critical software applications in avionics has increased, there are a number of issues that need to 

be considered to ensure the safety and integrity goals are met. With the ED-12C [1] edition and 

introduction of ED-218 [2] these issues are addressed.  

For engine control systems the demand placed on the provider is that the software is produced to 

ED-12C Safety Critical Level A standard [1].  Section 1 of this paper considers the selection of a 

model-based development tool with a certified code generator which meets the requirements of ED-

12C and ED-218. This removes the obligation to perform code reviews and low level testing in the V-

model process [2]. Section 2 discusses the integration of the candidate Model-Based Development 

Tool (MBDT) with the existing technology that had been used over a series of control system 

developments. Section 3 addresses the tooling that currently supports the existing process. This 

poses the question of whether to update and integrate, or to generate specific tooling to support 

the MBDT. Finally Section 4 is concerned with other aspects of the introduction of a Model-Based 

Development into projects. 

Section 1 – Selection and Process for the Model-Based Development Tool 

The primary criterion for selecting a Model-Based Development Tool is that there is an ED-12C 

qualifiable code generator that produces ADA code from a model. A mandated process under ED-

12B/C is to demonstrate, using independent review and test, that the code meets the low level 

design. A significant amount of resource is spent doing this, however very few coding errors are 

made, typically 2% against 70% in requirements. Under ED-12C if the code has been produced by a 

qualified code generator then the demonstration is no longer required.  Investigating the availability 

of qualifiable code generators discovered that ANSYS/Esterel Technologies [3] markets such a 

product – SCADE Suite, as a member of a four part product set. SCADE Suite uses either KCG C 

qualifiable code generator, or a currently unqualifiable KCG ADA code generator (KCG ADA is 

undergoing a process which is expected to complete in 2015 which will result in a qualifiable 

version). Further investigation showed that there are no qualifiable ADA code generators available. 

SCADE Suite comes with a large set of utilities; however these are not qualifiable for reasons other 

than technology. SCADE Suite has a significant user base and, since Esterel Technology became part 

of ANSYS, the tool is expected to be available to support development over the life time of an 

engine. 
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A gated process to introduce a SCADE design process into the company was enacted. This not only 

examined all aspects of using SCADE for designing and modelling engine behaviour, but the business 

case as well.  Part of the process is to have prototype and pilot projects to demonstrate that the 

SCADE methodology and tooling is robust and complete. An important part of the process is training, 

so a SCADE Tutorial was written for use in-house to be led by an internal tutor. The SCADE Tutorial 

emphasises the particular aspect of designs that are commonly used on projects. The training 

covered both design and model test coverage features of SCADE and is used in conjunction with the 

SCADE Suite examples and documentation.  

Three ‘Golden Examples’ or exemplars, were developed by a trained implementation team using a 

previously implemented set of High Level Requirements (HLRs).  They modelled a scheduler, a signal 

validation scheme and an engine status state machine. They were analysed against the original 

developments to validate the artefacts produced and compare metrics. The SCADE process 

identified a problem in a requirement specification which was corrected immediately. In the original 

implementation the problem had gone through a full development cycle before being identified and 

corrected. The full SCADE package was then exercised in a pilot project. A team of four engineers 

from a sister company were trained using our internally developed training material ‘The SCADE 

Tutorial’, and then given the same ‘Golden Example’ requirements to design and verify. This pilot 

team also discovered the specification problem and completed the task in a slightly longer time than 

the original team. Full ED-12C Level A processes were used in both cases and, because SCADE KGC 

ADA is not currently qualified, the code artefacts are subject to review. SCADE is now In-Service 

within the company and has been successfully used on three engine types for shaft break detection, 

air flow and lean burn components. 

Section 2 – Integration of the Model-Based Development Tool and the Existing Process 

The existing process uses Artisan Studio [6] for UML Modelling and development and we will always 

want an Artisan model to place the SCADE components into.  This means that all SCADE components 

have to be integrated into our Fixed Priority Scheduler (FPS) for the Electronic Engine Controller 

(EEC). The software architecture is modelled in UML and each schedulable component in the model 

can only have “init” and “run” methods in each software component class.  So a way had to be found 

to access SCADE through a single entry point so as to be able to integrate the SCADE component into 

the architectural model. A SCADE component stereotype allows the architecture modelling tooling 

to generate a SCADE/UML interface. A call is generated of the type “componentSCADE_execute” 

within the “component.run” method, passing a “.ctx” SCADE context object as a parameter. Also the 

data for the accessor methods to the boundary items between SCADE and the architecture model 

have to be passed as parameters, these are picked up as sensors within the SCADE package. Any test 

points are set up as probes and passed back through the “.ctx” SCADE context object. Having a single 

entry point means that requirement testing has to be behavioural testing in black box mode. 

Subsequently we discovered, for verification tooling and testing reasons, that multiple entry points 

might be preferable, if so then a “componentSCADE_execute” operation is needed for each one. 

However this should be carefully considered, due to the extra work involved.  

 Section 3 – Tooling for Two Methodologies 

In the existing development environment, the processing of hand written ADA is handled by the tool 

and its code generator. This builds the component source file from all the architectural diagrams and 
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the hand written code. The ADA is checked for SPARK compliance and complied by an in-house 

complier based on GNAT. At this point the component source files go through an ED-12C mandated 

review process to check that code meets design. Often the code is subjected to find and fix testing 

on a rig to expose and capture requirement, design and code problems. On completion of the 

review, the components are put into a build and undergo a test process. SCADE Suite provides a 

simulation and model test coverage MTC facility, thus the designer can model and simulate the 

design. This provides an early opportunity to discover if any problems exist in the component HLRs 

and, at the end of the design process, there is a high confidence in the validity of the model. After a 

design review the model code is transferred to the test process for testing against the HLRs. 

In order to integrate SCADE Suite with the architecture model, a set of tools were developed. These 

are based on the work carried out in the ‘Golden Examples’ and the pilot activities. Previously 

altering the FPS was not an option, so a convention to name SCADE operations as 

“componentSCADE_execute” was made. The “component.run” method is designed exactly as 

before, but now with “componentSCADE_execute” method embedded, which passes, as a minimum, 

a “.ctx” SCADE context object as a parameter. The SCADE Integrator tool was developed to generate 

the SCADE component model according to the structure defined in the architecture model. This 

picks up all the Methods, Interfaces, Development Variables and Test Points in the component class 

and creates the SCADE Component Model. Any SPARK annotations are also generated. Data Tables 

are processed by a Graphical Data Loader tool which puts the data into graphical data packages in 

the architecture model for use by the software components.  

SCADE Suite operates in its own environment and holds all the type definitions in single file called 

“KCG_types”. This is not an issue when there is a single “componentSCADE_execute” in the 

“component.run” method. However when there are more than one, then there is a problem with 

duplicated “KCG_types” files.  

Another feature is that SCADE Suite creates its own variable names. For example a record structure 

“{delta, flt}” is named “daft_1”. Understanding this algorithm is easy, however when it comes to 

Graphical Data with multidimensional arrays, naming proved to be impenetrable. The SCADE Code 

Processor tool was developed to structure/call KCG using command line arguments and to edit the 

graphic data files to integrate with KCG generated code files. For example each of the “KCG_types” is 

forced to generate as “componentSCADE_KCG_types”, resolving the name space issue.  

The testing tool used for the existing systems is ADATest. Our in-house Component Under Test 

Explorer tool (CUTE) is used to generate the necessary test cases to demonstrate coverage and 

robustness. The output ADATest is an “.ath” file which is executed to test the component and gather 

coverage from an instrumented version. CUTE was modified to access the architecture model 

“componentSCADE_execute” method and produce “componentSCADE.sth” files for processing by 

SCADE. There was no change to how CUTE was used. The SCADE Manager was developed to process 

the CUTE “componentSCADE.sth” files and generate “.sss” files and run SCADE MTC in command line 

mode. This generates coverage reports for the SCADE components.  

Model-Based Systems Engineering (MBSE) is used to produce HLRs. In order to provide traceability 

the SCADE LifeCycle Requirements Management tool is used. This uses regular expressions to 

process a range of documents, including “.pdf”, “.doc” and “.xls”, and also has an interface to 

DOORS.  The requirement tags are extracted from the HLRs and allocated to the SCADE operations. A 
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rich set of views and utilities are available in the tool to make requirement tracing easy.  Finally the 

software design document generator tool was modified to integrate the SCADE design 

documentation produced by SCADE Suite.  

The truncated SCADE V lifecycle under ED-12C and ED-218 is given in Figure 1, the SCADE Context 

diagram is given in Figure 2 and the conversion of the UML Component into SCADE is given in Figure 

3. 

 

 SCADE generates qualified code which eliminates the need for Low Level Testing 

 SCADE Verification Tooling consists of CUTE and SCADE Manager 

 CUTE generates test harness files for SCADE  (.sth) and Target (.ath) 

Figure 1 - SCADE V Life Cycle 
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 SCADEManager provides the same functionality as Target Manager, but against the SCADE 

Model 

 CUTE has been updated to generate SCADE Test Harness files (.sth) 

 High Level Requirement Test (HLRT) Scripts are run against the SCADE Model and then 

transferred to the Tager System. 

 SCADEManager executes the SCADE Test Harnesses. 

 Target Manager executes the ADA TEST Harnesses. 

Figure 2 - SCADE Context Diagram   
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Figure 3 - UML Component Structure Converted into SCADE by SCADE Integrator   



ERTS2 2016 

12 November 2015 ERTS2 2016 Page 7 of 9 

Section 4 – SCADE on Projects 

The major issue was the previous decision to use the KCG ADA code generator. This is currently 

being “made qualifiable” and will finally eliminate the need for code reviews. Until this happens they 

still have to be performed to comply with ED-12B/C for certification. Against using the qualified C 

generator was the necessity of providing ADA/C conversion wrappers for every SCADE call. In an 

environment where safety is critical and Worst Case Execution Time (WCET) has to be as low as 

possible, the wrappers were considered to be unnecessary overhead. Another factor was the 

interfaces between the layers of the architecture models. As SCADE is being used initially on a 

refresh program, the effort of re-designing the existing systems would have been too great for the 

benefit obtained. So introducing SCADE and integrating with existing software has to be as robust as 

possible and this burden falls on the tooling effort. 

Critical to the success of the project was the development of SCADE and SCADE MTC Tutorials. These 

are complementary to those provided by SCADE Suite. The SCADE Tutorials are concerned with 

generating a set of SCADE projects from nothing and exploring each set of SCADE primitives in 

depth. This is especially true with maps and folds, which was found to be a difficult concept to grasp. 

Also the examples are tailored to meet typical types of project component.  

By generating the ‘Golden Examples’, from a previously implemented HLR set, comparisons were 

able to be made between the two SCADE teams which found that there were no significant 

differences between the quality of the teams work or the time spent. This showed that the SCADE 

Tutorial and training is fit for purpose. The detection of the problem in the original HLRs helped 

demonstration of the value proposition of introducing the SCADE process. 

A set of SCADE Utilities comparable with the existing Utilities were created. By looking across three 

existing projects only those which were in all three were generated.  An exercise was carried to 

calculate the WCETs and they were compared with the existing times. The auto generated code was 

within 3% of the hand written code and in the binary search turned out to be faster. SCADE Suite is 

architected such that SCADE Utilities and project specific versions of Utilities can be deployed 

simultaneously. The intention is to make the SCADE Utilities product line software components once 

KCG ADA is qualified. 

Due to the IT policy and against advice SCADE Suite was installed on a Citrix network. This proved 

impossible to run, and so it was installed on the local machine. This again proved to be a problem, 

due to SCADE Suite requiring to write logging files in its’ program directory, which is against our IT 

policy. The solution turned out to be to run SCADE from a shortcut with the Start In parameter set to 

a writeable directory. 

The look and feel of SCADE Suite was good, and the help system was exceptional. If anything it was 

over thorough, which is not often stated. The whole SCADE process took about 4 man years to 

achieve, and was rigorously progressed through a gated improvements process. 

By using SCADE the dynamic of planning and project management is changed. The software spend is 

loaded upfront into the system and software interface and on into the design phase. Of course the 

cost of code review and low level testing is removed, but is taken up with design activity costs. As 

part of the ED-12C/ED-218 process there is also a need to re-execute the tests in target to show 
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compatibility with target hardware with attached costs. When comparing SCADE development 

components against existing development a cost saving of about 18% was seen due to the removal 

of scrap and rework (S&R), where the components have been right first time. We made the benefit 

of S&R almost a break even cost because we knew that there were further benefits to be gained, but 

hard to quantify. As expertise increases other aspects of project spend will be reduced.  

Another feature of using SCADE is the effect that it has on the levelling of requirements. There is a 

tendency to write requirements in a language that resembles pseudo code, and effectively imposes 

unnecessary constraints on the designers. Using SCADE diagrams to express design helps to 

encourage a more optimum level of high level requirements. A much greater interaction and 

discussion between the systems and software engineers was noticed as an evolved behaviour. From 

our initial experiences it is expected that further changes will occur in the way that projects are 

managed and resourced, which is a good thing in an environment of continuous improvement. 

 Conclusion 

Ideally anyone wanting to use SCADE Suite should start on a new project that is not dependent on an 

existing system. ANSYS also provide a SCADE System product which integrates with SCADE Suite, 

which could have eliminated our architecture tool integration issues. However this should be 

compared against other vendors or indeed the merits of integrating with existing incumbent systems 

and processes. Since the code does not need to be inspected the selection of a specific language KCG 

based on source language preferences should not be an issue but where the code is to be integrated 

with other code the overheads of mixing languages must be considered. If SCADE Suite is to be used 

with existing systems then be prepared for lots of challenges. However with a robust plan, analysis, 

diligence and perseverance it can be achieved. 
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Abstract—The paper describes a pragmatic solution to the
parallel execution of hard real-time tasks on off-the-shelf em-
bedded multiprocessors. We propose a simple timing isolation
protocol allowing computational tasks to communicate with hard
real-time ones. Excellent parallel resource utilization can be
achieved while preserving timing compositionality. An extension
to a synchronous language enables the correct-by-construction
compilation to efficient parallel code. We do not explicitly address
certification issues at this stage, yet our approach is designed to
enable full system certification at the highest safety standards,
such as SIL 4 in IEC 61508 or DAL A in DO-178B.

Index Terms—Mixed criticalities, Multi-core, Embedded real-
time system, Synchronous Language, Time-triggered execution

I. INTRODUCTION

This paper presents the design of a synchronous language
enabling hard real-time applications to run on off-the-shelf
multi-core platforms.1 The language and methodology ensure
the isolation of time-critical tasks from the non-time-critical
ones under the following three hypotheses:

1) most of the computational load takes place in non-time-
critical tasks;

2) it is possible to program the reaction to the absence of
timely data, when non-time-critical tasks are delayed;

3) the target multiprocessor provides means to strictly
prioritize memory accesses of one or more processors
executing time-critical tasks, or to fully isolate such
accesses into a scratch-pad memory; and the target also
supports asymmetric multiprocessing (e.g., bare-metal
execution on one core and Linux on another).

We illustrate our approach and validate it on a train signaling
use case provided by Alstom Transport. It is representative
of the complexity in terms of vital/non-vital code interweav-
ing, operational performance and availability constraints. The
system function is called “Passenger Exchange” (PE). This
function takes control of the train when safely docked at a
station; it organizes the exchange of passengers (train and
station doors opening/closing) while protecting them from
any untimely train movement or non-aligned doors opening,
and finally gives the departure authorization when all safety
conditions are met. The functional specification is made of

1This work is supported by the Technological Research Institute (IRT)
SystemX, partially funded by the French public program “Investissement
d’Avenir”. It is also partially funded by the EMC2 ECSEL and ITEA
ASSUME projects.

more than 300 requirements (natural language and SysML),
and the system function is composed of about twenty sub-
functions.

The PE application is partitioned into tasks, some of them
being safety-critical and hard real-time, and some of them
being mission-critical but non-vital. These tasks expose input
and output signals and may result from the compilation of
a synchronous block-diagram language. Unlike most related
work on mixed criticality [2], dependences and communication
among tasks of different criticality are allowed. There is a
simple reason why we can afford such a breach of criticality
partitions: our approach composes tasks of different time-
criticalities, without relaxing any other validation requirement.
In other words, all tasks may still be certified at the highest
(relevant) level of safety, but we acknowledge that only a
subset of the tasks needs to be time-predictable and validated
against real-time constraints. Let us discuss this hypothesis on
the PE application. The computation of the doors that are safe
to open (e.g., because they are not aligned) is safety-critical, as
well as the task preventing train departure if safety conditions
are not met (e.g. the doors are open or opening). Less vital
tasks are in charge of operating doors with respect to the mis-
sion and to a time table; these are still mission-critical since the
quality of service depends on the rare occurrence of timeouts.
In this example we identify two occurrences of mission-critical
to safety-critical communication. First, in order to ensure that
door commands (mission-critical) do not lead to an accident,
they must be checked against the enabled set of doors (safety-
critical). Second, the departure authorization (safety-critical)
must be computed regarding door commands to ensure that no
opening commands will be executed after the authorization has
been given. Such communication patterns are quite common
in the case study.

In this paper, we will be using a modified version of the
PE application. These modifications decouple computational
aspects of the original safety-critical components. These com-
putational tasks are amenable to parallelization and aggressive
optimization, while satisfying a relaxed set of soft real time
constraints. As a result, a safety critical component is split
into a non-time-critical and a time-critical task, both of them
being certified at the highest levels of safety. On the other
hand, several less critical components with no connection to
safety critical tasks have been coalesced for didactic reasons.

In the following, we focus on the validation of the hard



real time requirements of the time-critical components of the
system. The difficulty being that interferences on shared buses
and caches of conventional multicores make it impossible in
general to establish a practically useful worst-case execution
time of a given task [16]. Our goal is to design a software
stack and composition methodology enabling hard real-time
control code to be isolated from timing interference, while
exploiting parallelism among non-time-critical tasks, and still
allowing for communications between the two. To solve this
apparently paradoxical and infeasible set of constraints, our
language provides an automatic inference mechanism for
“late” communications between time-criticality levels. Time
compositionality may be implemented through mode changes,
and introduced incrementally into existing design and valida-
tion flows.

II. STATE OF THE ART

Thread-level parallelism has become unavoidable in any
area where performance matters. While specific designs
are emerging that combine predictability and performance—
e.g. [16]—off-the-shelf multiprocessors designed for mass-
market areas are not well suited to timing analysis. Indeed, it is
necessary to establish strict bounds on the worst case execution
time (WCET) to address the time-predicability requirements of
safety-critical systems [19]. If contention of shared resources
can not be avoided, the complexity and imprecision of these
techniques worsens dramatically. A survey of these researches
can be found in a recent paper [12]. Our approach is not
to improve timing analyses themselves, but to make those
more effective by controlling how the system is designed, from
specification to code generation. We also hope to reduce the
reliance on timing analysis on large parts of its code: ideally,
most of the software components would not need a fully safe
worst-case execution time characterization, even though the
full system remains globally time-predictable and provably
safe.

We are interested in mass-market commercial off-the-shelf
(COTS) platforms, but we believe our approach will also be
applied to more predictable classes of multiprocessors, such
as the Kalray MPPA [14], [8], increasing resource efficiency.
Such extensions are left for future work. Numerous hardware
components impact WCET analysis on multiprocessors [7],
such as shared caches and shared busses, etc. The main solu-
tions attempt to reduce the general problem to a composition
of sequential WCET analyses, enforcing a strict isolation at
all levels of the memory hierarchy. For example, software-
cache partitioning has been realized for ARM Cortex A9
[18], and other approaches using scratch-pad and multi-ported
memories are also possible. Our proposal builds on these ideas
to implement spatial and temporal partitioning.

Our proposal was also inspired by the Logical Execution
Time (LET) paradigm [15] where the correctness of the system
relies on observable input and output times independently
of the actual execution time of the system’s components.
We extend LET with communications across time-criticality
partitions, introducing a new protocol for tightly controlling

timing isolation. We also leverage the multiple levels of time-
criticality in real-world safety-critical applications to relax the
timing isolation of parts of the system, improving overall
efficiency and reducing certification costs without jeopardizing
the safety of the full system. This approach has also been ap-
plied to Automotive control applications, but without enforcing
hard timing isolation and compositionality [4].

Finally, when compared with the state of the art in mixed-
criticality real-time scheduling, our paper proposes a totally
different approach. Isolation between low-criticality and high-
criticality components is ensured not only temporally, but also
functionally, by means of language design and code gener-
ation. This approach is fully complementary to the mixed-
criticality task models proposed in the real-time scheduling
community. As such, it could be a contribution towards
aligning academic work on mixed-criticality systems with the
notion of mixed criticality introduced in industry standards
[11].

III. A MIXED-TIME-CRITICAL SYNCHRONOUS LANGUAGE

We designed a simple mixed-time-critical extension of an
existing synchronous dataflow language: HEPTAGON [13].2

It is a research language and compiler with a LUSTRE-
like syntax, analogous to the textual language of SCADE
SUITE.3 HEPTAGON features state of the art constructs such
as finite state machines and functional arrays with in-place
operations. Its compiler implements a clock calculus upon
which the generation of efficient embedded code is built,4 and
a number of optimizations to reduce control flow and memory
management overhead.

The original PE application has been completely imple-
mented in HEPTAGON, with only low-level I/O and system
calls implemented in C. This choice allowed to faithfully
implement the original specification, facilitating the applica-
tion of formal methods or manual certification procedures.
Although using mainly a natural language, the specification
describes the functions to be implemented in an equational
way which suits easily a dataflow language. HEPTAGON has
been used to describe the tasks themselves as well as the
target-specific code which describes how tasks communicate.
We were also able to compile and test the different com-
ponents early, then proceed with their integration and static
scheduling, preserving timing isolation in a compositional
way. In later development and validation stages, the tasks have
been identified and mapped to specific processors, scheduled
and executed in separation, with no functional changes to
the program and reusing its high-level communication code.
The detailed presentation and discussion of the parallelization
and distribution features is out of the scope of the paper
(some of the principles can be found in Gérard et al. [5] and

2See http://heptagon.gforge.inria.fr for documentation, source code and
applications.

3http://www.esterel-technologies.com/products/scade-suite.
4Clocks can be seen as a type system for sequences of boolean conditions

controlling the presence or the absence of values in stream variables, or the
stepping of synchronous, stateful nodes in a process network.



Delaval et al. [9]). Instead, we outline the proposed extensions
to HEPTAGON, and in particular how to programmatically
control what happens when a task misses its deadline. For this
purpose, we extend our language with the notion of “tasks”
and “punctuality”.

A task is defined as a dataflow node which is the smallest
partition of the synchronous program after static scheduling
and code generation. Tasks may then be amenable to dynamic
or time-triggered scheduling. A task is a reactive program,
a property inherited from HEPTAGON nodes: it activates re-
peatedly in response to a signal, its inputs need to be present
before it activates (dataflow semantics) and the task’s outputs
are present after it terminates its reaction. After the beginning
of the task and before its end, the task does not communicate
with any other task. It is the programmer’s duty to choose
which dataflow nodes in the node instantiation tree will be
tasks and thus to define the granularity at which the application
is deployed on the target platform.

If ever a task were to be instantiated inside another task, the
compiler would simply ignore this information and continue as
if the task was a simple node. This does not guarantee time and
space isolation across the “embedded” and “embedding” task,
but we found it sufficient to ensure time and space isolation
across top-level tasks in the system.

Note: the HEPTAGON language allows the programmer to
declare “external” nodes and tasks which can be resolved at
link time. This allows specific nodes to be written in plain C.

A task is called unpunctual if it is not time-critical. In this
case, the task can miss its deadline. It may be left to run
to completion, ignoring its outputs, or it may be killed or
preempted by the system. When it happens, the outputs of
the task are not present. To reflect this possibility, we say
that the outputs of the task are also unpunctual. We extend
the type system of HEPTAGON by assigning a punctuality
to each variable and each task. Our language requires that
the punctuality of the output variables is always the same
as the punctuality of the task. These unpunctual values can
be transmitted to other nodes. However, to exploit these
values, the programmer must distinguish two cases: either
the value has been computed on time or the unpunctual
computation timed out and it is not available. The operator
ontime takes an unpunctual variable argument and returns
a boolean which evaluates to true when the variable can be
read. In other words, the expression ontime v is the clock
of the unpunctual variable v. This means that the merge
operator—combining multiple flows with mutually exclusive
clocks in HEPTAGON—can be used to build a punctual value
by combining the actual value when present and a “default”
value otherwise.

In many cases, the “default” value to be used in place of the
actual value when a task missed its deadline is a static constant.
This happens when there is a value which is always safe. For
instance in our case, it is always safe that the component
sends no commands or to considers that there is no door
correspondence. The programmer can then give a default value
to the unpunctual variable which will be used when the actual

value is not available. When an unpunctual variable is set to
its default value, its clock is the one of the node. (Or the one
explicitly declared if it is different.) Sometimes, specifying a
default value is not powerful enough. For instance, in Model
Predictive Control (MPC), a more suitable reaction may be to
repeat the command issued in the last cycle but following a
suboptimal, faster prediction [17], [1].

IV. MIXED-TIME-CRITICAL FLOW AND PLATFORM

We review the tool flow and run-time support for the
compilation and execution of synchronous programs with
multiple levels of time criticality.

A. Compilation

The extensions to HEPTAGON require three main changes.
1) The task keyword is a synonym of node. It is sup-

ported as an annotation in the intermediate representa-
tion, which can then be read by the back-end to generate
a scheduling table [6] or communication code.

2) The type system is extended with a punctuality property.
3) A transformation pass abstracts the punctuality infor-

mation such that the resulting program have the same
semantics but is lowered to conventional synchronous
code without the mixed-time-criticality constructions.
Further down, the usual compilation flow can be applied.

We add a “punctuality” attribute to the type of expressions
and variables. The type system verifies that variables assigned
from an unpunctual task application are also unpunctual and
that unpunctual variables may only be passed as argument
when the corresponding parameter is also unpunctual. The new
construct ontime is always typed as boolean.

The additional transformation pass uses clocks to represent
the punctuality. Each unpunctual variable is split into two
variables: one is a boolean signal representing whether the
value has been computed on time or not, the other is the actual
value which is only defined on the former clock. The ontime
v expression for any variable v is translated to either true
if the variable v is punctual or to the clock of v otherwise.

A task with an unpunctual parameter is split the same way.
HEPTAGON allows one parameter to be the clock of another
and thus supports this construction.

When a default value is provided for an unpunctual variable,
the real value is selected when present, and the default one oth-
erwise; it corresponds to the merge construct in HEPTAGON.

The clock variable for each unpunctual variable needs an
input from the system telling whether the task generating the
encapsulated value has completed on time or not. We introduce
for each task call a fresh abstract function which provides this
information. It is the responsibility of the back-end to stub
these functions appropriately.

It is worth noting that by relaxing the type system to be a bit
more lenient on unpunctual arguments we could have allowed
interesting constructions, at the cost of additional compilation
efforts: since unpunctual tasks are not time-critical, it should
be possible to execute them one after another, waiting for the
previous task to terminate normally without killing it when



node check_command(door_command : command; door_map : int)
returns (safe_command : command)

let
safe_command = if door_map <> -1 then door_command else None;

tel

task check_commands(unpunctual door_commands : commandˆn; door_map : intˆn)
returns (safe_commands : commandˆn)

let
if ontime door_commands then
safe_commands = map<<n>> check_command(door_commands, door_map);

else
safe_commands = Noneˆn;

end
tel

Figure 1. Simplified implementation of a safety-critical function which ensures that there are no command for a train or platform door which is not aligned
with a corresponding platform or train door, respectively. The door_map array provides a valid description of which pairs of doors are aligned, and the
door_commands is the array of commands computed for each door. The latter is unpunctual as it results from a best-effort computation in a mission-critical
task; when commands are not computed in time, it is always safe for the passenger that the doors receive no commands.

a deadline is missed. At worst, the unpunctual task missing
its deadline could be preempted to ensure it does not use
resources (CPU, memory, etc.) which belong to any time-
critical task. Thus depending on the criticality of a task, the
behavior to follow when a data is not computed on time
would not be the same. If the task is time-critical, we use
the constructions introduced in this paper to program the
temporary transition to a degraded mode. If the task is not
time-critical then it can wait until its data are computed. This
solution may accumulate delay if multiple tasks miss their
deadline or the delay of a task can be compensated by another.
For this purpose, we could have allowed unpunctual arguments
to be passed to unpunctual tasks without declaring them as
unpunctual, but this would involve heavier changes in the type
system.

B. Distribution and parallel code generation

At this stage of our research, the code generation procedure
is only partially implemented and thus semi-automatic.

Like in LUSTRE, a HEPTAGON program can be seen as
a dataflow graph where vertices are operators or instances
of other nodes. A program is defined by its root node. All
nodes instanciated from a parent task node can be statically
scheduled by the HEPTAGON compiler into a single step
function. Calls to the node’s internal operators and child nodes
may even be inlined if desirable.5 After the program has been
compiled, we obtain a dataflow graph whose vertices are tasks
and whose edges are communications between these tasks.

In our case study, most dataflow operators are copies of
outputs of one task to the input of another, or field selection
where a subset of the data is being copied. Other operators,
such as arithmetic ones, are also encapsulated into tasks. The
punctuality of an encapsulating task is completely determined
by the type system which imposes that the operands and the
result of an operators must have the same punctuality.

In summary, the first transformation pass produces a
dataflow graph where, after inlining and encapsulation, all

5Recursion is forbidden.

vertices are tasks and where edges are communications. These
tasks must then be allocated and scheduled. Although the
HEPTAGON compiler has its own scheduler, it is intended
for pure sequential scheduling and for a totally different
optimisation goal. Thus, our approach relies on the existence
of external tools to allocate and schedule tasks. These tools
must take into account the cost of communications as well
as the individual execution cost of tasks. For instance, we
have implemented a back-end for the LOPHT [3] scheduler:
this back-end allow us to feed the scheduler with the list of
tasks, data dependencies, clocks and constraints. LOPHT then
produces a scheduling table for all these tasks. [6].

Basically, the allocator gives a color to each vertex in
the dataflow graph while the scheduler gives a topological
order to those vertices. In our framework, allocation just
splits punctual and unpunctual tasks. For each computation
resource—i.e. for each color in the dataflow graph—one may
generate sequential code. This code calls each task in the order
given by the scheduler. When the input of a task is produced
by another task on the same computation resource, a simple
data copy takes place. When the two tasks are allocated in
different computation resources, the generated code uses the
communication protocol described in the next section.

C. Partitioning and time-triggered communication protocol

Systems with mixed time-criticalities require a strong as-
surance on the worst case execution time (WCET) of most
safety critical tasks. However this is almost impossible to
achieve without temporal and spatial partitioning, due to the
shared resources of conventional multi-cores [16]. Concretely,
concurrent accesses on shared resources, such as a shared
L2 cache or a shared scratch-pad memory bank, result in
contentions, which prohibit timing analysis at the system
level. Building on partitioning techniques, we propose a
time-triggered communication protocol to realize contention-
avoidance and timing isolation.

A strict spatial partitioning requires independent physical
memory and computing units. This is for two reasons: first, to



keep the register and memory context of safety-critical tasks
away from malware or bugs; second, to avoid concurrent ac-
cesses on shared resources, including instruction caches. Such
spatial partitioning can be achieved on off-the-shelf hardware
platforms, such as the Zynq 7K [23]. It integrates an ARM
MPcore (Dual Cortex-A9) and a FPGA permitting asymmetric
multiprocessing (AMP) configurations. Each ARM core can
run its own software stack, set up separately in the shared
DDR or on chip memory (OCM). Precise timers and bus
arbitration policies can also be controlled. Moreover, building
on the embedded FPGA, a variety of memory and computing
units can be implemented, e.g., for communication buffers, and
for controlling external I/O. Therefore the time-critical and
non-time-critical tasks can be fully isolated on the physical
platform. This does come with a significant cost however,
as communications and DDR accesses from the time-critical
level must be temporally isolated from any other activity.
Such temporal isolation may dramatically reduce the effective
parallelism available in the program. In particular, to the best
of our knowledge, it is not possible to execute two time-
predictable tasks in parallel on such a platform.

Our time-triggered communication protocol aims at real-
izing sufficient temporal partitioning without destroying the
potential for parallel execution. This protocol controls not only
shared communication buffers by building access time frame
and deadline in order to avoid contentions. But it can also
tolerate timeout events in order to avoid delaying the time-
critical functions by non-time-critical ones. And it achieves
this inspite of the presence of communications between the
two levels.

In this protocol, each task is split into phases falling in one
of six classes:

• time-critical computing (TCCP),
• time-critical copy to buffer (TCTB),
• time-critical copy from buffer (TCFB),
• non-time-critical computing (NTCCP),
• non-time-critical copy to buffer (NTCTB), and
• non-time-critical copy from buffer (NTCFB).
To set the execution deadlines, we rely on a supplied WCET

for each of these phases. Fig. 2 shows a sample chronogram
of the time-triggered protocol. In this simple example, there
are two parallel execution chains, one for safety-time critical
tasks, another for mission critical ones, they are executed in
parallel on different CPUs.

Phase I: On the time-critical level, at the end of the date T0
that is the deadline of previous function, the TCTB function
is executed to copy the data to buffer. Its WCET W0 is used
to define its deadline T1 (T1 = T0 +W0).

On the non-time-critical level, T1 is the deadline for the
previous functions. It should be noted that this deadline is not
a hard one: late events are tolerated.

Phase II: The NTCFB function of the non-time-critical level
transfers the data from the buffer at date T1. Then the NTCCP
function deals with the data and generates the output results.
Finally the NTCTB function transfers the data to the buffer.
The sum of WCETs Y 0 + Y 1 + Y 2 of NTCFB, NTCCP and

NTCTB is used to define the date of T2. The temporal gap
between T1 and T2 can be filled by other TCCP functions
according to the task scheduling strategy. The WCET value
W1 should be less than T2− T1.

Phase III: The TCFB function copies the data from the
buffer when the data is ready, if no timeout takes place.
Otherwise the late event is handled appropriately by the second
TCCP task. The maximal WCET value of LCFB and of the
backup function defines the deadline date T3.

In fact, if missing a deadline on an unpunctual communi-
cation is harmless, a default value may be enough to react to
the timeout event. Otherwise, a more evolved backup function
is needed, and its WCET needs to be accounted for at design
time, to set up the timeout accordingly. On the other hand, if
a timeout should be considered as a fault, the approach is not
applicable and the task should not be considered as non-time-
critical; fail-safe or degraded mode transitions, or fault-tolerant
approaches might be considered.

It should be noted that, not only a communication from
non-time-critical to time-critical, but also time-unpredictable
communications between two time-critical tasks or two parallel
time-critical execution chains (operating in parallel on two
different CPUs) may be unpunctual. This feature makes the
protocol suitable for network-on-chip (NoC) systems, such as
the Kalray MPPA manycore processor [14]. On such a chip,
time-critical tasks can executed in parallel in the different clus-
ters, while implementing unpunctual communication between
clusters to reduce overhead and certification cost.

V. VALIDATION

As mentioned above, the PE application is coded accord-
ing to its original functional specification. This specification,
written in SysML, details functional and behavioral aspects,
risk levels (vital or non-vital), the component architecture,
communications and interfaces. We split the vital functions
into time critical and non-time critical ones according to their
timing requirements, but any atomic behavior is not broken
down.

Although the PE application is a reasonably simple use case,
it has more than 300 functional and behavioral requirements
already: it is a representative industrial SIL (Safety Integrity
Level) application. Many other application areas combine the
needs for computational components in the loop of safety-
critical control. From engine control to monitoring, control
engineers need computational tasks in order to improve tra-
jectories, leading to resource optimization, emission reduc-
tions, longer maintenance cycles, etc. Model-predictive control
(MPC) is one of the best representatives of such computational
control applications.6 Its applicability to real-time systems has
so far been limited by its time impredictability [25], making
it a prime candidate for mixed-time-critical execution.

Fig. 3 presents a simplified dataflow graph of the PE
application. The following safety requirements must be met
by time-critical tasks:

6http://www.mpc.berkeley.edu/mpc-course-material



Figure 2. Chronogram of ideal time-triggered communication protocol.
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1) train/platform doors may only open if properly aligned;
2) if the train is not immobilized, doors cannot be opened;
3) doors must be closed to allow the train to depart.

The non-time-critical part sets three other requirements:
1) open/close commands are issued according to the mis-

sion;
2) inform passengers of an imminent opening/closing;
3) send warnings to the traffic supervision when the pas-

senger exchange cannot be completed.
These last three requirements are handled by two non-time-
critical functions. The first one computes a mapping from train
doors to platform doors and vice versa, such that matching
doors are physically aligned. The second one uses this map-
ping to compute commands to be sent to the doors according
to the current mission.

To meet the safety requirements, these commands must be
checked. If a command breaks one of the requirements, it is
canceled: it is always safe, according to these requirements
to send no commands. This check relies on three time-
critical functions. First, the physical position of the platform
doors is retrieved. Then, the door mapping computed by the
corresponding mission-critical function is checked using these
physical positions and the current train position. Finally, the
commands are checked against this mapping and information
about the train docking state. The last requirement is ensured
by a fourth function which issues a departure authorization

when no commands have been sent for the last few seconds.
The application also has a non-critical logging function

which records the commands history.
We show in Listing 1 the HEPTAGON source code, declaring

two unpunctual variables, door map and door commands. The
generated C code is presented in Listing 2. Two functions
are generated, for the time-critical code and one for the non-
time-critical code, respectively. The communication functions
send and receive have the same parameters: an identifier for
the channel buffer, the address and the size of the payload,
and the time-criticality of the sender or receiver. The result
of the receive function is a boolean which indicates whether
the communication has been done on time or a timeout has
occurred. This boolean can only be false when communicating
from a non-time-critcical task to a time-critical one. The
communication mechanism is illustrated on a custom system
configuration and platform in the next subsection.

A. Hardware/software implementation
We selected an off-the-shelf hardware platform, the Zynq

7K SoC ZedBoard [24] as our experimental target. It provides
a pair of ARM cores and a FPGA. This flexible platform is
very popular in mixed critical execution environments and in
hardware-software codesign. In this paper, we leverage the
ARM cores for their flexibility and performance on typical
software stacks, and rely on the FPGA only for configuring
the local memory and bus interfaces, and for implementing
communication buffers.

As mentioned in Section IV-C, our first goal is to realize
a strict spatial partitioning on the Zynq 7K. This is achieved
through asymmetric multi-processing (AMP). The Zynq 7K
permits at least two kinds of AMP configurations [22], be-
tween two ARM cores and between ARM and FPGA based
soft-cores. We selected the ARM core-only AMP configuration
to suit our performance-driven implementation strategy:

• ARM core 1 executes the time-critical tasks in a bare-
metal environment. The software stack is allocated on



Listing 1. Snippet of the HEPTAGON implementation of the PE.
node passenger_exchange(train_position : int)

returns (safe_door_commands : commandˆn; departure_authorization : bool)
var
platform : int;
unpunctual door_map : intˆn;
safe_door_map : intˆn;
unpunctual door_commands : commandˆn;

let
platform = get_platform(train_position);
door_map = compute_door_map(platform);
safe_door_map = check_door_map(door_map, platform);
door_commands = compute_commands(door_map);
safe_door_commands = check_commands(door_commands, safe_door_map);
departure_authorization = check_departure_conditions(safe_door_commands);

tel

Listing 2. C code generated by the HEPTAGON compiler.
void passenger_exchange_tc(int train_position, command safe_door_commands[8],

bool* departure_authorization) {
int platform, door_map[8], safe_door_map[8];
command door_commands[8];
bool ontime1, ontime2;

get_platform(train_position, &platform);
send(0, &platform, sizeof(int), TC);
ontime1 = receive(1, door_map, sizeof(int) * 8, TC);
check_door_map(ontime1, door_map, safe_door_map);
ontime2 = receive(2, door_commands, sizeof(command) * 8, TC);
check_commands(ontime2, door_commands, safe_door_map, safe_door_commands);
check_departure_conditions(safe_door_commands, departure_authorization);

}

void passenger_exchange_ntc() {
int platform, door_map[8];
command door_commands[8];

receive(0, &platform, sizeof(int), NTC);
compute_door_map(platform, door_map);
send(1, door_map, sizeof(int) * 8, NTC);
compute_commands(door_map, door_commands);
send(2, door_commands, sizeof(command) * 8, NTC);

}

the on chip memory (OCM) of 256KB (code and data).
• ARM core 0 executes the non-time-critical and non-

critical tasks in a Linux environment: Petalinux [20]. The
software stack is allocated on the DDR (512MB).

• The communication buffers are implemented on the
FPGA.

Figure 4 details the hardware IPs used in the Vivado tool
chain [21] for our system configuration.

a) Processing system7 0: is the IP used to configure a
couple of ARM codes. We use almost all default configuration
values. It should be noticed that, CPU0 uses both L1 and
L2 caches, but CPU1 uses only the L1 cache, in order to
avoid concurrent access on the shared L2. The communication
buffers on the FPGA are not cached.

b) Proc sys reset 0: is the IP used to reset FPGA com-
ponents controlling by the Processing System.

c) Axi mem intercon: is the interconnection IP used to
connect the AXI master components with the AXI slave
ones. This is a 1 → 3 crossbar as there are one master
(processing element) and three slave components: memory

block, ZedBoard LEDs and switch GPIO. The latter two
interfaces are used during PE application timeout injection
and functional test.

d) MEM: is a block memory wrapper containing two
IPs, one for the AXI BRAM controller and the other one for
a block memory generator. In our implementation, we realize
a 32KB memory buffer.

The resource utilization metrics are presented in the table
below. Only a small fraction of the FPGA is used.

On the ARM Core1, tasks are time triggered relying on a
snoop control unit (SCU) 32 bits local timer. We experimented
with two ways to configure the timer: a fixed frequency static
value and a dynamic value derived from to executing task’s
WCET. Both of them were tested successfully.

As the ZedBoard Zynq 7K SoC can operate at 666 MHz, we
can set up a static timer reaching a relatively high frequency
such as 100 KHz, 500 KHz or even 1 MHz, to accomodate
multiperiodic schedules and a wide diversity of task WCET. A
“jiffies” counter is used to hold the number of time ticks that
have occurred since a task was initiated. At the end of the task,



Figure 4. Hardware IPs (Vivado tool chain) used in our implementation.

Resource Used Available Util%
Slice LUTs 2345 53200 4.40%
Slice Registers 2815 106400 2.64%
Block RAM Tile 8 140 5.71%

Figure 5. Mainly resource utilization ratio.

a comparison between the expected WCET and the measured
jiffies allows to determine if the deadline was reached.7 If
it did, the next task executes and the jiffies counter is reset
to zero. Otherwise, a loop spins until the expected deadline.
When using a dynamic timer, it is defined according to the
WCET of the operating task, with a “deadline” variable set to
detect to the WCET. The rest proceeds identically as with a
static counter.

The dynamic scheme requires slightly more code generation
effort but it saves CPU resources, saving the need to handle
intermediate interrupts. For example in the PE application, the
task’s largest WCET is 120× the shortest WCET, which means
at least 120 timer interrupts can be saved using a dynamic
timer.

On the ARM Core0, we did not yet realize time-triggered
execution on Linux, but enter a spin loop instead to check if
the data is ready. To avoid interferences on the communication
buffer due to round robin arbitration, we have to time-isolate
the non-time-critical side of the communication as well, which
doubles the WCET of the corresponding communication func-
tion. This overhead is very lightweight as the communication
function has a low cost compared with other components.

The chronogram of the execution is illustrated in Fig. 6;8

the digits correspond to the following tasks: (1) Get Platform,

7We do not attempt to deal with missed deadlines on time-critical tasks,
which should be handled as critical faults at another level (e.g., a degraded
mode of operation).

8The lengths are not on (timing) scale.

(2) Compute Door Map, (3) Check Door Map, (4) Compute
Commands, (5) Check Commands, (6) Check Departure Con-
ditions, (7) Logging Utility.

As we just presented, the time-critical communication func-
tion A runs in parallel with the spin loop, effectively wasting
parallel computing resources for a short time period. On the
other hand, for most of the execution, functions (3) and (4)
run in parallel, showing the benefit of our mixed time-critical
design. More complex applications and scalable platforms
would make even more effective use of the approach.

Listing 3. C structure of for unpunctual communication.
typedef struct communication
{
volatile int *ready;

// For unpunctual communication
volatile int *timeout;

volatile int *cycle_count;

volatile void *payload;

int size;
} communication_t;

Listing 3 details the language C structure dedicated to
unpunctual communications. This structure contains five fields,
ready signals that a communication packet is ready, timeout
informs about missing packets when reaching a timeout,
cycle count stores the packet’s logical instance cycle (a.k.a.
period), payload wraps the packet data and size represents the
size of the payload. We use the “C” and “D” communications
of Figure 6 to explain this C implementation.

As shown in the Figure 7, we declare a sender variable C
(type of communication t) on the non-time-critical side, and
a receiver variable D (type of communication t) on the time-
critical side.

e) The ready fields: of C and D point to a 32 bits physical
address allocated on the FPGA Mem Buffer—0x40000000.



Figure 6. Execution chronogram of PE application.

Figure 7. Implementation of the “C” and “D” communication of Figure 6.

The sender variable C produces the ready signal, it enables
ready once the packet payload has been copied to the buffer,
i.e., when the packet is ready for the receiver. The “ontime”
operator is implemented by checking the ready field at the
receiver side when the deadline date is reached. If ready is
not enabled, a timeout occurs. The receiver should execute a
backup function.

f) The timeout fields: of C and D point to the following
32 bits physical address—0x40000004. The receiver variable
D produces the timeout signal, it enables timeout when the
deadline date T3 is reached and packet payload is not yet
ready. That is to say, when the packet timeout occurs. The
sender variable C is the consumer; when it seens an enabled
timeout, it aborts the current packet transmission.

g) The cycle count fields: of C and D point to the next
32 bits physical address—0x40000008. The sender variable C
is the producer, the cycle count of the non-time-critical task is
sent to the receiver. If it is different from the receivers’, a full-
cycle delay accumulation occured. That means the sender and
the receiver have lost their synchronous association, which is
a more severe situation, but still one that the protocol aims to
tolerate. It may happen it the non-time-critical task is seriously
delayed due to a chaotic accumulation of interferences. In such
a case, the simplest approach would be to skip the upcoming
instances of the non-time-critical task(s) until the synchrony of

the cycle counts can be restored. Optimized methods to handle
such severe and accumulated delays are outside the scope of
this paper, but the reader interested in advanced strategies may
refer to [10].

h) The payload fields: of C and D point to the following
32 bits physical address—0x4000000C. To preserve timing
isolation, the packet’s contents is first copied from the sender
to the buffer, then from the buffer to the receiver.

The memory overhead of our time-triggered communication
protocol are is limited to the additional communication vari-
ables (cycle count, timeout and ready). On the PE application,
only 6 such variables are needed to implement the (two) cross-
time-criticality communications.

B. Early experiments

Our first experimental validation was to test the mixed-time-
critical version of PE application with its original functional
self-test, which takes the form of a set of scenario simulations.
This test was passed successfully, which proved that the time-
triggered protocol does not change the PE function.

Next, we replayed the functional test with an additional
timeout injection hazard. We did not change the test scenarios,
but inserted controllable delays in the functions (2) Compute
Door Map and (4) Compute Commands. Practically, these
delays took the form of simple device I/O on the Zync
platform, checking if the corresponding ZedBoard switch is
on. if yes, a random number of loop iterations were executed
in order to simulate a non-predictable delay. If this induces
a timeout, the backup function or default values are used, as
implemented in the mixed-time-critical synchronous program.
The trace of the PE application proved the absence of timing
violations or incorrect commands on the time-critical tasks.

As noticed earlier, when a huge delay affects the function
(2) or (4), delay accumulation may occur and the cycle count
fields of the sender and receiver may differ. Our current im-
plementation simply aborts the PE application by an exception
for now, as an illustration of the self-diagnosis potential of the
communication protocol. Of course, a complete implemen-
tation should skip some upcoming tasks and resynchronize
accordingly instead.



VI. CONCLUSION

We presented an application where mixed criticality resides
at the application level, or even at function level, rather than
the system level. Moreover, all functions remain safety critical,
and the different criticalities we consider are focused on
timing predictability and requirements instead. Different time
predictability requirements allowed us to expose parallelism
and optimize resource utilization, compared to a much more
conservative timing isolation of all components. We demon-
strate the feasibility of hard real-time and parallel execution
of safety-critical tasks on a conventional embedded multicore
platform. A timing isolation protocol allows best-effort, func-
tionally validated tasks to communicate with hard real-time
ones, while (1) preserving timing compositionality, and (2)
satisfying all hard real-time constraints in the complete appli-
cation. To program and certify such applications, we proposed
an extension to a synchronous language enabling correct-by-
construction code generation and parallel execution on a mul-
tiprocessor platform. Based on this experience, we advocate
for a multidimensional approach to mixed criticality where
timing constraints are managed separately from other system
validation aspects. We also advocate for a holistic approach,
where the design flow of complex control applications takes
into account different levels of timing predictability: our pro-
posal is one step towards the construction of such a flow. We
encourage control engineers to detail the different admissible
modes, limiting the extent of hard real-time components, and
defining the hard real-time reactions to the late availability of
non-time-critical data.
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Abstract—The paper describes the reconfiguration approach
implemented in the DREAMS middleware to cope with failures
and how the concepts are tested on an avionic demonstrator. 1

I. INTRODUCTION

The DREAMS [Oa13] (Distributed REal-Time Architecture
for Mixed Criticality Systems) FP7 project addresses the design
of a cross-domain architecture for executing applications of
different criticality levels in networked multicore embedded
systems.

A. General overview of DREAMS

A DREAMS architecture is composed of several multi-core
chips (such as Freescale T4240 [Fre14]) connected through a
TTEthernet network [KAGS05]. The DREAMS middleware is
in charge of:

1) Ensuring strong temporal and spatial partitioning;
2) Supporting adaptation strategies for mixed-criticality

systems to deal with unpredictable environment situations,
changes in resource availability, and occurrence of faults;

3) Delivering virtualization technologies for ease of design-
ing.

The DREAMS development methodology and tools are based
on model-driven engineering enabling mapping and scheduling
of mixed-criticality applications. Three demonstrators, that
encompass a broad range of application domains (namely
avionics, wind power and healthcare) will be developed and
will highlight the DREAMS results.

The project, started in October 2013 with a duration of
4 years, is in its mid-term progress. At this stage, the basic
software blocks have been developed and will be integrated
next year in the demonstrators.

B. Objective and contributions

This paper focuses on reconfiguration and adaptation strate-
gies and their implementation in the avionic demonstrator.
Those strategies only take place upon failures, with the purpose
to bring the system back to a safe functioning state. We consider
two types of failures:

1) A permanent core failure. Intensive integration of
small devices on chip increases the permanent failures
occurrence due to various phenomena such as aging,
wear-out or infant mortality [Bor05]. When a core is

1The research leading to these results has received funding from
the European FP7-ICT project DREAMS under reference n◦ 610640.

halted, the partitions executing on the failed core are
re-allocated according to pre-computed configurations.
We then speak of reconfiguration;

2) A temporal overload situation, resulting in deadline
miss without corrective action. Such a situation may
occur because the resources are over-utilized in the
nominal mode. However, the timing constraints are
respected in degraded modes, that consist in interrupting
or degrading the execution of best-effort applications.
When a critical application (i.e. that is not best-effort)
detects an internal deadline overrun, the execution moves
temporarily the best-effort applications to a degraded
mode. We then speak of adaptation.

In the following, we describe the resource management pro-
posed in the DREAMS middleware and we define formally the
notions of reconfiguration and adaptation (see Section II). We
then detail the reconfiguration strategies defined for mitigating
the core failures (see Section III) and the adaptation approach
for mitigating the temporal overload situations (see Section IV).
Finally we give the main ideas of the implementation for the
avionic demonstrator and the results obtained by simulation
(see Section V). Related works are discussed in Section VI.

II. RESOURCE MANAGEMENT IN DREAMS

Resource management is a core service provided in the
DREAMS middleware for system wide adaptability of mixed
criticality applications. The approach is based on the Matrix
framework [RF07], but adapted to platforms in which multiple
multi-core chips exist and applications can have several
criticality levels. Furthermore, the concept of service levels in
ACTORS [BBE+11] is extended in DREAMS for its applica-
tion on virtualized hardware resources instead of applications.
The main goals of the integrated resource management are:

• Reconfiguration of a mixed-criticality system upon fore-
seen and unforeseen changes in its operational and
environmental conditions.

• Adaptability mechanisms for securely modifying over
the system without interrupting or interfering with its
execution.

A. Structure of resource managers

Practically, the resource management services are realized
by a Global Resource Manager (GRM) in combination with
a set of Local Resource Managers (LRM). The GRM gathers
information from the LRMs and provides new configurations



for the virtualization of resources (e.g., partition scheduling
tables or resource budgets). The GRM configuration can
include different pre-computed configurations of resources (e.g.,
time-triggered schedules) or parameter ranges (e.g., resource
budgets).

Local resource management services consist of three major
parts: Resource Monitors (MONs), Local Resource Schedulers
(LRSs) and Local Resource Managers (LRMs). The MON
monitors the resource availability and timing of components
(e.g., detection of deadline violations). The LRS performs the
runtime scheduling of resource requests (e.g., execution of
tasks on processor, I/O requests) based on the configuration set
by the LRM. The LRM either adopts the configuration from
the GRM to particular resources (e.g., processor core, memory,
I/O) or selects a new configuration from the ones available
and reports state of the resource (from MON) to the GRM.

LRM LRM LRM

GRM

LRS MON LRS MON

Resource Resource

LRS MON LRS MON

Resource Resource

LRS MON

Resource

Figure 1. Interaction between resource managers

The LRM and the GRM can be organized in a hierarchical
or flat architecture. The flat architecture, shown in Figure 1,
consists of a GRM which controls and supervises all LRMs and
has a complete view of the system. All LRMs are placed at the
same level and they communicate directly to GRM regardless
of which resource they monitor or where they are physically
located. In the hierachical architecture the LRMs can control
underlying LRMs.

B. Implementation choices

DREAMS middleware relies on time and space partitioning
principles [Rad05]. In this paper, we consider that those
principles are implemented at the chip level by the XtratuM
hypervisor [MRC+09], which is a technology involved in the
project. Therefore, applications will be executed by a set of
partitions. A partition is defined by one or multiple slots, each
with a start time and a length. Inside a slot, several tasks can
be executed. In the sequel, we will use the color code shown
in Figure 2.

GRM MON LRM LRS Slot Task

Figure 2. Legend

We consider mixed-critical systems where we differentiate
two types of application.

Definition 1 (Application model). An application can be a:
• critical application. Such an application must respect its

timing constraints and in particular the WCET must fit

in the allocated slots. Moreover, it cannot be stopped
apart if the application encounters an internal error or
if the executive layer fails. A critical application app is
defined as a set of periodic or sporadic tasks app = {τi =
(Ci, AETi, Ti)} where Ci is the WCET, AETi is the
average execution time and Ti is the period or minimal
inter-arrival time;

• best-effort application. Such an application has less strong
constraints. We accept to interrupt them as long as a
minimal QoS (quality of service) is ensured. A best-effort
application is defined as app = (Ui, AUi) where Ui is
the worst-case asked utilization and AUi is the average
utilization.

A configuration consists in defining temporal slots on the
multi-core and mapping the applications in the slots.

Definition 2 (Configuration). A configuration (also denoted
plan in the hypervisor terminology) consists of:

• a major cycle (MaC), the length of which is denoted
MaC_length;

• a set of slots sli distributed over the cores and the MaC.
A slot is defined as sli = ([si, ei], ni) where si is the
start time, ei is the end time and ni is the number of core
where the slot is allocated;

• a mapping of the jobs of critical applications in the slots.
Jobs are unrolled on the MaC and we know for all job
τi,j in which slot slk it belongs to. We know moreover
in which order are executed the jobs inside a slot;

• a mapping of best-effort applications in the slots. For
instance, appi is executed in the slots slj1 , . . . , sljp .

C. Definition of the notions of reconfiguration and adaptation

A reconfiguration consists in moving from one configuration
to another and this happens when a core has failed. An
adaptation consists in degrading a configuration and this occurs
when a temporal overload situation happens. Adaptions are
handled locally by the LRM whereas core failures may be
recovered locally by the LRM or globally by the GRM.

a) Permanent core failures: When a core has failed,
the partitions hosted on it are no longer executed. Such a
situation can be mitigated by an active redundancy (if some
other resource executes the same partitions) or by applying a
reconfiguration. Due to the high number of cores provided by
a DREAMS platform and the overall resource managements,
we decide to incorporate reconfiguration capabilities.

b) Temporal overload situations: The chapter 8 of
[But97] focuses on the overload conditions, that are critical
situations in which the computational demand requested by
the task set exceeds the time available on the processors, and
hence not all tasks can complete within their deadlines. Such a
situation can result for several reasons, e.g. environmental
solicitations or fault of peripheral devices or cohabiting
applications.

In the DREAMS project, we consider IMA platforms where
such problematic situations are usually contained thanks to
the temporal isolation. However, we decided to leverage this



restriction in order to increase the overall utilization of the
multi-core chips. Indeed, we observed that when computing an
upper bound of applications WCET on a multi-core chip and
reserving this amount of time for all of them leads to an over-
provisioning of the platform. As a matter of fact, this WCET
is rarely reached and most of the time, the average execution
time (AET) is much below the capacity of the platform. This
is the reason why we accept a multi-core to be over-utilized by
the applications. Our model is detailed in the definition below.

Definition 3 (Under-provisioned platform). Any multi-core
can be over-utilized in the following way:

•
∑

i
Ci

Ti
+
∑

j Uj > number of cores: the overall utilization
exceeds the multi-core capacity;

•
∑

i
AETi

Ti
+

∑
AUj � number of cores: the overall

average utilization is much below the multi-core capacity;
•

∑
i
Ci

Ti
< number of cores: the overall utilization for the

critical applications fits the multi-core capacity.

This means that the best-effort applications are those leading
to the overtaking of the provisioning. This situation will
be handled as proposed in [KPR+14], which means that
we will monitor regularly the critical applications and if an
internal deadline is exceeded, the best-effort applications will
be interrupted and resumed once the critical applications are
not any longer endangered.

Note that GRM only makes global reconfiguration decisions
when necessary, but it is not required for the continuous
operation of the system. The unique failure mode considered
for the GRM is the loss, due to the permanent failure of
the hosting core. Thus, in case of GRM failure, the overall
system dependability is not compromised as the system will
still keep on executing; just no new global reconfigurations
will be possible.

D. Interaction between GRM and LRMs

The interaction between resource management components
takes place via Sampling and Queuing ports (provided by the
hypervisor). As shown in figure 3, three channels are created
between each GRM-LRM pair:

1) Updates channel: For LRM to send resource status up-
dates to the GRM and request for global reconfiguration.

2) Orders channel: For GRM to send reconfiguration mes-
sages to the LRM.

3) Membership channel: Each LRM periodically sends
a live-signal to the GRM via this channels for the
membership purposes.

GRM

LRM LRM

Updates Channel
Orders Channel
Membership Channel

Figure 3. Comunication between RM components

The properties of the RM communication channels are
summarized in table I. We remind that TTEthernet protocol
[KAGS05] allows several types of traffic:

• rate constraint (RC) traffic: bandwidth guarantee for
each application is predefined and delays and temporal
deviations have defined limits.

• time triggered (TT) traffic: messages are sent over the
network at predefined times and take precedence over all
other traffic types.

• best-effort (BE) traffic: it follows the methods of classical
Ethernet networks. There is no guarantee whether and
when the BE messages can be transmitted, what delays
might occur and if they arrive at the recipient.

Table I
SUMMARY OF RESOURCE MANAGEMENT COMMUNICATION CHANNELS

Communication
Channel

Port Type TTEthernet
Traffic

Source Destination

Updates Queuing TT LRM GRM
Orders Sampling TT GRM LRM
Membership Sampling TT LRM GRM

III. RECONFIGURATION STRATEGY IN CASE OF A CORE
FAILURE

When a failure occurs, a detection mechanism must detect
the problem and a system recovery procedure must bring the
system to a correct state. In the DREAMS project, the detection
is based on monitoring (MON) at the multi-core level and
recovery at the LRM or GRM level. The recovery procedure
is based on pre-defined mode changes executed by the LRM.
This entails that a set of possible configurations is computed
off-line and that a reconfiguration consists in moving from one
configuration to another. The transition steps between mode
changes must be safe.

A. Reconfiguration graphs

Since core failures may be recovered locally by the LRM
or globally by the GRM, we need to distribute the view of the
current configuration between the different stakeholders. The
current configuration is represented as the combination of the
local configurations. The GRM has an up-to-date system wide
vision of the current configuration and stores all the admissible
reconfigurations. Each LRM and each switch store a local
reconfiguration graph detailing local reconfiguration and global
mode changes asked by the GRM.

Definition 4 (Local reconfiguration graphs). A (local) recon-
figuration graph is a tuple 〈Q,→, 99K, q0〉 where:

• Q is a finite set of configurations;
• q0 is the initial configuration;
• →⊆ Q × Q is the set of local transitions from one

configuration to another;
• 99K⊆ Q×Q is the set of transitions from one configuration

to another requested by an other entity.
A reconfiguration graph is stored in each LRM, in each switch
and in the GRM. In an LRM, plain arrows represent local



decisions while dashed arrows represent decisions provided by
the GRM. In the GRM, plain arrows represent local decisions
while dashed arrows represent decisions made by some LRM. A
switch graph only contains dashed arrows and reconfiguration
requests are triggered by the GRM or some LRM.

Since network switch routing tables must be reconfigurable,
we must define the reconfiguration strategies for the different
types of traffic:

• For rate constraint (RC) traffic, the VLs are defined with
their BAG and maximal packet size. Therefore, if an
application is reconfigured on the same multi-core by a
local reconfiguration then it has no impact on the routing
table. If the reconfiguration is global, then several routing
tables must be pre defined.

• For time triggered (TT) traffic, it depends whether the
instant of emission of packets is related to the offset of
the partition slot. If not, then the same reasoning as for
RC traffic applies. Otherwise, we must consider the link
between offsets of local reconfigurations and network TT
messages scheduling.

• For best-effort (BE) traffic, the same reasoning as RC
traffic applies.

The GRM stores the complete view of the system which is
represented as a global reconfiguration graph.

Definition 5 (Global reconfiguration graph). A global reconfig-
uration graph is a tuple 〈Q,→, 99K, q0〉 which consists of the
product of all local reconfiguration graphs 〈Qi,→i, 99Ki, qi0〉
from the LRMs and the switches together with the GRM local
graph 〈QG,→G, 99KG, qG0 〉. More precisely:

• Q = Q1 × . . .×Qn ×QG,
• q0 = (q10 , . . . , q

n
0 , q

G
0 ),

• →⊆ Q×Q is defined as

((q1, . . . , qn, qG), (p1, . . . , pn, pG)) ∈→
⇐⇒




∃i ∈ {1, . . . , n},
(qi, pi) ∈99Ki ∧∀j 6= i, qj = pj ∧ qG = pG

or (qG, pG) ∈→G ∧∀j, qj = pj

• 99K⊆ Q × Q is defined in a similar way than → by
replacing 99Ki with →i and →G with 99KG.

Figure 4 illustrates the reconfiguration graphs stored by the
different resource managers and switches. The chip on the
right hand side has several pre-defined configurations named
from C1 to C7. The switch on the right hand side has several
pre-defined configurations named from S1 to S3. For the GRM,
we only show the global reconfiguration graph as the product
of all local reconfiguration graphs.

B. Local vs. global decisions

Example 1 (of local reconfiguration). Failure f1 (a core halt)
occurs in the multi-core T1. According to the reconfiguration
graph of T1, the LRM will move to configuration C2. A
message must be sent to the GRM so the latter can maintain
an updated configuration. This is shown in Figure 5.
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C1,S1,C’1,G1
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. . . . . .

Figure 4. Distributed reconfiguration graphs
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Figure 5. Local reconfiguration

Example 2 (of global reconfiguration). Failure f5 (a core halt)
occurs in the multi-core T1. According to the reconfiguration
graph of T1, the LRM has no solution. Thus it informs the
GRM. The GRM can apply a global reconfiguration: applica-
tions running on the failed core of T1 will be reconfigured in T2.
The GRM informs (1) T2 to load and execute the applications,
(2) T1 that a reconfiguration is applied, (3) the switches to
reconfigure the routing tables (messages are emitted by T2 and
not T1). An ack by T2 may be expected. This is shown in
Figure 6.
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C6,S3,C’2,G1. . .

Figure 6. Global reconfiguration

C. Detailed specification

In this section, we explain how the resource management
services are implemented at the chip level.

1) MON: executes a service regularly in each core to detect
the core’s health. If the core is working correctly, the service
writes to a shared structure that everything is fine. Otherwise,
if the core has failed, the service is not activated and is not
able to update the shared structure.

The cores update asynchronously the structure at distinct
pre-defined times and check the other cores status at that
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Figure 7. Example of core failure detection on a quad-core.

moment. For example let us consider a quad-core where the
MON service is executed in each core only once per major
cycle (MaC), see Figure 7. Let us suppose that one of the
cores fails just after the MON execution (represented as a red
cross on core 3). The detection will be done by the core 4 in
the next MaC (the time needed for the detection is shown as a
red arrow).

2) LRM: Once a core failure has been detected by the MON,
the latter informs the LRM. The time between the detection by
the MON and the execution of the LRM has a direct influence
on the response time for reconfiguration. This is the reason
why we impose the MON and LRM to have pre-defined slots
next to each other in order to minimize the delay between the
detection and decision. Figure 8 gives an example of a decision
of the LRM after the detection of the failure of core 2.

MaC MaC
time

detection decision

reconfiguration

GRM
update

Figure 8. Example of LRM decision after a core failure detection.

Once the LRM is informed by the MON service of a core
failure, it has two possibilities:

• a local reconfiguration is possible according to its local
reconfiguration. In that case, it asks the LRS to change
the plan at the end of the MaC for the new configuration
one. The reallocated partitions are re-started in a default
state, no context has been stored from the previous execu-
tions. The unchanged partitions continue their execution
transparently. This transition step is then safe;

• no local reconfiguration can recover from the situation.
In that case, the critical tasks are locally reconfigured in
priority if possible (pre-computed configuration) while
some best-effort applications may be removed. Then, the
LRM informs the GRM that some applications cannot be
hosted any longer on the multi-core platform and it is up
to the GRM to find a global reconfiguration.

The DREAMS project requirements state that a critical applica-
tion cannot split onto different cores of a multi-core. Thus, when
a global reconfiguration must be taken, complete applications
are thus reconfigured on different cores. A future work could

consider to parallelize the applicative code onto different cores,
but at the price of modifying the applicative code.

3) LRS: The LRS is more detailed in section IV-B3, because
it plays a more important role for the temporal overload
situations. The LRS is in charge of scheduling the tasks inside
the slots. For the core failure case, it just reads the current
configuration and applies it.

IV. ADAPTATION STRATEGY IN CASE OF A TEMPORAL
OVERLOAD SITUATIONS

In the DREAMS project, we under-provision the platform
to increase the average performance. Such an approach can
in some cases lead to problematic situations where critical
applications may overrun their deadlines. To forbid this timing
failures, a detection mechanism is in charge of analyzing
intermediate deadlines and adapt the processor demands by
interrupting the best-effort applications.

A. Adaptation tables

An adaption consists simply in interrupting the best-effort
applications. It is therefore sufficient to store statically the
partition identifier of the best-effort applications. Since the
adaptation mechanisms are combined with the reconfigura-
tion capabilities due to the core failures management, those
identifiers must be stored for all reachable configurations.

Definition 6 (Adaptation table). An adaptation table consists,
for each configuration defined in the reconfiguration graph, of
a list of applications.

B. Detailed specification

In this section, we explain how the resource management
services are implemented at the chip level.

1) MON: extends the deadline warning detection method
described in [KPR+14]. In this initial work, only standard tasks
sets were considered and the schedule consisted in executing
a task alone on a core. In the DREAMS project, we consider
partitions slots and the MON/LRM/LRS components. The
idea is that each critical application monitors its execution
and checks if the application is in danger of overrunning its
deadline. If it is the case, then the MON service signals to the
LRM that a deadline overrun will probably occur.

The partition slots for critical applications contain internal
observation points which are defined off-line and correspond
to the moments where the MON is executed. We choose to
monitor the temporal behaviour between tasks in the slot. This
way we do not modify the partition code. This illustrated in
Figure 9.

MaC MaC MaC
time

Figure 9. Example of internal deadline failure adaptation when LRM inside
critical tasks.



The monitoring checks if the interferences of the low
criticality tasks can be tolerated by verifying a safety condition.
The safety condition in the initial work [KPR+14] consisted in
checking that in the next observation point we would still have
time to switch to the degraded mode (or isolated mode, in the
sense that only critical applications may run). This required
numerous information, such as the remaining WCET of the
partition Part in isolated execution from the observation point
x until the end. Thanks to the positioning of observation points
between tasks, the safety condition can drastically be simplified
as shown in Eq. 1.

ET(x) ≤ internal deadline(x) (1)

where ET(x) is the monitored execution time of Part until
point x and internal deadline(x) is a pre-computed constant
giving the maximal possible internal deadline.

2) LRM: stores the adaptation graphs and knows which
applications must be suspended. This action is immediate
(compare to the reconfiguration which occurs at the next MaC).
Suspended applications are re-started once all running critical
tasks have not asked to move to the degraded mode.

3) LRS: The LRS starts its execution as soon as a partition
slot starts. The first time the LRS is executed (typically during
plan 0 schedule of the hypervisor) it launches the application
initialization, which sets up its internal state for execution.
After that, the LRS initializes the application tasks schedule
during the different slots and plan configuration.

Afterwards during the major cycles the LRS is executed
at the beginning of each slot and it launches a predefined
and sequential list of partition/application tasks for that slot,
and once all the tasks have been executed the LRS stops its
execution, even if time remains in the current partition slot.
Note that an LRS execution can span multiple partition slots,
but to facilitate the LRS for critical partitions comprehension
we will always suppose that a LRS execution starts and finishes
in the same partition slot.

time

Figure 10. Example of critical partition slot execution.

Figure 10 shows an example of critical partition slot
execution under the control of the LRS. In between the
execution of two tasks the MON and the LRM are executed
to:

• the MON execution collects the performance monitors of
the just executed task and the current execution time of
the slot,

• the LRM execution determines if an adaptation is needed.

V. AVIONIC DEMONSTRATOR

The DREAMS architecture avionic demonstrator will high-
light the reconfiguration capabilities of the middleware. The
demonstrator combines critical applications with non-critical
applications using heterogeneous multi-core platforms, con-
nected using a wired network.

A. Applications involved in the demonstrator

Figure 11 shows the five applications/functions deployed
in the avionics demonstrator, three critical ones and two non-
critical. The critical applications are: (1) a Flight Management
System (FMS, previously described in [DFG+14]), (2) a
Display Management System (DMS), and (3) a Sensors Data
Provider (SDP). The non-critical applications are: (1) an In-
Flight Entertainment (IFE), and (2) the panels.

FMS
Flight

Management
System

DMS
Display

Management
System
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PAN1
Cockpit
Panels
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Figure 11. Inter-function communication in the avionic use-case

The FMS aims at performing in-flight guidance of aircrafts,
which is based on the use of flight plans selected before
departure, either by the pilot or a dispatcher for airliners. A
flight plan includes basic information such as departure and
arrival points, in-flight waypoints, estimated time en route,
alternate landing airports, expected weather conditions, and
so on. The SDP is the application responsible of collecting
the sensors signals such as the GPS or the anemo-barometric
probes. The SDP packetizes the sensors data and sends them to
the FMS and the DMS. The DMS manages the information to
be displayed on the cockpit panels for the pilots. The DMS also
takes care of sending pilots commands to the FMS. While the
cockpit panels are typically highly critical applications, their
study is out of the scope of the DREAMS avionics demonstrator,
so they are considered as non-critical. The IFE is connected
to the passenger panels to broadcast video streams.

Table II
AVIONIC USE CASE SPECIFICATIONS

Function DAL Max Number of tasks
unavailability (periodic, aperiodic)

FMS B 600ms 26 (10, 16)
SDP A 600ms 5 (4, 1)
DMS A 1000ms 7 (6, 1)
IFE E ∞ NC
Panels E ∞ NC

Table II summarizes the specification of each function
in terms of criticality level (DAL), Maximal Unavailability,
and a brief task set description. The Maximal Unvailabilty
corresponds to the maximum allowed time to perform reconfig-
uration (maximum suspended time for the task due to a failure).
The In-Flight Entertainment and the panels are implemented
in commodity computers with standard OS (i.e., Linux) or in



non-critical partitions, and as such the task description is not
considered (NC) in this study.

B. Demonstrator platform

Three different computing platforms are used for the deploy-
ment of the different applications:

• Freescale T4240 [Fre14] (see Figure 13): The T4240
is a 64bit PPC architecture with 12 cores organized in
3 clusters of 4 cores interconnected connected through
a propietary NoC to 3 different memory controllers,
each one with a dedicated L3 memory cache. A PCIe
TTEthernet card is also attached to the T4240 to satisfy
the network requirements.

Cluster x3

x3

PowerPC
e6500

PowerPC
e6500

PowerPC
e6500
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L3

PCIe

TTEth

Figure 13. PowerPC T4240 architecture

• DREAMS Harmonized Platform [Oa13]: The Harmo-
nized Platform is a development board with Xilinx Zynq-
7000 SoC containing ARM Cortex-A9 cores and an FPGA.
The DREAMS hardware solution like the Spidergon NoC,
enhanced NoC interfaces and TTEthernet controller are
implemented on the FPGA. Additionally, three Microblaze
soft processor cores are connected to the NoC. The
DDR memory controller can also be accessed by all the
computing resources via the NoC.

• Regular PC: Regular PCs are used to deploy non-critical
applications like the panels.

The applications are run on top of the XtratuM hypervisor
enhanced with the DREAMS solutions, i.e., the MON, LRM
and the GRM among others. Figure 12 shows one of the tar-
geted deployments of the applications over the aforementioned
hardware platforms.

The communications between the different computing plat-
forms are ensured by: two TTEthernet switches, two PCIe
TTEthernet cards and the TTEthernet controller embedded in
the DREAMS Harmonized Platform. Regular ethernet cards
are used in the PCs, as the applications on those systems don’t
require any safety level communication (i.e., time triggered or
rate constrained). The demonstrator mixes the three types of
traffic supported by TTEthernet:

• best effort for the communication from/to non-critical
applications,

• and time triggered and/or rate constrained for the com-
munication between the critical applications and the
communication between the DREAMS services, as the
communication between GRM and LRMs.

C. Results

Currently, the fault tolerance mechanisms have been im-
plemented in XTRATUM. But the hypervisor has not yet
been ported on the T4240. Therefore, we could not run
experiments on the avionic demonstrator. Instead, we made
several simulations and prepared a series of fault-injection
scenarios to validate the approach.

1) Reconfiguration graph and adaptation table: The initial
configuration q0 in the T4240QS of the left hand side of Figure
12 is defined as 〈MaC_length = 200ms, {sli}, alloc〉 as shown
in Figure 14 whereas TTE stands the TTEthernet driver.

τ1, τ2, τ3, τ4, τ5, τ6, τ7

τ9, τ10, τ11, τ12, τ15τ8

τ17, τ18, τ19, τ20τ16

τ23, τ24, τ25, τ26τ21, τ22

MaC
time

FMS

IFE

TTE

Figure 14. Initial configuration

The adaptation table for this configuration is given by
const int adaptation_point[NB_PARTITION][NB_MAX_POINT]={
{20, 45, 100, 130, 170, 190},
/* partition 0: 6 observation points,

max time to reach point 1 = 20 */
{-1, -1, -1, -1, -1, -1},
/* partition 1: 0 observation point */
{40, 70, 90, 130, -1, -1},
{-1, -1, -1, -1, -1, -1},
{80, 110, 150, -1, -1, -1},
{20, -1, -1, -1, -1, -1},
{90, 120, 180, -1, -1, -1}

};

2) Fault-injection scenario: We have defined some scenarios
that will be used to evaluate the DREAMS Local Resource
Management services. The target architecture in all the scenar-
ios will be based on the avionic demonstrator.

a) Scenario of double core failures: The purpose of
the scenario is to test the local and global reconfiguration
capabilities. The scenario is similar to the one detailed in
examples 1 and 2 of Section III-B. Two faults are injected: (1) a
core fails on the multi-core 2 leading to a local reconfiguration;
(2) a second core fails on the same multi-core leading to a
global reconfiguration whereas DMS is reconfigured on the
second multi-core. To inject the fault, the MON will be modified
not to update the share structure. The objective of this scenario
is to:

• check that the LRM adaptation capabilities do not affect
the safety of critical applications which were not hosted
on failed cores;
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• determine the gain due to local reconfigurations versus
global ones;

• compare several timing parameters to improve the recon-
figuration response times.
b) Scenario of temporal overload situation: The second

scenario aims at testing the LRM capacity to interrupt low
criticality tasks. The scenario consists in (1) detecting a deadline
overrun in the FMS partition of multi-core 1; (2) interrupting
the IFE execution after the detection until the end of the FMS
slot. The objective of this scenario is to:

• check that the LRM adaptation capabilities maintain the
predictability of the safety of critical applications;

• compare several timing parameters to assess the interrup-
tion response times and variability of the execution time
of the safety critical applications.

3) Simulation: Since XTRATUM is not ported yet on the
T4240QS, we run the scenarios with the QEMU simulator. The
observed behaviours were those expected. In the next months,
we will port the work on the real target.

VI. RELATED WORK

Reconfiguration for avionic platform has been proposed in
Asaac [ASA04] project for military aircrafts; Diana [EJS+10]
and Scarlett [PBB+12] for the civil domain. In all cases,
reconfigurable IMA was able to change the configuration of the
platform by moving applications hosted on a faulty computing
module to spare computing modules. The main objective of
such an extension was to reduce the cost of unscheduled
maintenance and to improve the operational reliability of the
aircraft while preserving current safety levels. In Diana the
approach was distributed while in Scarlett the reconfiguration
was centralized. In DREAMS, a module is based on a multi-
core architecture and failures depend on this new hardware, and
while the global reconfiguration of the system is centralized
like in Scarlett the modules can perform local reconfigurations
when one of the cores fails.

a) Permanent failures: The standard approach to deal
with permanent failures is based on replicating applications
and components into multiple copies. Such redundancy can
be achieved via hardware or software mechanisms. Since the
avionic demonstrator relies on COTS multi-core, only the
second case could be considered. Most existing approaches
target anomalous behaviours. For instance, the authors of
[SHLR+09] present the symptom based detection and diagnosis
principle, developed during the SWAT (SoftWare Anomaly

Treatment) project, to manage faults in multi-core architectures
running multi-threaded software. For permanent fault, the
detection algorithm is based on a deterministic replay to
diagnose the faulty core and the run-time is in charge of
isolating the failed core.

The authors of [GLSS01] describe a fault-tolerant scheduling
approach to support permanent core failures but they do not
target a real software implementation.

b) Temporal overload situation: The objective of run-time
monitoring is to check on-line, during the real execution, the
timing behaviors of the system and verify if they are compliant
with an abstract view of the expected behavior. If the system
diverges from the specification, then a recovery may be applied.

In [BLS06] and [RRF10], the timing specifications are
expressed with Timed Linear Temporal Logic (TLTL) for-
mulas. Practically, timed automata are used to implement the
valid behaviors and the decision layer stores the automaton
description including the location invariants and the transition
table. The verification function works for each event as follows:
either it is valid and the execution continues or the event is
invalid, in which case a recovery procedure or an error is called.
Such an implementation requires a strong synchronization
between the application and the monitor, and in particular
it is necessary to ensure mutual exclusion. In [BFR13], the
monitoring strategy has been extended for multi-threaded
code. The monitor is decomposed into pieces that apply local
detection while exchanging messages to ensure a coherent
checking.

In the automotive domain, tasks can exhibit a dynamic real-
time behavior, e.g. the period depends on the engine speed. This
variability leads to a continuous change in the configurations
taken into account by the OS schedule on the processors.
We then speak of multi-mode applications that can switch
between different operational modes at run-time. Such a change
of rate may make the system unschedulable and the engine
control inefficient or even unstable. The authors of [NES12]
propose mode changes without violating timing constraint by
pre-computating the possible behaviours. The approach consists
in analyzing all potential run-time scenarios and study in details
the critical ones. The possible recoveries are the following:
degraded functional execution (with restricted WCET), abort
or suspend low criticality tasks.

Several approaches propose resources reallocation based
on information derived from monitoring their utilization, e.g.
the memory accesses. For instance, in [NPB+14] interference-



sensitive WCETs are computed based on a preliminary analysis
of the resource usage of tasks. The shared resources are off-
line partitioned among tasks. A run-time monitoring device
observes the resource usage of each task and suspends the
task that overtakes the allocated capacity. In [NP13] the
approach is extended by allowing safe dynamic changes in
the resource partitioning, when resources are underutilized.
In [YYP+13] an approach has been developed to reserve
memory accesses for critical tasks. A run-time controller has
been implemented which regulates the accesses to the shared
memory and ensures temporal isolation among tasks. An off-
line profiling technique has been proposed in [MDB+13] which
finds the most frequently accessed memory pages in a task.
Then, this information is used to modify the variables position
in the shared caches in order to reduce the interferences.

VII. CONCLUSION

We have described the main ideas of the reconfiguration and
adaptations strategies proposed in the DREAMS middleware.
In the next year, the building blocks will be ported on the
avionic demonstrator and the fault injection scenarios will be
run on it.

The implemented monitoring techniques are simple and can
be improved by defining an adapted set of rules depending
on the current configuration. This is the idea developed
in [GPBB08] where a safety mode automaton is constructed
from the system and the environment. We will study how
such ideas could be applied to increase the quality of the
reconfiguration. Concerning the adaptation, the QoS for the
best-effort applications has not been investigated yet and this
will be also an axis of future work.

Finally, this article has addressed the technical aspects of
the reconfiguration and adaptation strategies. However, in order
to be applied to industrial solutions, the certifiability of the
approach requires further study.
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Abstract—In this paper we propose a framework for
the automated integration and timing analysis of IMA
(Integrated Modular Avionics) applications on multi-core
environments. To do so, we present a derivation of the
response time analysis formulation by Kim et al. in [12]
that takes into account inter-task interference due to
sharing the access to the main memory. We adapt the
work in [12] to propose a sufficient schedulability test
that is adapted both to IMA systems and heterogeneous
multi-core platforms. We then exploit this test to guide the
design space exploration during the SW/HW integration
phase, to select a partition-to-core allocation so that
all deadlines are met despite the existence of hardware
interference.

Keywords: multi-core – IMA – interference – re-
sponse time analysis

I. INTRODUCTION

A. IMA Applications

Modern avionic software systems are designed ac-
cording to the Integrated Modular Avionics (IMA)
architecture model, where (i) applications are defined as
one or several software partitions; (ii) several partitions
can share the same hardware resources, provided that
constraints on time and space isolation are respected
between each partition. Such isolation requirements are
imposed for safety reasons, to prevent the propagation
of a fault that happened inside a specific partition, to all
other partitions in the software embedded in a system.

IMA software is organized in two layers: at the top
level, a schedule is set in advance to plan the executions
of the partitions in a TDMA-like fashion. To do so,
activation offsets and time windows are allocated to
each partition. We refer to this top level schedule as the
global schedule of the system. Within the boundaries of
the time window of a given partition, a local scheduler
dynamically executes the software tasks inside each
partition, usually according to fixed priority preemptive
policy. The local scheduler operates with no knowledge
about the global schedule. In the other hand, the global
schedule has to suit the tasks needs, in the sense that the
sizes of the partitions time windows must adapt to the
tasks running during these time interval. In this paper,
we compute the size of a partition’s time window such
that the task with the lowest priority level only executes
once per window. How we compute the activation
offsets of the time windows is out of the scope of
this paper though.

During the integration phase of a system design, the
allocation of the software platform onto the hardware

platform is done, as well as the generation of a valid
static global schedule. Setting in advance the global
schedule enables to enforce an execution plan that
has been verified and validated first. In particular, the
global schedule must fit the needs of the local schedule
inside the time window of each partition, and always
ensure the respect of every deadline defined in the entire
system. To verify and validate the global schedule,
a formal proof of correctness, such as with static
timing analysis, is the preferred choice for certification
authorities.

B. Multi-Cores and Inter-Task Interference

In multi-core processors, all cores have simultaneous
access to shared resources, through shared interconnec-
tions. All the requests made to one resource cannot be
processed at the same time, which results in waiting
delays at runtime. Such interference between tasks
of different partitions, simultaneously executing on
different cores, significantly extend the execution times
of the tasks, and thus, the sizes of the time windows of
the partitions. Since these interference delays may lead
to deadline violations, they must be bounded during
timing analysis.

However, the sharing level implied by multi-core
environments leads to an explosion of the number of
possible situations to consider to find the Worst Case
Execution Times (WCET) of the tasks, so that static
timing analysis at code level on multi-core is quite
difficult and not solved today. On the other hand, the
electronic market is evolving so fast that single-core
processors will soon become obsolete, and will not be
produced anymore. Avionic system designers will then
have no choice but to move to multi/many-core designs.
This represents a major challenge for IMA systems,
since no consolidated approach to guide the transition of
IMA applications from single- to multi-core platforms
has been put forward so far.

C. Contributions

In this paper, we propose a framework for automated
integration and timing analysis, of legacy IMA software
on multi-core processors. To do so, we first present
a sufficient schedulability test that is interference-
aware, and compatible both with IMA applications and
heterogeneous multi-core processors. The test is based
on an extension of the response time analysis presented
in [12], and computes safe bounds on inter-task memory
interference.



As a second contribution, we exploit the resulting
IMA, multi-core interference-aware response time anal-
ysis, in an optimization framework to automate the
SW/HW allocation and scheduling analysis during the
system integration phase. The schedulability test is used
as a guide to perform design space exploration, and
to find an optimized partition-to-core mapping. The
optimization criteria we rely on is the minimization
of the total workload of the system. By exploiting
such an interference-aware schedulability test inside the
allocation search, the solution is guaranteed to preserve
the feasibility of the final system, despite the additional
delays that might appear due to resource sharing.

Finally, our framework enables to produce bounds
for the tasks Worst-Case Response Times (WCRT), as
well as for the inter-task memory interference. Such
bounds are crucial to formally prove the feasibility
of the system, but also to determine the minimum
requirements for the time window of each partition,
which is mandatory in order to set in advance a valid
scheduling plan of the global system.

D. Paper Outline

The paper is organized as follows: section I in-
troduces IMA systems, our problem statement and
contributions. Section II gives some insight on the
integration process and avionic requirements. Section
III gives an overview of the state of the art related to our
work. Section IV presents our system model. Section
V then presents our extension of the interference-
aware response time analysis to IMA and multi-core
contexts. Section VI presents the allocation process
implemented in our framework. Section VII presents
the implementation and results of our work, and section
VIII finally concludes our paper.

II. AVIONICS SYSTEMS

A. IMA Systems Integration

During the integration phase of a system design, the
software platform is allocated to the hardware platform.
The person in charge of this task is called the system
integrator. Software functions are usually designed by
one or several different suppliers, and are delivered
to the system integrator before the beginning of the
integration phase. As tasks are scheduled dynamically,
their schedule is not set in advance, but each supplier
must have verified and validated the schedulability of
the tasks of each delivered partition. The job of the
system integrator is then to take care of the global
schedule, by computing the size and activation offset
of the time windows of each partition. We consider
legacy code, which means the schedulability analysis
performed by each supplier has been verified for single-
core environments. Thanks to the sufficient test we
present in this paper, the tasks schedulability is verified
again during the integration phase, to take into account
the fact that partitions will be running in parallel,
by including additional inter-task and inter-partition
interference delays due to sharing the main memory.

One schedulability test that may be used is the response
time analysis, which leads to the computation of a
bound on the WCRT of each task.

After the production of WCRT bounds, the integrator
is able to assess the minimum size required for the time
window of each partition: the window must be large
enough for the tasks inside the considered partition
to complete their execution, even in the worst-case.
Once all sizes have been set, the integrator decides of
activation dates for the beginning of each time window,
starting from the instant when the system is switched on.
IMA partitions are periodic, i.e. a time window must
be reserved for each partition at a periodic rate. We
consider this information as implying not only a period,
but also an implicit deadline per partition, equal to the
period, since each partition must be assigned a window
before its next periodic activation. As a consequence,
one important step of the integration process is to verify
that, for each partition, time window sizes and activation
dates match the periodicity of the partition. If it is not
the case, the integrator must consider another SW/HW
allocation, for instance by increasing the number of
embedded processors for instance. The integrator is
likely to have to try different SW/HW allocations before
finding a configuration that complies to the requirements
of all the described steps.

Eventually, the chronograph resulting from the global
schedule consists in the pattern that will be repeated
cyclically on the system, for as long as it is switched on.
This pattern is also called the major frame. In this paper,
we do not address the schedule generation activity of
the integration phase.

B. Avionics Requirements
Final validation of avionic systems is done through

a thorough certification process, shepherded by various
regulations and recommended practices (like [5], [4]
for instance). In 2014, the Certification Authorities
Software Team (CAST) submitted a first position paper
regarding multi-core processors [1]; static, assymetric
scheduling is recommended, as it enables to reuse
existing code without modification, and since global
scheduling would require further proofs and analyses
when looking for certification. CAST encourages the
privatization of shared resources as much as possible.
This goes in the sense of IMA needs, where the more
private to each partition are the resources, the better
it is. As a consequence, we assume the main memory
and shared caches are partitioned into areas private
to each core. This reduces the number of inter-core
interference to consider: dividing shared cache levels
into areas private to each core suppresses inter-core
cache interference, as tasks on different cores are unable
to evict each other’s data. However, partitioning the
main memory into core-private areas does not suppress
inter-core interference, as long as the memory controller
is still shared by the cores. Because all requests
cannot be handled simultaneously by the controller,
it results in waiting delays at runtime, and thus, inter-
core interference, even in the case of a main memory



privatized at core level. In this paper, whenever we
mention main memory interference, we actually refer
to the inter-core interference due to sharing the memory
controller.

To be in line with CAST multi-core study: (i) we
consider static partitioned scheduling for partitions:
each partition is statically assigned to a core, where it
will be activated from the beginning till the end of the
life cycle of the system; (ii) main memory and shared
caches are partitioned at core level. However, some
avionic functions might implement inter-partition com-
munications. In such cases, we assume memory banks
are exceptionally shared, between the two partitions
concerned; these banks store the shared data.

III. STATE OF THE ART

In the literature, no consolidated approach to guide
the transition of IMA applications from single-core
to multi-core platforms has been put forward so far,
so the problem is still open. To our knowledge, our
work is the first to combine, inside one approach
for the allocation search: (i) an interference-aware
multi-core schedulability test; (ii) the computation of
a maximum bound for memory interference per task;
(iii) the computation of a maximum bound for the
WCRTs of the tasks taking interference into account.
In addition, our approach is also the first to consider, at
the same time: (i) IMA architectures: tasks are defined
inside partitions, which implies additional activities and
verifications to be handled during software integration,
like the computation of the sizes of the time windows
of the partitions; (ii) the possible heterogeneity of the
platform: in heterogeneous multi-cores, the execution
duration of a piece of code depends on the core it
is executed on: as a consequence, each task has one
execution time in isolation per core.

Table I summarizes the characteristics of related work.
The main characteristic of our contribution is the joint
management of the allocation and scheduling analysis,
with interference considerations. To our knowledge,
only [15] and [10] handle these two activities at the
same time. However, the interference-aware sched-
ule generated in [15] relies only on a selection of
measured execution times of the tasks when running
simultaneously with each other, thus no safe bound
on interference per task is produced. In [10], model
checking is performed to obtain a reliable schedule,
and thus safe bounds on tasks worst-case interference.
However the author makes strong assumptions on the
hardware architecture, which are currently verified only
in the Kalray MPPA multi-core COTS [2], and neither
the heterogeneity nor the IMA environment are taken
into account. In [9] the interference-aware schedule is
produced after data path analysis thanks to a detailed
hardware model of the platform, which implicitly leads
to interference bounds. The work presented in [13]
relies on runtime monitoring to dynamically adapt
a scheduling plan, thanks to regular comparisons of
the remaining time available for each task before its

deadline, and its theoretical remaining execution time
required to finish, computed in isolation at observation
points. Thus no bound on task interference is given,
and the correctness of the final schedule is more
difficult to prove. In [6], the authors propose an
interference-aware multi-core response time analysis
that takes into account inter-task interference due to
sharing access to the DRAM, cache and bus resources.
The framework does not implement any automatic
allocation search process though, and is applicable
neither to heterogeneous platforms, nor to IMA software
architectures. Eventually, the IMA architecture is only
considered in scheduling analyses, and except for the
work in [9], the heterogeneity is considered only for
the allocation search without interference issues.

IV. MODEL OF THE SYSTEM

Let Np and Nt respectively denote the total number
of partitions and tasks of the software platform, and
Nc the number of cores of the multi-core processor of
the hardware platform. Tasks are denoted as τi, and are
ordered by their unique priority levels i: τi has a higher
priority than τj if i is smaller than j. We model tasks as
a vector τi � pCi, Di, Ti, Hiq with Ci � pC1

i ... C
Nc
i q

and Hi � pH1
i ... H

Nc
i q. In the vector Ci, each Cki is

the worst-case execution duration of τi when running
in isolation on the core k. The Cki parameters can be
deduced from static WCET analysis of the code, with
tools like OTAWA [7] for example. Similarly, Hi gives
the maximum number of data requests to the memory
that τi can issue depending on its core assignment; a
bound on each element of Hi can be extracted after
static code analysis. Ti is the period of τi, and Di its
deadline.

We model partitions as a vector πi � pEi, Piq, where
Ei is the size of the time window to be reserved for
πi, and Pi is the period of πi. As explained in the
introduction, we compute Ei such that the task with
the lowest priority level only executes once per window.
To ensure an accurate time window size, Ei is computed
after the response time analysis, to guarantee a window
large enough for the tasks to complete their execution
in the worst-case:

@i, Ei � max
τjPpartpiq

pRjq (1)

where partpiq contains the tasks belonging to the par-
tition πi. Indeed, by definition, the WCRTs correspond
to the situation where every task is preempted as many
times as possible during its execution. In our case,
we consider all tasks of a partition to be released
simultaneously at the beginning of each time window.
Priority levels are unique, i.e. two different tasks cannot
have the same priority level. As such, for a given
partition, the task with the lowest priority level has
been preempted as many times as possible by all other
tasks of the same partition. As a consequence, if τj
is the task with the lowest priority level of πi, then
Rj accounts not only for the execution time of τj , but
also for the execution times of all other tasks of the



Related
Work

Avionic
Systems

Heterogeneity Allocation Interf.-Aware
Schedule

Interference
Bounding

Bradford et al. [9] yes yes no yes yes
Paolieri et al. [15] no no yes yes no
Baruah et al. [8] no yes yes no no
Tamas et al. [16] no yes yes no no

Giannopoulou et al. [10] no no yes yes yes
Kritikakou et al. [13] no no no yes no

Altmeyer et al. [6] no no no yes yes
our work yes yes yes yes yes

TABLE I: Summary of related work contributions

partition. τj is then the task with the biggest WCRT,
and can be used to compute the required size of the
time window of its partition as described in equation
(1).

The task-to-partition mapping is defined by the matrix
PART as follows:

PARTji �

"
1 if τi P πj ,
0 otherwise (2)

Inter-partition communications are modeled by the
matrix M as follows:

Mij �

"
1 if πi and πj exchange data,
0 otherwise (3)

Except for Ei, all these parameters are given as
inputs to our framework. Additional parameters are
computed though. To perform the scheduling analysis,
the following variables are defined, for each task τi:

 Bi is a maximum bound on inter-task interference
due to sharing the main memory;

 Ri is the WCRT of the task;
 isopiq is the element Cki of the vector Ci where
k corresponds to the index of the core to which
τi has been allocated.

These three sets of variables are computed automatically
by our framework during schedulability analysis, as will
be explained later in this paper.

To perform the allocation search, we implement in
our framework the matrix a, defined as follows:

aij �

"
1 if πj is allocated to core i,
0 otherwise. (4)

Eventually, to ease the explanations of the inter-
ference mathematical model, we also introduce the
following sets:

 partpiq contains the tasks belonging to the parti-
tion πi: partpiq � tτj , PARTij � 1u

 coreppq contains the tasks belonging to the core
p: coreppq � tτi, apj � 1, τi P partpjqu

V. IMA RESPONSE TIME ANALYSIS

A. Definition

The response time analysis first computes the WCRTs
Ri of the tasks τi, and then, compares the results with
the corresponding deadlines: tasks are schedulable if
and only if Ri is smaller than Di. In non-IMA, single-
core systems, Ri is computed as the fixed-point solution

of the following iterative equation, defined by M. Joseph
and P. Pandya [11]:

Rk�1
i � C

1

i �
¸
@j,

τjPhppτiq

R
Rki
Tj

V
C

1

j (5)

where k is the iteration number and C
1

i is the execution
duration of τi in isolation. For the first iteration, R0

i is
set to C

1

i . The second term in (5) refers to the maximum
waiting delay due to the preemption of τi by tasks with a
higher priority. The set containing such tasks is denoted
hppτiq.

B. Transposition to IMA, Multi-Core Environments

1) Multi-Core: In equation (5), all tasks of the sys-
tem are on the same single-core processor. In multi-core
environments, the tasks are rather dispatched among
the cores of the processor. In theory if interferences are
ignored, the situation is equivalent to considering Nc
independent single-core processors, so that equation (5)
can be easily reused: the set hppτiq will then refer to
the tasks of higher priorities that are mapped on the
same core than τi, since only the tasks on the same core
as τi could be able to preempt it. As a consequence, if
τi is mapped to core p:

Rk�1
i � isoi �

¸
@j,τjPhppτiq

and τjPcoreppq

R
Rki
Tj

V
isoj (6)

with isoi being equal to Cpi by definition. To compute
isoi during the WCRT analysis, the core on which
τi is allocated must be retrieved. However, in IMA
architectures, tasks belong to partitions, and it is the
partitions – not the tasks – that are assigned to a
core. Thus, to compute isopiq: (i) the partition to
which τi belongs is identified first, (ii) the core to
which the corresponding partition has been assigned
is identified, and then (iii) isopiq is deduced as equal
to the element of the vector Ci corresponding to the
core identified in the second step. The mathematical
equation corresponding to the computation of isopiq is
the following:

@i, isopiq �

Np¸
p�1

PARTpi �

�
Nç

k�1

akp.C
k
i

�
(7)

Indeed, PARTpi will be non null only if πp is the
partition to which τi belongs; then, the term akp will
be non null only if πp is allocated to core k, which



leads to the identification of the index k of the core
on which πp, and thus τi, is mapped, and then to the
duration Cki .

2) IMA partitions: In IMA architectures, further
refinement of equation (6) can be given, according to
the two-level schedule. A task can be executed only
within the time window of its partition. This implies that
the only tasks susceptible to preempt τi must belong
to the same partition as τi. As a consequence, equation
(6) becomes:

Rk�1
i � isopiq �

¸
@j,τjPhppτiq

and τjPpartpiq

R
Rki
Tj

V
isopjq (8)

C. Main Memory Interference Model

As mentioned in section I-B, the response time
analysis (5) is often compositionally augmented to
consider additional latencies likely to appear in practice.
In our case, we add to the response time analysis in
equation (6), a bound Bi of the maximum interference
delay each task can suffer due to sharing the main
memory:

Rk�1
i � isopiq �

¸
@j,τjPhppτiq

and τjPpartpiq

R
Rki
Tj

V
isopjq �Bi

(9)
As shown in figure 1, the memory is divided into banks,
and each bank is divided into columns and rows. When
a request is treated by the memory controller, the bank
to access is identified first, then the row. When a task
issues a memory request, the waiting delay suffered
before the request is satisfied depends on the order in
which the pending requests are treated by the memory
controller. We implemented the DRAM memory model
presented in [12], where a detailed model of intra- and
inter-bank access delays is given, based on a realistic
memory model implementing FR-FCFS (First Ready-
First Come First Serve) protocol.

The approach in [12] presents two computation
methods, and chooses the minimum value of the two
produced bounds for each task. The maximum bounds
produced thanks to the two methods will be referred
to as Bi,method1 and Bi,method2 respectively.

We present here the mathematical model of memory
interference of [12], as well as our modifications leading
to our final response time analysis formulation. Due
to lack of space, we will only give a brief description
of the model, and for a more detailed explanation,
interested readers are invited to read [12].

1) Method 1: Request Driven Approach: In the
request driven approach, the maximum delay suffered
by a request on one core is assessed. To do so, two
types of interference are considered: inter- and intra-
bank interference.

For a request req issued by one core p, the worst
case situation happens when: (i) every other core issued
a request just before req; (ii) none of these requests
targets the same memory bank as req; (iii) the treatment
of each of these requests take the longest latency

Fig. 1: Model of Memory Banks

possible, lmax – which happens when neither the
previous bank, nor the previous row were accessed just
before, and the type of the request is always different
than the preceding one. The computation of lmax is
explained in detail in [12], and depends on standard
DRAM timing parameters that can be found in the
DRAM datasheet (see table 1 of [12] for instance). As
a consequence, the inter-bank interference delay for a
request issued by the core p is:

RDinter
p �

¸
@q,q�p and

sharedpp,qq�∅

lmax (10)

where sharedpp, qq is the set of memory banks shared
by the cores p and q. In our model, the sets sharedpp, qq
can be deduced from matrices a and M . In particular,
sharedpp, qq is empty only if no partition on core q is
sharing a memory area with any partition on core p.
This translates into the terms api, aqj and Mij being
equal to zero for all partition πi belonging to p and
all partition πj belonging to q. As a consequence, the
emptiness of sharedpp, qq can be assessed in our model
as follows:

psharedpp, qq � ∅q �

�
Np¸
i�1

Np¸
j�1

api � aqj �Mij � 0

�

(11)
Equation (10) is the inter-bank interference delays, in
the case where no request to the same bank as req was
produced. In the case where requests to the same bank
as req are issued, the longest interference delay for req
to be serviced happens when: (i) all the other cores q
that share access to the same bank as core p emitted
a request before req; (ii) all these requests concern
access to a different row; (iii) a memory reordering is
happening. If L is the row-conflict service time, to open
a row before accessing a column, then the worst-case
delay per such request is L�RDinter

q . The intra-bank
interference delay suffered by req issued by the core
p is thus:

RDintra
p � reorderppq�

¸
@q,q�p and

sharedpp,qq�∅

pL�RDinter
q q

(12)
As for lmax, L depends on standard DRAM parameters
that can be found in the memory’s datasheet (see [12]
for a detailed description). Reorderppq computes the
delay of req due to the reordering effect (see [12] for a
detailed description). Following the same reasoning than



in the previous paragraphs, sharedpp, qq is non empty
only if there exists a partition on core q that is sharing a
memory area with a partition on core p. This translates
into the terms api, aqj and Mij being both equal to
one for at least one partition πi belonging to p and
one partition πj belonging to q. As a consequence, the
emptiness of sharedpp, qq can be assessed as follows:

psharedpp, qq � ∅q �

�
Np¸
i�1

Np¸
j�1

api � aqj �Mij � 0

�

(13)
Finally, the total maximum interference delay a request
originating from the core p can experience is equal to:

RDp � RDinter
p �RDintra

p (14)

Each task τi of core p having Hp
i requests to issue,

the total maximum interference delay directly caused
by the issuing of these requests is bound by Hp

i �RDp.
Tasks being preemptible though, the cost of memory
requests of tasks with higher priorities has also to be
accounted for. Therefore, the bound on τi’s memory
interference is defined as follows:

Bi,method1 � Hp
i �RDp�

¸
@j,τjPhppτiq

τjPpartpiq

R
Rki
Tj

V
Hp
j �RDp

(15)
2) Method 2: Job Driven Approach: In the second

method, the author of [12] focuses on how many
interfering memory requests are generated during the
execution of a task. The maximum number of requests
generated by a core p during a time interval t, Apptq,
depends on the number of generated requests by its
tasks that are executed during that same time interval:

Apptq �
¸

@τiPcoreppq

R
t

Ti

V
Hp
i (16)

As an IMA environment, during the execution of τi,
only the tasks of the same partition as τi are eligible
to emit requests for a given core. Thus the maximum
number of requests that core p can generate during the
execution of τi is:

Apptiq �
¸

@τjPpartpiq

R
ti
Tj

V
Hp
j (17)

where ti is the time interval during which τi is executed.
Once the maximum number of memory requests gen-

erated during a given time interval has been expressed
thanks to the definition of Ap, one can express inter-
and intra-bank interference delay imposed on a core p
during a time interval t, respectively:

JDinter
p ptq �

¸
@q,q�p and

sharedpp,qq�∅

Aqptq � lmax (18)

JDintra
p ptq �

¸
@q,q�p and

sharedpp,qq�∅

pAqptq � L� JDinter
q q

(19)
Finally, to consider the maximum memory inter-

ference delay τi can suffer, equations (18) and (19)

compute the elapsed time between the beginning and
the end of the execution of τi. To produce a bound that
is safe in the worst-case situation, the time interval to
consider is Ri. As a consequence, if τi is allocated on
the core p, then the maximum bound for the memory
interference it can experience during its execution is
given by:

Bi,method2 � JDinter
p pRiq � JDintra

p pRiq (20)

D. Final Definition of Ri and Bi
Methods 1 and 2 being about the computation of

maximum bounds, Bi is set to the less pessimistic of
the two:

Bi � min pBi,method1 , Bi,method2q (21)

Eventually, the final formula to compute safe bounds on
the WCRTs to perform the analysis is given in equation
(9), where Bi is computed according to equation (21).

VI. ALLOCATION PROCESS

During the allocation process, the system integrator
decides on which processor each partition will be
executed. In the case of assymetric scheduling on
a multi-core processor, the integrator should decide
on which core each partition will be allocated. An
allocation then refers to a partition-to-core mapping,
each partition being supposed to run on the same core
from the beginning till the end of life of the system.

After an allocation has been chosen, the system
integrator then sets a global schedule for each core of
the multi-core. To do so, the integrator first computes
the size of each partition time window, and then sets an
offset for the activation of each window inside the major
frame of each core. The size of a time window depends
on the tasks supposed to run within its boundaries:
the window should be large enough for all these tasks
to complete their executions. The offset of a window
should be chosen so that the end of the window is
before the beginning of the next period of the partition.

If these conditions are verified, the resulting global
schedule on each core are considered to be valid,
as well as the partition-to-core allocation that led to
such schedules. If on the contrary, it is not possible
to find a valid schedule for at least one core of the
multi-core, another allocation must be selected. The
allocation phase is thus important, since the validity of
the computed global schedules depends on it.

We propose to automate the SW/HW allocation
process of the design phase of a system. To do so,
we perform an exhaustive search for a valid allocation
using constraint programming. The constraints represent
the scheduling requirements of the system. To be able
to do so, we rely on equation (9) to guide the search.
Figure 2 summarizes our exploration process:

a) Step 1: the first step consists in choosing an
allocation, in order to evaluate if it is a potential
solution for the SW/HW integration. The allocation
is chosen automatically by the framework, among all
the possible combinations. Eventually, all allocations
will be evaluated during the exploration process.



Fig. 2: exploration process

b) Step 2: The second step represents an early
verification that each partition window can end before
the next period. This cannot be verified with certainty
before knowing the activation offsets in the global
schedule, nor before computing the tasks WCRT with
equation (9). However, if one window happens to be
larger than the period of the corresponding partition,
then the selected allocation could never lead to a
valid global schedule. As a consequence, we add the
following constraints, to help the early rejection of such
invalid allocations:

@i, Ei ¤ Pi (22)

where Ei is computed according to equation (1), and
each Ri with equation (8). If this condition is not
respected, the search process goes back to step 1 and
a new allocation is chosen.

c) Step 3: If step 2 is successful, Ri and Bi are
computed for all tasks thanks to equations (9) and (21).

d) Step 4: The schedulability of the tasks in
the multi-core allocation currently under evaluation
is assessed. Tasks are schedulable if and only if:

@i, Ri ¤ Di (23)

e) Step 5: If step 4 is successful, we update the
sizes Ei of the time windows of the partitions: now
that the interference-aware WCRTs of the tasks are
available, we have to check that the time windows
are still large enough in the worst-case, i.e. when the
durations of the tasks are equal to their Ri. If it is
not the case, the window size of the corresponding
partitions are increased accordingly thanks to equation
(1).

f) Step 6: The sixth step is based on the same
principle as the second step, evaluated with the new Ei
values. If a window Ei is larger than the corresponding
period Pi, it means that the currently assessed allocation
may lead to deadline violations due to memory inter-
ference. The search process then rejects the currently

evaluated allocation as invalid, and goes back to the
first step to choose a new allocation.

g) Step 7: If the sixth step is successful though,
the current allocation is stored as a valid solution.

h) Step 8: The last step of the process is the
selection of a solution among the valid allocations that
were stored at step 7. We propose to do so according
to an optimization criteria. Our framework selects the
solution that minimizes the total workload of the system.
We justify our choice by the fact that this parameter
is a performance characteristic, but also because it is
proportional to inter-task interference delays, which add
up to the tasks executions. Because of these delays,
(i) the extra time available before tasks deadlines are
reached at runtime is drastically shortened, and (ii) the
integrator is given less flexibility for the setting of a
valid global schedule for each core in the considered
allocation. The objective function we defined in our
framework is the following:

minimize
Nţ

i�1

Ri
Ti

(24)

VII. IMPLEMENTATION

We implemented the optimization problem proposed
in this paper, to assess the benefits that can be drawn
from its use. To do so, we compared several qualities of
the solution returned by our approach, to the solutions
that would have been returned by ”classic” approaches,
meaning approaches without interference consideration.
As explained before, no such classic approach exists, so
we modified a copy of our optimization problem into a
classic allocation problem: we remove the interference
bound in equation (9), but we still compute it thanks
to equation (21), to get the corresponding interference.
The resulting process is referred to as ”classic approach”
or ”interference-oblivious solving” in the rest of the
paper. We implemented the optimization problem in
CPLEX [3], that has been running on a computer with
an Intel Core i7 2.20 GHz processor with 16Gb of
RAM.

A. Presentation of the Case Study

We derived a case study from the report [14], which
presents a specification of an avionics Mission Control
Computer (MCC) system. No mention is made about
an IMA architecture, nor about maximum numbers of
requests to the main memory by the tasks, but for the
sake of the analysis, (i) we consider each function to
correspond to a partition, as if each one had been
designed by a different supplier; (ii) we randomly
generate Hk

i values for each task, ranging from low to
intensive usage of the main memory, respectively 1 and
40 requests per microsecond [12]. We also built the Ci
vectors by deriving the execution time in isolation given
for each task in the report. The data corresponding to
our case study is summarized in table II.



Partition tasks Ci (ms) Ti (ms) Di (ms) Pi (ms)
1 C1=( 8, 7.2, 7.6, 6.4) 55 55 480

C2=( 6, 5.4, 5.7, 4.8) 80 80
2 C3=( 2, 1.8, 1.9, 1.6) 40 40 480

C4=( 2, 1.8, 1.9, 1.6) 80 80
C5=( 2, 1.8, 1.9, 1.6) 480 200

3 C6=( 4, 3.6, 3.8, 3.2) 40 40 480
C7=( 1, 0.9, 0.95, 0.8) 480 40
C8=( 2, 1.8, 1.9, 1.6) 480 40
C9=( 1, 0.9, 0.95, 0.8) 480 200

4 C10=( 1, 0.9, 0.95, 0.8 ) 10 5 480
C11=( 7, 6.3, 6.65, 5.6 ) 100 100
C12=( 1, 0.9, 0.95, 0.8) 480 200
C13=( 1, 0.9, 0.95, 0.8 ) 4800 200
C14=( 2, 1.8, 1.9, 1.6) 480 400
C15=( 6, 5.4, 5.7, 4.8) 480 400

5 C16=( 1, 0.9, 0.95, 0.8) 1920 40 1920
C17=( 1, 0.9, 0.95, 0.8 ) 1920 40
C18=( 6, 5.4, 5.7, 4.8 ) 52 52
C19=( 6, 5.4, 5.7, 4.8 ) 52 52
C20=( 8, 7.2, 7.6, 6.4 ) 52 52
C21=( 1, 0.9, 0.95, 0.8) 100 200
C22=( 2, 1.8, 1.9, 1.6 ) 1000 1000
C23=( 1, 0.9, 0.95, 0.8) 1920 200
C24=( 1, 0.9, 0.95, 0.8 ) 1920 200

6 C25=( 1, 0.9, 0.95, 0.8 ) 100 200 480
C26=( 2, 1.8, 1.9, 1.6) 480 400

7 C27=( 2, 1.8, 1.9, 1.6) 200 200 480
C28=( 3, 2.7, 2.85, 2.4 ) 480 100

8 C29=( 5, 4.5, 4.75, 4 ) 1000 400 1920
C30=( 1, 0.9, 0.95, 0.8) 1920 200
C31=( 10, 9, 9.5, 8 ) 1920 800

(a) Description of the tasks and partitions

Hi used for the first test
H1 = ( 160000, 144000, 152000, 128000)

H2 = ( 30000, 27000, 28500, 24000)
H3 = ( 42000, 37800, 39900, 33600)
H4 = ( 70000, 63000, 66500, 56000)
H5 = ( 44000, 39600, 41800, 35200)
H6 = ( 80000, 72000, 76000, 64000)
H7 = ( 21000, 18900, 19950, 16800)
H8 = ( 14000, 12600, 13300, 11200)
H9 = ( 15000, 13500, 14250, 12000)
H10 = ( 12000, 10800, 11400, 9600)

H11 = ( 133000, 119700, 126350, 106400)
H12 = ( 2000, 1800, 1900, 1600)

H13 = ( 26000, 23400, 24700, 20800)
H14 = ( 20000, 18000, 19000, 16000)

H15 = ( 6000, 5400, 5700, 4800)
H16 = ( 1000, 900, 950, 800)

H17 = ( 26000, 23400, 24700, 20800)
H18 = ( 192000, 172800, 182400, 153600)
H19 = ( 240000, 216000, 228000, 192000)

H20 = ( 80000, 72000, 76000, 64000)
H21 = ( 7000, 6300, 6650, 5600)

H22 = ( 52000, 46800, 49400, 41600)
H23 = ( 34000, 30600, 32300, 27200)
H24 = ( 29000, 26100, 27550, 23200)
H25 = ( 14000, 12600, 13300, 11200)
H26 = ( 24000, 21600, 22800, 19200)
H27 = ( 48000, 43200, 45600, 38400)
H28 = ( 60000, 54000, 57000, 48000)

H29 = ( 135000, 121500, 128250, 108000)
H30 = ( 340000, 306000, 323000, 272000)

H31 = ( 10000, 9000, 9500, 8000)

(b) Vectors Hi used in the first test

TABLE II: Case Study Data

B. Tests Performed

As we will explain in detail in the next paragraphs,
we performed two different experimentations. In both
cases, our goal is to compare the solution returned
by our framework with the solution that would have
been provided by interference-oblivious processes. The
comparison is made on the basis of the workload
reduction achieved thanks to our framework, but also on
the interference percentage, and the slowdown suffered
by the tasks, in the selected solution.

1) Test 1: In the first test, the number of cores Nc of
the multi-core platform is the only variable parameter.
We ask, both our framework and a classic allocation
search, to find an allocation of the eight partitions
described in table II on Nc cores. The Hi vectors used
in the first test are described in table IIb. The maximum
possible number of cores is eight, corresponding to the
situation where each partition is allocated alone on a
core. The result of the allocation search is either a valid
SW/HW allocation, or the answer that there exists no
valid solution for the number of cores considered. As
we will explain in detail in subsection VII-C ”Results”,
no solution was found for Nc greater than or equal to
five; that is the reason why the Ci and Hi vectors in
table II only contain four elements each, and not eight.

2) Test 2: Since memory interference depends on
the Hi values, the comparison results and the realized
performance gains are very data-dependent. To get a
general appreciation of the optimization gain achievable
thanks to our framework, we test different intensities

of memory utilization by the tasks. Such a second
test also enables to see the evolution of inter-partition
interference with the intensity of the memory usage
by the tasks. As mentioned earlier, memory utilization
intensity varies approximately between 1 and 40 re-
quests per microsecond per task. As a consequence in
this second test, there are two variable parameters: Nc
and the vectors Hi. We use data from table IIa but not
from table IIb, and we build the vectors Hi as follows
instead, for all tasks τi and all cores k:

Hk
i � Cki pin µsq � x, x P t1, 10, 20, 30, 40u (25)

C. Results

For both tests, our framework was unable to find
solutions for Nc greater than 4. On the contrary, in the
classic approach, the search always finds a solution,
but after analysis of the output memory interference
bounds Bi, the solution appears not to be valid in
reality: some bounds lead to actual WCRTs being
bigger than the deadline of the corresponding tasks,
which invalidates the feasibility of the selected solution.
The difference between our framework and the classic
approach being the interference consideration, we can
draw the conclusion that our framework prevents from
choosing allocations that, later on during the schedule
planning phase, appear to be infeasible. This also
implies that our work enables to reduce the time spent
during the last phases of a system design.



(a) total workload

(b) interference percentage in the total
workload

(c) median slowdown percentage

Fig. 3: Results of the first test

In terms of computation time, solutions were always
found in less than 10 seconds with two cores, 62
seconds with three cores and 7 minutes with four cores.

1) Test1: Figure 3 shows the results of the first
test. According to the figure, our framework always
returns a better solution than the classic approach,
the difference between the two solutions being more
noticeable for three cores. We were able to show some
significant performance enhancement, with up to 36.9%
of workload reduction, 46.6% of interference reduction
and 50.4% slowdown reduction.

2) Test 2: Figure 7 displays the results of the
second test. The graphs on the left show the results
corresponding to our framework, whereas the graphs
on the right correspond to the solution with classic
approaches for the allocation search. The same legend
is used in all graphs, to ease results interpretation. In all
runs performed, the solution found with our framework
is better than with classic approaches, by allowing
up to 39.6% workload reduction, 54.5% interference
reduction and 44.4% slowdown reduction.

Eventually, for a given value of Nc, one can see
the evolution of workload, interference and slowdown
depending on the intensity of memory usage by the
tasks. All three parameters increase with the usage
intensity. The only exception is for four cores in figures
4b and 5b: workload and interference obtained with x
equal to 40 in equation (25) are respectively lower than
with x equal to 30, and is quite close to the solution
found by our framework. Memory interference can only

increase with the number of memory requests, since
tasks using intensively the main memory are more likely
to suffer more from interference than the tasks that only
perform a small number of requests to the memory
per execution. This implies that the classic approach
managed by chance to find an optimized solution for
x equal to 40, but failed to do so for x smaller than
40. This can be considered as an expected observation,
since the objective function (24) in classic approaches
ignores the Bi terms in the computation of the WCRTs.

Another remark for a given number Nc can be
made when we compare our framework to interference-
oblivious search. The speed of the increase of workload,
interference and slowdown respectively is slower in
figures 4a, 5a and 6a than in figures 4b, 5b and 6b,
which is an interesting quality for a system integrator.
The difference of speed is more visible in the graphs
of figures 4a and 5a than in figure 6a though. This
is due to the fact that our optimization criteria is the
workload reduction. In the future, it might be interesting
to experiment multi-objective cost functions, to have
multiple parameters guiding the search and solution
selection.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a derivation of the re-
sponse time analysis in [12] to adapt it to IMA systems
and heterogeneous multi-core platforms. The resulting
response time analysis gives a sufficient schedulability
test for IMA applications in heterogeneous multi-core
environments. We then proposed to reuse this schedula-
bility test to guide the design space exploration during
the SW/HW integration design phase of IMA systems.
To do so, we formulated an optimization problem
to perform a timing-aware SW/HW allocation search.
On the two implemented tests, our results showed
that our approach enabled a real performance gain,
by achieving up to 54.5% workload reduction, 54.9%
memory interference reduction, and 50.4% slowdown
reduction at runtime. In the future, we plan on refining
the interference model, in order to take more than just
main memory interference into account.
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Pérez. Distributed run-time WCET controller for concurrent
critical tasks in mixed-critical systems. In 22nd International
Conference on Real-Time Networks and Systems, RTNS ’14,
Versaille, France, October 8-10, 2014, page 139, 2014.

[14] Douglas Locke, Lee Lucas, and John Goodenough. Generic
avionics software specification. Technical Report CMU/SEI-
90-TR-008, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 1990.

[15] Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla,
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Abstract—In this paper we describe Formal Specs Verifier
Automatic Test Generation, a tool generating high coverage test
suites for embedded systems. Our tool implements a test case
synthesis algorithm using a combination of model checking and
optimization techniques starting from a Simulink/Stateflow model
of the System Under Test. The main contributions of this paper
are the following: we (1) give an extended description of our test
generation algorithm, (2) describe the algorithm implementation
as part of the Formal Specs Verifier framework, (3) present a
concrete application of the tool to a cruise control case study
and discuss experimental results comparing our algorithm with
a state-of-the art COTS tool.

Keywords—Model-based Automatic Test Generation, High Cov-
erage Test Suites, Formal Methods

I. INTRODUCTION

Testing complex hardware-software embedded systems’
architectures is one of the most important and costly phases
of their entire development life cycle. A significant portion
of development time is spent indeed for the verification and
validation phases (V&V) during which teams of test engineers
aim at discovering requirements’ misinterpretation and imple-
mentation errors. Early error detection facilitates correction
complexity, which in turn favors minimizing the overall system
development cost and time. Testing consists in the execution
of a set of predefined input vectors on the System Under Test
(SUT) and observation of its response for detecting possible
deviations from the expected behavior. In order to perform
the testing phase, test vectors (or test cases) must be provided
to the test execution environment. A test vector consists of a
sequence of pairs (inputs, outputs) where inputs is the set of
values to be applied to the system and outputs is the set of
expected output values. A set of test cases is said to be a test
suite. In case the execution of the system produces a set of
output values not matching the expected ones the test can be
used to highlight an error of the SUT. To quantitatively evaluate
the quality of test suites, hence of the entire test execution,
coverage metrics are used. Coverage metrics measure the
effectiveness of a test suite i.e. how much it covers: (1) the
structure of the SUT, as in MC/DC coverage metrics, (2) the
set of requirements, as in requirements-based testing, or (3)
a meaningful subset of admissible faults of the system, as
in fault-injection testing. A good test suite satisfies as much
as possible a given coverage metric. As a general rule the
more the tests executed, the higher the confidence about the
correctness of the system, as long as the executed test cases
are of high quality. However, the generation of high quality
test suites has a relevant impact on costs, e.g. complexity,

setup time and execution time; hence, besides providing test
suites maximizing a given coverage metric (optimality), it is
of paramount importance to ensure a reduced number of test
cases (efficiency). Typically, a test suite represents a trade-
off between optimality and efficiency. Several techniques have
been adopted for the test generation process, especially in
the area of test generation from system models whose main
idea is to represent the SUT using a formal model and use
automatic algorithms for the definition of test cases (model-
based test generation). In particular, the use of model checking
techniques for test generation has been extensively explored:
the test generation procedure is formulated as a problem of
reachability, enriching the model with test objectives. Such test
objectives must be achieved by the produced test suite in order
for a given coverage metric to be satisfied. Once the model
is enriched with test objectives, a model checker is used to
analyze their reachability. In case a test objective is reachable,
a counter-example is produced and stored as a test case, which
is said to cover that test objective. Once all test objectives are
covered, the generated set of tests is a high coverage test suite.
In this paper we describe a novel approach for the automatic
test generation from system models combining bounded model
checking and optimization to generate efficient test cases
and test suites. This paper is an extension of the algorithm
presented in [1]; the main contributions of current paper
can be summarized as follows: we (1) provide an extended
description of the test generation algorithm, (2) describe the
implementation of the algorithm in our Formal Specs Verifier
framework and (3) show the application of our tool to a cruise
control case study, along with additional experimental results.
The proposed use case only covers the MC/DC as an example.
The paper is organized as follows: Section II stresses the
central role played by model-based test generation and model-
based testing in current industry development processes. Sec-
tion III summarizes existing approaches for test case genera-
tion using exhaustive search techniques. Section IV provides a
formal description of the problem our algorithm tries to address
and Section VI describes our algorithm in details. Section
VII provides an overview of the algorithm implementation as
well as an application to a cruise control example and finally
Section VIII concludes the paper.

II. MODEL BASED TEST GENERATION

Current practice in industrial systems’ design and devel-
opment process is to create models –also known as virtual
prototypes– of the system being developed. A model is the
artifact meant to imitate the system of interest. The system
can be abstracted (modeled) at different levels of refinement



and each level of refinement has its own best-fitting formal
models. For example, a mathematical model is a set of formal
definitions and mathematical formulas that describe the system
under analysis. At the various system development phases,
models are gradually refined until these get detailed enough to
allow for physical implementation of the system. The system
implementation can be achieved by means of either fully-
automated or pseudo-automated synthesis tools. With regards
to testing, the main benefits of model-based approach are
manifold: (1) tests can be automatically generated from models
(model-based automatic test generation), (2) testing can be
performed at different refinement levels, far before the system
gets implemented and, more interestingly, (3) tests generated
at early phases of the system design can be refined and re-
used in later phases of the design to check whether all system
properties are still fulfilled (back-to-back testing). Virtual
prototyping and related testing are particularly important when
the realization of components involves different technology
suppliers and manufacturers, and requirements fulfillment must
be checked by all the parties at all stages of the design process.
This work targets model-based generation of test suites used
to bring evidence that functional and non-functional metrics
have been achieved by the design implementation.

III. RELATED WORK

Several techniques have been described in literature on the
topic of automatic test generation. In this section we provide
a brief summary of the available techniques pointing out the
differences with the one proposed in this paper. Evolutionary
and genetic approaches [2] generate tests by randomly exer-
cising the inputs of the SUT and measuring the quality of the
test maximizing an objective function. Such function is derived
from a structural analysis of the SUT, hence a test that provides
better values of the cost function is selected in a set of possible
generation process outcomes. In addition, evolutionary testing
employs evolutionary algorithm techniques for selection and
generation of new tests from a previously generated set of
tests. These techniques rely on random search adding structure
to the search to avoid generating low coverage tests. However,
there are no guarantees that a selected behavior is effectively
the best test case with respect to a given coverage metric.
Model-checking based techniques are heavily studied for the
generation of test cases. In [3] the authors describe the use
of a model checking engine for the generation of test cases
starting from a modified version of the SUT model enriched
with a reset transition (i.e. a variable that, when true, resets
the entire state of SUT to the initial state) and test objectives
related to the coverage criteria. The proposed approach differs
from ours in several ways. At first, the number of satisfied
objectives is a non-deterministic result of the execution of
the algorithm hence each test case may cover an arbitrary
number of test cases, whereas our method allows for se-
lecting the maximum number of satisfiable test objectives at
each execution. In addition, the generated tests are produced
monolithically starting from the initial model not allowing
the application of an incremental test generation methodology;
hence, the applicability of the technique to concrete industrial
size cases heavily depends on the size of the input model [4].
In [5] a methodology to generate tests from a formalization
of requirements based on a tabular representation is described
and the counter-example finding capabilities of model checkers

is described as a technique to derive such counter-examples.
The use of the model checker is straightforward and there
is not any guarantee on the quality of generated tests. In
[6] the authors describe a method for extracting test cases
from Statecharts state machines considering state transitions
covering (i.e. covering all states and/or all transitions of the
Statecharts). The generation is executed by enriching the model
with additional states and searching from counter-examples of
a specific CTL formula. The method may produce redundant
test cases and after test generation an additional test reduction
phase is needed. This approach differs from ours in that it does
not guarantee the generation of a minimal set of high coverage
test cases and it relies on a specific CTL-based formulation of
the problem. As a consequence it cannot be solved using SAT-
based model checking techniques, that usually perform better
than BDD-based techniques when a counter-example search is
performed. In [7] a method exploiting random-simulation and
formal verification is described based on a semi-formal method
for the traversing of Extended Finite State Machines (EFSMs)
that allows for reaching deep test cases exploiting the strength
of simulation-based approaches. However, no guarantees are
given in terms of efficiency of the generated suite and the
use of the model checking engine is limited to the analysis of
constraints to guide the main simulation-based test generation
algorithm. In [8] the authors propose a test generation method
based on the reachability of given test cases as well as
extension of already generated test cases. This approach differs
from ours in several ways. First, it does not provide guarantees
that every generated test is optimal with respect to a specific
coverage metric. The model checker is called in order to satisfy
some of the test goals but no guarantees are provided to the
number of the goals satisfied. Second, it does not employ an
incremental test generation procedure: at every execution no
guarantees are given about the length of the found counter-
example: there might be cases in which a high coverage test
case has a given length, but the same results would be obtained
with a shorter test case.

IV. PROBLEM FORMULATION

A. Model And Coverage Criteria Formulation

We focus on the problem of generating high coverage
test suites for discrete time models formalized as connec-
tions of blocks. Several languages are available to capture
embedded control systems using this formalism, e.g. MATLAB
Simulink/Stateflow and Esterel SCADE1. A model M can
be formally represented as a connection of blocks exposing
a well-defined interface in terms of input and output ports,
each describing its run-time behavior as an Extended Finite
State Machine (EFSM). Block’s interfaces are formalized as a
pair of input and output vectors u[k] ∈ X, y[k] ∈ Y , where
X and Y represent the vector domains and k ∈ N the discrete
time. Each block behavior is then formalized as a transition
function F [u, x, f, k] that at each discrete time k maps the
vectors input u[k] and current state x[k] to an output vector
y[k] and next-state values x′[k], where x′[k] = x[k + 1].
In order to be fully specified, an initial value for the state
vector should be provided. Connections between blocks act as
constraints between the values of inputs and outputs that must
match at every time step. The transition relation of a block

1http://www.esterel-technologies.com/



contains logical and arithmetic expressions for Boolean and
bit vectors. For a complete description of the richness of the
Simulink/Stateflow languages please refer to [9]. A test suite
Π is a set of test traces π1, . . . , πn, each representing a finite
sequence of admissible input values: πk = 〈u[1], . . . , u[m]〉.
Each test trace πk has a finite length ‖πk‖ = m that
corresponds to the maximum time step for which the model
is exercised. The objective of test generation is to produce
a test suite that exercises the model for maximizing a given
coverage criterion. Several coverage criteria have been defined
depending on the test generation algorithm input. As an
example for finite state machine a relevant coverage criteria
is related to the capability of exercising the state machine
enabling as much transitions as possible (transition coverage
criteria). In model-based approaches several criteria can be
defined depending on the input model. In our flow, Simulink
and Stateflow models are processed and we use the following
coverage criteria (that can be applied to similar languages
such as Esterel SCADE). MC/DC coverage: following the
definition of MC/DC for software a similar criterion has been
followed for model elements associated to Boolean formulas.
More precisely, for each block corresponding to a Boolean
formula y = f [u1, . . . , uN ] to fully satisfy the criterion there
should exist a trace such that each input affects the truth value
of the output independently of the other inputs [10]. Relations
coverage: for each block that compares two values y = u1�u2
(where � ∈ {≤, <,=, 6=, >,≥}), there should exist tests for
which the output value y transitions from FALSE to TRUE
and vice-versa. State coverage: for state machines, there
should be tests such that the state machine states assume all
possible values. Transition coverage: for each state machine,
there should be tests such that all the transitions of the state
machines are asserted.
In our flow, Simulink and Stateflow models are processed and
we use the following coverage criteria (that can be applied to
similar languages such as Esterel SCADE): MC/DC coverage,
relations coverage, state coverage and transition coverage. The
first two criteria apply also to guards and actions of the state
machines; hence, if a guard is a composite Boolean expression,
the test suite should provide tests covering the guard with a
maximum MC/DC percentage value.

B. Problem Formulation

The test generation problem we address in this paper can
be now formalized as follows. Given a discrete time model
M, a coverage metric and a test generation maximum time
step m, generate a test suite Π = {π1, . . . , πn} of vectors of
length ‖πk‖ ≤ m, such that:

1) the achieved coverage is maximal with respect to the
coverage metric

2) each test trace contributes to increase the coverage of
the test suite

Objective 1) ensures that the generated test suite achieves high
test effectiveness, provides high coverage of the input model
and captures as much errors as possible, whereas objective
2) ensures that the cost of test execution is well-balanced,
meaning that each test trace effectively improves the overall
coverage of the model and avoids execution of useless tests.

Fig. 1. Test Objective example

V. MAXIMAL COVERAGE TEST CASE GENERATION

VI. ALGORITHM DESCRIPTION

In this section the test generation algorithm presented in
[1] is summarized and extended showing the usage of monitor
variables for the automatic synthesis of test cases. In Section
VI-A the algorithm is summarized, whereas in Section VI-B
the details of the efficient search sub-activity are provided.
This section describes the details of the efficient search sub-
activity of the test generation algorithm we presented in [1]
and differs from a previous implementation [11] generating
Minimal Critical Failure Sets.

A. Test Generation Flow

The overall flow of the test generation algorithm is de-
scribed in Fig. 2. The initial formal model is elaborated in
a model transformation step that enriches the input adding a
finite number of test objectives. Each test objective represents
a Boolean condition over the discrete time that should be
satisfied by at least one generated test case. The formal
description of the test objective depends on the coverage
criteria selected by the user (e.g. MC/DC, relation coverage,
transition coverage, etc.). During the test objectives generation
step the input model is instrumented with additional Boolean
expressions representing the test objectives the Automatic Test
Generation (ATG) step should satisfy. Each test objective is
derived by analyzing the input model blocks according to the
selected criteria. As an example consider the Simulink model
in Fig. 1 containing a Comparator block and a Switch block.
The Comparator has an output that is true when input u1 is
greater or equal to zero and false otherwise, while the Switch
connects to the output the first input when the control input c
is FALSE and the second input (u2) otherwise.
In case the user selected the relation coverage criteria, two Test
Objectives (TOs) to be satisfied would have been derived for
the Comparator block: the first TO is true when the comparator
output transitions from FALSE to TRUE and the second is true
when it transitions from TRUE to FALSE. Similarly, when the
MC/DC criterion is selected, two additional test objectives are
derived: one that is true when the control input of the Switch
transitions from FALSE to TRUE and another one for the
opposite condition. Using this approach we are able to convert
different coverage criteria to a common criterion (test objective
criterion) and the sub-sequent test generation step will try to
produce a high coverage test suite maximizing the number
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of test objectives satisfied by the generated traces. Once the
extended model is produced, the Automatic Test Generation
algorithm generates a set of test traces. Each trace has a finite
length and satisfies the maximum number of test objectives that
have not been yet satisfied by other (previously generated) test
cases. As stated previously, the generated test cases verify the
following properties:

• The test suite coverage percentage always increments
with the addition of a new test case;

• Each test case is not redundant: no other test case of
the same length covering the same (or a super-set of
the) set of satisfied test objectives exists.

The ATG process can be bounded in time or in number of
generated test cases by setting a set of parameters controlling
its execution.

The algorithm is described in Algorithm 1. The algorithm
is described in [1] and is summarized here for clarity. At
start-up the explored depth bound is set to the initial value (it
might be 1 or user-defined). The algorithm loops until all test
objectives are satisfied or a given resource/time/depth bound is
reached and in each iteration a subset of not yet satisfied test
objectives (TO) is identified. The subset may be the entire set
of unsatisfied TOs or it may be driven by the user needs (i.e.
all the TOs related to the coverage of a given sub-function
of the SUT, etc.). Once the TOs are selected an inner loop
is performed until an explicit exit condition occurs or all the
test objectives selected have been covered. In the inner loop,
the formal engine is queried to find all the test cases of length
equal to l that maximize the number of satisfied TOs among the
ones selected at previous step. Each test case satisfies a unique
subset of TOs (i.e. there are not two test cases satisfying the
same subset of TOs). If new test cases are found, collect all the
subsets of satisfied TOs and remove them from the search to
avoid search again their satisfaction in next iteration. In case no
new test cases are found we can assess that for the given length
bound, test cases satisfying the selected test objectives do not
exist. This claim is possible because of the exhaustive search

Algorithm 1 High Level View of the Test Generator Algorithm
Input: Θ = {TO1, . . . , TOJ}
Input: L max explored step, TOUT Algorithm execution

timeout

Init
l← 1, Currently Explored Length index
T C[0]← ∅, Test Case Collection @ step 0
Ω[0]← Θ = set of not yet satisfied TOs @ step 0
Ψ[0]← ∅ = set of satisfied test objectives @ step 0

1: while ((Ψ 6= Θ) ∧ (l ≤ L) ∧ (¬TOUT )) do
2: Ω[l] = SelectTestObjectives (Ω[l − 1],Θ)
3: Ψ[l] = ∅
4: bDone = false
5: while (Ω[l] 6= ∅) ∧ (bDone = false) do
6: (Ψ, tc) = FindTestCaseMaxSat(Ω[l], l)
7: if ({tc} 6= ∅) then
8: T C[l]← T C[l − 1] ∪ {tc}
9: Ψ[l]← Ψ[l − 1] ∪Ψ

10: Ω[l]← Ω[l]−Ψ
11: bDone = false
12: else
13: l = l + 1
14: bDone = true
15: end if
16: end while
17: end while
18: return Ψ[l], T C[l]

of the underlying formal back-end. Hence the TO selector can
be executed again to select a new subset of TOs or exiting from
the loop if no more TOs can be selected. If during last iteration
no new test cases are found, it is not possible to satisfy any
of the current set of selected TOs for the given length, hence
the explored depth bound is increased and a new iteration is
started if resource limits are not reached (i.e. timeout, memory
consumption, etc.).

1) The algorithm loops until all test objectives are satis-
fied or a given resource/time/depth bound is reached;

2) While this bound has not been reached:
a) A subset of not yet satisfied test objectives

(TO) is identified. The subset may be the en-
tire set of unsatisfied TOs or it may be driven
by the user needs (i.e. all the TOs related to
the coverage of a given sub-function of the
SUT, etc.)

b) The following loop will be executed until
new test cases are not found or the selection
mechanism has not anymore TOs to select:
i) The formal engine is queried to find

all the test cases of length equal to
the current length bound that maximize
the number of satisfied TOs among the
ones selected at previous step. Each
test case satisfies a unique subset of
unsatisfied TOs i.e. there are not two
test cases satisfying the same subset of
TOs.

ii) If new test cases are found, collect all



the subsets of satisfied TOs and remove
them from the search to avoid search
again their satisfaction in next iteration.

iii) In case no new test cases are found,
we can assess that for the given length
bound do not exist test cases satisfying
the selected test objectives. This claim
is possible because of the exhaustive
search of the underlying formal back-
end. Hence the TO selector can be
executed again to select a new subset
of TOs or exiting from the loop if no
more TOs can be selected.

c. If during last iteration no new test cases
are found, it is not possible to satisfy any of
the current set of selected TOs for the given
length. Hence the explored depth bound is
increased

The algorithm is guaranteed to terminate provided that the test
objective selection performed at line 2 is able to identify the
test objectives previously selected even if not satisfied. The
simplest admissible selection mechanism picks the entire set
of unsatisfied objectives at once and exits from the outer loop
at point 3 after the first execution. More efficient test selection
mechanisms are admissible and possible but for brevity we will
not cover this topic in the report. During the search at line 6
a sub-procedure is called in order to produce queries to the
formal engine and storing the counter-examples provided by
the model checker as test cases. A Detailed description of the
procedure is provided in Algorithm 2. The overall algorithm
proceeds in an incremental fashion. Starting from an initial
exploration depth bound all the test cases of a given length
that maximally satisfies the test objectives are found. After the
formal engine proofs that no more test cases of the given length
can satisfy additional TOs, the explored bound is incremented
and the search is executed again. Due the exhaustive nature of
the search, it is guarantee that the set (or a super-set) of the
TOs satisfied by a test case of length k cannot be satisfied by
test case of length j < k. Hence, the method is efficient in the
following sense:

• each new test case covers only new test objectives
hence it strictly increments the coverage of the test
suite by covering only not yet covered test objectives;

• every test case covers the maximal number of unsat-
isfied test objectives of a given length

In addition the incremental nature of the algorithm allows
for generating test cases by starting from a complex problem
in the number of TOs but simpler in the unrolling of the
SUT model transition relation and incrementally increasing
the complexity due the unrolling of the transition relation
but reducing the number of satisfiable test objectives. Our
experience with industry sized models shows that this trade
off allows for applying ATG on complex models since the
satisfied TOs are removed incrementally at every step and the
complexity of the formal problem introduced by the increment
of the explored bound is partially mitigated by the reduced
number of TOs to be satisfied.

B. Maximal Coverage Test Case Generation

The mechanism to find the test case satisfying the
maximum number of TOs is an important part of the optimal
test suite generation procedure and in this sub-section it will
be described in details. The algorithm relies on the concept
of monitor variable associated to a test objective TO. A
monitor is an integer variable and can be seen as a function
m associated to a test objective TO that at every execution
step k evolves as follows:

mTO[k] =





1 if

{
mTO[k − 1] = 1, or

∃j ≤ k s.t. TO satisfied at step j

0 otherwise
and

mTO[0] =

{
1 if TO satisfied at initial step
0 otherwise

Each test objective Tk has an associated monitor variable mk.
Given a set of unsatisfied test objectives T1, T2, . . . , TN and
their associated monitors m1,m2, . . . ,mN the algorithm that
searches for the test case set is described by the pseudo-code
shown by Algorithm 2. The algorithm loops until there are
counter examples found (lines 1 . . . 9). The search at step 2
searches for a counter example that maximizes the sum of
the values of the monitors m1, . . . ,mN . The counter-example
is obtained applying bounded model checking on the input
model. The model checker takes into account the dynamics
of the SUT and the given coverage metrics (that is used to
generate the test objectives and the associated monitors).
The maximization procedure ensures that the found counter-
example exercises as much test objectives as possible. If a
counter example is found the monitor values’ configuration is
extracted and a new constraint is added to the model in order
to exclude the configuration from future searches (line 4, 5).
This step ensures the progress of the iteration loop avoiding
the model checker to find a counter-example satisfying the
same test objectives over and over (there might be an infinity
of them). Then the test case is extracted from the counter

Algorithm 2 Maximal Coverage Test Generator Algorithm
Input: model: The enhanced formal model under analysis
Input: m1,m2, . . . ,mN : Set of model variables representing

unsatisfied test objectives’ monitors
Output: testCases : Set of produced test cases

1: repeat
2: find a counter example such that m1 +m2 + . . .+mN

is maximal
3: if counter example exists then
4: define m∗ = [m∗1,m

∗
2, . . . ,m

∗
N ] the found monitor

configuration
5: exclude m∗ from the admissible solutions of the

maximization search
6: extract test case values for the found counter-example

7: add extracted test case to the testCases set
8: end if
9: until counter-example has been found
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Fig. 3. Test Generation Work Flow

example by storing the values of the interesting variables
of the system (inputs, outputs and internal variables) and
finally it is added to the output set (line 6 and 7). The loop is
then executed again looking for additional maximal possible
monitor configurations until no more configurations can be
found. This guarantees that: 1) every test case produced
by the algorithm maximizes the number of test objectives
covered and it is not possible that another test case satisfies
a super set of the covered ones and 2) for the produced test
suite is true by construction that there are not two test cases
satisfying the same set of test objectives.

VII. ALGORITHM IMPLEMENTATION IN FSV

Our automatic test generation algorithm has been imple-
mented in the FormalSpecs Verifier (FSV) framework for the
verification of embedded systems.

A. FormalSpecs Verifier

The FormalSpecs Verifier is a framework targeting complex
embedded systems verification. The core of the tool is based
on a translator from Simulink modeling language to NuSMV
native language. The transformation process produces a seman-
tically equivalent NuSMV representation of the input model
taking into account the non-determinism resolution that may be
introduced during the transformation step. In Fig. 4 the generic
flow is described in details. As a first step the Simulink textual

Simulink
Meta-model

Model
Transformation
(JQVT)

NuSMV
Meta-model

Simulink
Model

NuSMV
Model

Text2Model
Transformation

Model2Text
Transformation

Simulink
Artifact

NuSMV
Artifact

conformsTo conformsTo

Fig. 4. Formal Specs Verifier Model Transformation Flow

file is parsed. Then the parsed Simulink model is processed
generating a semantically equivalent NuSMV model that is
used to generate the concrete NuSMV artifact with a model
to text step. The technology used to perform the model trans-



Fig. 5. Controller sub-system

formation step is an internally developed Java embodiment of
the OMG Query/View/Transformation (QVT) language called
JQVT. The JQVT library aims at providing an industry-level
operational implementation of the QVT language. It supports
the definition of QVT mappings and the definition of mappings
inheritance, disjunction and merging. JQVT allows capturing
the mapping relation that links a source model element to a
target model element and it supports the resolve and resolveIn
operators to retrieve the set of mapping source model elements
from a given mapped target model element. JQVT does not
support the entire QVT specification. However, it has been
extensively used as translation infrastructure of different tools
for the translation of industry-level sized models [12].

B. Cruise Control Example

We show the application of our test generation algorithm
to a cruise control reference example implemented in MAT-
LAB Simulink. We consider a modified version of the model
proposed by Aldrich in [13]. A cruise control is an embedded
system that regulates the speed of a vehicle based on a set
of commands provided by the driver; the interface of the
control algorithm appears to the system as represented in
Fig. 5. The ACCEL and BRAKE inputs are Boolean values
representing the pressure of the accelerator and brake pedal
by the vehicle driver. The CC ON Boolean input is set when
the driver wants to engage the cruise control. The KEY ON
input represents the presence of the key (Boolean value) and
finally the CRUISE SPEED value is an unsigned integer input
set by the user representing the desired cruise speed. The
outputs of the controller are the ENABLE Boolean value that
is true whenever the cruise controller is actively controlling
the vehicles speed and the SPEED unsigned integer value
representing the reference speed passed to the cascade speed
controller that acts directly on the engine throttle based on the
reference and current speed values. In Fig. 6 the internal modal
logic of the controller is represented as an extended finite state
machine (Simulink Stateflow machine).
The controller is initially in an OFF state and passing thru an
IDLE state can go on a controller active mode (CC MODE)
or disengaged mode (CC MODE DISABLED) in which it
returns the direct control to the driver. This happens whenever

Fig. 6. Controller Extended Finite State Machine

Fig. 7. Automatic Generation of Test Objectives Results

she/he interacts with the car pressing the acceleration or brake
pedal. The FormalSpecs Verifier Automatic Test Generation
(FSV-ATG) tool is executed to perform the efficient generation
of test cases. As a first step the input model is elaborated
and automatically enriched with a set of test objectives to
enable the subsequent test generation procedure for covering
the state machine to obtain MC/DC coverage. The summary of
the generation process for the cruise control example is shown
in Fig. 7: a total number of 191 test objectives have been added
to the formal model to enable the ATG step. The ATG activity
is executed and as results generates a set of efficient test case.
For the cruise control example the ATG generated 31 test cases
given a bound of 100 maximum test cases and a depth bound
of 30 steps. To validate the obtained results we simulated the
generated test cases on the SUT evaluating the coverage value
using the Simulink Verifcation and Validation (V&V) toolbox
which provides an independent measure of effectiveness for
our approach. The obtained independent measured coverage
has been of 100% for decision, condition coverage and MC/DC
coverage.

C. Additional experiments

In order to quantitatively compare the proposed algorithm
and implementation with respect to state-of-the art tool we



Fig. 8. Comparison of MCDC Coverage Results

compared the test suites generated using the Formal Specs Ver-
ifier ATG tool with the Simulink Design Verifier tool (SLDV) 2

that represents an industrial strength tool for the generation of
test suites from MATLAB Simulink/Stateflow systems. A set
of verification cases has been set up containing blocks ranging
over a rich subset of Simulink/Stateflow Libraries. The results
for the comparison of the MCDC coverage of the produced
suites are presented in Fig. 8. The coverage values are obtained
using the MATLAB VnV toolbox3. The analysis of the results
shows that in some cases the SLDV tool is capable of achieving
higher coverage with respect to FSV-ATG whereas in other
cases the opposite is true. Cases where the MC/DC coverage
percentage is 0% for FSV-ATG indicate that our algorithm was
not able to generate any test cases. The analysis of the “losing”
cases for the FSV-ATG tool showed that the low coverage is
due to an inefficient translation of the Simulink/Stateflow block
that does not allow efficient application of our ATG algorithm,
as highlighted in Sec. VII-A. As an example, in some cases
the FSV-ATG tool produces a structure of comparison/logical
blocks that is inefficient for generating a high number of
test objectives. The optimization of the translation step for
achieving efficient coupling with the test generation engine is
one of the activities we have planned as the next development
steps of our tool.

VIII. CONCLUSION

Our model-based test generation algorithm produces a test
suite starting from a model of the system under test (SUT)
that is enriched with a set of test objectives to be satisfied
by the test cases derived from a given coverage metric. The
produced suite covers the model test objectives in an efficient
way such that 1) there are no two test cases satisfying the
same set of test objectives and 2) each test case covers
the maximum number of test objectives for a given length.
Our algorithm relies on the combination of bounded model
checking with an optimization-based formulation of the test
generation problem. The algorithm is implemented using an
incremental execution approach that mitigates the complexity
of the problem allowing successful application to complex

2https://www.mathworks.com/simulinkdv
3http://www.mathworks.com/products/simverification/

industrial use cases. Several ways of algorithm-improvement
are possible, though. From a technical standpoint the algorithm
could be improved by employing parallelism at test generation
level and not only at the formal back-end level. In addition,
the last advancements in pseudo-Boolean SAT solving can
be taken into account to explore additional formal back-ends.
From a methodological standpoint the use of contract-based
design ([14], [15]) could allow for exploiting a compositional
approach at test generation level. From a methodological
standpoint the use of contract-based design could allow for
exploiting a compositional approach at test generation level.
Finally, the use of formal proofs on the model can be used to
ease the process of test generation.

REFERENCES

[1] O. Ferrante, A. Ferrari, and M. Marazza, “Model based generation of
high coverage test suites for embedded systems,” in European Test
Symposium, 2014.

[2] M. Harman and P. McMinn, “A theoretical and empirical study of
search-based testing: Local, global, and hybrid search,” Software Engi-
neering, IEEE Transactions on, vol. 36, no. 2, pp. 226–247, 2010.

[3] S. Rayadurgam and M. P. E. Heimdahl, “Generating mc/dc adequate
test sequences through model checking.” in SEW. IEEE Computer
Society, 2003, p. 91.

[4] O. Ferrante, L. Benvenuti, L. Mangeruca, C. Sofronis, and A. Ferrari,
“Parallel nusmv: A nusmv extension for the verification of complex
embedded systems,” in Computer Safety, Reliability, and Security, ser.
Lecture Notes in Computer Science, F. Ortmeier and P. Daniel, Eds.
Springer Berlin Heidelberg, 2012, vol. 7613, pp. 409–416.

[5] A. Gargantini and C. Heitmeyer, “Using model checking to generate
tests from requirements specifications,” in Proceedings of the 7th
European Software Engineering Conference Held Jointly with the 7th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. ESEC/FSE-7. London, UK, UK: Springer-Verlag,
1999, pp. 146–162.

[6] M. Kadono, T. Tsuchiya, and T. Kikuno, “Using the nusmv model
checker for test generation from statecharts,” in Dependable Computing,
2009. PRDC ’09. 15th IEEE Pacific Rim International Symposium on,
2009, pp. 37–42.

[7] G. Di Guglielmo, F. Fummi, G. Pravadelli, S. Soffia, and M. Roveri,
“Semi-formal functional verification by efsm traversing via nusmv,” in
High Level Design Validation and Test Workshop (HLDVT), 2010 IEEE
International, 2010, pp. 58–65.

[8] G. Hamon, L. deMoura, and J. Rushby, “Generating efficient test sets
with a model checker,” in 2nd International Conference on Software
Engineering and Formal Methods. Beijing, China: IEEE Computer
Society, Sep. 2004, pp. 261–270.

[9] http://www.mathworks.com/products/simulink/.
[10] J. Chilenski and S. Miller, “Applicability of modified condition/decision

coverage to software testing,” Software Engineering Journal, vol. 9,
no. 5, pp. 193–200, 1994.

[11] M. Marazza, O. Ferrante, and A. Ferrari, “Automatic generation of
failure scenarios for SoC,” ERTS, 2014, February 5th.

[12] A. Ferrari, L. Mangeruca, O. Ferrante, and A. Mignogna, “DesyreML: a
sysml profile for heterogeneous embedded systems,” ERTS, Embedded
Real Time Software and Systems, 2012.

[13] W. Aldrich, “Coverage analysis for model based design tools,” Proc. of
the 18th International Conference and Exposition on Testing, 2001.

[14] L. Mangeruca, O. Ferrante, and A. Ferrari, “Formalization and com-
pleteness of evolving requirements using contracts,” in Industrial Em-
bedded Systems (SIES), 2013 8th IEEE International Symposium on,
2013, pp. 120–129.

[15] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B.
Raclet, P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm,
T. Henzinger, and K. G. Larsen, “Contracts for System Design,”
INRIA, Rapport de recherche RR-8147, Nov. 2012. [Online]. Available:
http://hal.inria.fr/hal-00757488



 Page 1/8 

Model Checking of SCADE Designed Systems 

S. Heim
1
,
 
X. Dumas

1
, E. Bonnafous

1 

P. Dhaussy
2
, C. Teodorov

2
, L. Leroux

2 

 
1: CSSI, 3 rue du professeur Pierre Vellas, Toulouse, France 

2: ENSTA-Bretagne, Lab-STICC UMR CNRS 6285, Brest, France 
 
 

Abstract 

Keywords: model checking, formal methods, CDL, 
SCADE, LUSTRE, OBP, synchronous, 
asynchronous 

Introduction 

Model checking [1] is a well-known method to verify 
a formal model in all possible configurations. 
Nevertheless this technique can hardly scale up to 
industrial asynchronous systems because of the 
state-space explosion problem [17]. 

To address this challenge, a new approach based 
on context specification (the environment of the 
system) and an observation engine called OBP 
(Observer Based Prover) has been developed [2]. 
The idea is that given a property to be verified, one 
doesn’t need to explore all possible configurations of 
the complete system. Among all possible behavior 
of the system, a tiny part is representative enough 
for the property to be verified. 

Thus, specifying a pertinent environment (a context) 
allows restricting the system behavior on those 
only parts where the property is worth verifying. 

 

The objective of our work is to apply this Context-
aware verification method to the verification of 
SCADE [3, 10] systems designed in LUSTRE 
language, in order to check behavioral properties 
related to system safety. 

Moreover LUSTRE [4, 9] is a synchronous 
language whereas OBP exploration engine takes as 
input an asynchronous model designed in FIACRE 
[5] language. 

To cope with this problem our approach consists in 
developing a GALS method combining 
asynchronous contexts with synchronous models [6, 
7, 8]. 

The interest of our new approach is twofold: 

 Verifying formal properties on synchronous 
industrial systems with formal methods using 
GALS approach, 

 Facing the state-space explosion via context 
aware specification; 

To our knowledge, there’s no work combining those 
two previous methods.  

This document is organized as follows: 

First, a state of art on existing methods combining 
synchronous system modeling within an 
asynchronous environment is presented. 

Next, we expose the GALS methodology approach 
we combined with context aware verification method. 

Then we introduce two case studies used for 
experimentation of our method. 

Eventually we conclude and present some 
perspectives for future work. 

This work is done in the frame of the French R&D 

project DEPARTS 
(1)

, which is a FSN/BGLE project 

supported by BPI France. 

 

1. State of the art 

Mixing synchronous and asynchronous model 
designs. As demonstrated into previous studies (cf. 
Airbus [12], and Rockwell-Collins [13]), using an 
explicit model-checker for synchronous language 
verification may be required to verify some 
asynchronous properties between synchronous 
parts of a system. 

Moreover, traditional “synchronous-observers” 
verification approach is not applicable in that case: 
asynchronous behaviors’ modeling is not possible 
with synchronous language (i.e. communication 
delays, asynchronous clocks between processors). 

 

GALS. Verifying a synchronous system in an 
asynchronous environment is not an easy task 
because of synchronicity assumption: Input/Output 
computations are considered to take no time. 

To cope with this problem several GALS approaches 
have been developed [6, 7, 8]. 

 

                                                           
(1) 

DEsign PAtterns for Real Time and Safe applications. 

FSN - Fonds national pour la Société Numérique. 

BGLE - Briques Génériques du Logiciel Embarqué. 
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In [7], the work consists in generating C code from 
the synchronous language SIGNAL [14]. Then, this 
code is called atomically (to ensure synchronicity 
assumption) in an asynchronous formal language: 
PROMELA [15]. The environment closing the overall 
system is then designed in PROMELA and the 
verification of a property is done with SPIN model 
checker [15]. 

Nevertheless when dealing with huge systems, the 
environment grows drastically generating a state-
space explosion. For this reason, an optimized 
exploration method has been developed based on 
OBP explorer and its associated Context Description 
Language called CDL 

2
. 

 

Context-aware Verification approach. State-space 
explosion is intrinsically related on the way model 
checking method works. Model checking consists in 
closing a formal system with all possible behaviors 
of its environment, and then exhaustively analyzing 
the emerging executions. The idea behind the 
Context-aware Verification methodology [2] is that 
only a subset of the environment is necessary in 
accordance with the property one want to verify. This 
explicit description of the environment has many 
benefits: 

 The environment can be decomposed by 
several contexts focusing on different system 
modes. 

 When the environment is too large, it can be 
decomposed by OBP (splitting method [11]) to 
generate independent sub-contexts, which 
are successively composed with the system and 
the property so that to make several little 
verification. 

 By enforcing some structural properties on the 
environment behaviors, OBP explorer can also 
use optimized algorithms such as PastFree[ze] 
to reduce the verification time [16]. 

 Properties are verified only on specific context 
definitions. 

 

The following picture could summarize the Context-
aware Verification approach, implemented in the 
OBP toolkit. 

                                                           
2
 www.obpcdl.org 

 

 

2. Contribution 

In this paper we propose to combine a GALS 
verification methodology with the Context-aware 
Verification approach. Our technique uses the 
synchronous LUSTRE language designed with 
SCADE tool and FIACRE asynchronous language 
used by OBP. We have experimentally validated our 
approach using two realistic case studies from the 
automotive and aero-space domain. In this study we 
focused on the verification of functional properties. 
Nevertheless our approach could integrate other 
classes of properties, and can accommodate 
techniques for guaranteeing the numerical accuracy. 

 

The following picture summarizes our method. 

 

 

Our approach is structured as follows:  

1. We first design the system with SCADE 
components based on LUSTRE language; 

2. Then we generate C code from the LUSTRE 
model thanks to the qualified SCADE code 
generator KCG51; 
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3. Next, from C code we generate the 
corresponding FIACRE model in accordance 
with the synchronicity assumption; 

4. To make possible the compilation of C code, we 
generate some wrappers; the wrapper is useful 
to exchange data between FIACRE model and C 
code called functions; 

5. FIACRE system with C code called function is 
generated so that to make the OBP exploration 
possible; 

Once the FIACRE system is generated, following the 
previous five 5 steps one can implement an 
environment (an OBP context) to verify properties. 

Nevertheless, some stimuli sent from the 
environment needs some parameters values so that 
to make the system under verification evolving. 

To this purpose, we choose to generate a data 
structure into the FIACRE system containing all the 
input and output values which can be exchanged 
with the environment.  

The data structure contained in the FIACRE model 
will be used for verification purpose by OBP tool. 

This implementation is well suited to our 
methodology because SCADE system stores all 
input and output values on global data structure too. 

 

The stimuli and parameters sent by the environment 
are therefore copied into the FIACRE data structure 
(identical to SCADE C code data structure). 

This data structure is passed in C call function 
parameters which are dedicated to the computations 
and modifications of input output values of the 
system. 

When the C call function has ended, the data 
structure which has been modified is copied again 
into the FIACRE data structure so that OBP tool 
could display and verify properties from this FIACRE 
data structure. 

The following picture summarizes the data 
exchanges between the environment, the FIACRE 
system and C call procedures. 

 

 

3. Environment Modeling and Analysis 

3.1 Environment modeling 

In the case of Context-aware Verification, the 
environment modeling should be seen as a 
methodological phase that needs to balance two 
important constraints while building the context. 

First the context has to cover enough behaviors to 
be considered valid for a given property. But at the 
same time it has to be small enough to be possible 
to exhaustively explore the product of its 
composition with the system under study (SUS). 

 

The context is modelled starting from the system 
requirements one want to verify. From the 
requirements analysis, the designer identifies all the 
actors of the system that can interact and send 
some stimuli to the system. 

 

For each actor, its behavior is refined by describing 
possible actions it can send to the system. 

Eventually all the actors behaviors’ are interleaved 
so that to generate all possible scenario of the 
environment.  

 

Of course the more actors the worst, because each 
actor behavior is interleaved with all others 
potentially generating a combinatorial explosion of 
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the environment state space during unfolding and 
interleaving step. 

 

This phase is done manually, and relies on the 
engineering judgment. 

To face this environment state space explosion, a 
pertinent modelling of the environment must be 
described by the engineer who will for instance:  

 discard some actors with no relation to the 
requirements, 

 discard some useless actors stimuli with regard 
to the requirements he wants to verify, 

 create several different environment with relation 
to the set of requirements he wants to verify, 

 create a specific initialization sequence events to 
dig the system in a pertinent state for the 
verification. 

 

3.2 Environment Analysis 

Nevertheless a pertinent environment modeling is 
not always sufficient to face the environment 
combinatorial explosion. 

For this purpose, the context aware verification tool 
(OBP) incorporates some algorithm to reduce 
environment state space explosion thanks to the 
splitting method. 

 

 

 

The splitting method consists in decomposing the 
global context generated by the interleaving of all the 
actors’ events in a set of global “sub-contexts” which 
will be composed with the system under study. 

This method allows verifying systems stimulated by 
a complex environment, and covers exhaustively the 
whole generated state-space. 

 

The combinatorial explosion environment behavior in 
space due to environment is transferred to 
combinatorial explosion in time due to the countless 
“sub-contexts” generated. 

Nevertheless this new combinatorial explosion can 
be faced by parallel verification of the “sub-contexts” 
distributed to a set of machines. 

 

An important observation is that while with the 
automatic-split technique the state-space is 
decomposed in several partitions, these partitions 
are not disjoint. 

Hence the sum of these explorations with splitting 
represents the analysis of nearly two times more 
states and transitions than the exact initial state-
space without splitting. 

Nevertheless, we believe that this is a small price to 
pay for the possibility of analyzing five times larger 
state-space without the need of doubling the 
physical memory of the machine. 

 

4. Case Studies 

4.1 Roll-Control. We have first applied our method 
to a simple case study: a Roll-Control system. 

The Roll-Control system allows to compute the Roll-
Rate value, and to generate roll warnings whenever 
the roll rate is greater than 15° or lower than -15°. 

 

The environment of this system is composed by 
three « actors »: 

 Pilot actions on joystick 

 Left and Right yaw applied on the plane 

As a result of those inputs, the Roll-Rate is updated 
and warnings are activated in case the Roll-Rate is 
out of range. 

 

First, the simplified coupling effect is calculated, 
then, the plane roll rate is calculated as follows: 

rollCoupling = (leftAdvYaw – rightAdvYaw) × 0.1 

rollRate = (joystickCmd – rollCoupling) × 0.25 

The absolute value of the Roll Rate has to be 
saturated to 25.0. 

 

The Roll-Control system is described in the following 
figure 4.1. 

 

The Roll-Control is composed of 2500 lines of C 
code. 

We have successfully checked following property on 
this model with OBP exploration engine: 

The roll-control system shall never raise “left roll 
warning” and “right roll warning” at the same time; 
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This case study has successfully passed verification 
steps, because of its small size and limited possible 
behaviors. 

 

4.2 Cruise-Control system. We then applied our 
method on an automotive Cruise-Control System 
(CCS) designed in SCADE. 

This section provides an overview and some 
requirements of this case study. 

 

Functional Overview. The CCS main function is to 
adjust the speed of a vehicle. 

After powering the system on, the driver first has to 
capture a target speed, and then it is possible to 
engage the system. This target speed can be 
increased or decreased by 5 km/h with the tap of a 
button. 

There are also several important safety features. 
The system shall disengage as soon as the driver 
hits the brake pedal or if the current vehicle speed 
(S) is out of bounds (40 < S < 180 km/h). In such 
case, it shall not engage again until the driver hits a 
"resume" button. If the driver presses the 
accelerator, the system shall pause itself until the 
pedal gets released. 

 

Architecture overview (cf. Figure 4.2). 

The CCS is composed of 3 mains parts: a “control 
panel”, a “system center”, and an “actuation 
manager” (for speed and throttle calculation). 

 

 

The control panel is in charge of converting inputs 
signals from user to provide them to the system. 

The actuation manager is able to capture the 
current speed and, once enabled, to adjust the 
vehicle speed to the defined target speed (and also 
throttle command value). 

The system center component, that acts as a 
controller, and includes a state machine (states 
OFF, STDBY, ON). 

The control panel acquires signals following from 
buttons used by the driver to operate the system: 

 On, Off: Enable or disable the system 

 Set: Capture the current speed as the target 
value 

 Resume: Engage the control speed function 

 Suspend: Disengage the control speed function 

 QuickAccel: Increase the target speed by step 

 QuickDecel: Decrease the target speed by step 

In our case, the “control panel” is also responsible of 
providing BrakePressed and AccelPressed signals, 
which are built with Brake and Accel pedals signals, 
and to compute SpeedOutOfBounds signal. All are 
booleans signals provided to system center, with 
behaviours defined below: 

 Brake pedal pressed: induces disengagement, 

 Speed of the vehicle goes out of bounds: 
induces disengagement, 

 Accelerator pedal pressed or released: pauses 
or resumes the speed control function; 

The actuation module provides means for the 
system to interact with the vehicle. It can capture the 
current speed of the vehicle, and use it as a new 
target speed value. Once the CCS enabled, the 
actuation is responsible for controlling the vehicle 
speed accordingly. 

Finally, the system center is the core of the CCS. It 
is responsible for handling events detected by 
control panel module. 

Then system center use these events to switch to 
right system state, and to engage control function or 
not: 

 From OFF to STD_BY: on btn_On, 

 From STD_BY to ON: on btn_Set, 

 From ON to STD_BY: on btn_Suspend or Brake, 

 From STD_BY to OFF: on btn_Off; 

 

Requirements. This section lists three main 
requirements of the CCS system and shows how to 
model them using the CDL formalism, with 
predicates or observers automatons. 

REQ.1: The system shall not engage itself if the 
target cruise speed is not set. 

REQ.2: The target Speed shall never be lower than 
40 km/h or higher than 180 km/h. 

REQ.3: When the system is powered off, the target 
speed shall be reset, and considered as unset. 
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REQ.1 can be encoded by using an observer 
automaton, on figure 4.3 below. To encode this 
observer using CDL formalism, we first need to 
introduce the events triggering the transitions 

 

 

4.4 predicate pCruiseSpeedIsUnset is { 

 {sys}1:context._Cruise_speed < 40 

 or {sys}1:context._Cruise_speed >180 } 

 event eTargetSpeedUnset is { 

 pCruiseSpeedIsUnset becomes true } 

 

On listing 4.4, pCruiseSpeedIsUnset is a predicate 
on cruise speed value, read from interface structure 
(context) of the main process {sys}, returning true if 
the constraint is verified. 

Then an event eTargetSpeedUnset is built with 
“becomes true” formula in order to express a rising 
edge of the predicate, which is an observable event 
in OBP observation engine. 

On listing 4.5, another event can be defined based 
on system center state machine output value 
(Regul_ON). 

 

4.5 predicate pSystemIsEngaged is { 

 {sys}1:context._Regul_ON = 1 } 

 event eSystemEngaged is { 

 pSystemIsEngaged becomes true } 

 

Using these events, the observer automaton of 
figure is defined in listing 4.6: 

4.6 property REQ1 is { 

 start -- eTargetSpeedUnset  --> wait; 

 wait -- eSystemEngaged  --> reject; 

 wait -- eTargetSpeedSet  --> start } 

 

We can then encode two others requirements 
REQ.2 and REQ.3 using the same principles. 

To model predicates and events, we could also use 
internal states of concurrent processes of the 
system. 

 

Environment. In the case of the CCS the 
environment is built from two main distinct actors 
modeling: 

a) a nominal scenario, 

b) a disruptor; 

The basic scenario can be seen as a linear use case 
of the CCS that covers all the functionality involved 
by the properties we aim to verify. 

This scenario must pass through following steps: 

 

Event Behavior 

Press Accelerate pedal Vehicle speed grows 

Button On CCS ON / stand-by 

Button Set Target speed set 

Stop Accelerate pedal CCS engaged / regulate 

Brake pedal CCS in stand-by 

Resume button CCS engaged 

Button Off CCS OFF 

 

The disruptor is a wide alternative including changes 
of the vehicle speed within the allowed range or not, 
pressure on the pedals and the panel buttons. The 
disruptor stresses the SUS against a number of 
possible unexpected behaviors of the environment.  

 

The disruptor encoding refers to verification 
environment capability of sending events to system, 
including speed target requests, pressure on pedals, 
or on panel buttons. 

 

4.7 activity disruptor is { 

 
eRegularSpeed_v1/v2  

[] eAbnormalSpeed_v3/v4 

 
[] ePressPedals_p1/p2 

[] ePushButton_b1/b2/b3 } 

 

Once these two actors are composed 
asynchronously, we get a wide range of variations of 
the basic scenario using the capabilities of the 
disruptor at all stages. 

 

4.8 Cdl myContext is { 

 
Properties req1 

Assert req2, req3 

 Init is { eBtnOn } 

 

Main is { basic_scenario 

               || disruptor } 

} 
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4.3 Verification Results 

This section presents the results obtained for the 
verification of the main requirements previously 
presented, emphasizing the importance of the 
Context-aware Verification approach, applied on our 
GALS approach. 

During the exploration, we have tried several kinds 
of observers, and we have intentionally create errors 
into the model in order to check that there were 
detected (assertion, or reject state of automaton). 

The verification results for the CCS case study are: 

 17.847 states and 62.771 transitions (with 3 
processes, in 21 sec); 

 367.800 states and 1.621.000 transitions 
(with 4 processes, in 571 sec) 

So we can conclude that our approach does not 
produce a too large state space, due to 
encapsulation technique used (atomic execution of 
synchronous function into asynchronous process). 

Even if we have not yet modeled all required 
behaviors as asynchronous communication between 
several more synchronous processes, it seems to be 
a very promising approach for larger and complex 
systems. 

As a comparison, our partner from Lab-STICC has 
applied same verification context on an 
asynchronous CCS UML model, which generates 3 
millions of states and 10 millions of transitions (with 
4 processes, and 4 ticks of clock only) (cf. [18]). 

For the moment, we have only used traditional 
Breadth-First Search (BFS) reachability algorithms. 
But we know that in case of a larger state space, we 
could also use PastFree[ze] algorithm and splitting 
technique. 

The use of the PastFree[ze] algorithm enable the 
analysis of a 2.4 times larger state-space, and the 
joint use of PastFree[ze] and automatic split 
technique enable 4.78 times larger state-space, 
compared to traditional Breadth-First Search (BFS) 
reachability algorithms, without the need of 
extending the physical memory of the machine. 

 

 

 

 

 

 

 

 

 

5. Conclusion and Perspectives 

In this paper we have used the Context-aware 
Verification technique for the analysis of several 
requirements of a Cruise-Control System composed 
of synchronous languages functions. 

Modeling and verification of asynchronous properties 
of this kind of systems based on composition of 
synchronous components, renders traditional 
synchronous model-checking approaches inefficient. 

Using the environment reification through the CDL 
formalism, this task becomes manageable by relying 
on two powerful optimization strategies. 
These strategies rely on the structural properties of 
the CDL contexts and enable the reachability 
analysis of larger industrial models. 
 
While the approach presented in this paper offers 
promising results, for this technique to be used on 
industrial-scale critical systems, some work has to 
be done on the formalization of the context 
coverage, with respect to the full-system behavior, in 
order to assist the user on initial context 
specification. 
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Abstract. Model checking has made a lot of progress since its infancy. For a long time,
industrial applications were still limited to some very specific domains out of which the
technique bumps into the state explosion wall. Nowadays things evolve and some tools are
able to tackle real world use cases outside of the known domains.
We give here the feedback collected when using model checking on several industrial
strength use cases and give indication on how we take into account the specific domain
constraints.

1 Model Checking for Industrial
Problems

Model checking refers to the problem of exhaus-
tively and automatically checking whether a
given model of a system meets a given speci-
fication.

Model Checking is now an old technique
which takes its ground in the mid 1970s as
a response to concurrent problem analysis. It
was until recently essentially confined to some
specific areas, such as hardware analysis or
protocol verification. Extension to other do-
mains such as software verification has always
been difficult due to the combinatorial explo-
sion problem (the size of the space state grows
exponentially with the size of the problem to
analyze).

However, recent developments in a variety
of fields, ranging from symbolic model check-
ing to SAT solver engines and including model
checker parallelization lead to a broader range
of application in industry including software
analysis.

1.1 Industrial Use Cases
Model checking may be used for the following
use cases, depending on the tool abilities:
Safety Proof consists in verifying some prop-

erties on a system model. The model may
be designed by hand or automatically de-
rived from existing artefacts, such as Ada,
C, Simulink or Scade code…
If one of the properties is not being verified,
the tool provides a counterexample explain-
ing why the property does not hold.

System Debugging. One of the great fea-
tures of model checking is its ability to pro-
vide the user with counterexamples. Such a
feature may be used in different ways, but
is generally of a good help for debugging a
system.
For example, when designing a complex
system which should ensure a safety prop-
erty (e.g. a non collision property for an
automatic train system), it is very useful
to debug the root concepts which should
ensure the safety upon a system model on
which you can analyse counterexamples.

Equivalence Checking. The ability to prove
some properties upon an existing model

⋆ Seconded from Systerel, Toulouse, France
⋆⋆ Seconded from Thales Avionics, Toulouse, France



may be used as a way to prove the equiva-
lence of two models.
One application of equivalence checking is
to verify that a software design in C satisfies
its specification, by proving the equivalence
between a model of the design and a man-
ually written model of the specification.
Another application is to verify the correct-
ness of a tool transformation — for example
a translation from one formalism to another
— by proving the equivalence between the
before and after transformation artefacts.

Constraint Solving. A somewhat more con-
trived use of model checking is the use of
its ability to provide counterexamples as a
way to solve a constraint problem. The way
to do it is to ask the tool to verify that the
problem has no solution. If one exists, the
tool will return a counterexample which is
one solution to the problem.

Test Case Generation. Another use case,
derived from the preceding one, is to use a
test objective as a constraint. The provided
counterexamples then give inputs and asso-
ciated oracles which fulfill these test objec-
tives and may be used as test scenarios.

1.2 Industrial Constraints
Putting aside the many use cases listed be-
fore, industry faces many constraints which
may have prevented the use of model checking
until now:

Regulatory Constraints Many companies
must obtain approval from a suitable au-
thority that the system they develop is
acceptably safe to operate with regards to
the applicable assurance standards (CEN-
ELEC EN-50128, DO-178C,…).
As such, it must be shown that the tools
who have contributed to the system or to
its verification have been qualified with re-
spect to their usage and to their contri-
bution to the global safety. Such a quali-
fication bears a lot of constraints upon the
tools and their development process. Few
of the known model checkers are designed
with such compliance in mind.

Cost Reduction The use of formal methods
and model checking is of interest for indus-
try only if they lead to cost reduction or
to standard compliance. In a context where
standard compliance is already achieved,
the only motivation left for applying formal
methods is to gain significantly over costs.
Such an objective may be reached either
by using model checking in order to auto-
mate some testing steps or in a less mea-
surable way, by rising the overall quality
beyond what is required by the regulatory
constraints. Proving a property is indeed re-
ally an improvement over testing it, even in
the frame of standard compliance, and can
lead to finding bugs that would be other-
wise discovered much later and would cost
a lot more to be corrected.

2 The S3 Toolbox
2.1 S3
Systerel Smart Solver4 (S3) is Systerel’s re-
sponse to the aforementioned use cases and in-
dustrial constraints. S3 is constructed around:

– a high level synchronous modelling lan-
guage,

– several frontends for C, Ada, Scade, …
– a translation tool chain from the high level

language towards a bit level language,
– a proof engine working over the bit level

language,
– a proof verification engine,
– several tools for animation and debugging.

The performance of the proof engine allows us
and our clients to manage the proof of indus-
trial size problems some of them we will men-
tion in the next section. The size of those mod-
els routinely topped ten millions variables and
several hundred millions of clauses.

The qualification of S3 is made possible by
the use of several diversified tool-chain with
some small key tools built with respect to the
higher integrity constraints that may be re-
quired — namely, an equivalence model con-
structor, and a tool to verify the validity of the
proof (see fig. 1 on the following page).

4 S3 is maintained, developed and distributed by Systerel.
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Fig. 1. Example of application for proving equiv-
alence between C sources and a HL model specifi-
cation. The two tool-chains are diversified and the
software in the circles are developed with the higher
level of integrity (HL = High Level, BL = Bit Level).

2.2 Floating-Point Arithmetic Library
in S3

Critical applications used to use fixed-point
arithmetic that requires less memory and less
processor time then floating-point arithmetic
(FPA) to perform non-integer computations on
executing processors with no Floating-Point
Unit (FPU), while leading to a limited-precision.
Floating-point numbers support a trade-off be-
tween range and precision due to its formulaic
representation which approximates a real num-
ber. Another advantage stands in the existence
of a standard [1] based on solid mathematical
grounds. Nowadays, FPA is more and more used
in the space, aeronautics and automotive in-
dustries, due to the increasing complexity of
the computations and because FPUs are be-
coming standard for most processors. Floating-
point numbers are not real numbers. Floating-
point operations behave in quite different way
from the real counterparts, due, for instance, to
rounding and cancellations [17]. Consequently,
a software implementation of some mathemati-
cal expression usually provides results that are
not strictly, mathematically, exact. As it is of-

ten difficult to foresee the behavior of floating-
point programs, formal verification of floating-
point programs is highly desired in the indus-
try.

The basic approaches to address formal
verification of floating-point programs include
abstract interpretation, formal proof and bit-
blasting (also called bit-flattening). Abstract
interpretation partially executes program on an
abstract domain. This approach performs well
in program analysis with floating-point vari-
ables [2]. Formal proof supported by proof as-
sistants is a very powerful approach that re-
quires to be guided by highly skilled expert
to direct the reasoning towards target proper-
ties. Interactive theorem provers such as ACL2,
Coq, HOL Light and PVS have been applied to
floating-point verification [14]. Both of abstract
interpretation and formal proof approaches lack
ability to generate counterexamples when the
property does not hold. Bit-blasting represents
floating-point operations as circuits, which are
then transformed to Boolean formula with bit-
wise operators to be solved by SAT solvers. Bit-
blasting relying on SAT solvers is a fully au-
tomatic reasoning benefiting from counterex-
amples for floating-point programs. It is imple-
mented in the Satisfiability Modulo Theories
(SMT) solvers such as Z3 [10], MathSAT 5 [7],
SONOLAR [15] and CBMC [5]. It is also the ele-
mentary but the most significant part of other
floating-point verification strategies using SAT
solvers as the back-end. Since the publication
of SMT-LIB theory of binary FPA [18], solvers
are starting to support it using some advanced
QF_FP solving strategies, such as mixed abstrac-
tion in CBMC [5], non-conservation approxima-
tions in Z3 [13], abstraction into interval arith-
metic in MathSAT [3,4], translation into non-
linear reals in Realizer [16], etc.

S3 will be used to verify part of the floating-
point software embedded in a rover platform,
TwIRTee (a three-wheeled autonomous rover)
used as the demonstrator for the INGEQUIP
project. The INGEQUIP research project at
the Institut de Recherche Technologique (IRT)
Saint-Exupéry in Toulouse addresses the follow-
ing equipment engineering topics: architecture
modelling and evaluation, early V&V using vir-



tual platforms, and formal verification. For this
purpose, we implemented an FPA standalone li-
brary to enable the floating-point verification
by means of bit-blasting. This optimized FPA
library will establish a solid foundation and ba-
sic strategy for our future investigation on ad-
vanced FPA strategies in S3.

The implementation of FPA library in S3 is
based on the IEEE FPA standard 754-2008 [1].
The FPA library in S3 includes:

– Binary interchange format encoding that
allows user-defined ranges of exponent and
mantissa, including single and double pre-
cisions

– Normal, subnormal, infinity, NaN numbers
– 5 rounding directions: roundTiesToEven,

roundTiesToAway, roundTowardPositive,
roundTowardNegative, roundTowardZero

– Comparison operations: Equal, NotEqual,
Greater, GreaterEqual, Less and
LessEqual

– Arithmetic operations: Addition, Sub-
traction, Multiplication, Division and
SquareRoot

– Conversion operations: convertIntToFloat
and convertFloatToInt

– Trigonometric operations: Sin, Cos, and
Tan

– Default exception handling: invalid opera-
tions, division by zero, overflow and under-
flow

The SquareRoot and trigonometric opera-
tions are implemented by means of both in-
terpolation table and the function proposed by
Cody and Waite [8].

3 Industrial Applications

3.1 Railway Use Case — Interlocking
Safety Proof

An interlocking is an arrangement of signal ap-
paratuses that prevents conflicting movements
through an arrangement of tracks such as junc-
tions or crossings. An interlocking is designed
so that it is impossible to display a signal to
proceed unless the route to be used is proven
safe.

The main challenge is to ensure that what-
ever scenario will happen, the designed inter-
locking will stay safe. And albeit its apparent
simplicity one quickly understands the real un-
derlying complexity — whatever rule you may
imagine, it looks like one can always find a sce-
nario breaking it (train can go backwards, can
sometime appear to fly due to concurrency arte-
facts, …)

Instanciation Design Process In a recent work,
we have considered a Computer Based Inter-
locking (CBI) designed through an instantia-
tion process. In such a process, the signaling
principles are captured by the engineers to pro-
duce the Generic Design in some suitable lan-
guage. This design contains a set of generic
descriptions of code parts that an interlocking
system shall execute for some specific object of
the system such as signals, switches, routes,…
Each of these generic descriptions is given in a
parametrized form which allows for the speci-
ficities of the object to which it applies. For ex-
ample, the generic design for a route will prob-
ably be parametrized with the list of switches
contained in the route. The generic design is
thus specific to a set of signaling principles, but
independent of a particular track layout.

The generic design is then instantiated upon
a particular track layout to produce the running
software.

Verification Process We graft our verification
process onto the instantiation scheme by de-
signing a Generic Safety Specification made of:

– some high level proof obligations (3 to
4 properties about absence of derailments
and collisions),

– some intermediate predicates modeling the
domain (such as topological predicates
which encode the track layout, integration
predicates which associate input and out-
put variables with their object instance,
helper predicates conveying high level re-
lations between objects such as reachabil-
ity,…)

– an environment model upon which the
proof obligations are expressed (trains be-
havior,…).



and then instantiate those properties and mod-
els with the specific track layout data. The over-
all uncertified process is given in figure 2.

Topology
Generic
Safety
Specifi-
cation

Generic
Design

+topo.
translator

Instantiation
Tool

+
design

translator

Proof
Engine OK/NOK

Fig. 2. Overview of an uncertified verification pro-
cess for an instantiated design. The specific topology
translator tool translates topological data in an High
Level Language model. The specific design trans-
lator tool translates the instantiated design in a
High Level Language model. The concatenation of
all models is then feed to S3 proof engine. Manual
lemmas may be added into the Generic Safety Spec-
ification to help the proof.

As an example of intermediate predicates
used in the Generic Safety Specification, the
fact that “every block belonging to a given
route” is free can be expressed as:

ALL b:BLOCKS (contains(route,b) -> free(b))

where ALL is the universal quantifier, b:BLOCKS
indicates that b shall range on every instances
of the BLOCKS, and -> is the implication opera-
tor.

Results The proof process was applied to a
CBI of more than 200 routes and permit us to
pinpoint 3 safety counterexamples which where
then corrected whether in the design or in the
topology data. The overall proof took less than
25 mn in the worst case, which would go as

high as 1 hour for a certified process implying
the use of a second tool chain, an equivalence
verification and a prooflog check.

The verification was successful and proved
to be usable enough to assist the design team in
debugging the CBI. It also paved the way for a
certified verification that would be used by the
safety team.

In the competitive interlocking market, this
would clearly give an edge to the CBI manu-
facturer when comparing to other solutions in-
tegrating or not formal verification.

3.2 Aerospace and Automotive Use
Case

The floating-point verification by S3 has been
applied to two case studies: the avionic triplex
sensor voter and the automatic rover protection
system. It is also used to automatically gener-
ate the test cases.

Triplex Sensor Voter Case Study The
triplex sensor voter5 is used in a common form
of redundant aircraft system Triplex Modular
Redundancy (TMR), which relies on three iden-
tical sensors to compute an output value from
the three input values by the voter. It is im-
plemented using linear arithmetic operations as
well as conditional expressions (such as satura-
tion). Its formal analysis covers functional and
non-functional properties including stability,
absence of runtime errors, and also to param-
eterize certain parts of the model to help the
formal analysis. The formal analysis of triplex
sensor voter was first studied by Dajani-Brown
et al. in [9], where real values were abstracted
by integer values and integrators were not used.
In [11], Dierkes analyzed the Simulink model
with real numbers by both simulation and for-
mal verification, then estimated the impact of
rounding errors caused by the floating-point
implementation using SMT solvers and abstract
interpretation. In [6], Champion et al. strength-
ened the stability property by generating lem-
mas using a property-directed approach.

5 Triplex sensor voter case study is provided by Rockwell Collins to make it publicly available to the
research community.



In our work, we start from a SCADE model
of the voter and translate it to HLL model us-
ing the SCADE-translator. Thanks to our FPA
library, the HLL model is then verified using
the S3 solver. In parallel, we use SMT-solvers
Z3 v4.4, MathSAT 5 and SONOLAR to verify the
SMT model. Experiments are carried out using
both simple and double precision floating-point
numbers with or without subnormal numbers
and with different rounding modes.

The results show that neither Z3 v4.4
(bit-blasting strategy, floating-point strategy)
nor MathSAT 5 (bit-blasting strategy, abstract
CDCL algorithm) or SONOLAR are able to han-
dle the step instance, be it in simple or dou-
ble precision. We managed to prove the induc-
tive instance using a combination of SONOLAR
bit-blasting to a CNF and a pure SAT solver
(glucose 4.0 multithread with 8 threads and
aggressive restart strategies, satellite prepro-
cessing) in 10min of computation for the sim-
ple precision instance, and 4h15min of compu-
tation for the double precision instance (wall
clock time). S3 proved the step instance in 6min
using glucose 4.0 and 5mins using S3’s own
solver for the simple precision instance, and in
9h32min using glucose 4.0 for the double pre-
cision instance.

Test Generation In order to conform to the
domain standards, companies sometimes have
to setup processes where a structural test cov-
erage must be achieved by mean of manual test-
ing activities. Those activities consist mainly
in finding the inputs and oracles such that the
structural coverage criterion is respected.

We successfully used model checking with S3
in order to setup an automatic process of find-
ing the set of tests that will achieve the struc-
tural node coverage on a Scade model, where
the criterion was that at most one entry of a
given node should change at once. Automation
of such a task leads to great cost reductions.

Formal Verification for ARP Case Study
The Automatic Rover Protection (ARP) system,
a simple collision avoidance function, is devel-
oped for the twIRTee platform in the INGEQUIP

project. It performs a predefined trajectory (a
“mission”) on a predefined track and avoid col-
lisions with other rovers. The set of tracks are
statically defined and embedded in the rover.
The ARP is based on the following principles:

1. Missions (trajectories) are precomputed us-
ing an adapted shortest path algorithm[12].

2. A rover shall only move on a reserved path
if there is a free reserved space ahead.

3. A reserved path is a stack of reserved nodes.
4. A rover resends reservation request to get

the exclusive access to the tracks located
ahead of it, if there is not enough reserved
space (D_REQ) ahead.

5. A rover stops if there is not enough reserved
space (D_STOP) ahead.

6. A rover reserves enough space (D_RSV)
ahead for each request.

7. In order to ensure a consistent management
of node reservations, a distribution strategy
using id-priority is implemented.

In this case, S3 is exploited to verify several
properties applicable to all independent rovers,
such as P1: rovers are never granted simultane-
ous access to the same area (safety), and P2:
all rovers eventually reach their destinations
(bounded liveness), etc.
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Fig. 3. Rover Trajectories for ARP

We present experimental results from a ARP
case study with two rovers. The trajectories of
rovers within an enclosed space of 10m×10m
are predefined (see fig. 3). The rover R1 pro-
ceeds with a speed v1 = 0.4m/s from node A,
through node E, F, G and H, then stops at node



B, while the rover R2 proceeds with a speed v2

= 0.3m/s from node C, through nodes G, F, E
and H, then stops at node D. The length of each
trajectory is about 20m. As the first step of our
study, we assume that the space occupied by
rovers are ignored, and that the clocks of rovers
are synchronized. Consequently, rovers are con-
sidered to perform actions synchronously. We
proved the property P1 in almost no time us-
ing induction and the property P2 in several
seconds using bounded model checking in S3.

3.3 Other Use Case — Constraint
Solving for Matrix Wiring

S3 was used as a constraint solver to automate
finding of solution to a wiring problem over a
100 × 100 matrix with several layers of wires
and several limitations over the deformations
that wires may undergo.

Once the counterexample obtained, a small
and easy tool allowed to translate it into a
netlist.

4 Conclusion and Future Work

Our experience with model checking has shown
that S3 is a great tool to manage different
types of industrial size problems with respect
to their specific regulatory constraints. How-
ever, the tool is still at pains for some pecu-
liar problems and has some intrinsic limitations
that prevent its application on a wider range of
problems, one of it being its current inability to
handle designs which make use of floating-point
arithmetic.

In order to tackle the floating-point limita-
tion, we have designed an FPA library and inte-
grated it in S3. Our next goal is to investigate
how well it works on a wider range of industrial
designs from automotive, aeronautic, industry,
energy… and to establish benchmark (or reuse
existing SMT benchmarks) to evaluate the per-
formance of floating-point verification by S3.

The proof engine at the core of S3 is also
undergoing heavy work in order to improve its
efficiency for big size models.

This significant improvement, associated to
the heavy work ongoing on the proof engine at

the core of S3, shows great promises for dealing
with future industrial challenges.
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SAFETY AND SECURITY FOR THE INTERNET OF THINGS	  

1 IoT Safety&Security challenges 

Internet of Things (IoT) is a buzzword for the term “connected devices”, which we used in the last 15 years 
to describe the trend of connecting embedded devices. It is driven by the need to shift the usage of 
embedded devices to the next level of efficiency. By enabling seamless communication between all 
embedded devices, we capture more data about the ongoing process and are able to influence the process 
for optimization. The realization of seamless connectivity is favored by the broad availability of Ethernet and 
wireless communication. Even real-time requirements are covered by specific industrial Ethernet protocols, 
which are fast enough to drive high frequency control systems with a small amount of jitter.  

With this seamless communication, functional safety and security of an embedded/IoT device become a 
challenge. A communication channel is always subject for vulnerability and can compromise the safety of 
the system because of a modified configuration. A security attack to a water heating system, which 
provides boiling water instead of tempered water, or a control valve for a chemical process, which is ‘out of 
control’ will definitely evolve to a safety problem. 

The functional safety of a system ensures, that a system does not harm its environment. Safety is ensured 
by implementing a safety concept in software and/or hardware. On the software side, the underlying 
software platform (Operating System and Middleware) should support safety in its design and architecture, 
so that functional safety requirement can be more easily implemented. 

Security concepts shall ensure, that the system is not harmed/attacked by its environment. As security 
problems can evolve to serious safety problems, security can also be seen as an indispensable safety 
concept. One aspect of security is to keep data confidential and ensure its integrity. If data confidentiality 
and integrity are not secured by appropriate strategies, a medical device may harm the patient with the 
wrong dosage. If data or the system is not available because of a Denial of Service (DoS) attack to the 
medical system, the medical device may not function at all.   

With these scenarios in mind, we need to look for a design methodology, which bears safety and security in 
its architecture. In the functional safety domain, the use of a separation kernel is a well known solution for 
safety and security by design concept. In a nutshell, a separation kernel allows spatial and temporal 
separation between applications, by providing separated partitions for application execution and a 
concept for sharing CPU time. A thoroughly separated application concept by using a separation kernel 
guarantees non-interference, so that errors cannot propagate from one application to another. 

From a safety perspective this partitioning mechanism is used to isolate applications of different criticality 
so that risk reduction can be applied for each application/partition independently. The application isolation 
capabilities are also suitable for system security by isolating critical data from non-critical data and allowing 
only controlled information flow between isolated partitions. Controlled information flow can be realized by: 

- A white list policy for inter-partition-communication. That is, communication is generally prohibited 
and needs to be allowed explicitly, defined at system configuration, not at runtime.  

- Using cryptography before exchanging data between partitions and with the outside world 
- Applying a security policy for data communication so that communication is monitored and 

controlled 

This paper uses the PikeOS Separation Kernel as an example implementation and explains how safety and 
security aspects are covered by the separation kernel architecture. An automotive use-case designed by 
Continental and an IoT gateway design based in the Freescale IoT gateway will be introduced by 
describing the chosen safety and security concept.  

2 Separation Kernel - Safe and Secure Real-Time Virtualization  

A well-known approach for separation is an Hypervisor, which is used in the IT domain to run an operating 
system on top of another operating system. Most Popular implementation like VirtualBox, VmWare etc. 
provide an execution environment to run a COTS operating system like Linux on another COTS OS. As the 
afore-mentioned technologies were never architected with safety and security in mind, this separation does 
not allow enough safety and security for certification.  

A separation kernel like PikeOS follows a slightly different approach. It uses a microkernel as the 
underlying operating system architecture and provides means for partitioning on top of the microkernel. The 
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partitions can be used as an execution environment for: 

- Bare metal applications 
- Applications using the microkernel API, PikeOS Native. 
- Using a standard API like POSIX. 
- Using any run-time environment like Java, Ada including Ravenscar profile. 
- Running an operating system like Linux, AUTOSAR, ARINC-653 in a partition … 

The main advantage of this approach is, that the microkernel provides real-time capabilities and separation 
capabilities in the operating system design. Thus we have a Real-time Operating system and a hypervisor 
architected into one product.  

 
Figure 1: Separation Kernel architecture  

The architectural concept of a separation kernel is based on separating resources, so that applications 
cannot interfere with each other. The available resources on computing hardware are the physical 
hardware components and the CPU execution time. The separation of physical resources is called spatial 
separation or resource partitioning, while the separation of the available execution time is known as 
temporal separation or time partitioning. 

2.1.1 Divide-Et-Impera – Resource Partitioning  
Spatial separation is achieved by means of resource partitioning, in which system resources such as 
memory, files, devices, secure communication channels and cores are statically assigned to different 
resource partitions. All applications run in the context of a resource partition and PikeOS ensures that 
during runtime an application has guaranteed access to the assigned resources of its partition and these 
resources are not accessible from applications belonging to other partitions. 
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Figure 2: Resource Partitioning 

Resource partitioning is enforced by using the MMU to control access to the available resources. Each 
hardware device is somehow represented by a physical address in order to access this device. Resource 
partitioning is realized by using the MMU to map a certain memory are into a partitions virtual memory 
space and allow or deny access to this RAM and I/O devices. The configuration of the MMU is done 
statically at system startup in the PikeOS microkernel and it is not modifiable at run-time, so that a hacker 
cannot modify the resource configuration later on.   

DMA capable devices can bypass the MMU protection and access memory areas, which are reserved for 
the operating system or an application partition. To control the memory access of DMA bus master devices, 
the SoC provides an additional MMU device, which maps device-visible virtual addresses to physical 
addresses. The processors vendors name this mechanism differently so that Freescale (PowerPC) is 
talking about a Platform Management Unit (PAMU), ARM processors name this a System Memory 
Management Unit (SMMU) and Intel calls this VT-D on x86 architecture. 

Last but not least the privilege level of the processor is used to configure partitions to run in user-space and 
the operating system to run in kernel-space. As user-space applications have no direct access to kernel-
space, the operating system is safe against any misbehavior of user-space applications. In case of a 
separation kernel, partitions run in user-space (see Figure 1).  

In summary, the separation makes sure that: 

- A partition has guaranteed access to devices, which are configured only for the partition 
- A partition has no access to a device, if it has not been configured for accessibility 
- That errors cannot propagate from one partition to another partition 

2.1.2 Time-Partitioning  
Temporal separation is provided by means of Time Partitioning in which the CPU time is divided into time 
windows. The duration and order of these time windows are statically defined and enforced by the PikeOS 
Microkernel during runtime. Applications are assigned to one or more of such time windows and are 
considered for scheduling only when the associated time window is active. In this way the temporal 
behavior of a partitioned application is made independent from the rest of the system. 

 
Figure 3: Time Partitioning 

Priority based scheduling and a preemptive kernel design provides real-time capabilities to a microkernel, 
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but this does not always guarantee a calculable deterministic behavior of the system. The more complex a 
system configuration is (multi-core is one of the major complexity issues), the more difficult it will be to 
determine a worst case execution time (WCET) for an application running in this configuration. The WCET 
analysis is evident for the safety as it is the guaranteed maximum time for the system’s response. Time 
partitioning demerges the complexity of the run-time behavior of a system by assigning a partition’s 
applications to a dedicated time window. If this time-window is active, only the defined subset of 
applications is executed.  

As pure time partition would not allow the handling of exceptions or the reuse of non-consumed time, 
adaptive time partitioning provides the required flexibility. The patented time-partition zero (tp0) concept of 
SYSGO defines an additional time partition (tp0), which is always overlapped to the current eligible time-
partition. If an executable (thread) in tp0 has a higher priority than threads in the current active time-
partition, than the high-priority thread in tp0 will be eligible to run. The opposite example is, if there is 
nothing to do in the active time partition, threads from tp0 are recognized for execution, thus allowing low 
priority threads assigned to tp0 to use not-used execution time.  

Complex scenarios with multiple cores and multiple applications can have a complexity, which makes it 
impossible to calculate a WCET with the available means. The time partition based approach reduces the 
complexity of a system, so that the WCET is able to be calculated and stays is a reasonable range.  

2.2 Separation Kernel Safety 

An Application, which runs in a partitioned system, is not safe per se. The application safety is defined by a 
set of safety requirements, which need to be implemented in software and/or hardware. The important 
aspect of the separation Kernel is the possibility to design safety-critical software with the means provided 
by the separation Kernel. The major safety concept is the separation of application and the controlled 
information flow between the separated entities.  

Industrial safety standards require the certification of software, which means that application code must be 
thoroughly tested and documented. These standards define several levels of criticality, which are measured 
by the severity of the hazards caused by application failure. In case of EN-50128 and IEC-61508 the 
criticality is ranked from Safety Integrity Level (SIL) 0 being the most basic up to SIL-4 being the most 
stringent level. The avionic safety standard DO-178B/C defines Design assurance levels ranked from E 
(basic) to A (strict). As separation kernels allow noninterfering application partitioning, the system can be 
designed with mixed criticality levels for each partition. That is, each partition can host an application, 
whose criticality to the system safety is different. This concept is market proven and has undergone several 
certifications according to industrial standards like IEC61508, EN50128, DO-178B and ISO26262.  

Safety certification standards define strict guidelines for the development and deployment life cycle in order 
to achieve a conformity certificate. Beside the strict processes, extensive testing is required for each line of 
code. Test code and testing effort grows with the criticality level of the application. As the costs grow 
drastically with each additional line of code, there is a clear advantage to separated critical from non-critical 
application and keep the “Trusted Code Base” (TCB) for critical application components as small a 
possible. 

Another important aspect for safety is the above-discussed WCET and thus the real-time behavior of the 
underlying operating system. Safety critical software requires a detailed timing analysis in order to prove 
that the software can react accurately in critical situations. The time partition concept demerges the 
complexity of the runtime behavior and eases the timing analysis significantly.  

2.3 Separation Kernel Security  

While safety is the attempt to protect the user from harm, resulting from malicious behavior of the system, 
security aims to protect the systems against malicious attacks from the humans, interfacing with the 
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system. Security architects have the following aspect in mind, when designing a system:  

- Integrity: Make sure, that the data cannot be altered without authorization 
- Confidentiality: Make sure, that the data cannot be accesses by anybody who is not authorized to 

access the data  
- Authentication: Prove the identity of a person who requests access to the system 
- Access control: regulate the access to the system  
- Availability of resources: Make sure that the system is available and is not hindered in operation 
- Non-Repudiation: Have a proven concept so that nobody can deny his access to a device later on  

In general-purpose platforms, these concepts are realized by using state of the art security technology like 

- Firewall technology that monitors and controls the incoming and outgoing network traffic 
- Authentication mechanisms to make sure that only authorized personal has access to the device 
- Cryptography to encrypt data before transferring it over vulnerable transmission channels  
- Monitoring and perimeter protection in order to identify and actively protect against intrusion  

The usage of a separation kernel enriches these available security concepts with a fundamental security 
architecture, which we name as “security by separation and controlled information flow”.  

“Security by separation” means, that sensitive data can be isolated into a partition and “Security by 
controlled information flow” means that access to the isolated sensitive data is controlled by the 
configuration of the communication means used for inter-partition-communication. The most secure 
approach is not to allow any communication, but this is not in the intention of the inventor. Communication 
from and into a partition with sensitive data can be secured by using/implementing a security policy 
manager, which captures all communication data and applies a security check (based on cryptography 
algorithm if required) on the origin and the content of the data.  

Security certification standards such as IEC-15408 (Common Criteria) or the IEC-62443 specify the 
security functional and assurance requirements which have to be fulfilled by the device and thus by the 
underlying software platform. The IEC-15408 describes the security requirements for general-purpose 
equipment and the IEC-62443 targets Industrial Automation and Control Systems (IACS).  

Common Criteria (IEC-15408) provides assurance that the process of specification, implementation and 
evaluation of a computer system (IoT devices are computer systems) has been conducted in accordance to 
the standard. An Evaluation process validates the security claims, which have been made on the device, so 
that the standard defines several Evaluation Assurance Levels (EAL), beginning from 1 being the most 
basic up to 7 being the most stringent level describing the depth and rigor of an evaluation.   

To have a more generic certification, SYSGO has an ongoing project to certify PikeOS to CC EAL5+. It is 
important to know, that general purpose computing platforms (like Windows and Linux) have achieved 
EAL4 so far, but separation kernels like PikeOS can achieve EAL6.   

2.4 Safe&Secure Automotive application 

The high level of connectivity in a car makes it a perfect example of an IoT device. The Security of a car 
was heavily discussed in the press because a couple of automotive solutions were hacked in the past 
month. Specifically the hack of the Jeep Cherokee demonstrated, that a security leak could cause severe 
safety problems. Videos on the web show, that a hacker is able to steer the car and even operate the 
breaks.  

The implementation shown in Figure 4 is a combination of a cockpit showing the cars speed and rotation 
speed. Motor status information is received over the CAN bus and displayed on a dedicated display which 
is integrated in the cockpit. Speed and rotation speed indicator reside in a dedicated partition. The car 
status is calculated and controlled in another partition. 
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Figure 4: Continental Integrated Cockpit and Infotainment design based on PikeOS 

The head unit display shows an Android, which runs in a dedicated PikeOS partition. Android is used to 
provide infotainment and navigation functionality. Browsing the Internet and downloading and installing 
Android apps offers the possibility to configure the head-unit according to the end-users preferences.  

Android is the interface to the outside world and can be subject to attacks from the outside world. If a 
hacker is able to highjack the Android head-unit over a known vulnerability, than even PikeOS cannot 
prevent the access to the Android system. Starting from the Android partition the hacker will try to access 
physical devices in order to change system behavior. Or he may try to modify the operating system 
configuration in order to get control over the entire cockpit. Or, he may try to access other partitions (speed 
or car status) in order to modify functionality. Our Separation Kernel will deny all tries from the hacker to 
access I/O devices if they have not been assigned to the Android partition. Accessing the operating system 
from the Android partition will not be possible because the Android partition operates in user space and 
does not have the privileges to access the OS.  

 
Figure 5: Integrated Cockpit and Infotainment architecture 

2.5 Safe&Secure IoT Gateway  

The Freescale Layerscape 1021A (further named as LS-1) is an ARM based SoC (see Figure 6). The I/O 
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offered by the LS-1 is quite suitable for SOHO gateways. Freescale provides an IoT gateway reference 
design, which is supported with a PikeOS board support package (BSP) so that partitioning based safety 
and security can be implemented. The LS-1 uses the Freescale QorIQ framework so that secure-boot and 
secure-update can be implemented by using the Trust Architecture.  

  
Figure 6: Freescale IoT Gateway Block Diagram  

The implementation shown in Figure 7 was derived from the idea of a customer to offer a gateway, which 
offers the end-users the flexibility to customize their Linux domain with any open-source software 
downloaded from the Internet and provide home automation functionality. The service provider, who 
sells/leases the gateway to the end-user owns a dedicated Linux domain which allows him to offer services 
to the end-user by uploading the service software to his service-provider domain. The data of each Linux 
partition is separated by using a dedicated network, hosted by dedicated PikeOS partitions. The storage is 
managed by a PikeOS volume provider/manager. The volume manager provides a dedicated volume to 
each Linux domain with configured access rights. The two Ethernet interfaces are separated so that 
network problems do not propagate into the other partitions.  

The final implementation offers direct IO access from the Linux-1 domain to the underlying hardware. Thus 
additional home-automation functionality can be implemented in the user-domain.  

The shown architecture offers a certain level of security by isolating the data of the user domain and the 
service-provider domain so that a user cannot access the service provider’s configuration and the service 
provider shall not access private user data. At a first glance, safety is not a demand for this kind of devices, 
but recognizing the fact that the gateway does also provide home automation functionality, the separation 
based security will ensure the safe operation of the home automation. All partitions can be updated 
independently, so that service and user applications can be updated on the fly without shutting down the 
entire system.  

The idea to extend a gateway or router with home automation functionality in not new and major vendors in 
this market (like AVM, D-Link, etc.) have adopted this idea with their new generation of products. Their 
security concept is mainly based on using Linux security means and applying security updates. This works 
quite well if security updates are available in time for the kernel version. If a hacker is able to highjack the 
Linux system over an unpatched vulnerability, the hacker will try to access physical devices in order to 
change system behavior. Or he may try to modify the operating system configuration in order to get control 
over the entire system. Or, he may try to access other application threads in order to steal data or modify 
functionality. But, as we have seen in chapter 2.4, the separation kernel will deny all tries from the hacker 
to access I/O devices and the operating system. Stealing data from another partition can be prohibited by 
securing the inter partition communication with a policy manager, which captures all communication data 
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and applies a security check (based on cryptography algorithm if required) on the origin and the content of 
the data. 

  
Figure 7: Separation Kernel Safety 

3 Conclusion 

IoT targets seamless communication between all devices from sensor level up to the enterprise level. 
These interconnection leads to a more vulnerable system design, which bears the risk to be a victim of a 
security attack. Specifically for IoT devices such as industrial control system, medical devices, 
transportation infrastructure, just to name a few, security attacks can compromise the systems safety by 
modifying the system configuration.  

Security and safety is not a functionality, which you can just enable for a device. They need to be 
implemented following safety and security requirements and by sticking to the rules of industrial safety and 
security standards. Implementing safety and security becomes easier, if the underlying software platform 
provides an appropriate architecture for safe and secure design. An RTOS that is also an hypervisor based 
on a separation kernel like SYSGO PikeOS offers safety and security by separation and controlled 
information flow. Applications are isolated into partitions, which are protected against each other. The 
partitioning is non-interfering so that errors cannot propagate over partition boarders. The communication 
between partitions is configured and controlled so that access to safety and security critical data can be 
limited/prevented efficiently.  

PikeOS has proven its safety and security concept by achieving a couple of safety and security 
certifications: 

- IEC 61508 SIL-3 
- EN-50128 SIL-4 
- DO-178C DAL-A 
- IEC 15408 EAL 5+ ongoing 

Even more, PikeOS has achieved the worlds first EN 50128 SIL-4 certification on a multicore CPU.  
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Abstract: Designing a controller to supervise an ambient application is a complex task. Any change in the 
system composition or end-users needs involves re-performing the whole design process. Giving to each 
device the ability to self-adapt to both end-users and system dynamic is then an interesting challenge. This 
article contributes to this challenge by proposing an approach named Extreme Sensitive Robotic where the 
design is not guided by finality but by the functionalities provided. One functionality is then seen as an 
autonomous system, which can self-adapt to what it perceives from its environment (including human activity). 
We present ALEX, the first system built upon the Extreme Sensitive paradigm, a multi-agent system that learns 
to control one functionality in interaction with its environment from demonstrations performed by an end-user. 
We study through an evolutive experimentation how the combination of Extreme Sensitive Robotic paradigm 
and ALEX eases the maintenance and evolution of ambient systems. New sensors and effectors can be 
dynamically integrated in the system without requiring any action on the pre-existing components.  

Keywords: Distributed Architecture, Innovative Architecture, Human System Interactions, Control System, 
Internet of Things, Smart Devices, Adaptive Multi-Agent System 

1 INTRODUCTION 

We are living at a time where technologies evolve 
every day. Intelligence, once restrained in personal 
computers, is now distributed in our environments 
under many forms. Those systems are ambient 
(Guivarch, 2012). Internet of things, wearable 
sensors, robotics, home automation, are 
illustrations of the ubiquitous computing revolution 
(Weiser, 1991). As software and hardware become 
ever more elaborated, intelligence is now 
embedded in objects. We have at our disposal 
libraries of various components realizing functions 
rather than objectives. For example, smart 
cameras can produce data from image recognition 
algorithms or every day object can play a role in the 
human-system interaction. Each of those 
components is autonomous and designed 
independently.  
 
A robot for a particular application consists in the 
aggregation of the necessary components to 
satisfy its objectives. Those components could be 
part of the robot body or distributed in its 

environment. The collective of components has to 
interact and collaborate to perform an adequate 
global activity. The design of an intelligent system 
is then a matter of integration and a recurrent 
challenge is how to enable all those intelligent 
things to collaborate whereas they have an 
autonomous activity.  
 
Those ambient systems are truly complex: a 
potentially huge number of heterogeneous devices 
evolves autonomously (including appearance or 
disappearance of devices) to provide services to its 
users (Perera, 2014). Designing an ad hoc 
controller supervising the whole activity involves 
having a lot of knowledge on the system dynamic. 
Any change in the system composition implies re-
performing the whole design process meaning that 
sustainability of such system is a challenging task. 
Complexity is increased by the specific, multiple 
and often changing needs of end-users. Designers 
cannot make a priori a complete specification. 
Actually, the maintenance and evolution of an 
ambient system involves high costs, as it usually 
requires high knowledge and skills.  



One of the challenges is then to give to each device 
the ability to self-adapt to both system dynamic and 
end-user needs. 
 
This paper contributes to this challenge by studying 
the benefits of using self-adaptive components in 
the design of robotic applications. The paper is 
organized as follows: First, we formulate the 
problem of integration of robotic. Secondly, we 
present the Extreme Sensitive Robotic paradigm, 
an innovative architecture to design ambient 
robotic applications. A scientific background is then 
provided to position the paper in regard with other 
scientific domains. Our main contribution, ALEX, is 
then presented in section 5. Section 6 proposes a 
use-case study of using ALEX in combination with 
the Extreme Sensitive Robotic paradigm from the 
viewpoint of a designer of a robotic application. 
Finally, we conclude with some perspectives. 

2 DESIGNING A ROBOTIC 
SYSTEM: THE 
INTEGRATOR PROBLEM 

The evolution of technologies, both in terms of 
hardware and software, makes available libraries 
of various components realizing functions rather 
than objectives. Internet of things (Perrera, 2014) 
is the perfect illustration of such a possibility. 
Designers of those systems have to aggregate 
different functions to build a system providing 
services to its users. Those functions are provided 
by electronic devices (basically by effectors). Each 
device exercises a control over a particular 
functionality. For example, a particular device can 
control the activation of an electric shutter and 
another one can control lights. Robots are part of 
those systems and propose a set of functionality, 
which can include mobility. A mobile robotic 
platform equipped with a robotic arm then provides 
two functionalities: the ability to move and the 
ability to grab objects. The integration of those 
different robotic components in order to provide 
service to humans is a complex task.  

Let’s consider the case of a designer who wants to 
integrate a robotic arm from one constructor and a 
mobile platform from another constructor, while 
using image processing algorithms from a third 
provider to perform a collecting task. The design of 
an ad hoc controller for such application is complex 
and requires a lot of expertise on each component, 
but also on its environment (which includes human 
activity). If for any reason, a component is replaced 
with another one (even if this new component 
provides the same functionality), the whole design 
process has to be performed again. This is time 
greedy and involves high cost of maintenance and 
evolution.  However, the same system composition 
(one robotic arm, one camera based vision and a 
robotic platform) could be used in different kind of 
application. For example, one could want to use it 
for turning valves in a factory or the other for 
cleaning a room in a nuclear power plant. Each 
new application involves designing a new controller 
(figure 1). 

 
A designer of such system would profits from a 
system capable of self-adapting to both the 
environment and users’ needs without requiring 
reprogramming any system’s component. This is 
the postulate made by Extreme Sensitive Robotic. 

3 EXTREME SENSITIVE 
ROBOTIC: EXPECTATIONS 

The Extreme Sensitive Robotic (XS Robotic) is an 
integrative approach of functions of perception, 
decision, action and interaction. It proposes a 
bottom-up approach focusing on functionality 
rather than a top-down approach focusing on 
objectives. Each function is an atomic part 
composing the micro-level of the system. A robot is 
then seen as the aggregation of the necessary 
functions to satisfy user’s needs. Further, a group 
of robots or a whole ambient system has to be 
considered in the same way: a set of macro-
functions (each robot) working in coordination.  

The XS Robotic considers each robotic device in 
interaction with humans, other devices and the 
environment through sensors. Each device is 
autonomous which induces that the complexity of 
a robot (or a collective or robots) is not described 
explicitly or implicitly in it. Each device determines 
its own activity in interaction with its environment. 
The problem of integration then becomes a 
problem of adaptation. Each device has to adapt its 
behavior to its environment. 

By applying the XS Robotic paradigm to the 

Figure 1: Example of integration problem: designing a unique 
controller for 3 robotic components is dependent of system 
composition. 



previously enounced problem, there is no 
difference between the two systems (Figure 2). 
Indeed, as each device is able to self-adapt to its 
environment, it will autonomously integrate any 
new device to its own activity.  

To be truly effective, the XS Robotic needs generic 
algorithms allowing devices to self-adapt both to 
system’s dynamic and humans. Those devices, 
which interact with their environment and their 
users, must have the capacity to automatically 
learn from this interaction and exploit this 
knowledge. But to be as natural as possible, the 
human-system interaction must rest on a process 
that does not need any expert knowledge. On 
contrary, it must provide a natural way for any kind 
of user to express their needs. 

4 SCIENTIFIC BACKGROUND 

On the previous section, authors present the 
Extreme Sensitive Robotic as an integrative 
approach resting on self-adaptation skills. XS 
Robotic deals with the ability to learn from 
interaction with the environment and users. 
However, the idea of making autonomous systems 
able to self-adapt and learn from their environment 
is not completely new. In fact it relies in the heart of 
informatics. Yet in the early 50's, Alan Turing 
(Turing 1950) states that "instead of trying to 
produce a program to simulate the adult mind, why 
not rather try to produce one which simulates the 
child's? If this were then subjected to an 
appropriate course of education one would obtain 
the adult brain". On this section we present 
concepts coming from robotic, cognitive science 
and artificial intelligence that attempt to build 
autonomous artificial systems with the ability to 
learn from interaction. For each domain, we point 
out main properties required for enabling XS 
Robotic.  

More than sixty years after the dream of Alan 
Turing, robotic controllers are still handcrafted. 
Artificial intelligence failed to bring Turing's dream 
to life. Brooks explains that this failure may come 

from engineer's conceptualization of the world that 
may not be appropriate for artificial systems with a 
different sensory motor apparatus (Brooks, 1990). 
Due to the limits of introspection, the abstraction 
that a human would supposed to be appropriate to 
build a system may be completely different to what 
he is actually using. A metaphor that sums up 
Brook's idea would be that making abstraction of 
the world is like observing the world through a 
keyhole instead of opening the door, depriving the 
system of all the wealth that this world has to offer. 
To avoid this problem, Brooks proposes the 
physically grounding hypothesis that stipulates that 
interaction with the environment has to be the 
primary source of constraint for the design of 
intelligent system. 

Pfeifer (Pfeifer, 2006) goes further by arguing that 
there is a strong relationship between the body and 
the mind. Pfeifer states that the traditional view of 
intelligence is that it is located inside the brain, or 
more generally inside the control system. However, 
he shows that studying the brain (or the control) 
alone does not allow to completely infer the 
behavior of the system. The brain needs a body to 
act, and the way the brain is embodied in the 
physical world may strongly influence the way it 
acts. This relation is called embodiment. 
Embodiment plays an important role in learning as 
what we can learn is strongly related to what we 
can do. 

Zlatev and Balkenius (Zlatev, 2001) state that 
cognitive science community realizes that “true 
intelligence in natural and (possibly) artificial 
systems presupposes three crucial properties: 

- The embodiment of the system 

- Its situatedness in a physical and social 
environment 

-  A prolonged epigenetic developmental 
process through which increasingly more 
complex cognitive structures emerge in the 
system as a result of interactions with the 
physical and social environment 

Cognitive sciences have a particular echo inside 
the artificial intelligence community and has 
inspired learning techniques. (Guerin, 2011) 
proposed an overview of artificial intelligence 
approaches trying to build programs that could 
develop their own knowledge and abilities through 
interaction with the world. The approaches 
inventoried by Guerin share the same conception 
of the learning process. They see learning as an 
iterative process by which a system builds 
increasingly more complex structures, and uses 
these structures to behave in interaction with the 
environment. However, most of them fall under 
Brook's critics. Moreover, most of the methods only 

Figure 2: The same problem through the scope of XS 
Robotic. The two systems are an equivalent problem. 



took interest on knowledge creation, avoiding the 
problem of knowledge exploitation. 

We agree with Brooks and Pfeifer vision of 
intelligence. That means that to be truly adaptive, 
the design of an XS Function should not fall into 
Brook's critic of abstraction. An XS Function must 
then exploit all source of information as a signal 
without making any abstraction on it. Semantic is 
then prohibited. On contrary, each signal has to be 
considered the same way, as a raw observation of 
the world. 

Furthermore, as we cannot make a separation 
between the body and the mind, the learning 
process allowing self-adaptation has to be self-
aware of its own activity and its consequences on 
what it senses from its environment. Learning from 
the consequences of my own embodiment relation 
(which means consequence of my own activity) will 
allow the system to sense any changes on this 
relation, either this changes come from a 
modification of system's body or environment. The 
learning process should be made through 
interaction with the physical and social 
environment by which a complex behavior 
emerges. 

To be usable by any kind of user, the adaptation 
process must not require any expertise. Learning 
from Demonstration (Argall, 2009) appears then to 
be a promising approach. Learning from 
Demonstration is a paradigm to dynamically learn 
new behaviors from demonstrations performed by 
a human. The process of demonstration does not 
require expertise from the user on the controlled 
system while allowing the system to capture the 
user’s needs. 

 
On the next section, we present our contribution to 
enable the XS Robotic vision. This contribution is a 
combination of the Adaptive Multi-Agent System 
approach and Learning from Demonstration. 

5 ADAPTIVE LEARNER BY 
EXPERIMENTS 

Through the scope of XS Robotic, the problem of 
integration of robotic components is a problem of 
self-adaptation. We then need to propose an 
algorithm that enable each device to self-adapt. On 
this section, we present our contribution, ALEX, an 
adaptive multi-agent system designed to learn from 
demonstration performed by a tutor. Its design is 
based on the Adaptive Multi-Agent System (AMAS) 
approach.  

5.1 AMAS approach 

The Adaptive Multi-Agent System approach 
(Gleizes, 2012) addresses the problematic of 
complex systems with a bottom-up approach 
where the concept of cooperation is the core of 
self-organization. The theorem of functional 
adequacy (Camps, 1998) states that:  

“For all functionally adequate systems, 
there is at least one system with a 
cooperative internal state that realizes the 
same function in the same environment”  

A general definition of cooperation could be the 
golden mean between altruism and selfishness 
(Picard, 2005). The role of an AMAS designer is to 
identify non cooperative situations and to propose 
mechanisms to anticipate or resolve such 
situations. The agent detecting a non-cooperative 
situation automatically triggers those mechanisms. 
Three mechanisms allow repairing or anticipating a 
non-cooperative situation (Capera, 2003): 

- Tuning: the agent adjusts its internal 
state to modify its behavior, 

- Reorganization: the agent modifies the 
way it interacts with its neighborhood, 

- Evolution: the agent can create other 
agents or self-suppress when there is no 
other agent to produce a functionality or 
when a functionality is useless.  

The system will then self-organize to stay in a 
cooperative state. From cooperative interactions 
between the system's entities emerges a global 
function that is more than the sum of the parts 
(Figure 3).  

Figure 3: A schematic view of an AMAS system. The 

functionality 𝑓𝑠 provided by the system is more than the sum of 
each agent functionality 𝑓𝑝𝑖

. It is the result of interactions 

between agents and the environment. 



The approach proposes a methodology called 
ADELFE that guides the designer of an AMAS 
system (Bonjean, 2014).  

5.2 Learning from Demonstrations 

Learning from Demonstration, also named 
Imitation Learning or Programming by 
Demonstration, is a paradigm mainly studied in the 
robotic field that allows systems to self-discover 
new behaviors (Argall, 2009). It takes inspiration 
from the natural tendency of some animal species 
and humans to learn from the imitation of their 
congeners. The main idea is that an appropriate 
controller for a robotic device can be learnt from the 
observation of the performance of another entity 
(virtual or human) named as the tutor. The tutor 
can interact with the system to explicit the desired 
behavior through the natural process of 
demonstration. A demonstration is then a set of 
successive actions performed by the tutor in a 
particular context. The learning system has to 
produce a mapping function correlating 
observations of the environment and tutor's actions 
to its own actions. The main advantage of such 
technique is that it needs no explicit programming 
or knowledge on the system.  It only observes 
tutor's actions and current system context to learn 
a control policy and can be used by end-users 
without technical skills.  
 
The paradigm has been used on a wide range of 
applications such as autonomous car following 
(Lefèvre, 2015), robot trajectory learning (Vukovic, 
2015) or robot navigation in complex unstructured 
terrain (Silver, 2010). Recent surveys (Billard, 
2008) (Argall, 2009) propose an overview of the 
LfD field illustrating a wide variety of applications. 
Our interest is not to focus on one particular 
application. On the contrary, we want to deal with 
any kind of ambient robotic system. 

5.3 ALEX architecture and general 
behavior 

In accordance with the ADELFE (Bonjean, 2014) 

methodology, we designed ALEX (Adaptive 
Learner by Experiment), an Adaptive Multi-Agent 
System, to learn to control a system from 
demonstrations.  

On the rest of this section, we present ALEX 
architecture and focuses on Context agents, which 
are the core of the learning process. 

5.3.1 ALEX architecture  

An ALEX instance is designed to control a robotic 
device (an effector) by sending actions to it. Those 
actions are changes of the current state of the 
robotic device. An ALEX instance is in constant 
interaction with its environment from which it 
receives actions from its tutor and a set of sensors 
values. ALEX observes the current state of all 
accessible sensors, the action performed by the 
tutor and in response sends the action to be 
applied by the controlled robotic device. ALEX is 
composed of two components, an Exploitation 
mechanism and a set of Context agents. The figure 
4 illustrates ALEX architecture.  
The Exploitation mechanism is responsible for 
sending actions to the robotic device. In order to do 
so, it receives both the action performed by the 
tutor and a proposition of action from the set of 
Context agents. By comparing the action realized 
by the tutor to the proposition made by Context 
agents, the Exploitation mechanism can generate 
a feedback that is sent to the set of Context agents. 
Context agents are the core of the learning. They 
are responsible of making action proposition based 
on what they have observed of previous tutor 
actions. More details about this architecture can be 
found on previous work (Boes, 2015). 
On the rest of this section, we present the behavior 
of Context agents. 
 

5.3.2 Context-agents behavior 

The term context in this paper refers to all 
information external to the activity of an entity that 
affects its activity. This set of information describes 
the environment as the entity sees it (Guivarch, 
2014). ALEX interacts with a tutor (virtual or 
human) which performs a set of demonstration. A 
demonstration consists in the performance of an 
action under a particular context. Each time an 
action is performed, ALEX correlates the effect of 
the performance of this action on the current 
situation to effects of this action on the 
environment. ALEX receives a set of signals 𝑂 from 
the environment that describes the current 
situation. Each signal 𝑜𝑛 ∈ 𝑂 is a continuous value 
associated to a unique identifier. The identifier is 
used to discriminate signals and has no semantic 
value.  
 

Figure 4: ALEX architecture 



ALEX is composed of a set of Context Agents. A 
Context agent is a tripartite structure composed of 
a context description, an action, and an 
expectation of the utility of the action under this 
particular context: 

< 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑎𝑐𝑡𝑖𝑜𝑛, 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 > 
At start, the set of Context agents is empty as 
ALEX possesses no a priori knowledge. Context 
agents are autonomously and dynamically created. 
Context agents receive signals from the 
environment (from sensors) which they use to 
characterize the current context. To build its 
context description, a Context agent associates to 
each signal 𝑂 from the observation space a set of 

two bounds < 𝑜𝑚𝑖𝑛 , 𝑜𝑚𝑎𝑥 >. Every time the 
observation space 𝑂 is included to its context 
description, a Context agent makes an action 
proposal. This proposal could be interpreted as "if 
you do this particular action under this particular 
context, you can expect this particular utility". At its 
creation, a context agent is associated to a unique 
action. The role of a context agent is then to both 
learn the context description and the utility 
associated to its action thanks to feedbacks it 
perceives from its tutor and signals it perceives 
from the environment. When the tutor is not acting 
on the system, Context agents are responsible of 
system autonomy. Then they must cooperate to 
perform an effective control on the device that 
satisfies the tutor. 
 
Context agents dynamically manage their context 
description by either reducing or expanding their 
bounds (figure 5) in interaction with the tutor. Each 
time the tutor performs an action, Context agents 
observe the tutor activity and compare it to their 
own action.  
 
Four adaptation processes can occur: 
 

- Expansion: When the tutor performs an 
action that is close to a Context agent's 
context, and this Context agent proposes 
the same action, the Context agent can 
manage its bound to integrate the current 
situation. 

- Reduction: When the tutor performs an 
action that is different to the action 
proposed by a Context agent, but this 
Context agent context description include 
this situation, the Context agent updates 
its bound to exclude the current situation. 

- Suppression: By adjusting its bounds, a 
Context agent can find himself in a 
situation where 𝑜𝑚𝑎𝑥  <  𝑜𝑚𝑖𝑛. Such 
situation produces the destruction of the 
Context agent. 

- Creation: When no Context agent 
proposes the user action (and no Context 

agent can expand to represent the 
situation), the system autonomously 
create a new Context agent to represent 
the tutor's action. 

 
Bounds are managed by Adaptive Value Trackers, 
a software component that is able to find the value 
of a dynamic variable in a given space through 
successive feedbacks. More information on 
Adaptive Value Trackers can be found on previous 
work (Guivarch, 2015). The main advantage of this 
context description is that no semantic on signals 
is used: it only observes variation of signal values. 
In parallel to the adaptation of bounds, Context 
agents maintain a utility value. This utility value 
helps Context agents to disambiguate situations 
where many Context agents with different actions 
propose to perform an action. Utility is then used to 
determine which the best action to perform is. 
Utility value is based on Context agent history. The 
more a Context agent can makes action proposal 
that is different to the user activity, the more its 
utility value is low. On contrary, the more the 
Context agent proposition has been confirmed by 
user activity, the more the agent is confident in its 
utility. This value is managed by the function: 

 𝐶𝑡+1  =  𝐶𝑡 ∗  ( 1 −  0.8 )  + 𝐹𝑡  ∗  0.8  
where 𝐶𝑡 is the utility value at time 𝑡, and 𝐹 is the 

similarity with the tutor where 1 means that the 
context is proposing the same action than the tutor 
and 0 means that two actions are different. 

Figure 5: Context agent bounds management example. The 
cross represents the current situation and its color the action 
performed by the user. 



Whenever the tutor performs an action on the 
device, Context agents use this action to self-adapt 
by adjusting their bounds and their utility value. 
However, when the tutor is not acting, Context 
agents use the acquired knowledge to cooperate 
and control the device. 

5.4 ALEX previous work 

ALEX has been previously evaluated on a 
collection task (Verstaevel, 2015). The experiment 
illustrates the advantages of our approach for end-
user, allowing a natural way to express their needs. 
A tutor controlling a two-wheeled robot 
demonstrates a collecting task. By comparing the 
number of artefact collected by the tutor in 5 
minutes to the score performed by the rover in 
autonomy, the results show that ALEX managed to 
learn to perform the activity more efficiently than 
the tutor does. The Context learning architecture 
has been abstracted and applied to various 
domains (Boes, 2014). On this article, we change 
of viewpoint and want to illustrate advantages of 
our approach for designers. The next section 
proposes a use-case study to show those 
advantages. 

6 A USE-CASE STUDY 

We propose to study the benefits of our approach 
for the design of the following application: 

A two wheeled rover has to go from an 
area 𝐴 to an area 𝐵. The passage between 
the two areas is only possible through a 
door. The area 𝐴 may be populated with 
obstacles. The rover then has to navigate 
through the area to reach the gate, and 
then go through it. The experiment is 
complete when the rover is in the area 𝐵 
and the door is closed.  

The experiment is implemented on Webots®, a 
robotic simulator. The arena is composed of two 
areas, separated with a white door. The walls on 
the left part of the arena are blue, the walls on the 
right part of the arena are red (see figure 6). The 
ALEX implementation we used is developed in 
Java and is the same for all experiments. At each 
time step, an ALEX instance receives data values, 
the action performed by the tutor and in response, 
provides the action to be performed.  
Each experiment is decomposed in two phases. 
First, the designer performs a complete 
demonstration of the activity during which he takes 
control of the rover. This first phase allows each 
ALEX instance to acquire Context agents. 
Secondly, the rover performs the task 
autonomously by using the previously learnt 
Context agents. The designer then observes the 
activity to determine if or not the rover behavior is 
satisfying. 
In case of a failure in the reproduction of the task, 
the designer can extract and analyze Context 
agents’ structure.  

Figure 7: Architecture of the first experiment. Each ALEX 
receives the distance value and has to associate to this value 
the adequate speed. 

Figure 9: Modified architecture of the first experiment. Each 
ALEX now receives the distance and the current speed of both 
wheel. 

Figure 8: A comparison of two Context agents 4 and 6 extracted 
from the first experiment. The two Context agents propose a 
different action under the same context leading to ambiguity. 

Figure 6: A view of the simulation. The rover evolves in an arena 
and has to reach the white door. 



6.1 First experiment: avoiding 
obstacles 

In accordance with the XS Robotic vision, the 
designer first identifies the functionalities involved 
in the application.  

The rover is composed of two wheels, each 
wheel controlling its own speed value from 

−100 to 100. Each wheel is then an XS 
function of action.  

Then the designer needs to provide to the rover 
some perception about its surrounding 
environment.  

As the task involves avoiding obstacles, a 
distance sensor is identified as required to 
navigate through the area. The distance 
sensor is then an XS function of 
perception. 

Once both functions of action and perception have 
been identified, the designer can realize its first 
experiment and try to teach to the rover the task. 
The figure 7 illustrates the architecture of this first 
experiment. 
After this first demonstration, we observe that the 
rover fails in its navigation task. By observing the 
Context agents inside each ALEX instances, we 
found that using only distance value leads to 
ambiguities in the demonstration. The 
phenomenon is observable in figure 8. The figure 
shows the structure of two Context agents after the 
demonstration. The yellow area corresponds to the 
values of the distance sensor where the Context 
agent is valid. The green area to the values where 
the Context agent is extensible. Those two Context 
agents are extracted from the right wheel ALEX.  
They propose a different action. The first one 
propose to go at a speed of 100 whereas the 

second one proposes to go at a speed of 0. If we 
observe the two validity range of the Context 
agents, we observe an overlap.  This overlap 
means that the two Context agents will propose 
their action in similar situation, leading to 
ambiguity. The reason is that using only an 
ultrasound sensor is not well enough to 
discriminate each situation. When the rover is at a 

particular distance, it can express either that the 
rover is approaching an obstacle or moving away.  

To disambiguate those situations, the designer 
propose to use the current speed value of both 
wheels as an input to the ALEX instance.  

A new demonstration is performed with this new 
architecture (figure 9) and the rover now succeed 
to navigate through the area. However, as it cannot 
differentiate a wall from the door, the rover fails to 
learn to reach the door. 

6.2 Second experiment: reaching the 
door 

As the rover needs to differentiate walls and 
the door, the designer proposes to add a 
Camera on the rover to recognize 
characteristics of the objects to be detected. 
Using a detection algorithm, the camera can 
provide visual information about the 
environment of the rover. As walls and the door 
have different colors, the camera identifies the 

coordinate (𝒙, 𝒚) of the center of each of the 
three color blue, white and green. 

A Camera is added to the simulation to provide new 
data to the rover. Each ALEX instance now 
receives, in complement of the previous data, the 
coordinate (𝒙, 𝒚) of the center of each color (see 
figure 10). If no artefact of one color is detected, 

Figure 10: The second experiment architecture. A camera is 
added providing three new couple of value (x,y) for each 
detected color. 

Figure 12: The architecture of the last experiment. The door is 
now controlled by and ALEX instance and receives the same 
information than the other ALEX. 

Figure 11: A particular Context involved in the last experiment. 
This Context agent is a lot more sensitive to the White (x,y) 
value than the other. 



the coordinates provided are (-1,-1). The addition 
of the camera does not involve any modification on 
the ALEX instances. The tutor then performs 
another demonstration of the task.  

Now the rover manages to navigate inside the 
arena and reach the door. By observing the 
structure of the Context agents involved in this 
experiment, we found that the agents involved in 
the part of the activity reaching the door have learnt 
to be less sensible to the blue and red coordinates. 
One example of those agents is visible in figure 11. 
The validity range associated the signals 𝑾𝒉𝒊𝒕𝒆𝑿 

and 𝑾𝒉𝒊𝒕𝒆𝒀 are smaller than the one associated 

to 𝑩𝒍𝒖𝒆𝑿 and 𝑩𝒍𝒖𝒆𝒀, and 𝑮𝒓𝒆𝒆𝒏𝑿 and 𝑮𝒓𝒆𝒆𝒏𝒀. 
As the activity only involves identifying the white 
door, the other data are unrelated. Our designer 
can exploit this information to remove unused data 
from the system. However, the rover failed to 
complete the task. While it managed to reach the 
door, the rover failed to open it as its engines were 
not powerful enough.  

6.3 Last experiment: opening the door 

For the third experiment, the door is equipped with 
a motor. An ALEX instance is associated to the 
door and must learn when it has to be open and 
when it has to be closed. For thus, the door 
receives the same data than the two ALEX 
instances controlling the wheels (Figure 12). 
Adding this new effector does not involve any 
action on the pre-existing devices and previously 
learnt Context agents can be kept.  

The tutor performs a final demonstration of the 
task, demonstrating to each component the 
desired behavior. At last, the rover managed to 
learn to reach the area B. The door correlated the 
action of opening to a low value of the distance 
sensor signal and the coordinate 𝑊ℎ𝑖𝑡𝑒𝑋 and 
𝑊ℎ𝑖𝑡𝑒𝑌 near the center of the screen. The rover 
and the door managed to collaborate without direct 
communication. As they share perception, they 
have enough information to coordinate their 
activity.  

6.4 Synthesis 

The whole experiment illustrates both the Extreme 
Sensitive Robotic paradigm and ALEX capacity to 
learn in interaction with human. The design of a 
robotic application with ALEX allows the designer 
to focus on the desired functionality and to let to 
ALEX the duty to find correlations between the 
performing of an action and the state of sensors. 
An application can be designed incrementally by 
gradually adding new sensor and effectors. The 
usage of a learning technic based on self-
observation allows the designer to point out 

situations of ambiguity or situations where some 
data are useless. Adding a new sensor or a new 
effector is not a complex task anymore as each 
component can self-adapt.  

7 CONCLUSION 

The design of a controller for a robotic application 
is a complex task. In this article, we propose to give 
to each device the ability to self-adapt in interaction 
with its environment. We propose an approach 
named “Extreme Sensitive Robotic” which focuses 
on the bottom-up design of robotic application. To 
enable each device to self-adapt, we proposes the 
use of ALEX, an adaptive multi-agent system 
based on Context-Learning.  

In previous work, we have shown the advantages 
of our approach for end-user, enabling the robotic 
device to automatically learn a behavior from 
demonstrations. In this article, we have taken the 
viewpoint of the designer of such a system. 
Through a use case, we have shown that the 
combination of Extreme Sensitive Robotic and 
ALEX could help designers to incrementally build 
their system. By studying the Context agents 
dynamically created by ALEX, the designer can 
point out ambiguity in signals and decide to 
increase the perception capacity of the system. 
The same analysis can lead the designer to add 
new effectors on the system. As each effector is 
designed to be self-adaptive, the appearance or 
disappearance of an effector or of a new sensor 
does not imply to re-act on the previously deployed 
effector.  

However, the study of Context agent is in this paper 
still hand-performed by the designer. Then, work is 
being made to allow Context agents to 
automatically discover situations of ambiguity 
where data are missing and to automatically solve 
those situations. Such automatic process involves 
to distribute intelligence inside each sensor which 
will become a cooperative agent by locally 
analyzing how they interact with Context agents. 
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1 Abstract
Automated train driving function is greatly demanded in high-speed and commuter trains operated by Russian
railways. Siemens Corporate Technology is involved in the development of such real-time function within a
"robotised" train control system. The main intention of the system is not only to relieve the human driver from
routine control over traction and brakes (allowing him to pay more attention to assurance of safety) but also to
increase train efficiency by reducing the amount of consumed energy. The system under development is intended to
be integrated into the existing architecture of Siemens high-speed trains as an additional function. Its environment
is constituted mainly of control systems of a high safety integrity level. This on the one hand guarantees that the
automated train driving system will not have any impact on train safety, but on the other hand it implies additional
restrictions on the operation of the system to be fulfilled. This paper presents the experience in implementation
and verification of automated train driving algorithms for Velaro RUS and Desiro RUS trains.

2 Introduction
In recent years the question of energy efficiency has become the gravest it has ever been. Railway operation
considerably contributes to the overall energy consumption and, therefore, deliberate railway management systems
can enhance the global natural resources savings. Significant advances have been made to improve the efficiency
of the train motion: minimization of resistant forces, construction improvements, recuperation capabilities [1].
Nevertheless, there still is opportunity for further savings of energy. In particular, taking into account the track
profile, optimization of the driving strategies, measuring of the consumed energy and further analysis to some
degree can reduce the cost of trips.
Innumerable studies have contributed to the energy efficiency in train control. A detailed review of works on

optimal train control can be found in [2]. Diverse methods and approaches can be found in literature concerning
optimal train control, optimal schedule construction and railway system management. Beginning with the pioneer
works of Milroy [3], Howlett [4], Asnis et al. [5], numerous scientists developed and investigated train control
optimization problem, giving birth to great number of specific methods and approaches. Two different models can
be highlighted among them: a model with continuous control [3], [4], [5]; and a model with discrete control [6].
The first model considers applied acceleration as a control variable whereas the second one considers switches of
traction and brake for this purpose. The second model has received much attention in recent decades, due to the
opportunity to model the real train control directly and to obtain as a solution a sequence of a driver’s actions for
optimal train control.
One of the most effective approaches to energy efficient driving is speed regulation through coasting control,

minimization of brakes or a combination of optimal strategies [7]. In [8] driving strategy ’power-speedhold-coast-
brake’ is considered and the algorithm of optimal switching points finding is proposed. The "speed regulation
without braking" strategy is implemented for efficient manual driving on long distance lines in [9].
Among the methods of solution of the train control problem one can point out two main groups widely used by

the researchers: exact methods and meta-heuristical.
The first approach was utilized, for instance, by Howlett in [10]. He has elaborated the algorithm to minimize

the energy consumption using Pontryagin’s principle and Kuhn–Tucker equations. Assuming that the trip shall
be completed with a fixed time he finds local optimal points of control switching for each part of the track with a
particular slope and obtains a globally optimal strategy.
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In the paper [11] Matsuura investigated an algorithm optimizing a train speed profile by the Bellman’s Dynamic
Programming (DP), taking into account track profile incline, regenerative brake and so on. The parallel computing
technique is introduced to deal with the computation complexity issue. Comparison of Dynamic Programming
(DP), gradient method and Sequential Quadratic Programming (SQP) is introduced in [12] in application to the
complete optimization of multiple trains’ speed profiles and energy storage devices with constraints. However,
the increase of control input dimension causes explosion of computation time and use of memory space and the
introduced methods cannot be applied to real-time control of trains.
As long as the train motion is a multicriterial process, constructing an analytic optimization algorithm, taking

into account all the constraints, is still very difficult. Using Pontryagin’s principle of maximum or the Bellman
equation requires significant simplifications of the problem considered. Furthermore, these methods reduce the
problem to the system of differential or even partial differential equations which need to be solved by means of
some numerical methods, e.g. Runge — Kutta methods or finite element method respectively. Therefore, the final
solution inevitably contains inaccuracies.
The aforesaid is the reason of the ubiquity of the second group of methods involving diverse metaheuristics:

genetic algorithm (GA), simulated annealing, tabu search, etc. Although these approaches do not guarantee to
find the global optimum point, in most cases it is sufficient for real-time applications to know the quasi-global
optimum. During the last decade a lot of papers were published where that kind of algorithm was used for solving
the efficient train control problems ([9], [13], [14], [15], [16], [18], [19], [21], [22], [23], etc.).
The genetic algorithm, for example, was utilized in works of Sicre et al. [9], [13], where the problem of constructing

an on-line advisory system for efficient manual train driving is solved. The manual driving is modelled by means
of fuzzy parameters as long as the exact moment of control switching depends on the reaction speed of the driver.
The GA-based approach is proposed in [14] to search for a control strategy under different operating conditions

and the realistic electromechanical simulation model is utilized for energy consumption calculation. GA is also
utilized in the works of Besinovic et al. [15] for calibration of the train input parameters using observed data; De
Martinis et al. [16] proposed a framework operating on timetable, rolling stock characteristics, signalling system
and infrastructure characteristics and an optimization subroutine composed by the genetic algorithm.
In most works the control sequence is represented by a pre-defined array of positions or as a mesh with fixed

size. This evidently causes the loss of generality. In this work we propose an approach where the control switching
points are computed during the GA routine, allowing to select not only a type of control, but also a particular
switch moment minimizing the consumed energy.
Among the works utilizing other meta-heuristical algorithms we should mention the PhD thesis of Kim [17]

with an approach to optimize train motion strategies for various track alignments (single or mixed) and maximum
operating speed (constant or variable) using simulated annealing. Modified and hybrid meta-heuristic methods
applied to optimal train control were considered in works of Wei et al. [18], Bigharaz et al. [19].
Considering the uncertain disturbances arising from the weather, route and locomotive rolling conditions, Li et

al. [20] proved the existence of an optimal operation strategy for stochastic train energy-efficient operation.
The main advantages of meta-heuristic methods are relatively simple logic, the capability to expand the problem

and an opportunity to take into account any new circumstances and conditions without affecting the optimization
algorithm. These methods do not have requirements of differentiability or continuity on the functions involved.
The possibility of mutation in the genetic algorithm allows to not be stuck in the local optimum. Moreover, as a
result of computations a set of solutions is obtained and if the best one is not suitable for some reason, another
candidate can be taken right away. Meanwhile, analytical methods provide only one solution and in order to satisfy
new conditions, the necessity of the recalculation of the whole problem arises. In some cases, reconstruction of the
method itself may be needed. This can be impossible or difficult to carry out.
Until recently, the question of efficient train control was a responsibility of the driver, who used his own experience,

known heuristics and driving patterns as a key to optimality and efficiency. Autopilot (automated train driving)
algorithm providing efficient driving will take the responsibility of routine actions and will allow the driver to
concentrate on more important trip factors.
Despite the fact that there are a lot of works devoted to energy efficient train control (see [9], [16], etc.), none

known to us deals with completely automated control. Apparently, this is a consequence of the local regulations
prescribing that the train must be always under human control as a guarantee of safety. An optimization algorithm
can be implemented only as an advisory system. On the contrary, in this work we are trying to develop an algorithm
which will be able to implement automated real-time train control capable to realize the whole trip without human
interference. The genetic algorithm is applied to the problem in order to find an optimal sequence of controls for
energy efficient train driving.
Safety is a crucial matter in transportation systems. As mentioned before, the automated train driving function

is surrounded by train control systems of a high safety integrity level and it does not control the motion of the train
directly. The commands generated by the system under consideration are sent to train control systems and treated
by them as recommendations which will only be implemented if safety is not violated. This way of integration
isolates the automated train driving system and prevents any impact on train safety. Due to the isolation there are
no real safety requirements imposed on the autopilot. On the other hand, in order to be in actual control of motion

2



and perform designated functions the autopilot shall not violate criteria implied by safety systems for its requests
to be implemented. Inappropriate operation of autopilot can affect on passengers’ comfort (e.g. frequent switching
between traction and braking modes is perceived as not comfortable) and even cause engagement of emergency
modes of safety systems (e.g. when autopilot operation causes violation of speed limit). This must be taken in
serious consideration in the development of an automated driving algorithm.
The objective of our work is to develop an automatic real-time train control system with a view to reducing of

energy consumption. For that purpose we need to find an equilibrium between three antithetic objectives: energy
efficiency, fulfilment of schedule constraints and speed restrictions and passengers’ comfort.

3 Problem Statement
The aim of this section is to state an optimization problem for energy efficient train control. Firstly, let us consider
the mathematical model of the train which is one of the most important parts of a system.

3.1 Train Model Description
A train model is designed to define the velocity and position of a train for each moment of a trip basing
on the following parameters: traction intensity (%), brake intensity (%), track profile, adhesion coefficient,
weather conditions such as wind velocity. Generalized traction and brake curves were determined from the train
documentation.
From the Newton’s law we obtain the following dynamic equation of train motion:

M
d2S

dt2
= (utr ubr)

(
Ftr

Fbr

)
− Ffr − Fh, (1)

where M is train mass, S is train coordinate, Ftr is traction effort, Fbr is brake effort, Ffr is friction force, Fh is
projection of the gravity force, utr and ubr are traction and brake control correspondingly. Traction force values are
determined by the train specification. Brake force Fbr comprises two components: electrodynamic and pneumatic
brake effort. Train control system is responsible for actual value of the traction effort and for dynamic distribution
of braking efforts between pneumatic and electrodynamic brakes. Control system is trying to fulfil the requests
from Autopilot on required speed and acceleration values while simultaneously preventing the violation of safety
requirements.
The next term in the eq. (1) is friction force Ffr modelled using "Davis equation" [24]:

Ffr = A+Bv + Cv2,

where v = dS

dt
is velocity and the coefficients A,B and C are determined by aerodynamic characteristics and rolling

resistance. Their values were derived from the train specification. Aerodynamic characteristics include influences
of the wind velocity and tunnels. It is possible to take into account other weather conditions, e.g. precipitation, as
easy as adding one more term in right-hand side of the eq. (1).
The more sophisticated train models, including non-linear ones, can also be considered and the more realistic

electromechanical simulation can be embedded. Complexity of the simulation will not require any changes in the
optimization algorithm. Thus, in this work we use the standard simplification in order to pay all the attention to
the energy efficiency and finding an optimal speed profile.
Solution of the optimization problem U(S) is represented as a sequence of commands ui and corresponding

switching point si.

U(S) = [si ui] =




s1 u1
s2 u2
...

...
sn un


 (2)

Control ui can be equal to {0, 1, 2, 3} where 0 designates the brake, 1 – coasting mode, 2 – cruising mode and
3 – traction. Coasting mode is implemented if traction and brake forces are equal to zero and only friction and
gravitational forces act on a train. Cruising mode means the keeping by all means of the current speed using
traction or brake force depending on the track profile and other factors. Each mode defines the value of control
variables utr and ubr: both equal to zero in coasting mode, one of them has some value from an interval [0, 1] in
cruising mode, utr = 1 in traction mode, ubr = 1 in braking mode.
The train model provides information about energy consumption and recuperated energy. Energy consumed

from the beginning of a trip up to the current point, is computed according to the relation:

E =
∫ s

0
Ftr dS,
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Figure 1: Time component of the objective function Otime

where s is current coordinate, E is consumed energy.
Recuperated energy depends only on the electrodynamic brake force which is a component of the whole brake

effort as was described above:
Er = η

∫ s

0
Fedbr dS,

where Er is recuperated energy, η is the maximum percentage of the electrodynamic brake energy which can be
returned to the grid, Fedbr is electrodynamic brake force.
The regenerative brake opportunity enables to significantly reduce the energy consumption, although, there are

some difficulties in efficient utilization of recuperated energy, the first of which is a necessity to absorb the energy by
accelerating train or by energy storage device. If the energy is not absorbed, energy consumption is larger because
of regenerative failure [12]. However, due to the lack of necessary infrastructure facilities in Russian railways the
recuperated energy can not be spent efficiently. Therefore, in this work the regenerative brake energy is not a part
of fitness function and is considered as loss.

3.2 Optimization Problem Statement
To complete an optimization problem statement let us define the constraints and restrictions imposed on it. The
information defining the train run parameters is described in a digital schedule uploaded before the trip into the
automatic train driving system. This schedule contains set of route points with prescribed arrival and departure
time, values of speed restriction on different route segments, altitude of the route points. The intention of the
system is to make decisions on the driving mode to be implemented at every moment along the route based on
current coordinate and schedule data.
Firstly, the optimal train control should satisfy the schedule constraints. We can describe the time condition

using the following inequality:
Tschedule −∆− ≥ T ≥ Tschedule + ∆+,

where ∆− and ∆+ characterise the time tolerance interval, T is trip time for the particular solution, Tschedule is
time demanded by the schedule.
The boundary conditions define departure and destination points:

S(0) = Sdepart, S(T ) = Sdest,

where Sdepart and Sdest are respectively the departure and destination stations coordinates.
Finally, the velocity shall satisfy the speed restrictions:

V ≤ Vmax(S),

where Vmax(S) is maximum permitted speed for the coordinate S. Here it is important to note that the length of
a train should be taken into account because that constraint should not be violated by any part of a train.

3.3 Objective Function
We understand the term optimal first of all as energy efficient. Nevertheless, the time of the trip should be
also included into consideration by an optimization algorithm. Otherwise, the best chosen solution will always
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Figure 2: Feasibility check and analytical improvement

implement a trip with longest duration. Therefore, we include in the objective function not only an energy related
term, but also a time related one [25]:

O = Otime +Oenergy → min, Otime = (Tadvise − T )2

(∆− + ∆+)2 , Oenergy = E

Eflat−out
+ B

Bflat−out
, (3)

where O is objective function, Otime and Oenergy are terms, estimating correspondingly the time and energy
optimality.
It is evident that T = Tadvise provides the minimum for Otime, see fig. 1. By default Tadvise = Tschedule −

∆−

2 ,
but it is to be adjusted by the algorithm of time buffers optimization. This special form of Otime gravitates the
solution to Tadvise, not to Tschedule + ∆+ as it would be if only the energy related term in the objective function
would be considered.
The energy optimality component consists of two terms. The first is consumed energy E divided by the Eflat−out –

energy spent during the flat-out trip, i.e. intense mode with minimal trip time. The second one is estimation of
brake energy B divided by the one spent during the flat-out mode Bflat−out. Adding of that component to the
objective function allows us to minimize the number and duration of brake modes.
Energy spent in flat-out mode is considered as maximum possible. Although, technically, one can exceed it by

using an enormously inefficient solution. Nevertheless, flat-out mode gives us a perfect tool for simple normalization
of the energy component of the objective function.

4 Optimization Algorithm

Figure 3: Genetic algorithm chart

The typical schedule for the trip contains several fixed
time points. Some points demand the stop, others – only
passing the station within particular time interval defined
by tolerances. In order to control the passage time for
each point, the optimization process should be separately
implemented between all of them instead of considering only
points with stops.
For the case when the schedule is unbalanced (too large

difference between the route segments’ time buffers) we need
some preliminary process of estimation and rearranging of
the time buffers. For that purpose we move the parameter
Tadvise forward and backward within the tolerance interval
for each trip part between two fixed time points.
At the first stage of the optimization process several

typical solutions are analysed:
• flat-out solution,

• flat-out solution with cruising modes replaced by
coasting modes,

• solution with maximum possible coasting mode dura-
tion (maximum time consumption estimation).

If the time buffer after time tolerances optimization is negative, an optimization will not be started and the
flat-out mode will be taken as the solution for current trip interval. Otherwise, the time consumption for the next
typical solution is checked. If the time buffer is negative, the second typical solution will be taken as a result. If
there is a time for improvements, the last check is implemented and if the time buffer for the third typical solution
is still positive, then additional brakes will be added to the control sequence during the optimization.
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Figure 4: Crossover of two solutions

Then, the optimization process based on the genetic algorithm (GA)
is started, see its main stages fig. 3. The first step is filling of the initial
population which consists of the randomly generated solutions. During
that process not only controls ui are generated randomly, but also the
moment of switching the command, under assumption that the minimal
time between switching the commands equals to 4 sec. This allows to
analyse the whole search space of the solutions. Most of the randomly
generated solutions are infeasible. But simply discarding the unsuitable
solution leads to enormous computation time due to the low value of the
relation "feasible solutions / all generated". Therefore a special procedure
is necessary to generate feasible random solutions more frequently.
For that purpose, a feasibility check process corrects the solutions

if the velocity constraints Vmax (fig. 2, cases A, B) or Vmin (fig. 2,
case C) are violated. For the Vmax violation the coasting or brake is
added to the control sequence. In case if Vmin is reached the traction
mode is switched on. Secondly, the feasibility check process tracks
the time consumed by a randomly generated solution. If the resulting
time misses the tolerance interval [Tschedule − ∆−;Tschedule + ∆+],
then some random controls are added to the control sequence till the
solution becomes feasible or the allowed number of attempts is over.
During that process the flat-out solution with minimal time consumption
allows to have an estimation of the minimal time needed to get to the
destination with current velocity constraints.

Figure 5: Mutation by adding a control

Finally, an algorithm of analytical improvement attempts to optimize
new solutions using several heuristics, see an example in the fig. 2, case
D. Starting from the shortest switches, it iteratively changes the control
sequence parts with frequent re-switching traction–brake to coasting
mode while the solution is feasible and only if the fitness function has
not gotten worse due to that improvement.
As a result, the constructed population is a number of feasible

and analytically enhanced solutions represented by the sequence of
commands for the train. Then, using a train model described in Section
3.1. we estimate the energy and time consumption for each solution in
population. The objective function (or fitness function in terms of the
genetic algorithm) is computed according to eq. (3).
The next step is sorting of the solutions by fitness and selecting of

the best or elite members in the population to save them till the next
iteration while the worst of them are to be deleted. After that the freed
place in the population is filled by the solutions obtained by one-point
crossover, see fig.4. Here a random mutation can happen, which is
in fact an addition of a random control: cruise, traction or coasting or
replacing one of the previously defined controls, see fig.6. If the time
buffer was too big, together with these commands, an additional brake
can also be added during the mutation.

Figure 6: Mutation by replacing a
control

New "children" are checked and corrected by the feasibility check
algorithm. From this point the algorithm repeats the iteration until
the necessary number of steps is reached.
Further, we continue the optimization for the next trip part and repeat

these steps.
At the end of a process we have a set of the solutions which provide

the minimum for the objective function. In other words, we have energy
efficient train control sequence.

5 Results
In order to implement the optimization algorithm described above a
C++ program was developed. Estimated time of computations for a 320
km trip is about 40 seconds with Intel Core i5 @ 2.77 GHz, 8 Gb RAM.
An example of the solution for the first 15 minutes of a trip with a real

schedule is depicted in the Fig. 7, 8. Despite the fact that the schedule
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Figure 7: Velocity profile and control modes

is tough, this solution uses the sequences "traction mode→ long coasting mode" one after another. Brakes are used
only for satisfying the velocity constraints, which is very reasonable. The train is late at the first station (the cross
is to the right from the box), nevertheless, it arrives early at the next one (the cross is to the left from the box)
without use of the flat-out mode. Cruise mode is not used here at all. Track profile advantages are utilized to hold
the speed during the coasting mode: see the interval between 60 and 210 seconds. Here the algorithm does not
choose to use brakes or traction, despite the significant change of the speed. The time interval between 420 and
480 seconds also worth mentioning. An algorithm avoids use of a short traction modes here, replacing that with
one traction turned on at the end of the 100 km/h constraint and turned off at the middle of the next constraint
– 160 km/h. During this speed up the train perfectly fits all the requirements, taking into account its own length
(see the green line).
In the optimization process 20 iterations were used. The greater number of iterations would be inefficient because

the subsequent steps will lead to diversity reducing in the population whereas no significant improvement of the
objective function will be earned. The population size was chosen as a compromise between the computation
time and accuracy of the results, i.e. it shall provide the same final solution after multiple experiments. The 200
members population satisfies both requirements.

6 Conclusion
The developed algorithm of automated train control produces an intelligent control sequence which provides
an energy efficient trip. The track profile inclines are taken into account, consumed and recuperated energy is
computed. There is a capability of consideration of weather conditions and any other additional constraints and
circumstances.
We still consider only two possible positions of the traction and brake lever – 0 and 100% intensity. This

constraint seems to be reasonable according to the hypothesis that the energy efficient driving means that traction
is used for short periods of time but with 100% intensity, where it is possible. However, consideration of several
intermediate levels is one of the directions of improvement.
The design of the autopilot with a feature of energy optimality is under discussion and consideration for now.

Rough theoretical estimations have shown savings of consumed energy up to 14.5% as opposed to manual driving.
Actual values will be computed after the first field trials which are planned for the near future. The authors are
looking forward to any reviews and comments.
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Figure 8: Forces acting on a train
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Cyrille Comar, Jérôme Guitton, Olivier Hainque, Thomas Quinot
AdaCore, 46 rue d’Amsterdam, F-75009 PARIS (France)
{comar, guitton, hainque, quinot}@adacore.com

Abstract
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In this paper, we describe some of the issues raised by
the use of assertions in software programs that need to
undergo coverage analysis for certification purposes,
typically in the avionics or railway domains. “Asser-
tions”, in this context, designates Boolean expressions
expected to always yield True, verifying internal prop-
erties of a program at various points of its execution.
We can observe an increased use of such constructs
in safety critical domains, from more frequent uses of
contract based programming techniques.
We explain why we believe that the traditional struc-
tural coverage criteria defined for Boolean expressions
in certification standards aren’t quite adequate for as-
sertions. We propose tracks for possible alternative
criteria and examine some of their properties. We also
discuss possible viewpoints on the role of assertions
within a program and consider some options through
which structural coverage on assertions can contribute
to the assessment of functional coverage.
This is still exploratory at this stage. Our goal here
is to raise attention on the issues and propose initial
lines of possible resolutions, as well as various tracks
of further work to refine and strengthen the approach.

1 Introduction

A few programming languages promote the notion
of contract based programming and offer specialized
constructs to support this paradigm. A seminal repre-
sentative of such languages is Eiffel with its Design by
Contract principle [10], [15]. Ada, and more specifi-
cally the Ada 2012 revision of the language, is another
example, featuring pre and postcondition aspects, type
invariants, as well as new syntactic constructs allowing
conditional control within expressions [13].
Programming with contracts is essentially based on
assertions, Boolean expressions expected to always
yield True, embedded in dedicated constructs at vari-
ous spots of the program. Subprogram pre and post-
conditions, for instance, embed assertions on proper-
ties expected to hold when entering or exiting the sub-
program, respectively. Type invariants are assertions
that should hold for each object of the type at any time,
except potentially while it is being updated.

Such assertions can be viewed in different ways:
They can first be considered as a debugging aid, since
they help reduce the distance between the place in
the code where an error initially occurs, and the point
where it causes an externally noticeable effect and can
be detected.
They can also be viewed as a way of clarifying re-
sponsibilities: a subprogram precondition expresses
the constraints on the kind of situations the routine is
able to deal with: it is the responsibility of the caller to
ensure that the constraints are respected. Conversely,
a postcondition expresses the properties that the rou-
tine is guaranteeing, and on which the caller can rely
after the call.
Finally, an emerging way of viewing assertions, and in
particular pre- and postconditions, is to consider them
as a formalization of the requirements of the associ-
ated subprogram. For instance, we can express in-
formally the requirements for a square root routine to
be: the routine behavior is only defined for positive or
null floating point inputs, the square root is the inverse
of the square (square(sqrt(x)) = x), and we expect
a maximum error of 10−2 on the result. This can be
expressed formally with pre- and postcondition asser-
tions on the subprogram, as in the Ada 2012 example
declaration below:
function SQRT (X : F loa t ) return F loa t with

Pre => X >= 0 ,
Post => abs (SQRT’ Resul t∗SQRT’ Resul t − X) <= 0 .01 ;

As can be expected, standards for developing critical
software such as DO-178C for civil avionics, or EN-
50128 for railway, require a fair amount of verification
and testing during development cycles. They also re-
quire activities showing the coverage and complete-
ness of those verifications. DO-178C defines two fam-
ilies of such coverage objectives:

• Functional coverage, which consists in checking that
the system behaves as it should, or in other words
that all the functional requirements have been ver-
ified, and that each of them has been sufficiently
exercise to take all aspects of the requirement into
consideration;

• Structural coverage, which consists in verifying that
the program code has been exercised with sufficient
exhaustiveness during the testing campaign. Spe-
cific structural criteria such as DECISION COVERAGE
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or MCDC provide an exhaustiveness metrci based on
a close observation of the Boolean expressions that
have an influence on program control flow.

This paper explores the implications of conducting cov-
erage analysis on code that uses assertions, starting
from the following questions:

• Are the standard structural coverage criteria
adapted to code containing assertions?

• Can the structural coverage of assertions help as-
sess functional coverage?

Before discussing these questions, we first need to un-
derstand why it can be useful or necessary to keep as-
sertions in the final executable. As a matter of fact,
tools usually let the user choose whether assertions
will be part of the executable code or not, and it is com-
mon practice to enable assertions and other checks of
various kinds for testing purposes only, and then to dis-
able them for the final executable to be put in produc-
tion, in which case pure structural coverage analysis of
assertions is less of an issue.
Enabling assertions during testing is a good idea be-
cause it makes the testing campaign more efficient:
potentially elusive problems such as uninitialized vari-
ables or improper aliasing have better chance to get
detected. On the other hand, keeping assertions en-
abled in the final executable is not always the best
choice, especially when no recovery mechanism is in
place: innocuous errors might cause the program to
stop, whereas they would have remained unnoticed in
the absence of assertions.
Nevertheless, assertions can be used to provide the
guarantee that the program is doing what it is sup-
posed to do, and in some situations it is preferable
to stop execution rather than continuing executing a
program turned wild. In other words, keeping asser-
tions live in the final system is a legitimate option, and
is even necessary in some circumstances, when error
recovery is taken care of and it is essential for the pro-
gram to do only what it was designed for and nothing
else.
Coverage criteria that make sense for assertions are
therefore needed in situations where assertions re-
main in the executable code, or if they are used to help
functional coverage assessment.
DECISION COVERAGE is a common structural cover-
age metric, and is used for instance when certifiying
against level B of DO-178C. It is achieved when each
Boolean expression (decision) in a program was exer-
cised to yield both a True and a False outcome. For in-
stance, in an if construct, both the then and the else

parts need to be exercised, even if either is empty.
It is tempting to assimilate assertions to if statements,
and thus consider the asserted expression as a deci-
sion. In Ada, for instance, this would mean considering

that “pragma Assert (X);” is the same as “if not X

then raise Assert Error; end if;”.

However, this approach is not appropriate in a struc-
tural coverage context, because assertions are, by de-
sign, expected to never evaluate False, and construct-
ing tests that violate an assertion might prove very
challenging, if not entirely meaningless.

When a postcondition represents the requirements of
a subprogram, for example, invalidating one consists
in trying to find a test that shows that the subprogram
doesn’t do what it is supposed to do, which should not
be possible, and is clearly counterproductive in any
case.

The case of preconditions is different: preconditions
can be seen as a defensive coding technique, and
tests designed to invalidate a precondition could plau-
sibly be part of robustness testing. Such robust-
ness testing could make sense for the preconditions
of boundary subprograms that get unqualified inputs
from the outside world, or from less trusted code.

However, it is always better to qualify all such inputs
explicitly rather than relying on preconditions. Besides,
reaching MCDC on preconditions would typically mean
finding lots of specific combinations of bad inputs, call-
ing for the construction of lots of artificial cases.

Similar reasoning applies to type invariants, with a
stronger contradiction as a result: if we start assum-
ing that an “invariant” may legitimately break during the
program execution, there should be requirements stat-
ing what to do in this case, and the properties wouldn’t
be a proper invariant anymore.

As a result, in the majority of cases, DECISION COVER-
AGE, and MCDC even more so, are not adequate crite-
ria for assertions. This is actually unsurprising since, in
essence, assertions aren’t decisions by our definition,
as they are expected never to evaluate False, whereas
decisions are assumed to be legitimately allowed to
take both values True and False.

Ignoring assertions for coverage purposes is not a
viable option either: even a single assertion might
check a wide spectrum of possible cases, and having
a means of measuring how extensively this spectrum
was exercised by a testing campaign is a necessity.
In addition, we believe that some structural coverage
on assertions can help functional coverage analysis,
when assertions are used to capture subprogram re-
quirements.

We therefore observe that specific coverage criteria to
be applied for the coverage analysis of assertions need
to be defined. The remainder of this paper identifies
possible tracks and illustrates how functional coverage
can be helped in the process. The discussion is orga-
nized as follows:

In section 2, we propose definitions for three increas-
ingly exhaustive criteria for the coverage of assertions,
which could correspond to the three certification level
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of DO-178C that require coverage analysis. In section
3, we present examples of assertions, and introduce
tri-state truth tables that we will use in the following
sections for illustration purposes. Sections 4, 5 and 6
provide insights on the way to interpret the definitions
on an example assertion, and comment on the sets of
tests that can be used to achieve the respective crite-
ria. Section 7 then shows how the definitions allow the
nesting of decisions within assertions.

We then examine a few notesworthy aspects of the
proposed criteria: section 8 provides a quantitative
complexity analysis, giving a notion of the cost asso-
ciated with achieving each criterion in terms of amount
of testing it requires. Section 9 discusses situations
where it may be impossible to satisfy some of the cri-
teria, in particular for assertions which contain cou-
pled operands. Finally, section 10 relates our tracks
of thought to existing work, before moving to a conclu-
sion where we summarize the most important points
and discuss possible perspectives of further investiga-
tions.

2 Proposal of specific coverage criteria for
assertions

We propose three levels of coverage criteria for asser-
tions. These three levels are intended as companions
to the three criteria defined for regular application code
in the DO-178C standard (namely Statement, Deci-
sion, and MCDC coverage, depending on the certifica-
tion level).

DO-178C defines the notion of condition to designate
operands within decisions. We will reuse this term to
designate operands within assertions as well.

For reasons exposed later on, when we need to distin-
guish conditions within a Boolean expression, the only
operators we consider are those with short-circuit se-
mantics such as the && and || in C, or and then and or

else in Ada, as well as Boolean-valued IF-expressions
(equivalent to the C ternary operator ?:). Logical nega-
tions have no influence on expression decompositions
for our purposes.

A Boolean expression built from elementary Boolean
conditions combined with these operators can be mod-
eled as a Binary Decision Diagram (BDD), and an eval-
uation of such an expression can then be understood
as a traversal of this BDD.

Note that Boolean subexpressions may appear within
the considered elementary conditions, for example
as formal parameters in subprogram calls, or as the
expression that conditions a non-Boolean-valued IF-
expressions. Such nested Boolean subexpressions do
not directly determine the traversal of the BDD, and
are therefore out the the scope of the coverage analy-
sis for the outer assertion (of course they are subject to
a separate coverage discussion in terms of the usual
structural coverage criteria, as detailed in section 7).

On this ground, here are the three levels of criteria we
propose:

Assertion True Coverage (ATC) The expression as a
whole has been evaluated True at least once.

Assertion True Condition Coverage (ATCC) All the
expression conditions have been evaluated at least
once as part of a complete expression evaluation to
True. Different conditions may have been evaluated
as part of different outer expression evaluation in-
stances.

Assertion True Path Coverage (ATPC) All the paths
leading to a True outcome within the expression’s
BDD were taken.

The following sections provide more detailed insights
on what satisfying the criteria mean, then explore a few
properties of interest regarding the criteria. We will be
relying on a simple use-case example to illustrate most
of the points.

3 Example assertions and tri-state truth tables

To help illustrate various points in the following sec-
tions, we will use the following example use-case for
assertions: the doors of an elevator are controlled by
a simple Ada program, and we focus on the subpro-
grams responsible for locking/unlocking the doors.
An elevator door can be in three possible states:

• Locked: the door cannot be opened;

• Closed: the door is closed but not locked, i.e. it can
be opened by a user;

• Opened: the door is opened. It cannot be locked;
only a closed door can be locked.

Only two transitions between these states are invalid:
going directly from Locked to Opened, and the other
way around.
To enforce this constraint, the operations to lock the
door is effective only if the door is Closed; in the other
cases, it does nothing. A natural Nb Errors indicates
the number of errors that have been generated in the
operation ; a failure to lock a closed door is one of the
possible errors, so at least one error is returned if the
final state is not Locked when the original state was
Closed. In Ada 2012, this could be expressed by a
postcondition:

procedure Lock Door
(E : in out Elevator Type ;

Nb Errors : out Natura l )
with Post =>

( i f Door State (E ’ Old ) = Closed then
Nb Errors >=

( i f Door State (E) = Locked then 0
else 1)

else
( Door State (E) = Door State (E ’ Old ) )

and then Nb Errors = 0 ) ;
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For the sake of the example, the unlock operation is not
quite symmetrical: trying to unlock a door that is not
locked also results in an error, which allows a simpler
postcondition:

procedure Unlock Door
(E : in out Elevator Type ;

Nb Errors : out Natura l )
with Post =>

( ( Door State (E ’ Old ) = Locked
and then Door State (E) = Closed )

or else Nb Errors > 0 ) ;

In both cases, postconditions express the invariants
that the corresponding procedure bodies enforce.
Forcing them to False during the test campaign would
mean deliberately introduce bugs in the procedure
code, which would be purely artificial. Keeping them in
the deployed application would still be useful: the viola-
tion of any of these assertions means that the program
cannot guarantee the safe use of the elevator anymore
and the system would stop it and switch to a safe re-
covery mode: e.g. stop the elevator where it is and call
for manual maintenance.

To help illustrate our criteria on this example, we will
resort to tri-state truth tables to synthesize the way ex-
pressions get valued. The True and False possible val-
ues of the conditions or of the expression outcome will
respectively be denoted with “T” and “F”, and condition
columns have an extra “x” possible state for situations
where the condition evaluation is short-circuited. Each
line of the table is called an evaluation vector and is as-
signed a unique number that can be used to designate
it later on.

For the Unlock Door postcondition, using abbrevia-
tions like Pre Locked to denote “the door state on entry
was Locked“, Closed to denote “the door state on exit
is Closed”, and Error to denote “At least one error has
been returned”, we have an expression with three con-
ditions of the following form and its associated tri-state
truth table:

( Pre Locked and then Closed ) or else Er ro r

# Pre Locked Closed Error Outcome
1 F x T T
2 T F T T
3 T T x T
4 F x F F
5 T F F F

4 ATC user level characterization

From the truth table of our example assertion, any of
the vectors #1, #2 or #3 is enough to satisfy ATC on its
own, as they all yield a True outcome for the expression
as a whole.

This is pretty weak on the functional coverage front.
The other two criteria are stronger and deserve each a
more elaborate discussion:

5 ATCC user level characterization

ATCC is explicitly referring to complete expression eval-
uations as those contributing to the criterion fulfillment.
This denotes evaluations that terminate without un-
expected interruptions, typically by possible exception
occurrences during the tests. Indeed, evaluations that
don’t terminate yield no value for the expression as a
whole, so we can’t tell whether the assertion was satis-
fied. These are implicitly excluded by ATC already. The
important extra point about ATCC that deserves being
explicit is that we consider the incomplete set of valued
conditions as not contributing to the criterion.
To illustrate what sets of test may be used to achieve
ATCC, let’s consider the Unlock Door postcondition
and the associated truth table again.
We can see that evaluation #2 yields True and evalu-
ates all the conditions, so is sufficient to achieve the
criterion on its own. #1 alone is not enough since the
evaluation of Closed is short-circuited, and #3 alone
is not enough either since the evaluation of Error is
short-circuited. The definition allows the combination
of #1 and #3 to fulfill the criterion, still, as they both
yield True and evaluate all the conditions overall.
This is immediately stronger than ATC from the func-
tional standpoint:
Indeed, a single test vector allows satisfying the crite-
rion alone: vector #2 which corresponds to Pre Locked
True, Closed False and Error True. This is a very in-
teresting case, which checks that Error is correctly set
on a failed legitimate attempt to unlock a door.
If testing doesn’t check this specific case, it has to
check two cases as a counterpart; one verifying that
Error is correctly set on invalid attempts to unlock a
door that was not locked on entry (vector #1), and one
verifying a situation where the door state transitions
from Locked to Closed as expected in nominal condi-
tions (vector #3).

6 ATPC user level characterization

The use of the expression BDD for ATPC makes it
potentially hard to understand from a user point of
view. This is where focusing on operands combined
by short-circuit operators helps. Indeed, in this case
the set of BDD paths leading to a True outcome cor-
respond to the set of lines with a True outcome in the
tri-state truth table, so figuring out which tests need to
be exercised to fulfill the criteria is straightforward from
the table.
For our example postcondition on Unlock Door, we
can immediately see from the associated truth table
that achieving ATPC requires 3 tests, going through all
of the first three vectors, which are the ones for which
the expression evaluates True.
The gain in strength of functional coverage compared
to ATCC is significant, as the criterion requires exercis-
ing all the cases of relevance.
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Incidentally, however, we notice that Error is not evalu-
ated as part of vector #3. It might seem surprising not
to evaluate a possible error condition in a vector that
contributes to a structural coverage criteria, and here
could be an indication that the postcondition might be
imprecise in conveying all the functional requirements
and might need to be improved.

This last observation, together with the previous com-
ments, illustrates that thinking in functional terms as
part of a structural analysis process can be meaning-
ful and of real interest. It so appears that structural
coverage analysis on contracts can be of significant
potential value for functional coverage discussions.

7 Decisions within assertions and the influence
of coding styles

While assertions aren’t decisions by definition (an
assertion is assumed to only ever evaluate to True
throughout testing, whereas a decision can be ex-
pected to evaluate True and False over successive
tests), assertions can embed nested decisions that
might need to be analyzed on their own. This in-
fluences the amount and kind of testing required, so
is useful to keep in mind when reasoning about the
meaning and characteristics of criteria. Here, we
present an example to illustrate the point and show
how differences in coding style can influence the test-
ing requirements as well.

Consider the postcondition of the Lock Door subpro-
gram in our example. The assertion is of the form:

( i f A
then Nb Errors >= ( i f B then 0 else 1)
else C and then D)

The IF-expression at the top level is Boolean-valued,
so we can construct a corresponding Binary Decision
Diagram for the assertion, and apply ATPC on that dia-
gram (fig. 1).

A

Nb E >= thresh

T

T

F

F

T

C

D

F

F

T

T

T

F

F

F

Figure 1: BDD for Lock Door postcondition

On the other hand, the inner IF-expression is not
Boolean-valued, and so the corresponding two cases
do not directly appear as nodes in that BDD.

Note that short-circuit Boolean operators and then

and or else are really but a specific cases of

the more general Boolean-valued IF-expression con-
struct: A and then B is equivalent to (if A then B

else False), and A or else B is equivalent to (if A

then True else B). This construct exactly captures
the elementary building block in BDDs, which model
the way decisions actually are evaluated in generated
code: the condition at each step selects a path ulti-
mately leading to a True or False outcome. In asser-
tion contexts, paths leading to False are irrelevant, and
do not play a role in the coverage analysis.
Conversely, a non-Boolean-valued IF-expression just
selects a value that will intervene in some other outer
expression such as a relational operator or function
call: either direction of the condition might yield a True
or False outcome; neither direction can be eliminated
in an assertion context on the basis that only True out-
comes are relevant. Consequently, the relevant cov-
erage criteria for an expression that controls a non-
Boolean IF-expression are the usual DECISION COV-
ERAGE and MCDC.

8 Complexity assessment

An interesting question is how many evaluations (tests)
are needed to satisfy our criteria. The regular MCDC
criterion, for example, is known to require no more than
N+1 tests for a decision with N conditions. What would
be an upper bound for assertions?
For ATCC, the complexity is also linear: no more than
N tests are required for an assertion with N conditions.
Indeed, for any well-formed assertion, each condition
is reachable and from this condition there exists a path
to outcome True in the BDD. So for each condition we
can provide a test that evaluates the considered asser-
tion and exits on outcome True. Taking one such test
per condition gives N tests.
However, for ATPC, the complexity can be exponential,
depending on the topology of the BDD. In the study
of equivalence between object branch coverage and
MCDC that [7] provides, a pathological case was pre-
sented where three evaluations were enough to cover
an arbitrarily complex decision for object branch cov-
erage; the same case also shows an exponential com-
plexity for ATPC. Consider the following set {En}n∈N of
Boolean expressions:

• let E0 be a simple condition expression, with its con-
dition denoted C0; then define:

• ∀ n > 0, En = (En−1 and then C ′n) or else C ′′n ,
with C ′n, C ′′n independent from each other and from
any condition in En−1.

Figures 2(a) and 2(b) show the BDD of E1 and E2. For
n > 1 it can be seen there that the two True outcomes
of En−1 both reach C ′n in En and have then two dif-
ferent paths to True; so the number of paths to True
in En is more than twice the number of paths to True
in En−1. This means that one would need at least 2n

tests to cover En for ATPC.

5



C0

C ′1

C ′′1

T T F

T
F

T
F

T F

(a)

C0

C ′1

C ′′1

C ′2

C ′′2

T T F

T
F

T
F

T
F

T
F

T F

(b)

Figure 2: Exponential complexity for ATPC

This example illustrates that exponential complexity
comes from multi-path nodes (nodes with more than
on predecessor in the BDD). On the contrary, when the
BDD is a tree, the complexity is linear: the number of
tests needed to cover it for ATPC is at most equal to the
number of conditions. This is also the exact amount of
tests needed in the case of an assertion that contains
only or else operators.
[7] provides a case study on two industrial projects
showing that multi-path nodes in BDDs are quite rare
(less than 1% of decisions). A similar case study would
be needed for assertions, but this suggests that asser-
tions where the complexity of ATPC would explode are
likely quite rare. In other words, we expect BDDs to be
trees in the vast majority of cases, and ATPC is com-
parable to MCDC in this configuration as covering an
expression for ATPC is exactly the same as taking only
the True valuations of a MCDC coverage.

9 Achievability considerations

A known issue with coverage criteria on Boolean ex-
pressions is the potential inability to achieve coverage
in the presence of coupled conditions. This is in par-
ticular what lead to the refinement of Unique Cause
MCDC into Masking MCDC. The same question holds
for coverage criteria on assertions.
Amongst the criteria that we defined in this paper, only
ATPC can be impacted by coupled conditions. In the
general case, it is possible to build assertions with cou-
pled conditions on which ATPC would not be achiev-
able. The question is whether these cases could be
found in a real industrial system.
First, it must be noticed that such cases do not make
sense in the absence of multi-path nodes. Indeed, with
a tree BDD, not being able to cover a particular path
to True means that one of the conditions cannot be
changed, which would mean that it is useless and that
the assertion is ill-formed.
On the other hand, as seen in the previous section,
multi-path nodes in decisions seem to be quite rare in
industrial application. To have an impact on achievabil-
ity, these rare expressions also have to contain cou-
pled conditions, and these coupled conditions have to

forbid a path to outcome True. This makes this prob-
lematic cases even less likely to appear in real-life ap-
plications. It would therefore be manageable to handle
these with justified exemptions without increasing too
much the workload of the tester.
In that context, we have identified one recurring pat-
tern that requires specific attention. It consists in the
elaboration of an assertion that distinguishes different
subsets or states, for each of which a separate expres-
sion must evaluate True, such as:

Case 1 : expression B must be True;

Case 2 : expression C must be True.

An example of this pattern is the postcondition of oper-
ation Lock Door in the elevator example. In this post-
condition, Case 1 is when the door is closed before
hand and Case 2 is the other cases.
Depending on the way the assertion is expressed,
some of the paths may be impossible to exercise in
which case ATPC would be unachievable.
The problem lies in an implicit coupling between the
predicates denoting each case. Indeed, in general the
cases distinguished in such a requirement are mutually
exclusive.
If the above requirement is formally expressed in dis-
junctive normal form (DNF):
( Case 1 and then B)

or else
( Case 2 and then C)

then ATPC cannot be achieved, because the implicit
coupling makes it impossible to exercise some paths in
the expression (which involve Case 1 and Case 2 both
being True). In this example, the expression’s truth ta-
ble contains:

Case 1 B Case 2 C Outcome
T F T T T

and ATPC cannot be achieved because there’s no way
to get both Case 1 and Case 2 true as part of the same
evaluation. In BDD terms, the path outlined in figure 3
can never be taken.
For MCDC, the issue of coupled condition has been
handled by refining the coverage criterion into the
Masking MCDC variant; in the case of assertions,
something like a masking ATPC could be defined for-
mally but this criterion would be harder to understand
by testers. Here, we would consider an alternative
solution: rewrite the assertion to eliminate multi-path
nodes.
Indeed, note that in the context of formalizing the dis-
cussion of two mutually exclusive states, the unreach-
able path does not make any sense, as it first takes a
branch denoting the first case, and then falls through to
examining the second case. This is a consequence of
the DNF formalization failing to capture the notion that
Case 1 and Case 2 form a partition of the state space.
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Figure 3: BDD for (Case 1 and then B) or else

(Case 2 and then C)

Conversely, using a notation that does capture this fact
yields a BDD where this nonsense path does not exist.
For example, using Ada 2012 conditional expressions,
the discussion of two cases can be denoted as:

i f Case 1 then B e l s i f Case 2 then C

and this time the BDD is a straightforward tree, as de-
picted in figure 4.
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T

T
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Figure 4: BDD for if Case 1 then B elsif Case 2

then C

This notation retains the semantics that the two cases
discussed are mutually exclusive: if Case 1 is exam-
ined, there is no point in examining Case 2. With
this additional semantic information retained, ATCC and
ATPC become equivalent in this case, and are reached
using two tests:

Case 1 B Case 2 C Outcome
T T x x T
F x T T T

In addition, when the discussion of cases is thus ex-
pressed as a chain of conditional expressions, ATPC
can be simply understood as exercising each of the
distinct cases, or states. In other words, when a re-
quirement consists in a partition of input space, and
the requirement is expressed with a notation such as
the above that preserves the notion of that partitioning,
then ATPC essentially consists in separately covering
each subset in the partition.

Note that this is precisely the form that has been
presented for the postcondition of Lock Door. The
SPARK 2014 language also introduces a specific nota-
tion for this pattern in the form of the Contract Cases

aspect, that could have been used as follows:

procedure Lock Door
(E : in out Elevator Type ;

Fa i led : out Boolean )
with Contract Cases =>

( ( Door State (E) = Closed ) =>
Door State (E) = Locked
or else Error ,

( Door State (E) in Opened | Locked ) =>
Door State (E) = Door State (E ’ Old )
and then not Er ro r ) ;

In addition to expressing a postcondition equivalent to
the above chained conditional expressions, this also
states that the set of cases are both disjoint or com-
plete.

10 Related work

As the coverage level required on Boolean expressions
is a typical key differentiator between assurance levels
in various certification standards, there are lots of pub-
lications treating of Boolean expressions in coverage
analysis contexts.
The certification standards themselves, such as [16],
[17] for civil avionics, or [4] for railway, are of course
a primary reference. A very large number of related
papers and documents were written over the years as
the experience of using the criteria in real projects built
up. Here are just a few examples: [3] clarifies some
aspects regarding possible interpretations of the DO-
178CB standard, specifically on the notion of “deci-
sion”. [5] defines possible variants of the MCDC cri-
terion, amongst which masking MCDC was eventually
accepted as valid alternative in avionics projects to
handle issues with coupled conditions [2]. [12], [11]
illustrate what the various criteria can mean in practice
from a user or tool qualification perspective. [6] per-
forms a thorough study of MCDC’s main characteristics
and relationships with other criteria. [19] proposes a
formalization of coverage criteria in Z, and other au-
thors proposed improvements to the traditional deci-
sion related criteria, improving their problem detection
strength while remaining linear with the complexity of
decisions [21], [20].
All these revolve around the notion of decision in DO-
178C parlance, however. To our knowledge there is no
prior publication on the specific set of issues that this
paper proposes to explore, with a focus on assertions
and their possible connection with functional coverage.
Parallels of interest are nevertheless possible with
some connected topics.
In particular, if we consider coverage analysis as a
mean to determine if a testing campaign exercised
enough of a program logic, a parallel is possible be-
tween the concerns we address here and research on
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the testing complements to formal methods. Indeed,
there is an strong duality between aiming at the defi-
nition of a useful subset of tests needed to exercise a
component correctly, based on formal representations,
and verifying that enough testing was achieved thanks
to assertion coverage analysis on the implementation
code.

[1] and [18], for example, introduce a framework where
a formal representation of a component in Z is used to
derive partitions of its Valid Input Space (VIS) so a sin-
gle test within a given partition is representative of the
entire partition. If one translates the VIS partitioning
rules as preconditions, then a set of tests derived from
the partitioning process should in principle match or at
least encompass the set of tests required to achieve
ATPC. As another example [9] presents techniques
based on expression DNF to automate the partitioning
and test sequencing processes.

11 Conclusion and perspectives

In this paper, we discussed the structural coverage
analysis of assertions (Boolean expressions expected
to always yield True at various points of a program),
and the necessity for specific coverage criteria. We
explained why we believe such an analysis is of use in
an application certification context, and proposed the
definition of three coverage criteria as a basis for fur-
ther discussion.

One aspect of interest is the idea that some categories
of assertions can be understood as a formalization of a
program’s functional requirements. We have provided
examples that show how structural analysis on con-
tracts can be interpreted in a meaningful way in func-
tional terms, and thus provide a valuable basis for a
functional coverage analysis.

We believe there is a lot of room for further work on
this topic, in particular to refine the definition of relevant
coverage criteria. Gathering more data from real use
cases on industrial projects would help assessing their
actual usefulness, and would certainly foster improve-
ments. It is also quite possible that defining several
families of criteria could be relevant to address differ-
ent categories of assertions, within the context of con-
tract based programming. For instance, we can per-
ceive that preconditions are very different from post-
conditions, and might thus warrant distinct criteria.

Finally, assertion coverage turns out to be a common
notion in the hardware design verification area, in as-
sociation with so-called Assertion Based Verification
(ABV) systems [8]. It might be interesting to investi-
gate if some of the ideas that led to the definition of
an entire methodology in the hardware domain could
apply to the software area. This would be kind of a
symmetrical idea of the one used in [14], where the
authors note that a categorization of software faults
works pretty well in the microprocessor validation do-
main as well, and leverage this similitude.
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Abstract

A certification process usually consists in analyzing, in a restricted amount of time a,
potentially very large, set of documents that are intended to convince the auditor that the
documented system fulfills all its requirements. The MIMOSA Project presented in this paper
introduces a model driven certification process based on the key concepts of argumentation
step, patterns and composition. The aim is: at first, to structure the documentation provided
as evidences of the good properties of the system, and then to check this structure against
identified argumentation patterns that will help identifying lacks or misuse of elements. Ar-
gumentation step and composition principles as well as a set of patterns for arguing about
real-time properties are given along with their expression in a prototype tool, that offers to
describe the architecture, requirements and argumentation in a common language and then
offers to compute some basic checks on the argumentation structure.

Keywords : Certification, Safety, Real-Time, Model-based System Engineering, Argu-
mentation

1 Introduction

The MIMOSA1 project aims at building a frame of reference for the certification of military
embedded architectures. The goal of this frame is not to design and develop architectures,
but rather to formalize requirements for this kind of architectures and place in front of them
acceptable means of compliance, building a coherent argumentation. This frame of reference
may be used by DGA to assess architectures proposed by industrial companies with respect
to certification standards [5].

The frame of reference includes models of the fundamental concepts of a modular ar-
chitecture, models of the requirements attached to these architectures and a model of the
argumentation of the compliance of the architecture to the requirements. The frame includes
different levels of description from functional to hardware; different facets such as Architec-
ture, Safety and Real-time and different concerns Architecture documentation, requirements
and argumentation.

Section 2 presents the modeling approach, language and tool. Section 3 describes the
argumentation modeling principles, section 4 gives some examples and section 5 concludes.

2 Language Overview

The MIMOSA framework is organised as a three dimensional grid having as dimensions:

• the layer – or level of detail –(function, software, topology, hardware),

1MIMOSA stands for Means of engIneering for MOdelling and analysis of modular embedded aeronautic Systems
and Architectures



• the concern (architecture, requirement, argumentation) and
• the facet (general, safety, real-time).

Facets are a way to focus on domain specific considerations: properties and associated
elements of description. For example, the realtime facet extends the general one by adding:

• specific concepts or attributes to describe an architecture from the realtime aspect such
as best and worst-case execution times of each application of the software level,

• specific realtime requirements such as “Worst Case Latency of function f should be
bounded by time t” at the functional level and

• specific argumentation pattern for example to efficiently convince that an application
worst case response-time is bounded.

Two specific facets are currently handled by the Mimosa framework: safety and real time.

2.1 MIMOSA language internals

The language in which all of those descriptions are expressed should make available to its
users concepts such as a function, an application, a binary code and so on. We call this high
level language the user language. To be able to fully support the user we need some reasoning
capabilities on this user language. Obtaining such capabilities directly on a very rich language
as the one we were about to define a very complicated task and leads to hard to maintain
result. To obtain such capabilities we then started by defining a simpler language, a formal
specification language, called Weird, that offers reasoning capabilities by being translatable
to propositional logic. Then, the user language is described using Weird then inheriting its
reasoning capabilities.

Elements of the Weird language are entity, concept and relation as well as constraint
expressions (with quantifiers). Weird offers a typing system that offers to express that an
entity e is an instance of a concept c, or that a concept sc is a sub concept of a concept
c. Another central notion of Weird is the notion of World that allows modular modeling
by constraining visibility and extent to which properties must apply. A World can contain
Concepts, Entities, Relations and Constraints/properties to be satisfied. A World can derive
from one or several other Worlds; in that case, it has access to all the elements and shall
satisfy all the constraints of the World from which it derives.

The notion of World is used to model facets, layers and concerns. In particular one
world is associated to each layer (function, software, topology, hardware) as well as to some
combination of layers. Those “combination world” mainly contain allocation relations and
constraints that take place between elements of different worlds. For example a constraint like
“every partition (topological concept) is allocated on a unique CPIOM (hardware concept)”
will be expressed in the topological hardware mapping world.

Figure 1: The architecture layers and mapping worlds2

This way the final “user language” – the language from which the final user will take
elements to describe the system under analyses – is defined. Having this formal WEIRD
language offers both the ability to make some reasoning and to ease evolution of the user
language.

2The content of hardware world have been hidden since it would not have fit in the page width.



In our prototype, Weird is translated into propositional logic by applying rewriting rules
(translation is rather direct from constraints expressions, user defined relations are kept as
relations, all typing information becomes relations, world are used to restrict the domains
on which quantifiers are expanded). This way, properties to check are valued by confronting
them to knowledge expressed by the user3.

2.2 Description of the system to analyze

When describing an instance to analyze, newly introduced worlds will derive from the layer,
facet and concern worlds for which they are relevant. For example a world describing the
functional safety requirements of the examined solution will derive at least from the three
corresponding worlds Functional, Requirement, and Safety. This way:

• it will gain access to all the concepts, relations and entities they introduce and

• it will have to respect constraints introduced by all of them.

This derivation may be indirect in some cases: instance functional description world will derive
from Functional, then the above described world may derive from the instance functional
description world to gain access, at the same time, both to general rules from Functional
(indirect derivation) and instance elements and rules from its instantiated version (direct
derivation).

These derivations offer to reuse defined concepts and entities in the new worlds as in
the example in Figure 2 of a Fire Control function (partial) description. The global CdT
function, as well as its enabling applications are directly introduced without the need of
redefining anything. In the same way 4 partitions are introduced in the TopoRef world by
reusing the concept of IMA Partition from the generic Topology one.

Figure 2: Worlds describing a product derives from generic ones

The same applies to constraints, the following requirement that every application is hosted
by a partition is expressed in an intermediate SoftTopoRequirements world as this:

3Though this is not used in the context described in this article, the low level language is then compatible with
SAT solvers tools that can be used to answer different questions.



1 world SoftTopoRequirements
2 d e r i v e s Requirements , Software Topology Mapping {
3 a s s e r t a l l a p p s a l l o c a t e d =
4 f o r a l l e n t i t y a | a : : App l i ca t ion =>
5 e x i s t s e n t i t y p | p : : P a r t i t i o n and h o s t i n g P a r t i t i o n [ a]===p
6 }

This world is then derived by CdTRequirements that will gather all requirements applicable
to CdT. There it is evaluated to satisfied by the prototype tool (this is why it is represented
in green in the screenshot of Figure 3

Figure 3: CdT requirements are gathered in the CdTRequirements world

3 Argumentation principles

When inquiring the certification of a system, the inquirer must provide a certification file.
According to the Ministry of Defence, this should be “A reasoned, auditable argument created
to support the contention that a defined system will satisfy the R&M requirements”[3]. The
exact nature of the elements is not detailed but graphical representation or models are more
and more part of this certification file. For the safety aspects, the Ministry of Defence even
explicitly requires safety cases[4] from which our work is inspired. Anyway the provided
elements tend to grow while the structure, in particular the precise intent of an element or
another, is sometimes missing. At the same time, IMA (Integrated Modular Avionics) is
becoming the standard while its certification offers some additional issues [6].

The goal of the MIMOSA Argumentation facet is to represent graphically the different
means of compliance used to justify the satisfaction of the requirements. The Argumentation
facet organizes the various elements (formal and informal) that contribute to the justification
of requirements.

When coming to represent graphically argumentation, GSN [2] is a reference and MIMOSA
argumentation strongly inspires from it. It also inspires from Toulmin works for underlying
principles [7] and from existing work on assurance cases in the aeronautical domain [1]. In
MIMOSA a generic argumentation step relies on the following concepts:

Claim the property to be justified (will often link to a requirement),

Evidence the facts that will be used to justify the claim (analysis results, test results, expert
knowledge, bibliographical reference. . . ),
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Figure 4: The generic argumentation step

Strategy combination of different evidences in order to justify a claim, is the model counter-
part of “Mean of Compliance”.

Usage Domain domain on which the method is usable

Rationale justifies the use of the method in this particular context

Argumentation patterns are then proposed as a partial instance of this generic step, spec-
ifying subconcepts, known entities, and their necessity status depending on the strategy or
strategy family.

Argumentation patterns can be of different natures: generic (as “Using a software” that
will make mandatory to explicit the usage domain and add a corresponding support to show
its respect) or domain specific (like “Showing that the Worst Case Response Time of an
application is bounded by a value”).

When building an argumentation two mechanisms are then used:

• argumentation step chaining – one claim of a level becomes a support for the next one ;

• argumentation pattern composition – a given step inherits from more than one argu-
mentation patterns.

In this last case, it has to exhibit the union of supports, usage domain and rationale of
its “parents” (see Figure 5). To make sense strategy and claim of the parents should be
compatible, for example “using a software to compute a WCRT bound” would inherit from
the patterns “using a software” and “calculating a WCRT bound”. See the example just
below.

Note that the particular usage that is envisaged here protects us from what could have
been an important issue: the supports consistency. In a general case, both mechanisms
of combination of argument steps proposed just above would have, as an additional task, to
prove that the resulting support set is consistent (in fact, this should also be explored for each
elementary step). Each support is here considered valid (and the real situation consistent),
that means that:

• an elementary argumentation steps having inconsistent support requirements is unusable
(all its supports can not be fulfilled at the same time)

• when combining two steps for which supports have been provided, no inconsistency may
appear.

The first item is one reason – the formal one – why argumentation step merging may not
make sense 4. For example if two argumentation patterns have been written to deal with two
different situations, merging them is useless as no real case would match both situations and
then it would be impossible to fulfill all the supports of the resulting pattern.

Eventually, a global constraint should be that every Requirement written –the system must
have property P– has a corresponding argumentation claim –The system has the property P–

A certification argumentation is complete when every requirement has got a corresponding
assert with proper method, supports and some times rationale and usage domain. This can

4The other reason why a argumentation step merging may not make sense is that it does not make sense from
a business point of view.
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Figure 5: The argumentation step composition

be automatically checked by a tool then guiding the certification authority to missing asserts
or argumentation steps.

4 Argumentation examples

“Using a software” is a generic pattern that mainly adds the constraint of exhibiting the Usage
Domain (that is optional by default). This constraint activates another one that comes from
the generic argumentation step telling that if a Usage Domain is attached to the Strategy
then at least one support must show conformance to this usage domain.

The second argumentation pattern introduced is domain specific: “assessing an application
maximum Worst Case Response Time”. Such a claim needs that this WCRT is calculated,
and relies necessarily on the computation of the Worst Case Execution Time of each involved
applications in the partition hosting the evaluated one, and that the preemption policy and
the period are known (links to architecture and realtime facet products will help precisely
determine the relevant set of applications, as well as, if filled, automatically check preemption
policy and period). A graphical representation of this pattern can be found in Figure 7.
A constraint is added to ensure that, at least, WCET, preemption and period supports are
provided if this strategy is used.

The third argumentation pattern is the composition of the two previous ones: “Using a
software to assess an application maximum Worst Case Response Time” (see Figure 8). It
then inherits from all the supports from the two previous ones, as well as the Usage Domain
mandatory constraint coming from “Using a software”.

5 Implementation and usage

Today, qualification/certification of new systems becomes more problematic due to several
causes, the more invoked being the system complexity increase that is observed and a more
practical one being the size of certification teams.

A less trivial reason is the evolution of the way system are developed: the development of
a system is no more made from scratch with every subsystem developments made in consis-
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tency with the unique goal of integrating the system under development. On the opposite, a
component based approach is more and more intensively used with a lot of reuse and “generic”
components integration. This is strongly involved in the loss of structure of the certification
file because part of the argumentation is then made either in another context (reuse case) or
still at a general level (generic components case). Documentation provided to certification
team is then not so organized, the same information may appear in many documents (strongly
redundant documents may be provided to support the same kind of property but for different
parts of the system due to the reuse of certification supports in another context and/or the
pre-qualification steps). The certification file volume then grows up and, on the opposite of
very redundant information, some precise information may become hard to find.

Formalizing the “structure” of the argumentation is the answer we promote in this work,
by relying on the introduced argumentation pattern and combination mechanisms.

Apart from the formal principles enunciated in the previous section, the way one may use
these argumentation patterns typically varies with the level of abstraction. Technical, low
abstraction level patterns may benefit from formal inputs that a tool is able to manage, and
provers or solvers can make automatic or semi-automatic reasoning from these argumentation
steps. On the other extremity, high abstract level patterns are more likely to require human
understanding and supports will often be links to heterogeneous documentation elements. In
that last case, argumentation patterns must be seen as “check lists” and tooling will mainly
guide the user to missing information, when some supports, rationale or usage domain are
linked to no elements.

Classical envisage process of argumentation pattern is that the certification authority



Figure 7: bounded WCRT argumentation pattern

Figure 8: bounded WCRT by software computation pattern

shares validated patterns with industrial entity willing to obtain certification of a product.
These patterns will act as guides for building a certification request for the industrial entity
while supporting the analysis work of the certification entity, then being profitable for both.
Capitalization is also made easier: certification authority builds a new pattern from analyzing
a certification request that is not yet formalized this way, and then after an internal validation
phase, add this new pattern as a new approved means of compliance. Industrial entity already
having strong background in certification may also formalize their way of asserting a given
property, and submit it to the certification authority as a new “standard” means of compliance
–i.e. a new argumentation pattern– (this formalizes capitalization of the Certification Review
Item process often used today when new approaches or technologies are to be evaluated).

6 Conclusion and perspectives

A Model based framework for certification process has been presented that offers to describe
and analyze in a common language the system description, requirements that are put on it,
and argumentation that is delivered to show the system conformance to its requirements.

Some argumentation patterns have been produced as well as a composition scheme that
offers to build an instance of argumentation tree by mainly composing building blocks from
rather domain specific ones to very generic ones.

A prototype has been developed to illustrate this approach, it has been tested on a case
study containing two functions Fire control and Terrain following (then decomposed in several
applications) allocated to a reference architecture with IMA capabilities ; and DGA TA
envisages to use the approach on a real case study based on their certification activities.
Nevertheless the exact way the methodology presented in this paper should take place is
not yet completely defined, a shared tool between certification experts and candidate to
certification would clearly be a good support but might not be realistic for tomorrow, an
internal tool for the certification team that offers to build the argumentation based on the
supports provided and some question/answer with the certification candidate may already
help the certification team to organize, keep focused on the objective, and gain confidence in



the decision they will eventually make.
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Abstract: 
Safety standards in most domains (aeronautics, automotive, industry, nuclear, railway, space) consider software 
(and more generally, design) as a deterministic artefact. They propose a global rationale combining probabilistic 
evidence on hardware random failures and deterministic evidence on systematic causes of failures including 
software. In a context where software is more and more pervasive in all systems, and where it is sometimes 
advocated that software complexity and size seem to provide some relevance to a probabilistic view of software 
behaviour, several initiatives suggest to change the way to address software in the global system safety 
assessment. This is a complex question with many facets. Among them the authors propose to discuss in the paper: 

- foundations, relevance and limits of probabilistic assessment for software, 

- relationship between software criticality category, (or class, DAL/SIL/ASIL/SSIL etc.) and probabilistic safety 
objectives, 

- the rationale for software diversification and to what extent probabilistic assessment is part of it. 

Keywords: software statistical testing, probabilistic system safety assessment, rationale of safety standards, DAL, 
SIL, ASIL, SSIL, cross-domain comparison. 

 

1. Introduction – Position of the paper 

Over the years, it has been recognized on the one hand that failures of safety systems may be due not only to 
random failures but also to "systematic causes" (be they called design faults, development errors etc.), and on the 
other hand that this kind of causes are less amenable to probabilistic assessment than e.g., random hardware 
failures. This is acknowledged and addressed by most existing safety standards under the form of the combination 
of quantitative (probabilistic) evidence and qualitative (deterministic) evidence, as appropriate regarding the various 
kinds of causes (see e.g., [Baufreton et al. 2010]). 

The increasing role and complexity of software in systems, including safety critical ones, seem to make probabilistic 
evaluation of software reliability and statistical testing more and more attractive for some industry actors. They 
propose to at least modify the equilibrium between the various kinds of evidence in the global assessment 
framework (quantitative vs. qualitative, probabilistic vs. deterministic, etc.). 

Originally motivated by technical discussions held within standardization committees, the work presented in this 
paper was undertaken by a French cross-domain group working on safety standards(1). Software probabilistic 
assessment and statistical testing have been investigated for decades and a comprehensive bibliography would 
encompass hundreds of references. Starting from [Strigini et al. 1997], [Rushby et al. 2014] and [Ladkin et al. 2015], 
we address among the many facets of this complex matter the following aspects: 

- whether and to which extent probabilistic assessment could be valid for software, particularly for safety critical 
systems, 

- which relationship could exist between software criticality category (or class, DAL/SIL/ASIL/SSIL etc.) and 
probabilistic safety objectives, 

- whether the benefits of solutions such as software diversification could be amenable to some quantification, 

1 Originally created in 2009 as part of the "Club des Grandes Enterprises de l'Embarqué" this working group on safety standards is now attached 
to Embedded France. It regularly publishes the results of exchange and common work between its members, experts in safety and related 
standards covering as many domains as aeronautics, automotive, industry, nuclear, railway, space. See e.g., [Baufreton et al. 2010], [Blanquart et 
al. 2012]. 

1 

                                                      



2. Technical Background  

2.1. What is software statistical testing? 

The characteristic feature of software statistical testing is probabilistic generation of test data. There are various 
purposes for doing so, and various ways of doing so. Following [Thevenod 91], [Thevenod 95], randomness on 
inputs may be used to find faults or to assess dependability at the end of the verification stage. In the former case, 
coverage criteria are the outcome of the statistical testing activity, as opposed to values of probabilities in the latter 
case.  
The coverage criteria are based on activation counters logging how the items of the software are exercised by the 
generated input data. Depending on the nature of these items, statistical testing is qualified as structural or 
functional:  

• structural if the items are implementation-oriented (e.g. control flow-graphs),  
• functional if they are more specification-oriented like state-transition graphs or data-flow graphs.  

 

When randomness is “blind”, i.e. when the random input profiles are generated by means of uniform probability laws 
carrying no frequency information related to actual usage or operation, statistical testing is named random testing.  

Random testing applies exclusively to statistical testing devoted to finding faults and fault removal. Random testing 
cannot be used for software dependability assessment. To support software dependability assessment, the 
randomly generated input data must be statistically consistent with the operational profiles. 

It is sometimes claimed that statistical testing may support fault forecasting based on software reliability growth 
models, in addition to fault finding and removal. 

 

Assessing Dependability

Specification-oriented Implementation-oriented
Functional Statistical Testing Structural Statistical Testing Statistical Testing

Structural Coverage
Finding  Faults

Event Probabilities

 
Table 1: Types of statistical testing 

 
In this paper we exclusively focus on statistical testing for software dependability assessment.  

 

2.2. What is “software failure”? 
A given piece of software, intended to perform a specified function, may be affected by faults in its functional 
requirements or by errors in the development process. When the inputs activate a fault, the computed outputs differ 
(deterministically) from the intended values and a system failure may occur. 

While at random dates hardware components may lose some functional capability, software faults, when present, 
are present from the very beginning. The wording “software failure” inherited from hardware, electrical and 
mechanical engineering is convenient but misleading. When some definite inputs activate a fault into malfunctioning 
it may be perceived at system or user level as a random failure event. But “randomness” is present only in input and 
execution context variability, in other words in the operational profile (OP). 

Whatever “software failure” event is quantified, a trigger of system safety, system reliability or system availability 
events, the software2 to be assessed is a deterministic transformer of the inputs, which vary with some randomness 
according to the actual OP, hence the critical importance of OP modelling accuracy to ensure validity of the 
probabilistic assessment. This is the reason why we illustrate sensitivity to OP modelling by an example. 

 

2 Since our primary concern is safety critical software, software is assumed deterministic 
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2.3. Probabilistic modelling of software dependability assessment 

A probabilistic model consists of a random experiment repeated with independence and observed by means of 
events that must meet Boolean algebraic properties. Then a probability measure is defined on these events [Rényi 
2007]. 
 
In case of software statistical testing the random experiment is made of five steps, and is repeated N times where N 
is the sample size: 

• Set-up of the program in a state common to the N experiments and ensuring independence between them. 
The more complex the software and its execution environment, the harder to meet this compelling 
requirement, 

• Random generation of an input sequence (IS), consistent with OP probability law. OP denotes the set of all 
possible input sequences submitted to the program at operation-time, plus frequency information: a 
probability density function (pdf) defined over the set of all possible input sequences. In practice OP, as a 
probability law, is a very complex object: a high-dimension support set, plus a multivariate function defined 
on this set. The duration of one input sequence is that which is relevant for the quantified event: constant or 
variable, cycle, minutes, missions; hours, years etc. As previously mentioned, random generation does not 
mean random testing since the probability laws used on the program inputs are not all uniform. Some may 
be uniform, but this should not be a “by-default choice” because of lack of information but by explicit choice 
to ensure adequacy3 with operational conditions. 

• Run of the program with the generated IS, 

• Event evaluation of the run. An event is a predicate defined on some observation variables common to all 
runs (program I/Os, internal variables, environment variables etc.). Depending on how far the specification is 
formalized and amenable to execution, the information gathering process to evaluate the event-predicate is 
automated or not. The event-predicate is the test oracle of deterministic testing, 

• Decision. In the end, the random experiment is summed-up into a yes/no decision status on the event-
predicate. This status is the run-specific realization of the Bernoulli random variable D associated to the 
event. It is a binary random variable. Its probability law is defined by: 

o Pr(D=0)=p, where p is the parameter of the Bernoulli law of D. We assume that the event associated 
to D is stated so that “false” means “problem occurrence”. Probability p is the risk of “software 
failure”, which has to be estimated by means of the N-sample of independent runs. 

o Pr(D=1)=q=(1-p) since the two events are exclusive and complementary. The realization of D at run 
n in N is like tossing a coin. Probability p is not necessarily very small, i.e. that of a rare event. It is 
the limit of C0/N where C0 is the number of (D=0) events in the N runs. 

 
Once C0 is known, it is not possible to compute p from N and C0 only. One can choose p= C0/N, which is the only 
sensible choice available. But another N-sample of runs would have given a different count C0’. Hence the computed 
p would fluctuate if we repeated the building of samples made of N runs. 

This problem is overcome by standard interval estimation of the parameter p for the binomial law of parameters N 
and k=C0 associated to D. The binomial law is the probability law of the number of heads (resp. tails) observed after 
tossing N times the same coin of probability p. Handling the random fluctuations of C0/N over repeated N-run-
samples is analytically tractable. 

Given an accepted risk of error on the computed p because of performing a unique N-run-experiment (this is a 
design-office risk, usually noted α, whose value is commonly chosen between 10% and 1%), one can compute an 
interval in which the true value of p is likely to lie. The probability of the design office event “the true value is not in 
the computed interval” is α. So the confidence on the interval is (1 – α). In the example of section 2.5 that illustrates 
the sensitivity to OP and the robustness issue, we took α = 1%. 

 

3 Validity or accuracy might be preferred as synonyms  
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2.4. Probability of fault freeness 

Up to now, we did not address the quantity of faults in the software. We did not consider if there are any, nor how 
many they are and where they are. We restricted ourselves to an external view, just counting the discrepancies of 
the program’s behaviour when observed through events and N runs. 
 
Statistical testing is sometimes related to this second question of the quantity of residual faults in a piece of software. 
[Rushby et al. 2014] proposed a conceptual framework to encompass both issues: 

• development assurance efficacy, that is estimating the likelihood of existence of residual faults in spite of a 
rigorous development, and possibly evolution of this likelihood over time (software reliability growth models), 

• probabilistic software assessment, a snapshot view of software reliability, without the explicit estimation of 
the quantity of residual faults.  

 
[Rushby et al. 2014] aims at bridging the gap between deterministic software correctness and probabilistic system 
safety. The authors attempt to define the probability of software perfection (fault freeness) and the probability of 
software failure under “randomly selected demand”. They state the formula: 

Pr(Sw Fails”)= 
Pr(“Sw Fails” | “Sw is fault-free”).Pr(“Sw is fault-free”) + 
Pr(“Sw Fails” | “Sw is not fault-free”).Pr(“Sw is not fault-free”). 

 
which we abbreviate in: 

Pr(SF)=Pr(Sc).Pr(SF|Sc) + Pr(Snc).Pr(SF|Snc) 
 
Consistently with the event evaluation stage in the random experiment definition (cf. .section 2.3), we interpret the 
notion of “Software Failure” in the following way: it assumes the existence of an oracle (computerized or human-
based) over the observables of software Sw, and the existence of a set of selected runs that may violate this oracle. 
‘Sc’ means ‘S is correct (fault free)’, and ‘Snc’, non correct, is its negation. The formula is based on the total 
probability theorem for the “fault-free” vs “not fault-free” alternative. 
 
We question the relevance of the concept underlying Pr(Sc) and Pr(Snc), in practice at the very least. In any case it 
is true that a fault-free software cannot activate a failure, so the conditional probability equation Pr(SF|Sc)=0 holds, 
and the formula simplifies to:  

Pr(SF)=Pr(Snc).Pr(SF|Snc) 
 
In [Rushby et al. 2014] different ways to estimate or upper-approximate Pr(Snc) are discussed, attempting to take 
into account the influence of development assurance levels (DAL, SIL, ASIL, SSIL). In 2.2 and 2.3 we tried to define 
Pr(SF|Snc) precisely and we sketched out how to compute its estimate using binomial parameter estimation. 

We would like to underline that “randomly selected demand” has no intrinsic meaning: does it mean e.g., conformant 
to uniform laws on the inputs, to normal laws, to any arbitrary law on some physically significant combination of 
some inputs to be estimated in operation?  

As already mentioned, Pr(SF) is critically dependent on OP, the probability law that drives the inputs to software 
[Strigini et al. 1997]. The Ariane 501 accident provided a spectacular example of the critical dependency of Pr(SF) 
on OP: a range change on a very single parameter (the horizontal velocity) and Pr(SF) jumped from ~0 to 1.  

A more precise simplified formula making explicit the dependencies with respect to OP would be: 
POP(SF)=P(Snc).POP(SF| Snc) 

 
 

2.5. Robustness of software probabilistic assessment 

As reviewed in [Ladkin 2015], there are many difficulties to overcome for functional statistical testing to be performed 
in a valid manner. We would like to underline an additional one: the possible instability, and hence absence of 
meaning, of the estimated probabilities with respect to great, or even tiny, variations on OP probability density 
function (pdf). 
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The example program is derived from the famous Bertrand’s paradox [Rényi 2007]. It takes as inputs the 
coordinates of two points in the plane. It checks whether these points lie on the unit circle centered at the frame’s 
origin and whether the length of the chord defined by the two points is greater than the side length of the encircled 
equilateral triangle. This geometric property is named (P). The chords meeting (P) are colored green, and the other 
ones are colored red. 

function [status]=program(x1,y1,x2,y2) 
epsilon=0.01; 
R=1; 
side=sqrt(3); 
  
if abs(x1^2 + y1^2 - R^2) < epsilon &&  
   abs(x2^2 + y2^2 - R^2) < epsilon,  
   if sqrt((x2-x1)^2 + (y2-y1)^2) > side,  
        status = 1; 
   else status = 0; end; 
else  
    status = -1; 
end  

Figure 1: The source code of the program (distance computation and thresholding) derived from Bertrand’s paradox 

 
Figure 2: Functional statistical testing of (P) using uniformly generated random chords on the unit circle  

 
We then use six different methods (D1 to D6) to generate the uniformly spread points over the circle (the ends of the 
chords). They only differ in the geometric construction of the points (Cartesian or polar coordinates etc.), all the 
random variables are uniformly distributed over their range ([-1,+1], [-π, + π], etc.). Two sample sizes are used 
(1 000 and 100 000). The results of the interval estimation of the binomial parameter at 99% confidence level for the 
statistical validity of (P) are the following: 

 
Table 2: the estimated probabilities of (P) for six different interpretations of “uniform” in the definition of the 

operational profile and two sample sizes. Pe is the estimated probability p. 
 
The probability estimate Pe ranges from 0.33 to 0.50, from 1/3 to 1/2, which is a surprising large variation when the 
six OPs that drive the sampling processes are expected to be similar enough to be considered equivalent. They are 
all eligible interpretations of “uniformly spread on the circle”. Then, what is the meaning of these probabilities if they 
fluctuate so much for nearly undetectable reasons, uncontrollable in software verification practice? 
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2.6. Estimation of OP distribution laws 

Example in section 2.5 illustrates the extreme sensitivity of software dependability assessment to the OP-pdf. 
Changes of OP-pdf have first order influence on POP(SF| Snc) even for a program as trivial and regular as that of 
2.5. 

But even worse, when no change is intended on the law (let’s say “uniform” as in 2.5), the way of building the test 
data generator conformant to this law leaves room to tiny degrees of implementation freedom that may have also 
first order influence on the estimation.  

Unfortunately it is so whatever confidence level α is chosen. It is not a matter of estimator convergence and 
precision depending on N and α. Even with very small values of α (let’s take 10-5) and very large samples, the 
middle of the intervals can have chaotic jumps with respect to seemingly non significant changes in the 
implementation of the random generator. 

This has consequences on qualification of COTS by proof in-use and service history. Extreme care must be taken as 
to the sensitivity of the computed probabilistic dependability indicators with respect to OP variability between the first 
and second usage context. 

2.7. References to probabilistic software assessment in safety standards 

Some standards such as EN 50128 refer to statistical testing as a possible means of software dependability 
assessment. Statistical evaluation is also referenced in an informative annex of part 7 of [IEC 61508] which states: 

“A probabilistic approach to determining software safety integrity for pre-developed software”. The text of this annex, 
now 17 years old, is very misleading. There are indications that very complex software such as operating system 
could be evaluated. This is not possible due to the very strict requirements applicable to operational history and data 
collection. These requirements are far beyond any practical application for such software. These critical aspects can 
remain unnoticed by a reader not deeply acquainted with the required mathematical statistics. 

Furthermore, the state-of-the-art has significantly evolved since the references quoted in the standard. There is thus 
a clear need to reshape this text, clarify its mathematical foundations and define its possible scope of application. 

Statistical testing is also mentioned in informative annex E of [IEC 60880]; anyway, this standard states that "The 
validity of the calculated pfd depends upon the similarity of the profile of the test inputs to the profile of the actual 
inputs experienced by the system in operation. If (...) used on an unrealistic operational profile (...) a pfd will be 
estimated that may be very different to the actual system availability that would be obtained in active use. This is a 
fundamental weakness of the statistical testing approach as it is generally very difficult to accurately determine the 
operational profile that a system will experience in use, and this is particularly true for systems with large numbers of 
inputs." 

The other standards considered in this paper (cf. References) do not resort to statistical assessment of software 
quality. 

3. Software reliability and DAL/SIL/ASIL/SSIL 

Given this setting, can we argue some link between development assurance levels and software reliability?  

In system safety engineering, the probabilistic safety objective assigned to an entity determines its DAL by means of 
domain specific regulatory tables [Blanquart et al., 2012], [ED79A/ARP4754A], [EN 50129], [IEC 61508], [ISO 
26262]. The converse is irrelevant, probabilities cannot be derived from DALs. 

Since probabilities drive DALs at system level (resp. SIL, ASIL or SSIL in automation, automotive and railway), 
software items included, the question is “why not assigning DALs to legacy software or COTS by means of reliability 
measurement?” This would be some sort of reverse-engineered DAL, substantiated by product assessment instead 
of process assessment. 

In process automation, some equipment and software vendors tend to lobby this way. In aeronautic, space, railway, 
and nuclear, rigour of component development is explicitly stated in standards as a contextual notion. It is system 
dependent, not specific to the component.  

Component reuse or COTS use from system to system without dedicated component contextual evaluation, has to 
be performed with care. Masking system dependency, a reverse engineered DAL/SIL/ASIL/SSIL would be 
dangerously misleading. 
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4. N-version programming and system safety  

4.1. Behavioral view .vs. probabilistic view 

In all industrial domains it happens that hardware components reliability is too low to meet the catastrophic event 
probability objectives with single channel architectures. Duplex or triplex architectures introduce redundancies, 
possibly with hardware dissimilarity, to favour failure independence and thereby meet the quantified rareness 
objectives as low as e.g., 10-9 per hour or 10-5 failure on demand. 
 
Because of the influence in the software arena of these compelling architectural patterns, or may be for the sake of 
uniformity in probabilistic safety and reliability assessment, there is some inclination towards quantifying “software 
failures”, and managing their statistical independence.  

In addition, since DAL/SIL/ASIL etc. may be seen as process-based means to ensure quantified safety objectives 
over all items, including software, there are candidate probabilities for software failures at hand: that of the regulatory 
tables such as 10-9/h for ASIL D in automotive, or 10-5/h for DAL C in aeronautics etc. As mentioned in §3, the 
DAL/SIL/ASILs ensue from or may be linked to probability objectives. 

Assuming that system and software development assurance meet their objectives, the probability of all “failures” of 
software S could be uniformly upper-bounded by the regulatory value associated to its DAL/SIL/ASIL. 

But even then, even with these sensible but disputable probabilities for ‘software failures’, software dissimilarity 
would not be motivated by search for partial or complete statistical independence, at least for safety critical 
software4. 

For safety critical software, dissimilarity, also named N-versions programming, aims at architectural and behavioural 
objectives. The aim is to avoid single-cause catastrophic failures initiated by software (or double-cause in space 
domain). Dissimilarity copes with possibility of software-initiated catastrophic behaviours, not quantity thereof. It 
resorts to common cause analysis, for catastrophic effects caused by single (or double) residual faults in 
specification or implementation. 

A 1-version piece of software mapped on k hardware redundancies may generate common cause failures in two 
ways: 

1. On its own, when its k-replicated behaviour turns out to be catastrophic at system level, 

2. As a coupling influence over the k hardware replicates, which may no longer be independent initiators (both 
causally and statistically), in spite of their possibly independent constituencies. 

The first one is addressed by software development assurance, which encompasses formal methods to tend to 
elimination of correctness faults (conformance defects in the wording of standards). 

The second kind is addressed by a set of best engineering practices to isolate the software behaviour from the 
execution platform, i.e. from any other influence than its specified inputs, initial state, and configuration parameters. 
Isolation best practices are detailed in the next section. 

 

So in the setting of safety critical systems, N-version programming is advocated, possibly imposed, either because 
of confusion with hardware and plant architecting, or because of silent doubt on process assurance’s efficacy for the 
highest criticality levels. 

 

4.2. Conditions for effective 1-SW k-HW redundancies 

We consider a unique piece of software replicated on k hardware redundancies, which may be dissimilar or not. Are 
there conditions to ensure independence of hardware failures in spite of the potential common cause failure created 
by software uniqueness? 

4 Dealing with lower system/software criticalities (e.g. maintenance functions and system reliability).is another issue 
outside the scope of this paper. 
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Two-way isolation of the application software from its environment meets these conditions: 

• No influence of the environment (operating system, hardware/software integration, etc.) on the functional 
behavior of the application layer. It must depend exclusively on its specified inputs and initial state. 

• Conversely, no influence of the application software on the operating system, the execution platform, and 
more generally any external item other than the specified outputs. 

 

4.3. Conditions for effective k-SW k-HW redundancies 

In case of k-version programming over the k hardware redundancies, one may distinguish two situations: 
• k-version at implementation level only, 
• k-version at specification level and implementation level. 

 
The intended meaning of specification here includes system requirements allocated to software, software high level 
requirements, functional requirements, design and low level requirements. 
Considering k-version implementation to enforce software failure independence, [Knight et al. 1986] provided 
experimental evidence of non-effectiveness. Moreover, as software development methods significantly improved 
since the late 80s (model-based design, automatic code generation, model-checking), correctness of implementation 
is not the major concern. 
In spite of software engineering progress, validity and completeness of system and software specifications remain a 
major issue. When possible, diversification at specification level would be beneficial. But it is most often than not 
very difficult to state the same algorithmic problem in two actually different manners, and then prove that the two 
formulations define the same set of expected behaviors… 
 
Functional diversity (provision of different functions, e.g. based on different physical phenomena, to achieve the 
same safety objective) is even stronger than specification diversity, and is used in nuclear, space and other 
domains. 
 

5. Conclusion 

We tried to delineate some border lines in system and software safety assessment, mainly deterministic vs. random, 
behavioural vs. statistical. 
These border lines are here and there left implicit in the standards, possibly because of some subtleties in their 
rationale, possibly also because of the limits of current engineering methods and tools. 
 
We mainly focused on the validity conditions of probabilistic “software failure” estimation and on two system level 
aspects of probabilistic software assessment: design assurance levels and n-version programming. The validity of 
the operational profile distribution law and the sensitivity, possibly chaotic to this law, seemed to us the main 
impediments to probabilistic assessment of software dependability (not even mentioning the well-known difficulties 
related to the needed computation effort and time for ultrahigh reliability software, definitely an important issue as 
well though not addressed here). 
Unfortunately, these impediments are even more hindering as software complexity increases, whereas statistical 
testing is sometimes advocated as an opportunity for greater cost effectiveness on very large software. 
 
Driven by the increasing complexity of software and the trend toward ubiquitous systems of systems, there is some 
incentive to grant credit to statistical software assessment in safety standards under revision. 
We explained why we remain extremely cautious about the validity of computed probabilities related to “software 
failures” and why we feel some danger in such a trend. 
Basically, we reject, for ultrahigh reliability software, a move towards more statistical assessment against less 
development assurance. However, such a move may be debatable on low reliability software. 
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7. Glossary 
ASIL Automotive Safety Integrity Level 
COTS Commercial Off-The-Shelf (component) 
DAL Development Assurance Level 
OP Operational Profile 
PDF Probability Density Function 
PFD Probability of Failure on Demand 
SIL Safety Integrity Level 
SSIL Software Safety Integrity Level 
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Abstract—The avionics standard AFDX has been introduced to
provide high speed communication for new generation aircraft.
However, this switched network is deployed in a full redundant
way, which leads to significant quantities of wires. To overcome
this limitation, a new avionic communication network, called
AeroRing, is proposed in this paper to decrease the wiring
weight, while guaranteeing the required performance and safety
levels. AeroRing is based on a Gigabit Ethernet technology
and implements a daisy-chain wiring scheme on a Full Duplex
ring topology. First, the main features of such a proposal, and
particularly the QoS and robustness management, are detailed.
Then, numerical results of some Performance Indicators (PI)
are illustrated to highlight its ability to guarantee the avionics
requirements.

Keywords-Avionics, Real-Time Ethernet, Ring topology, QoS,
Performance, Safety.

I. INTRODUCTION

The inherent complexity and bandwidth requirement of
avionics communication architectures are increasing due
to the growing number of interconnected end-systems and
the expansion of exchanged data. The Avionics Full Duplex
Switched Ethernet (AFDX) [1] has been introduced to provide
high speed communication (100Mbps) for new generation
aircraft. However, this switched network is deployed in a full
redundant way, which leads to significant quantities of wires,
and thus increases weight and integration costs. For instance,
the A380 contains 500 km of cables [2].

To cope with these emerging issues, an avionics
implementation reducing wires will clearly improve the
efficiency and reliability of aircraft through decreasing the
integration complexity, and reducing fuel consumption and
maintenance costs. Therefore, a new avionic communication
network, called AeroRing1, based on a Gigabit Ethernet
technology and implementing a daisy-chain wiring scheme
on a Full Duplex ring topology, is proposed in this paper to
enhance performance, while guaranteeing a high safety level
for avionics applications.

Nowadays, Ethernet technology is considered as one of the
most cost effective solutions allowing scalable and arbitrary
topologies, and supporting high speed communication and
Quality of Service (QoS) requirements. Various approaches
have been proposed to guarantee real-time communications

1Aeroring is co-funded by the European Union. Europe is involved in Midi-
Pyrenees through the European Funds for Regional Development.

on top of Ethernet. The most relevant Real Time Ethernet
(RTE) profiles, supporting ring topology and cited in IEC
61784-2 [3], have been described in [4]. However, most of
these existing solutions are optimized for specific use cases
and present some limitations in terms of:

• resource utilization efficiency, since concurrent access
to the medium is generally not allowed due to their
implemented control mechanisms, e.g., master/slaves or
TDMA;

• flexibility, as only pre-planned cyclic communications
are enabled, and require an efficient synchronization
protocol;

• robustness management, because of the centralized fault
management, classically provided by the master or
network manager, which is considered as a central point
of failure.

Hence, the main contribution of this work is the
specifications of a new RTE protocol, AeroRing, which
bridges the gap between existing RTE solutions, supporting
ring topology, to enhance the resource utilization efficiency,
the system flexibility and robustness management; in addition
to guaranteeing the key requirements of safety-critical
domains, such as avionics.

In the next section, we review the most relevant RTE
solutions supporting ring topology and relate them to
our proposal. Afterwards, the main innovative features of
AeroRing, and its basic functionalities including the QoS and
robustness management, are detailed in Sections 3 and 4,
respectively. Finally, in Section 5, some numerical results on
performance and reliability indicators of such a proposal are
presented, to highlight its ability vs avionics requirements.

II. RELATED WORK

During the last two decades, a wide range of RTE solutions
have been proposed by industrials and academia. The most
relevant ones have been cited in the document IEC 61784-2
[3], which in addition introduces a set of Performance
Indicators (PIs) to evaluate the RTE networks abilities. In this
section, we first describe the most effective PIs and the main
requirements to fulfill for safety-critical applications. Then,
based on these requirements, we conduct a benchmarking of
AeroRing and the most relevant IEC profiles supporting ring



Protocols Costs Reliability Availability Performance Complexity Ethernet Compatibility
EtherCAT High Medium High Very High High No

PROFINET IRT High Medium High High High No
Ethernet/IP with DLR Medium High Medium Medium Low Yes

AeroRing High High Very High High Low Yes

TABLE I
BENCHMARKING OF RTE SOLUTIONS SUPPORTING RING TOPOLOGY

Characteristic EtherCAT PROFINET IRT EDLR AERORING
Rate (Mbps) 100 100 100 1000

Topology Bus or ring Bus or ring Daisy-chain ring Daisy-chain ring
Media 100Base-TX 100Base-TX 100Base-TX 1000BASE-TX

Control Mechanism Master/slaves Master/slaves DLR Event-triggered with SP policy
Robustness management centralized centralized centralized distributed

QoS management no no yes yes
Standardization Open standard Open standard By OADV Open specifications

Pros On-the-fly transmission Cut-through transmission Efficient faults detection Cut-through transmission
Short transmission cycle Short transmission cycle QoS Management Short transmission cycle

QoS Management
Distributed Fault Management

Cons Specific devices Specific devices Complexity due to integrated switches Not standardized yet
Central point of failure Central point of failure High latency

TABLE II
SPECIFICATIONS COMPARISON OF RTE SOLUTIONS SUPPORTING RING TOPOLOGY

topology.

A. Performance Indicators and Requirements

Among the specified PIs in [3], we consider the following
main ones:

• Maximum Delivery Time, indicating ”the time needed to
convey an APDU containing data (message payload) that
has to be delivered in real-time from one node (source) to
another node (destination)” when considering the worst-
case scenario.

• Fault Detection Time, indicating the maximum time
needed to all nodes to be aware of failure.

• Redundancy recovery time, indicating ”the maximum
time from failure to become fully operational again in
case of a single permanent failure”.

Furthermore, we consider an additional PI, which is the
maximum backlog to evaluate the memory utilization within
network components. Numerical results concerning these
aforementioned PIs of AeroRing are illustrated in Section V.

In addition to these PIs, RTE networks must fulfill a set
of key requirements, which reveal particularly effective for
many safety-critical applications, and particularly for avionics.
These requirements concern both technical and costs aspects.
The technical requirements are mainly the timeliness and the
accuracy of delivered data, in addition to the reliability and
availability of the communication network. Furthermore, the
choice of the RTE solution shall be efficient to meet the design
requirements for the least amount of money. Therefore, the
IEEE802.3 compatibility, a minimized configuration effort and
reduced implementation costs are among the most important

issues to guarantee. These requirements will be considered to
benchmark AeroRing against the most relevant IEC profiles,
supporting ring topology and cited in IEC 61784-2 [3].

B. Benchmarking Most Relevant IEC profiles

Among the RTE solutions in [3], there is a first class with
an implementation at the network layer, e.g., P-NET, V-NET,
Modbus-RTPS and Ethernet/IP. These solutions are usually
easier to implement and configure, but they lead at the same
time to important latencies (about 10ms), which makes them
more effective for soft real-time applications. Then, there
is a second category providing a realization on top of the
MAC layer while keeping the IEEE802.3 compatibility, e.g.,
TCNET, Ethernet/IP with Device Level Ring (DLR) and
PowerLink, or modifying the standard implementation, e.g.,
EtherCAT and Profinet IRT. In this paper, we focus only on
the most relevant RTE solutions supporting ring topology,
and particularly EtherCAT, Profinet IRT and Ethernet/IP with
DLR.

EtherCAT is defined by Beckhoff GmbH and supported
by the EtherCAT Technology Group (ETG). It implements a
master/ slave mechanism on top of Fast Ethernet (100Mbps).
The main particularity of EtherCAT is the on-the-fly
forwarding technique, which allows the slaves to insert the
data requested by the master directly in the frame crossing
couplers step by step. The EtherCAT frame is transmitted
from the first slave to the last, and then back in the opposite
direction to the master. This protocol provides interesting
real-time performances due to the on-the-fly mechanism.

However, the main drawbacks of this technology consist of:
• the specificity of the EtherCAT devices, which increases



the implementation costs and the configuration efforts;
• a central point of failure (i.e. the master) decreasing the

reliability level.

PROFINET IRT (Isochronous Real-Time) is an
extended version of PROFINET, which supports real
time communications. It is a master/ slave network, based on
cyclic communication handling two communication channels:
isochronous and asynchronous. These latter are used by slaves
to transmit real-time and non real-time data, respectively. The
data is relayed using ”Cut-through” to reduce the processing
time. These functionalities require specific equipments and an
accurate synchronization protocol. This protocol has similar
pros and cons than EtherCAT due to its incompatibility with
IEEE 802.3 and its master/slave mechanism.

Device Level Ring (DLR) protocol was introduced in
2008 by OADV organization to support hard real-time
communication with Ethernet/IP. DLR is based on a ring
controller, called active ring supervisor, which collects data
from the other interconnected nodes on only one port to
avoid infinite traffic loop, except some specific frames, i.e.,
beacons. Each equipment has two Ethernet interfaces and
an integrated switch, which implements Store & Forward
mechanism and Static Priority service policy. Moreover,
fault detection and reconfiguration mechanisms are handled
within the controller via specific messages, i.e., beacon and
announce. This protocol has interesting features in terms
of reliability due to the fault detection mechanism within
the controller, and reduced costs due to standard devices.
However, the non-nominal case needs the reconfiguration
of the supervisor, which increases the configuration effort.
Furthermore, integrated switches based on Store & Forward
mechanism induce high transmission latencies, which decrease
the offered real-time performance and availability levels.

The benchmarking of these RTE solutions vs the main
identified requirements in Section II-A is illustrated in Table
I. EtherCAT and Profinet IRT imply higher costs due to the
specificity of the implemented devices, and lower reliability
due to the master/slaves mechanism (i.e. inducing a central
point of failure), than Ethernet/IP with DLR. This latter is
based on standard devices and implements fault detection
and reconfiguration mechanisms, which enhance costs and
reliability. Concerning real-time performance, EtherCAT and
Profinet IRT allow very short latencies due to on-the-fly
and Cut Through mechanisms, whereas Ethernet/IP with
DLR induces high latencies because of the Store & forward
one. Moreover, these transmission latencies have a direct
effect on the fault detection time, and consequently the
availability level. Hence, the offered real-time performance
and availability levels of EtherCAT and Profinet IRT are
higher than Ethernet/IP. It is worth noting that each RTE
solution satisfies selected requirements better than others, but
there is no best solution in terms of all the requirements.

Our objective is to specify a new RTE solution, AeroRing,
which bridges the gap between these aforementioned RTE
solutions, to guarantee the high reliability level of Ethernet/IP
with DLR and the high real-time performance and availability
levels of EtherCAT and Profinet IRT. Moreover, this new RTE
solution has to keep the IEEE802.3 compatibility and reduce
the implementation costs and configuration efforts. Hence,
the AeroRing abilities vs the the main identified requirements
are illustrated in Table I.

The main innovative features of AeroRing are as following:
• Distributed access mechanism, allowing simultaneous

data exchange to increase the offered bandwidth and
resource usage efficiency;

• Distributed fault management mechanism, avoiding the
central point of failure to provide high Reliability and
Availability levels;

• Event-triggered communication, enhancing the system
flexibility and decreasing the implementation complexity,
through avoiding any need of synchronization;

• QoS management, handling heterogeneous data con-
straints. This feature is guaranteed through the imple-
mentation of a Static Priority (SP) policy supporting four
traffic classes: the network management class with the
highest priority, the Hard Real Time (HRT) with the
second highest priority, the Soft Real Time (SRT) class
with medium priority and finally the Non Real Time
(NRT) class with the lowest priority.

• QoS-aware routing algorithm, sending HRT on both
ports to improve reliability, and the SRT and NRT traffic
classes on the shortest path to enhance resource usage
efficiency;

• Compatibility with IEEE802.3, guaranteeing an easy
deployment process and a cost-effective integration.

Table II illustrates a summary of the main characteristics
of AeroRing and the aforementioned RTE solutions, and
particularly the pros and cons of each solution.

III. WHAT IS AERORING

In this section, we present the main fundamental concepts
of AeroRing network, including T-AeroRing features and
data processing.

A. T-AeroRing Features

As illustrated in Fig. 1, AeroRing network implements
a daisy-chain wiring scheme on top of a Full Duplex ring
topology. It allows any ”Ethernet-compliant” equipment
to transmit its data via a specific end-system, named T-
AeroRing. Each transmitted packet will be forwarded from
one T-AeroRing to another until reaching the final destination,
and some particular cases will be detailed in the next section.



The T-AeroRing is a specific 3 ports Full Duplex Ethernet
switch having the internal architecture illustrated in Figure 2,
and the following main characteristics:

• Cut-Through forwarding technique: the T-AeroRing
starts forwarding the packet just after its identification,
i.e. only the header of each packet is decoded to
determine its destination port. This technique guarantees
shorter transmission latency than the ”Store and
Forward” technique (implemented within Ethernet/IP),
which waits until the complete reception of the packet
before forwarding it to the destination port;

• Static Priority service policy packets are queued in each
output port of T-AeroRing according to their priorities.
A queue is selected for transmission only if all traffic
classes queues with higher priorities are empty. Then,
for each queue, the scheduling order is First In First Out
(FIFO) with a non-preemptive transmission. Priority is
defined according to the IEEE 802.1p standard where
the 802.1Q tag (3-bits field) is used to manipulate the
four priority classes;

• Traffic policing: To guarantee real-time performance,
the T-AeroRing implements traffic policing mechanisms,
based on Leaky Bucket method and particularly greedy
method [5], to control each traffic class compliance
with its predefined contract to avoid the network
saturation. These traffic contracts are defined based on
the network designer specifications. Each equipment
connected to a T-AeroRing should be aware of these
traffic contracts, and may apply traffic shaping to ensure
the conformity of its generated traffic and avoid being
discarded by the traffic policers. Each traffic exceeding
its associated contract may be discarded to guarantee the
communication determinism;

• QoS-aware routing: unlike COTS Ethernet switches
which relay frames on the basis of the address learning
process and the Spanning Tree Algorithm, each T-
AeroRing builds its routing table on the basis of the
network management messages, exchanged between
the interconnected T-AeroRings during the initialization
phase or when a topology modification occurs (i.e.
failure or restoration). Each T-AeroRing implements
two routing modes to transmit its generated packets
depending on their priorities: (i) sending on both ring
ports (Ports 1 and 2 in Fig. 2) for high priority traffic
classes, i.e., network management and HRT data, to
allow a high reliability level ; (ii) sending on the port
corresponding to the shortest path for medium and low
priority traffic classes, i.e., SRT and NRT data, to offer
a high performance level (i.e. short delay);

• Frame Redundancy Management: Like AFDX

end-systems, the T-AeroRing implements a Frame
redundancy management mechanism to detect redundant
frames generated by the first routing mode, and to
determine whether to deliver the packet to the final
destination or drop it because its replica has already
been received. In practice, all packets sent on both ring
ports are provided with a 2-bytes sequence number field
that occurs just before the FCS field, which will be
checked at the destination;

• Filtering Function: To avoid infinite packet looping
as a result of broadcast communication or erroneous
header information, each T-AeroRing implements a
filtering function which consists in: (i) eliminating all
its generated packets sent on one port and received on
the other port. This case occurs for broadcast packets or
those with erroneous destination address; (ii) eliminating
all received packets with erroneous source address. This
verification is possible due to the cut-through technique
and the routing table, i.e. an erroneous address does not
exist in the routing table.

T1 T2 T3

T6 T5 T4

Fig. 1. AeroRing network

B. Data processing
Based on the description of T-AeroRing ports in Fig. 2, each

frame will be processed as follows in the nominal case:
• Any frame received on a network port (1 or 2) is relayed

to the other port unless the frame is destined to the
connected equipment, or this latter is the frame source.

• Any frame received on a network port (1 or 2) destined
to the connected equipment is delivered to it, according
to the redundancy management mechanisms.

• Any frame received from the connected equipment is
transmitted on one or both network ports depending on
its priority: the highest priority traffic class is tagged by a
2-bytes sequence number and transmitted on both ports,
while the medium and lowest priorities traffic classes are
transmitted on the port corresponding to the shortest path.
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Fig. 2. T-AeroRing internal architecture

IV. NETWORK FUNCTIONALITIES

In this section, we present the main functionalities of
AeroRing, including the QoS and robustness management
and the auto-configuration mechanisms.

A. Real-Time behavior and QoS Management

The real-time behavior of AeroRing and the timeliness
guarantee of the delivered data are favored due to the
implemented features within the T-AeroRing. First, the ”Cut
Through” forwarding technique allows a short transmission
time along the network, which improves the Maximum end-
to-end delivery time. Then, the traffic policing mechanism
prevents a network saturation by a deficient equipment, which
guarantees the communication determinism. Furthermore,
the implemented QoS-aware routing algorithm supports
the transmission of the SRT and NRT data on the shortest
path, which decreases their transmission delays. Finally, the
Static Priority policy ensures the temporal isolation between
mixed criticality data with various temporal constraints, and
guarantees a bounded delay for the HRT traffic class.

On the other hand, AeroRing guarantees QoS management
through the implementation of ”Static Priority” policy, which
supports the following traffic classes:

1) Control Messages: This traffic class has the highest
priority level (N0) and is used for network management
issues, such as: (i) building the routing tables of the
interconnected T-AeroRings; (ii) the fault detection
management; (iii) neighbor status checking. For the two
former, the control messages are sent on both ring ports
to ensure a high reliability level; whereas for the latter,

the control messages are only sent to the neighbors, if
no data to send, to check their status and guarantee a
fast fault detection;

2) HRT Messages: this traffic class has the second
highest priority level (N1) and is assigned to real-time
applications with hard temporal constraints, i.e. the
message must be received before its deadline otherwise
it is considered lost. This type of messages is sent on
both ring ports to ensure a high reliability level, and is
identified by a 2-bytes sequence number, essential for
the frame redundancy mechanism within the destination
T-AeroRing;

3) SRT Messages: this traffic class has the medium
priority level (N2) and is assigned to soft real-time
applications, such as audio or video transfers. This type
of messages is sent on the ring port corresponding to
the shortest path to guarantee a high performance level,
i.e. short transmission delay;

4) NRT Messages: this traffic class has the lowest priority
level (N3) and is assigned to non real-time applications,
such as file transfer. This type of messages is sent
on the ring port corresponding to the shortest path to
guarantee a high performance level;

It is worth noting that the AeroRing is compatible
with the IEEE 802.3 standard and each T-AeroRing can
deliver any type of ”802.1x-compliant” frame from the
equipment. Hence, if the frame does not include the 802.1Q
tag, then it will be treated as a NRT data frame (N3), and
transmitted on the ring port corresponding to the shortest path.

B. Auto-Configuration Mechanism

To reduce the configuration effort for the network
designer and facilitate this new RTE solution adoption in
the market, AeroRing offers an auto-configuration service
until all the T-AeroRings become operational. This service
is based on a simple address assignment method and a
dynamic network topology discovery process. The address
assignment of the connected T-AeroRings method consists in
assigning the equipment MAC address to its corresponding
T-AeroRing, when it joins the network. This fact facilitates
the communication between the connected equipments and
avoids a heavy translation addresses step.

At the beginning, each T-AeroRing which is not connected
to an equipment, has a default address MAC. Then, each
freshly connected T-AeroRing enters a network topology dis-
covery phase and behaves as follows:

• transmit periodically control messages on each ring
port until receiving a control message from another T-
AeroRing on the same port. This means that it has a
neighbor on that side and it is no longer the last node of



the segment. This period can be tuned according to the
application requirements by the network designer.

• stop transmitting control messages when detecting both
neighbors. Hence, the control messages transmission
stops when the ring loop is closed.

Furthermore, on the basis of these control messages
exchanged between T-AeroRings, each T-AeroRing builds a
routing table per port. These routing tables allow to select
the port corresponding to the shortest path (ports 1 or 2) for
a destination. Each exchanged control message contains the
list of MAC addresses of the crossed T-AeroRings, according
to their physical positions along the network.

Figure 3 shows the structure of a control message. The
control messages are identified by the value type of ”0x9000”.
Then, the CTL field identifies the type of the control message,
where ”0001” is reserved to build the routing tables, and
NBAD field is a counter of the MAC addresses, which are
inserted in the ADDx fields.

Type Payload

0x9000 CTL NBAD ADD1 ADD2 ADDN-1 ADDN.....

(2) (4 bits) (12 bits) (8) (8) (8) (8) (8)

Fig. 3. Structure of a control message

These control messages to build the routing tables are
managed as following:

• at each topology change, i.e. start, failure or restoration,
the T-AeroRings detecting this event send a control
message on both network ports in broadcast mode with
the highest priority, to update the routing tables of the
other interconnected T-AeroRings;

• each T-AeroRing contributes in building the routing
tables: when receiving the control message, it inserts
its MAC address at the end of the list to respect the
physical order, increment the NBAD counter, forwards it
to the next T-AeroRing and updates its routing table (i.e.
inserts MAC addresses of new equipments and deletes
the ones that no longer exist) (see the example in Fig.
4).

C. Robustness Management

AeroRing offers a high reliability and availability levels due
to its implemented features. First, redundancy management
mechanisms are defined for both network and frames. Then,
error detection and recovery mechanisms are implemented.
Finally, a distributed fault detection and reconfiguration
management is supported, which avoids single point of
failure.
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Fig. 4. Example of routing table building

1) Redundancy Management: AeroRing supports
redundant topology where each equipment may be connected
to redundant T-AeroRings and transmit its data on two
redundant networks (see Fig. 5). These redundant networks
might be used in a complementary way, i.e., the packet is
sent only on the main network in the nominal case and on
the backup one in case of failure; or in a symmetric way,
i.e., each packet is replicated and sent on both networks.
Each equipment implements a redundancy management
mechanisms to identify packets (replicas) that arrive on both
networks to consume the packet or drop it because its replica
has already been received.

Furthermore, according to the QoS-aware routing algorithm
within the T-AeroRing, the HRT traffic is sent on both ring
ports to enhance the availability and reliability level. Each
T-AeroRing implements a Frame redundancy management to
detect redundant frames to determine whether to deliver the
packet or drop it.

Fig. 5. Example of an AeroRing redundant topology



2) Error Detection and Recovery Mechanisms: Similar
to standard Ethernet solution, AeroRing supports the error
detection through the FCS field to discard erroneous frames.
However, if the error is not detected based on the FCS
field, and it occurs on the header, then the frame has to be
eliminated from the network to avoid infinite packet looping.
Each T-AeroRing implements a filtering function to prevent
this phenomena. A frame with an erroneous destination
address will be filtered by its source. However, if the source
address is incorrect, any T-AeroRing can eliminate the
erroneous frame when detecting that the erroneous address
does not exist in its routing table.

3) Fault Detection and Reconfiguration Mechanisms:
Any T-AeroRing has to consider a connection as down with
a neighbor, if it does not receive any message from its
neighbor during a certain period called ”detection period”.
This detection period can be easily tuned by the network
designer. In practice, if a T-AeroRing has no data to transmit
to its neighbor, then it announces periodically its status to
that neighbor through sending control messages. These latter
have the CTL field set to ”0000”, and empty NBAD and
ADDx fields (see Fig. 3).

These control messages to announce the status to neighbors
are sent periodically when at least one of the following
conditions is satisfied:

• The T-AeroRing does not have any data to send on this
port during a period called ”announcing period” (this
period is less then the detection period that covers in
general the reception of more than one control message);

• The T-AeroRing did not receive any data or control
message from this port for a duration equal to the
detection period. In this case, the T-AeroRing indicates
to its neighbor through a control message that the
connection is considered as down.

When a connection is considered as down by one of the
interconnected T-AeroRing, this latter sends a first control
message to inform the other T-AeroRings with the CTL code
”0010”, followed by a second control message to update the
routing tables (see the example in Fig. 6). A down connection
is considered operational again (up), if the T-AeroRing starts
receiving frames (data or control) from its neighbor. In this
case, it sends a control message to update the routing tables
of the other nodes.

It is worth noting the existence of various redundancy
protocols for RTE solutions with ring topology, and the most
relevant ones in our case are the Distributed Redundancy
Protocol (DRP) [6] and the Ring-based Redundancy Protocol
(RRP) [7].

The DRP implements similar local fault detection
mechanisms than AeroRing, where each equipment can
check the status of its neighbors by sending a link test frame
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Fig. 6. Fault detection Mechanism

LinkCheck to detect failures. However, unlike AeroRing,
in addition to these local mechanisms, DRP implements
a centralized fault detection mechanism to check the ring
status in a cyclic manner, i.e., during each cycle, only one
equipment can check the ring status via a ring test frame
RingCheck, gather and broadcast the information to the rest
of equipments. Furthermore, an accurate synchronization
protocol is required to manage such a cyclic process.

On the other hand, the RRP implements similar distributed
mechanisms than AeroRing to build the routing tables within
equipments. However, unlike AeroRing, RRP consists in
transforming the ring topology into line topology to avoid
infinite packet looping, through selecting two adjacent
devices, called Ring Network Managers (RNMs), which
disable one of their ports. This choice will clearly deteriorate
the reliability level, compared to AeroRing, since sending on
both directions becomes forbidden. Moreover, RRP implies
higher communication overhead to build the routing tables
than AeroRing, i.e., there are as many exchanged messages as
equipments to update the routing tables under RRP, whereas
only one control message is necessary with AeroRing.

Hence, unlike DRP, AeroRing implements a completely
distributed redundancy protocol, based only on local
fault detection mechanisms and without any need of
synchronization protocol. Furthermore, unlike RRP, the
T-AeroRings build autonomously their routing tables with
a low induced overhead, and messages can be sent on both
directions or only on the shortest path, according to the
message class.



V. PERFORMANCE AND RELIABILITY ANALYSIS

In this section, we investigate the offered performance and
reliability levels of AeroRing through a representative case
study. Therefore, we give first numerical results on some
specified PIs, such as the upper bounds on the end-to-end
latencies and backlogs, and the maximum detection and
recovery times. The detailed analyses of these PIs are beyond
the scope of this paper.

A. Case study

We consider the following assumptions:
• The links speed is C = 1Gbit/s;
• The network size varies from 4 to 40 nodes (40 is

the medium size specified in the IEC document [8] to
benchmark RTE solutions);

• All equipments are similar and send the same traffic in
broadcast mode;

• Technological latency within the T-AeroRing is 600ns;
• Each equipment generates 3 types of traffic classes (TC)

as described in Table III;
• The ”detection period” for fault management is 0.5ms.

It is worth noting that in the broadcast mode, the notion of
”shortest path” does not exist for the traffic SRT and NRT.
In this case study, we consider that all the SRT and NRT
messages are sent on the same direction, which corresponds
to the worst-case scenario in terms of performance, i.e., this
choice increases contention.

TABLE III
TRAFFIC CHARACTERISTICS

TC Payload (byte) Throughput (Kbps)
I/O data HRT 64 80

Audio streaming SRT 100 128
File transfer NRT 1000 500

B. Numerical Results

Figures 7 and 8 illustrate the upper bounds on the end-
to-end latencies and backlogs, respectively. Obviously, these
metrics increase with the network size, since the number of
generated messages and crossed nodes increases.

As we can notice, for a network of 40 nodes, the upper
bound on the end-to-end latency for the highest priority is
less than 2ms, and the maximum backlog is less than 300Kbit.

Figures 9 and 10 illustrate the maximum detection and
redundancy recovery times. These metrics depends on the
length of the control message updating the routing tables,
which increases with the number of crossed nodes. For a
network of 40 nodes, the maximum detection and recovery
times are less than 0.75ms and 1ms, respectively.

Fig. 7. Upper bounds on the end-to-end latencies vs number of nodes

Fig. 8. Upper bounds on backlog vs number of nodes

Fig. 9. Maximum fault detection time vs number of nodes



Fig. 10. Maximum recovery time vs number of nodes

These results show the high performance and reliability
levels guaranteed by AeroRing for a medium size network.

VI. CONCLUSION AND FUTURE WORK

A new RTE solution, called AeroRing, has been proposed
in this paper to handle the emerging requirements of new
generation aircraft in terms of decreasing the wire complexity
and integration costs, and enhancing the real-time performance
and availability.

This solution has many advantages, compared to the most
relevant RTE solutions supporting ring topology, such as:

• enhancing the performance and the resource usage ef-
ficiency due to its distributed access mechanism and its
QoS-aware routing algorithm;

• offering high availability and reliability levels through
a distributed fault management mechanisms, which avoid
any single point of failure;

• improving the network flexibility through event-triggered
communication support without any need of synchroniza-
tion;

• minimizing the implementation costs due to its
compatibility with IEEE 802.3 standard, and the
configuration effort through its auto-configuration
mechanisms.

AeroRing has been specified to fulfill the avionics
requirements, but it can be easily extended for other industrial
application fields, such as automation and control. This
adaptation will be investigated as a next step of our work.
Furthermore, AeroRing consortium is working on the
standardization process of such a proposal with open source
specifications, to facilitate its adoption in the market.
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Abstract:  Switched Ethernet is becoming a de-facto standard in industrial and embedded networks. Many 
of today’s applications benefit from Ethernet’s high bandwidth, large frame size, multicast and routing 
capabilities through IP, and the availability of the standard TCP/IP protocols. There are however many 
variants of Switched Ethernet networks, just considering the MAC level mechanisms on the stations and 
communication switches. An important technology in that landscape is TTEthernet, standardized as 
SAE6802, which allows the transmission of both purely time-triggered (TT) traffic and sporadic (or rate-
constrained - RC) traffic.  To the best of our knowledge, the interactions between both classes of traffic 
have not been studied so far in realistic configurations. This work aims to shed some light on the kind of 
performances, in terms of latencies, jitters and useful bandwidth that can be expected from a mixed TT and 
RC configuration. The following issues will be answered in a quantified manner by sensitivity analysis:  
How do both classes of traffic interfere with each other? What are the typical worst-case latencies and 
useful bandwidth that can be expected for a RC stream for various TT traffic loads? What is the overall 
impact of TTEthernet integration policy for the RC traffic?  This study builds on a worst-case traversal time 
analysis developed by the authors for SAE6802, and explores these questions by experiments performed 
configurations of various sizes.  
Keywords: Time-Triggered Ethernet, worst-case traversal times, sensitivity analysis, benchmarking.  

1  TTEt he r ne t :  t r a ns m i s s i on  s c he du l e  f or  s e vera l  c l a s se s  o f  t r a f f i c  

The SAE standard AS6802, [AS6802] describes a network called Time-Triggered Ethernet, also known as 
TTEthernet [Ste09].  As explained in the standard, AS6802 “adds synchronization and time-deterministic 
data transfer characteristics to those Ethernet operations that use active star (e.g., hub or switch) 
topologies, while retaining full compatibility with the requirements of IEEE 802.3” [AS6802]. In fact, while 
keeping the same frame format as IEEE 802.3, AS6802 defines three kinds of data flows: 

– A time-triggered (TT) traffic, where a global (periodic) time schedule defines for each TT flow the 
time point at which frames have to be sent. 

– A rate constrained (RC) traffic, where each flow has a bandwidth limit defined by two parameters: a 
minimal duration between two successive frames at the source and a maximal frame size. This 
constraint is the same as the one of ARINC664 P7, also known as AFDX (Avionics Full DupleX 
ethernet), where this minimal duration is called a BAG (Bandwidth Allocation Gap).  

– A best-effort (BE) traffic that is simply a class for low-priority Ethernet traffic without timing and 
delivery guarantees.  

Both TT and RC flows are statically defined, with a single source, a static routing, and a set of receivers. 

 
Figure 1: Topology and data flow example. 

Let us consider the system shown in Figure 1 with a single switch connecting four nodes, S1, S2, R1, and 
R2. The node S1 sends two flows, F1 to R2 and F2 to R1, while the node S2 sends one flow, F3 to R2. Let 
us assume that F2 and F3 have the same period P, and F1 a period equal to 2⋅P. 
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Sending all flows as TT traffic requires building a global frame schedule for all links such that there is no 
contention, and, in the best case, no buffering of frames in switches (a frame is sent as soon as it is 
received). Such a schedule is given in Figure 2. 
 

 
Figure 2:  Schedule example with purely TT traffic. 

With purely RC traffic, no synchronization is needed between the nodes, what is required is only the respect 
of the per-flow inter-frame gap in emission. Then, some contention can occur in the switches, and frames 
have to be buffered.  This buffering adds some jitters to the flow. For instance in the example of Figure 3, 
even if the flow F3 is sent with a periodic pattern, the interference can shorten the distance between two 
successive messages (see messages RC-3,1 and RC-3,2). 
 

 
Figure 3: Schedule example with purely RC traffic. 

At first sight, TT traffic seems a better solution than RC traffic, but it requires a lot of care. The first 
obvious point is that it requires a global clock, and a large part of the SAE standard consists in defining a 
robust protocol for global synchronization. It implies the addition of “protocol control frames” (PCF). A 
second requirement is the ability to build a global communication schedule, which is a NP-complete 
problem. Generating communication schedule involves non-trivial optimization algorithms, see for instance 
[Ta13], whose actual performances are difficult to assess given that no optimal solution can be known 
except on very small problems. Lastly, the best temporal performances are achieved when synchronizing the 
tasks schedule and the communication schedule. Actually, the network is meant to transfer data between 
tasks, and the delay to control is the delay between data production and data consumption. Indeed, without 
synchronization between the tasks and the network, a data may have to wait a full transmission period 
before being sent. Similar asynchronisms can create latencies in reception too. This means that, if the local 
scheduling on a computer is changed during the design process of a system, it may impact the network 
scheduling and then the scheduling on all computers.  
On the opposite, a RC traffic does not require a global synchronization. It also requires some analysis 
method, not to build the global schedule, but to verify that the system’s timing behavior will respect the 
memory and frame latency constraints (see [Gr04, Fr06, Bo11] for switched Ethernet networks). An 
important property of the RC traffic is that the frame communication delays can be computed independently 
of the task scheduling on the sending station. This means that changing the task scheduling on a station will 
not have any impact on the other nodes as long as long as the constraint of the minimum time between two 
successive transmissions is met.   
Because not all streams have the same transmission requirements, and because development constraints may 
prevent the use of TT traffic for some nodes, it can be a practical solution to take advantage of the AS6802 
protocol flexibility and mix on the same network TT and RC traffic as illustrated on Figure 4. But mixing 
both kinds of traffic 1 implies interferences. Each TT frame is scheduled for transmission on a link at a 
specific time point, whereas an RC frame can be sent almost at any time, creating thus interferences at the 

                                                           
1 The standard actually supports three kinds of traffic: TT and RC, but also Best Effort (BE) traffic. This latter class that comes 
without any guarantee with respect to delays and even proper frame delivery will be ignored in this paper. 
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link access level.  The SAE standard defines two integration policies for the RC and TT traffic in the 
communication switches: shuffling and preemption [AS6802], whereas former works have considered also 
timely block and resume preemption [Ste09]: 

– In case of shuffling, an RC frame can be sent at any time, and the transmission of TT frame is 
postponed so that the RC frame can complete its transmission. Then, a TT is no more associated to 
a time instant (called scheduled point in time) but to a time window, the scheduled window2.  

– In case of preemption, when a TT frame has to be sent, the sender aborts the transmission of the RC 
frame in order to send the TT frame immediately. The RC frame is sent again after the TT frame, 
from the start (this is called preemption restart). 

– The timely block idea is to block any RC frame emission if its emission time can interfere with the 
next TT frame.  

– The resume preemption mechanism consists in resending the frame from where it was stopped, and 
not from the start. These two latter mechanisms have not been kept in the standard.  

In case of preemption, the low jitter and low latency of the TT traffic is favored over the RC one, but some 
bandwidth is lost and RC traffic latencies increase. On the opposite, in case of shuffling, no bandwidth is 
lost but the TT traffic will experience a larger latency. 

 
Figure 4: TT-RC integration policies. 

Two RC-TT traffic integration policies are considered in this study: timely-block, which minimizes the 
jitters for the TT flows, and the shuffling integration policy which is work-conserving.   
The global clock synchronization service is implemented through the exchange of dedicated frames. The 
SAE standard uses PCF (Protocol Control Frames) of small size (64 bytes) for this purpose. These PCF 
frames belong to some specific RC flows, with priority higher than all other flows. To solve contentions 
with TT frames, the shuffling policy is used. To solve contentions with lower priority RC flows, non-
preemptive priority is used. Due to the existence of PCF, a TT frame is assigned a slot whose length is a 
time window, i.e. whose length is large enough to contain the TT frame and a PCF frame, and also an RC 
frame in case of shuffling.  

2  Expe r i me nt a l  s e tup  

2.1  Worst-case traversal  t ime evaluat ion 
Since the network is one link in the timing chain of a real-time distributed function, its real-time capability 
must be proven, that is to say, for each frame, an upper bound on the network latency must be guaranteed. 
The network latency is also often referred to as Worst-Case Traversal Time (WCTT) in the literature.  
In the case of a Time Triggered flow, upper bounding the WCTT is quite simple: once the global schedule 
has been derived, the upper bound on the delay is the distance between the emission time on the first link to 
the reception time on the last link (cf. Figure 2). The TT transmission schedules in this study have been 
generated using the TTE-Plan tool from TTTech (TTE-Plan 4.2 for all experiments except the ones with 
500VLs which required TTE-Plan 4.3 with specific raster tick settings). For RC flows, there is no global 
schedule but the BAG contracts enable to upper-bound the workload submitted to the network per flow. 
This information is used by schedulability analyses that derive an upper bound on the network latency for 
each flow. The reader is referred to [Fr06, Ba09, He12, Bo12, Gu13, Bo14] for good starting points about 
the techniques and their performances.    

                                                           
2 To a lesser extent, this is also the case without shuffling, since one have to deal with limited global clock accuracy. 



 
 

©2015 ONERA/UL/RTaW  4/10 

The WCTT analysis used in this study relies on the network calculus theory [Fr06], which was used to 
certify the A380 AFDX backbone and is still used in certification today. The pessimism of state-of-the-art 
implementation has been experimentally evidenced (see [Bo12]) and NC can be extended to account for 
fine-grained system characteristics such as task scheduling [BD12], frame scheduling at the end-system 
level [Bo14] and transmission offsets [Li11].  The WCTT analysis used in this work extends [BD12, Li11] 
by considering the TT traffic as produced by a local scheduler, and adding the impact of the integration 
policy. Another basic idea underlying the WCTT analysis is to consider the processing and transmission 
times of TT frames as time periods during the resource is unavailable for RC traffic and adapt the network-
calculus service curves accordingly. The analysis is implemented in the RTaW-Pegase timing analysis tool 
for embedded communication architectures developed by RTaW in partnership with ONERA. 
Bounding the WCTT of the RC traffic in presence of TT traffic is also studied in [St11] and [DP15]. In 
[St11], the author assumes that there is, in each buffer, at most one frame of each crossing VL and 
computes the delays based on the knowledge of the TT schedule. A more precise analysis is presented in 
[DP15], based on the notions of busy window, ET availability and ET demand, that are somewhat similar to 
the concepts of service and arrival curves in network calculus. The maximal number of RC frames in each 
buffer during a busy window is computed with regard to the VL BAG, neglecting the jitter introduced in the 
network that must be added to have correct bounds. The contention between two frames sharing some 
buffers in their path occurs only once in FIFO policy. This effect is called “grouping”, “serialization” or 
“shaping” in [Ba09] [Fr06] [Bo11] and is also modeled in [DP15] by subtracting the delay introduced by 
flows sharing two consecutive buffers. The delay introduced by the TT flows is accounted for by 
enumerating, as possible start of busy windows, all starts of TT frame emission in the global TT schedule. 

2.2  Network topologies   
Three network configurations of various sizes are considered in the experiments of this paper:  

- 4S-200VL: 4 communication switches and 200 rate-constrained multicast flows, called VLs in the 
following (VL stands for Virtual Links in AFDX terminology),   

- 8S-200VL: 8 switches and 200 VLs, 
- 8S-500VL: 8 switches and 500 VLs. 
- The topology of a configuration is made up of 4 or 8 switches, connected as a 2x2 or 2x4 mesh 

structure as illustrated on Figure 5. The links data rate is set to 100Mb/s and the switching delay to 
1.5µs. 

 
 

Figure 5: Topology of the case studies. The right-hand figure shows the 4 switches 2x2 mesh topology configuration 
with a synchronization frame broadcasted by switch 1. The left-hand figure shows the 8-switches 2x4 network 
configuration with a multicast stream (RTaW-Pegase screenshots).    
Five end-systems are connected to each switch. Then, the predefined number of VLs is created with the 
following procedure for each VL:  

- The source node is randomly decided amongst all nodes. 
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- The number of receivers is randomly chosen between 1 and 5 with a uniform distribution, and the 
destination nodes are randomly selected (avoiding the source). The expected total number of flows 
is hence 3 times larger than the number of VLs. 

- The size of the frames of the VL is randomly chosen according to a uniform distribution: as many 
more small frames, but still some large ones. The range of the size distribution is adjusted wrt the 
network load objective and the number of VLs. 

- The frame rate, or BAG, is randomly chosen with a uniform distribution in the set of values 
authorized by the AFDX standards. The BAG value is biased towards large values. Indeed, with an 
equiprobable choice, the load generated by larger BAG value flows (e.g., 128ms BAG) would have 
been negligible compared to the load of the smaller BAG flows (e.g., 2ms BAG).  

2.3  Distributions of  BAG and frame s ize  
The distributions resulting from the random generation for the BAG and frame size of the VLs is shown in 
Figure 6 for the 4S-200VL configuration, where the area of the circles is proportional to the number of VLs 
with these parameter values. For example, the top-left circle shows that there is only one VL with BAG 
128ms and maximal size 107bytes, and the large circle near the 16 label shows that they are 29 VLs with 
BAG 16ms and size 64 bytes.  

 
Figure 6: Distribution of BAG and frame size for the 4S-200VL configuration. 
The load on the links between the switches in the 4S-200VL configuration ranges from 2.05% to 7.56%, the 
variability being due to the randomness of the configurations. The same distributions are shown for the 8-
switches 200 VLs configuration (8S-200VL) and the 8-switches 500VLs configurations in Figure 7. For 
these two latter configurations, the load of the links between the switches respectively ranges from 3.31% 
to 16.68% and from 5.20% to 27.45%.  The larger load in these configurations is due to the larger number 
of VLs but also to the larger maximum frame size (twice the maximum size used to generate the first 
configuration).  

  

Figure 7: Distribution of BAG and frame size for the 8S-200VL and 8S-500VL configurations. 
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2.4  Experiments:  increasing TT traff ic  with/without schedule regeneration 
The aim of this study is to evaluate the impact of the TT traffic over the RC traffic. This will be assessed by 
gradually increasing the share of the TT traffic while simultaneously reducing the RC traffic by the same 
amount. This comes to consider networks where an increasing share of the RC traffic is turned into TT 
traffic. At each stage, the WCTTs of the RC flows are recomputed.  
We first consider a configuration entirely consisting of RC traffic, called “0 TT”. We then split this 
configuration into 10 subsets of VLs (S1, S2, S3,…, S10) , each subset being made up of 10% of the VLs: 

- The VLs in S1 are transformed into TT traffic, the rest of the traffic remaining RC. This 
configuration is denoted by “S1 TT”. 

- On the basis of “S1 TT”, S2 is turned into TT traffic. This configuration is denoted by “S1-2 TT”. 
- This goes on until one ends up with a complete TT configuration (“S1-10 TT”), leading overall to 

11 configurations.  
The frames of all TT flows are assumed to have a deadline constraint equal to the period of the flow.  For 
each traffic configuration under study, two different experiments are performed: 

- Experiments A: a global schedule is built for the TT flows, the routing is set for all flows of the 11 
configurations, and an upper bound on the WCTTs of the RC flows is computed. From the 
scheduling point of view, each configuration is a new problem submitted to the off-line scheduler 
TTE-Plan, and there is no link between two flow configurations. In particular, the scheduler will 
often choose different routes for the same VL in the RC class, as it will be seen later in the 
experiments. 

- Experiment B: we start with “S1-S10 TT” where all flows are in the TT class. A global TT 
schedule is built for this configuration. Then, 10%, 20% and up to 100% of the flows are 
progressively becoming RC, but the same schedule is kept for the remaining TT flows, and the 
routing remains the same as in is “S1-S10 TT” for all VLs. 

Keeping the same routing and same TT schedule as done in experiment B eases the comparisons but this is 
not optimal in terms of scheduling performances. Indeed, our observation has been that the off-line TT 
scheduler tries to spread the TT slots as uniformly as possible over time, creating hence time windows for 
the RC frames to be transmitted with little delays, and subtracting TT slots at random will not lead to an 
optimally balanced TT load.      

3  Pe r f or m anc e s  o f  m i xe d  TT and  RC c onf i gur a t i ons  –  an  e m pi r i c a l  
e va l ua t i on  

The performance evaluation study is conducted by progressively turning RC VLs into TT VLs and studying 
the impact on the RC flow latencies. The outcomes of the experiments are difficult to predict because there 
are different and conflicting effects of the TT traffic over the RC traffic: 

1. Priority change: in AS6802, the TT flows have a higher priority than the RC flow. Hence, moving 
a flow from RC to TT will reduce the remaining bandwidth left to the RC flows, and increase their 
delays. 

2. Loss of bandwidth: When the integration method is timely block, some bandwidth just before a TT 
window may have to be left unused, increasing thus the delays of the RC traffic. 

3. Contention reduction: The TT frames are scheduled by the off-line scheduler TTE-Plan which will 
shape the TT traffic over time. Indeed, the scheduler tries to spread the TT time-windows along the 
system hyper-period. This is beneficial for RC flows since it reduces the number of frames and thus 
the waiting times in the communication switch queues. 

To illustrate contention reduction, let us consider the topology in Figure 1 assuming that all flows are 
converging to station R2. The flows F1 and F2 are TT while the flow F3 is RC, and all flows have the same 
BAG. By shaping the TT load along the hyper-period, the scheduler will insert idle times between the time 
windows of both TT flows. Hence, the RC frame from flow F3 can be delayed either by a frame of F1 or a 
frame of F2 but not by both, as illustrated in Figure 8. On the contrary, if the flows F1 and F2 were RC, 
they could arrive at the switch back-to-back and the RC flow would be delayed by both. 
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Figure 8: TT shaping reduces contention by idle times by TT time windows.  

3.1  Configurat ion with 4 switches  and 200 VLs (4S-200VL) 
The graphs on Figure 9 show the worst-case traversal times (WCTT) of the RC flows with shuffling and 
timely block in Experiments A (communication schedule regeneration at each step). It must be noted that 
The outliers are due to flows whose routing was changed with respect to their routing in their 0TT 
configuration.  Indeed, the changes of routing negatively impact many RC flows. We observe anyway that 
globally an increasing share of TT traffic helps to reduce the RC WCTTs (see also Table 1). This holds for 
both shuffling and timely block. Here, the positive shaping effect outweighs the detrimental effects listed 
previously as soon as the TT load is above 20%.  

  

Figure 9 : Upper bounds on the worst-case traversal times (WCTT in ms) for the rate-constrained flows in 
Experiments A on the 4S-200VL configuration with shuffling (left) and timely block (right). The curves show the 
WCTTs for a share of TT traffic equal to 0% (0TT), 20% (20TT), 50% (50TT) and 70% (70TT). The VLs are sorted by 
increasing WCTTs in the 0TT configuration.  
As can be seen in Figure 10 that shows Experiments B (i.e., no TT schedule regeneration at each step), 
shuffling is logically better (12.5% on average over all flows) for RC flows than the timely block scheme. 
In experiments B with shuffling (see Table 1), the average WCTT for RC flows is 1.20ms with 0% TT load, 
1.08ms with 20% TT load, 0.82ms with 50%TT load and 0.33ms with 90% TT load. However, this large 
latency improvement, up to 72% over purely RC traffic, is only for the reduced set of RC flows left.  

  

Figure 10 : Upper bounds on the worst-case traversal times (WCTT in ms) for the rate-constrained flows in 
Experiments B on the 4S-200VL configuration with shuffling (left) and timely block (right) for an increasing share of 
TT traffic (0 to 70%).   
Table 1 summarizes the results over all traffic configurations for Experiments A and B. The small 
difference there is at 0% TT load can be explained by differences in the routing provided by TTE-Plan. On 
this small system, except in one case, the WCTTs of RC flows decrease monotonously with the increase of 
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the TT traffic. The number in bold in Table 1 shows a case where the loss of bandwidth due to timely block 
is not fully compensated by the better shaping of the TT traffic. 

TT traffic 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 
A-Shuffling 1.27 1.22 1.17 1.06 0.97 0.86 0.80 0.64 0.52 0.43 
A-Timely 1.27 1.30 1.29 1.20 1.16 1.02 0.95 0.76 0.61 0.51 
B-Shuffling 1.20 1.16 1.08 0.99 0.90 0.82 0.68 0.59 0.47 0.33 
B-Timely 1.20 1.25 1.21 1.13 1.05 0.97 0.82 0.70 0.54 0.37 

Table 1: Average WCTT in ms of RC flows with an increasing share of TT traffic on the 4S-200VL configuration. 
‘A-Shuffling’ stands for experiments A with shuffling traffic integration mechanism.    
Due to space constraints, the results are not shown in this paper for the configuration with 8 switches and 
200VLs. The reader is referred to [Bo15] for the complete set of experimental results.  

3.2  Configurat ion with 8 switches  and 500 VLs (8S-500VL) 
In this section the same experiments are conducted on a larger configuration in terms of topology (number 
of switches and stations). The frame size is also twice the size used for the smaller system. As a result of 
that, the network is more highly loaded with links loads up to 27.5% (see §2.3). Figure 11 shows the 
WCTTs for the RC traffic with timely block on experiments A (left graphic) and B (right graphic). WCTTs 
obtained with Experiments A form a cloud of points in the left-hand graphic of Figure 7 because, in this 
more constrained problem, the off-line scheduler defines for the majority of RC flows different routes at the 
different TT load levels. The gain obtained with TT traffic can best be seen in Figure 12 (left graphic).  
However, as seen on Figure 11 (right graphic) and Figure 12 (right graphic), on the contrary to the results 
obtained with the small system, here more TT load leads to degraded performances for the RC traffic when 
timely block is used. Indeed this mechanism involves a loss of bandwidth for RC frames that increases with 
the number of TT frames exchanged in the system.  

  

Figure 11 : Upper bounds on the worst-case traversal times (WCTT in ms) for the rate-constrained flows in 
Experiments A and  Experiments B on the 8S-500VL configuration with timely block (right) for an increasing share of 
TT traffic (0 to 70%).   

  

Figure 12 : Upper bounds on the worst-case traversal times (WCTT in ms) for the rate-constrained flows in 
Experiments B on the 8S-500VL configuration with shuffling (left) and timely block (right) for an increasing share of 
TT traffic (0 to 70%).   
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What we see in Table 2 is that on this more loaded configuration shuffling clearly outperformed timely 
block for RC traffic WCTTs. In both Experiments A and B, the WCTTs of RC flows steadily decrease with 
an increasing share of TT traffic with shuffling, while, with timely block, RC flows have larger latencies 
with TT traffic up to 80% of TT traffic. The larger the TT load, the higher the performance difference 
between shuffling and timely block. Indeed, the average WCTT response times of RC frames are more than 
2 times larger with timely block above 50% of TT traffic in Experiments A and B.   

TT traffic 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 
A-Shuffling 6.07 5.84 5.35 5.16 4.50 4.21 3.72 3.27 2.63 1.83 
A-Timely 6.07 6.54 6.79 7.40 7.00 6.87 6.93 6.85 6.06 4.63 
B-Shuffling 5.76 5.57 5.26 4.92 4.44 3.95 3.60 3.01 2.33 1.52 
B-Timely 5.76 6.33 6.57 6.94 6.69 6.82 6.60 5.99 5.35 4.40 

Table 2: Average WCTT in ms of RC flows with an increasing share of TT traffic on the 8S-500VL configuration. 
‘A-Shuffling’ stands for experiments A with shuffling traffic integration mechanism.  

In our experiments on the large configuration with 8 switches and 1500 flows, we observed that, when using 
timely-block, scheduling a share of the flows as TT traffic could degrade the latencies of the RC flows. This 
degradation is however limited to 21% in our experiments. This same behavior could not be reproduced 
with shuffling which however leads to larger worst-case jitters for TT flows.   

4  Di s c us s i on  a nd  f u t ur e  wor k  

This study is to the best of our knowledge the first providing an evaluation of the impact of the TT traffic 
over the RC traffic in an AS6802 network mixing TT and RC traffic with different traffic integration 
policies. Experiments have been presented, which offer some insights about the interferences between both 
classes of traffic: 

- The timely block integration has a detrimental impact on the RC traffic latencies with respect to 
shuffling, with an increase of more than a factor 2 over shuffling above 50% of TT flows.  

- TT flows, as scheduled with TTE-Plan, tend to spread the network transmissions over time as a 
traffic shaping policy would do, which reduces the RC latencies. However this only holds with 
shuffling which incurs increased jitters for TT flows.    

These results should however be interpreted with caution for the following reasons: 
– The results obtained depend on the global TT schedule. The experiments presented here have been 

done using the TTE-Plan scheduler of TTTech. Another scheduler, or a modified version of TTE-
Plan, may lead to different results. The performance of a Time-Triggered system depends on the 
ability to build an efficient global schedule; in others words, the performances of an AS6802 
network depends not only on the network technology but also importantly on the configuration tool. 

– Other choices for the network configurations used in the experiments (probability distributions for 
the random generation, assumption on the clock-drifts, topology choices, etc) may possibly have 
lead to different findings.   

– We built with TTE-Plan a schedule considering only the shuffling integration method and used it 
also for timely block configuration. Our analyses on timely block are thus done using a schedule 
designed for the shuffling method. 

– The algorithms computing the upper bounds on delays for RC frames only provides upper bounds, 
not the exact worst case which is unknown. There is currently no method to compute tight lower 
bounds on the worst-case delays, as it exists for AFDX [Ba09]. Hence there is no way to estimate 
the actual pessimism of our upper bound in a satisfactory manner. Although, experiences with 
previous similar analyses in Network Calculus (e.g. [Bo12]) suggest that the analysis should be 
accurate, this remains to be ascertained.   

– At moderate load, the RC traffic benefits from the traffic shaping of the TT traffic, which is 
facilitated by the assumption that deadlines equal periods. On more constrained systems, with 
deadlines less than periods, it is possible that this beneficial effect will be less pronounced.   

SAE6802, with its three classes of traffic, offers a lot of flexibility in terms of how the communication can 
be organized. It becomes however difficult for the system designer to know beforehand the impact of 
configuration choices on the communication latencies. This study is a step towards a better understanding 
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the behavior of SAE6802 and the influence of configuration parameters. Our aim is also to conceive and 
implement the toolset that will help automate the configuration and verification of SAE6802 networks. 
Given the number configuration choices parameters involved, we believe that design space exploration 
techniques that would guide the designer would help to raise the level of abstractions and lead to a faster 
and more secure design process. Ultimately, this work contributes to a better understanding of how to best 
integrate mixed-criticality traffic in complex networked embedded systems as currently investigated in the 
DREAMS FP7 EU project [Dr15].   
Acknowledgments: This work has been partially funded by the FP7-ICT integrated project DREAMS (FP7-
ICT-2013.3.4-610640). 
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Abstract—Nowadays there is an increasing need for embedded
systems to support intensive computing while maintaining tra-
ditional hard real-time and fault-tolerant properties. Extending
the principle of multi-core systems, we are exploring the use
of distributed processing units interconnected via a high perfor-
mance mesh network as a way of supporting distributed real-
time applications. Fault-tolerance can then be ensured through
dynamic allocation of both computing and communication re-
sources. We postulate that enhancing QoS (Quality of Service)
for real-time applications entails the development of a cross-
layer support of high-level requirements, thus requiring a deep
knowledge of the underlying networks. In this paper, we propose
a new simulation/emulation/experimentation framework, ERICA,
for designing such a feature. ERICA integrates both a network
simulator and an actual hardware network to allow implementa-
tion and evaluation of different QoS-guaranteeing mechanisms. It
also supports real-software-in-the-loop, i.e. running of real appli-
cations and middleware over these networks. Each component can
evolve separately or together in a symbiotic manner, also making
teamwork more flexible. We present in more detail our discrete-
event simulation approach and the in-silicon implementation
with which we cross-check our solutions in order to bring real
performance aspects to our work. We also discuss the challenges
of running real-software-in-the-loop in a real-time context, i.e.
how to bridge it with a network simulator, and how to deal with
time consistency.

Keywords: mesh, network, real-time, QoS, simulation, RapidIO

I. INTRODUCTION

We describe the background to our study, and explain our
need to build a framework that allows real-software-in-the-
loop to be run over both a simulated network and an in-silicon
platform.

A. Embedded Real-Time Systems: a Dynamic Approach

Embedded real-time systems are part of many application
domains. As a result of our background, we have closely
observed their developments in transportation domains such
as avionics, vetronics and UAVs. We have observed a growing
tension between application needs and their execution con-
straints. We believe that these trends possibly apply to other
domains.

On the one hand, we see an evolution of needs in terms of
computing power and communication between applications.
This is due to the changing qualities of sensors, whose
data processing needs are increasing (for example in radar
applications), and the emergence of new application categories
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Fig. 1. Static system with real-time buses

such as multi-sensors. Interaction between applications and
sensors is increasing, while features tend to be spread over
several computing units. Communication architecture becomes
more complex. Existing systems mainly process sensor data
at high level (e.g. radar tracks). Multi-spectral imagery and
cooperation between radar and electro-optical imagery would
derive benefit from processing data coming directly from the
sensors instead of the tracker. Image processing algorithms
could be tuned in real-time in case of unconfirmed radar
detection, in order to improve overall performance.

On the other hand, there are stringent constraints relating
to hard real-time, criticality (endangerment of the mission
or human lives in case of malfunction) as well as material
constraints such as size, weight and power (SWaP). When
data exchanges between components have hard real-time
constraints, network access is typically budgeted (e.g. with
TDMA, or static virtual channels in ARINC-664p7) and real-
time buses such as MIL-STD-1553B or ARINC-429 are used,
as illustrated in Figure 1. Using these buses brings several
limitations in terms of throughput and dynamicity (i.e. online
dynamic reconfiguration).

We believe that mesh networking of the components of
such systems (Figure 2) would reconcile their constraints with
the new needs of applications. The plurality of communication
paths should result in increased flexibility, resilience, scala-
bility and load balancing characteristics. To improve overall
system resilience, it must be possible to redeploy a processing
function running on a faulty computing unit to a non-faulty
one or operate a graceful Quality of Service (QoS) degradation
(Figure 3).
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For this project, we have chosen, for the time being,
RapidIO R© [1] [2] as the mesh networking technology. RapidIO
was initially designed for embedded systems. It is used in most
3G/4G base stations, medical imagery and high performance
computing. Its goals are a very high throughput and guaranteed
low latency while providing reliable communication. Low
latency is achieved thanks to Control Symbols that can be
embedded within packets. They can be seen as small protocol
headers used for flow control. The ability to send these Control
Symbols even during a packet transmission allows very fast
error recovery and thus decreases average end-to-end latency.
RapidIO also allows assigning of priorities or virtual channels
to flows. However, the way these priorities and virtual channels
are used for switching is to be defined by the user. End-to-
end flow control can be achieved in multiple ways (credit-
based, XON/XOFF, etc.). RapidIO also specifies the definition
of register fields for the endpoints and switches. They are used
for switch configuration and monitoring. Finally, the standard
specifies a clock synchronization protocol, a network discovery
algorithm and a very fast fault recovery mechanism. Some

TABLE I. SOME CHARACTERISTICS OF RAPIDIO

Frame size 1-280 Bytes

Payload size 1-256 Bytes

Maximum bandwidth

for four lanes
40 Gbps

Network layer Cut-through routing support

Store-and-forward

Routing protocol Implementation dependent

additional information is given in Table I.

B. Expressing QoS Needs at Network Level

Achieving this dynamicity in a reliable way requires
knowledge of the deadline requirements between the different
components. We assume that a good way of dealing with these
requirements is a contract-based approach [3] [4]. Contracts
allow identification, at runtime, of which network and pro-
cessing resources are allocated to each application. Our goal
is to make this easier by providing cross-layer QoS support
from a middleware down to the hardware network switches,
thanks to an adaptation layer.

To specify the application QoS (e.g. relative deadline), we
consider the use of a Data Distribution Service (DDS) middle-
ware [5]. DDS is a machine-to-machine middleware standard
from the Object Management Group, based on the publish-
subscribe paradigm. It aims to provide a scalable, high-
performance and dependable real-time data exchange API. It
addresses the needs of various domains such as aeronautics,
defense, big data and telecommunications. Publish-subscribe
communication seems to fit our needs well, since we aim
to support data-intensive applications that can be distributed
across multiple nodes (radar for instance). Although DDS
provides an interesting way of allowing the QoS requirements
specification, there is no underlying mechanism for providing
any real-time QoS guarantee, to the best of our knowledge.
DDS is indeed designed to run over any type of network
and limits itself to indicating the deadline meeting ratio, for
instance.

For the implementation of DDS, we have selected Vortex
OpenSplice. It was initially developed by Thales Naval Ned-
erland and is now under the auspices of PrismTech as Vortex
OpenSplice [6].

To provide full real-time cross-layer QoS support, a com-
plete understanding of network-induced delays is required:
buffering, arbitration logic, propagation delay, error recovery
based on probabilistic model, contention, etc. We can then
design an adaptation layer within the middleware that will
translate QoS parameters expressed at application level into
what is needed at network level to enforce them (e.g. via packet
headers contents).

These assumptions lead us to two major questions:

1) How do we translate QoS defined at contract level
into QoS at network level?



2) How can we make use of network parameters (rout-
ing, output port packet scheduling, flow control) to
reach the desired QoS?

To answer these questions, we first need to build a tool
that allows us to implement and test those QoS translation
and network-level QoS handling mechanisms. The goal of this
paper is to present our symbiotic approach to achieving this
goal. This will, in turn, allow us to further answer the above
two questions in our future work.

C. The Need for Experimentation

We aim to assess the network properties required to achieve
real-time QoS cross-layer support within a mesh network (i.e.
with dynamic tasks and network resource re-allocations). For
this purpose, we have built a test platform based on the open
Serial RapidIO standard, of which an open-source VHDL
implementation is available. Having an in-silicon platform
is ideal for assessing our final solutions in a real context.
However, the complexity of the implementation and the fact
that the hardware architecture cannot be changed easily make
it difficult to test a lot of algorithms in order to compare
them. For that reason, we consider it very useful to work
on the key features of cross-layer QoS support (switching,
communications scheduling, graceful degradation, etc.) in the
context of a network simulator, before assessing them on the
real platform.

On the one hand, building the whole system including
application code, middleware, OS, CPU/GPU and RapidIO
mesh network results in a total experimental approach. On
the other hand, simulating all these components would require
a great deal of abstraction (at the expense of losing some
features) to obtain simulation models of them, whilst it is
well-known that modelling applications/middleware/OS/CPU
is a difficult task in general.

As a result, we propose to keep using the same upper layers
(application code, middleware, OS, CPU/GPU) while having
the choice of working on the simulated network or the real
one. This allows us to reuse the same set of applications for
both networks, thus making implementation and evaluation of
cross-layer QoS support and fault-tolerance features easier. It
also makes simulation assessment more relevant. Indeed, the
only layer to be switched is the network one, so we know
that applications and middleware which we would otherwise
have simulated do not cause bugs or bad behaviour that
we would then have to fix. To the best of our knowledge,
there is no experimentation framework able to support such
an interaction between real software including middleware,
simulated networks and in-silicon ones.

The main contribution of this paper is to propose our
symbiotic simulation/emulation/experimentation architecture,
ERICA1, that we use to design real-time QoS support. Appli-
cations and DDS middleware can both run above real-world
networks and network simulators, thanks to an adaptation
layer that we have defined and implemented. We also explain
how we have developed a coarse-grain discrete-event simulator
achieving the dual goal of accuracy for computing transmission
time, and efficiency for running along with operational code.

1ERICA stands for ExpeRImenting Cross-layer QoS for Autonomic systems

The Ptolemy II modeling framework [7] was used for this
purpose. The simulator was tuned according to the run-time
platform and then used to help design the latter. Finally, we
show the benefit of such a symbiotic approach.

To achieve the interaction between application execution
and simulator run, two technical challenges must be solved.
First, how to link one application execution to a simulator?
Second, how to synchronize the time of the application ex-
ecution to that of the simulator? This paper is dedicated to
answering the first question. We will address the second one
in further research; it is sufficient for now to note that this
synchronization is not related to real-world time, but to the
consistency between the latencies perceived by real software
and those emulated by the simulator.

The remainder of the paper is organized as follows. Section
II reviews some existing multi-simulation approaches that
combine either simulation with hardware-in-the-loop, or two or
more different simulators, or one emulator and one simulator.
Section III describes the ERICA architecture. Section IV
illustrates the results of our approach. Section V discusses the
current state of ERICA and presents our ongoing work. We
then provide our conclusions in section VI.

II. RELATED WORK ON MULTI-SIMULATION
APPROACHES

The idea of using a simulator to emulate part of a more
complex system has been highlighted by parallel and dis-
tributed simulation (PADS)[4] [8]. PADS addresses the need to
distribute a comprehensive simulation, in order to obtain speed-
up – by parallelization of computation tasks –, reuse existing
simulation components or utilise geographically distributed
design environments (e.g. for military training).

High Level Architecture (HLA) [9] is the leading stan-
dard for bridging heterogeneous components into an overall
experimentation architecture [10] [11]. It is driven by the need
to couple existing simulators or live players (i.e. users who
can interact with the simulation at runtime) without having to
design a complete architecture from scratch [12] [8]. It allows
hardware to be brought into the loop thanks to live players
interfaces. It also specifies a way of achieving time synchro-
nization while federated components may have heterogeneous
timing constraints (conservative, optimistic, etc.) [10] [13].
Ptolemy II extensions for its integration within an HLA
federation have been designed [14]. However, HLA appears
to be very heavy, complex and time consuming when used for
designing an overall architecture [11]. Moreover, there is no
standard use pattern for it, leading to the need for additional
interoperability packages [15] [16].

MECSYCO [17] combines the Discrete EVent System
Specification (DEVS) [18] formalism and multi-agent con-
cept to enable the integration of heterogeneous formalisms
and manage simulator interoperability. It is notably used for
smart grids simulation [19], with existing simulators, although
Ptolemy II is not supported yet. However, it does not allow
hardware to be brought into the loop and is thus not suitable
for our project, since we want to use an in-silicon platform to
assess the network solutions at different steps of their design.

COOJA [20] is a wireless sensor network simulator. It in-
cludes a microcontroller emulator (e.g. MSPSim for emulating



MSP430 MPU) and a simple radio channel simulator, so that
the same sensor source code and OS can run indifferently in
COOJA or in a mote (e.g. a MSP430-based TelosB mote).
This approach is interesting but slightly different to ours, which
runs the application and middleware code over actual hardware
machines and a simulated network.

Symbiotic simulation is a more general paradigm in which
a simulation and physical systems are closely associated with
each other [21]. It is mostly used in the context of ”what-
if” analysis, i.e. runtime control of the hardware through a
simulator that analyzes several scenarios. It also brings the idea
that data from physical sensors can improve the accuracy of
the simulation. This idea is central to our approach. Indeed, we
advocate that data captured from real systems are key both to
improving the accuracy of simulation, and to instrumenting the
simulation while searching for an appropriate system design.

III. THE ERICA FRAMEWORK:
SIMULATION/EMULATION/EXPERIMENTATION

A. Overall Description

Since we have to work at two different levels (i.e. middle-
ware and network), we need an experimentation architecture
and associated tools that allow us to:

• Test our DDS adaptation layer over a well-controlled
network

• Design and test network features (e.g. routing or
scheduling algorithms) that will be used for QoS
enforcement

• Validate our implementation with respect to the ex-
pected behaviour of network components such as
switches

We have defined a two-layer approach for this purpose,
ERICA (Figure 4):

• The high layer is made of real benchmarking applica-
tions and middleware (DDS)

• The low layer is the network layer, either real or
simulated

The adaptation layer, which will be described below in
more detail, allows the same applications and middleware to
be run over different kind of networks or simulators at the
lower layer.

Benchmarking 
application set

Vortex OpenSplice 
DDS middleware

RapidIO platform
(SANDRA)

Simulated RapidIO 
network

Other networks 
(e.g. Ethernet)

Adaptation layer

Routing, scheduling and 
flow control solutions

Measured network parameters

Fig. 4. ERICA: a two-layer experimentation architecture

The simulated network is used:

• To model a RapidIO network in order to test out
routing, scheduling and flow control algorithms (see
C)

• To model simple networks in order to test out the way
our system translates QoS parameters expressed at the
DDS level into network configuration or packet header
contents (see D)

The in-silicon platform (see B), used as a reference,
gives us some reference values to inject into the simulator
(e.g. link latencies), so that we can experiment our features
(reconfiguration, routing, etc.) in a representative environment
(Figure 4). We then compare its behaviour with that of the
simulator, in order to validate both the simulation model and
the implementation (see section IV for more details).

B. Experimentation: a RapidIO Platform – SANDRA

Our in-silicon RapidIO experimental platform, SAN-
DRA2, is based on an open-source version available from
Open Core [22]. This open-source project, founded by
Bombardier R© [23] in 2013, provides the physical and logical
layers for Serial RapidIO (SRIO), but also one implementation
of a SRIO switch.

In order to have a fully observable network adapter, we
used this foundation on a Zynq ZC7045 board. The Xilinx R©

Zynq R© programmable SoC [24] [25] [26] is made of an FPGA
and a dual-core ARM R© [27] Cortex-A9 CPU on the same die.
The FPGA and the ARM are tightly connected through several
buses, notably 4 high-performance AMBA AXI R© [28] slave
interfaces and 4 general purpose AXI interfaces (2 slaves, 2
masters). We are using the FPGA to implement our network
adapter. It is made of a 5-port SRIO switch. One of the ports
is connected to a SRIO-to-AXI bridge, and then connected to
one of the High Performance AXI ports of the ARM CPU.
We are running a Linux partition on top of a hypervisor. This
partition contains our test application running on top of DDS.
An illustration of the overall platform is given in Figure 5.

2SANDRA stands for Self-Adaptive Network for Distributed and Recon-
figurable Applications
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If we consider a typical network adapter or switch, the
internal logic and arbitration is not known. In our case, thanks
to the VHDL source availability, we are able to understand
and investigate any behaviour.

The FPGA design tools provide precise timing measure-
ments. First, they can run cycle-accurate simulations of the
design. We can feed them with test patterns such as sin-
gle packets, single flows, then simultaneous packet arrivals,
link errors, arbitration logic changes, etc. The resulting time
measurements are key to testing our design, to pinpointing
the root cause of possible erroneous behaviour observed at
macroscopic level (e.g. unexpected latencies), and reliably
estimating the latency associated with each logical block.
These design tools also allow insertion of probes to record
true in-silicon measurements at runtime, so as to confirm the
results of this cycle-accurate simulation.

C. Network Simulation: an Example Using Ptolemy II

1) Architecture of the Simulation Model: We are designing
this simulator using a discrete-event model. This has been
shown as appropriate for network simulation [29] [30]. We are
simulating the functions of SRIO adapters, and our references
are the SRIO standard [1] and the VHDL implementation,
especially the use of the same buffering along the transmission
path. This work has been done on the Ptolemy II modelling
framework, developed at the University of California Berke-
ley [7].

The goal was to keep our design modular enough to avoid
complexity. While basic elements like FIFOs and buses – that
we are not willing to work on once the model is validated –
are modelled in a strong though more complex way (i.e.
graphic), Python scripts are used for simulating routing and
scheduling elements. Such a programming language brings
more expressivity and flexibility for the key features related
to cross-layer QoS support, which we need to change and test
frequently, while the rest of the model remains as visually clear
as possible.

Fig. 6. Composition hierarchy of the RapidIO model

In order to avoid pointless complexity, our RapidIO model
focuses on the fonctions which have a significant impact on
determinism, flow-control and routing. Indeed, we are not
aiming at very precise measurements, but only at transmission
times accurate enough to let us work on cross-layer QoS
support in a representative environment. As we will detail in
section IV, measurements from the platform allow us to assess
this accuracy.

We identified key sequential sections within RapidIO
nodes, in which the individual latencies of logical blocks
can be gathered into a global latency. This applies when the
transition across them is deterministic, i.e. there is no protocol
to model between the beginning and the end of the section.
Obviously we retain only the sections whose global latency is
significant enough to be considered. These are:

• RAM to switch via AXI Bus and Bridge, for read
actions

• Switching delay

• Emission/reception buffers to switch and vice versa

• Emission/reception buffers to line and vice versa

• Switch to AXI-SRIO Bridge, for write actions

• AXI-SRIO Bridge to RAM via AXI Bus, for write
actions

The composition hierarchy of our model is shown in
Figure 6. Note that it is a logical view of the platform, not
a direct representation of it.

Once the simulator behaviour has been validated with
respect to the SRIO standard, latencies are tuned thanks to
the in-silicon platform and its cycle-accurate simulator. For



Fig. 7. Structure of the Port actor

each sequential section, we measure the traversal time for a
set of packet sizes. We then identify a formula that computes
the traversal time of the sequential section depending on the
packet size, close enough to the measurements. More details
about this process are given in section IV.

To illustrate our approach, we focus on the Physical
Port actor. This actor is composed of four components, since
it distinguishes between, on the one hand, the inbound and
outbound traffics, and, on the other hand, the wire level and
the packet buffering level, as depicted in Figure 7:

• At wire level, the Emission Wire & Line and
Receive Wire actors handle sending of packets
and Control Symbols. In RapidIO, Control Symbols
may interrupt packets. For this reason, we send packets
as two events (packet beginning, packet end), while
Control Symbols can be sent in between

• At packet buffering level, the Emission Buffer
and Reception Buffer handle CRC checking,
the related ACK/Retry mechanism, and output queu-
ing

Output queuing is defined as a Python script. It supports
multiple priority levels, manages a dedicated queue of packets
waiting for acknowledgement, and coordinates with the central
switch for flow control. In the current version, we make simple
choices:

• Priority levels are strict: there is no fair share disci-
pline

• Each packet is ACK’ed individually: there is no group
acknowledgement

• Packets to be re-emitted are put at the tail of the
emission queue, like incoming packets

• When a queue is full, the port stops the main switch
until a packet successfully leaves the queue

These choices can be flexibly changed in the Python script
to search for better solutions. For example, priority queuing
relies on per-priority queues; hence a filled-up, low-priority
queue may block the main switch while taking time to drain.
Improving that, while keeping the complexity low for efficient
in-silicon implementation, is part of the challenges that our
approach will help to address.

D. Adaptation Layer: Allowing Real Software in the Loop

The ERICA adaptation layer (see Figure 4) is composed
of the following elements:

• The adaptation module integrated into DDS, which
adapts its behaviour according to the underlying net-
work

• A set of Ptolemy II extensions, namely:
◦ EricaAppPart, which listens to packets

from DDS, tags the data with their metadata
– one of them being the application ID –
then sends them to ERICA Mapper (and vice
versa)

◦ ERICA Mapper, making the bridge between
simulated RapidIO nodes and applications

◦ EricaHostPart, filtering packets from
ERICA Mapper which relate to the node

We will now describe these components in more detail, and
provide illustrations.

1) DDS Adaptation Module: The adaptation module we
introduced in section III-A is the cornerstone of the ERICA
architecture. It enables the use of DDS middleware over either
a Ptolemy II simulated network or the SANDRA platform.
It could eventually be extended to work over other networks
– note that DDS already works over UDP/IP through its base
implementation.

At first, working with Ptolemy II will allow us to test
out how the DDS QoS parameters are being translated on
networks of increasing complexity. Since the locations of
the applications on the network are important and must be
taken into account, it is very useful to be able to create
different topologies over which our adaptation layer will be
tested out. Ultimately, this will allow us to stress our fully
simulated network with a real middleware behaviour that could
neither be accurately nor simply simulated. As we explained
in the introduction to this paper, bridging the simulated and
real-world networks under a common application layer also
makes it easier to focus on them, whatever happens above the
adaptation module.

We have integrated the adaptation module within Vortex
OpenSplice DDS, at the step where DDS packets are about to
be sent out through a UDP socket. At this step, the module is
basically intercepting the data buffers, IP adresses and ports
according to the underlying network. If the underlying network
is Ethernet, the base behaviour is retained, i.e. sending the
packet through the socket. If the underlying network is the
SANDRA platform (i.e. an in-silicon RapidIO node), addresses
are translated to RapidIO addresses and the sending function
from the SANDRA API is called. If working over a Ptolemy
II simulated RapidIO network, the DDS adaptation module
wraps the data with associated metadata (application ID, node
ID, destination ID) and sends them to a UDP listener at the
Ptolemy II level.

2) Ptolemy II Extensions for ERICA: The main idea is to
use Ptolemy II publish-subscribe actors to map applications to
their corresponding node in the simulated network. Publish-
subscribe actors are useful for connecting applications to their
corresponding nodes, without having to physically draw any
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actor link. This allows us to separate the application and
network layers and centralize the mapping into a unique
matrix, thanks to the design described in Figure 8.

All applications are connected to all nodes through two
pub-sub channels that go from RapidIO nodes to ERICA
Mapper and vice versa.

The EricaAppPart actor (Figure 9) listens to packets
from DDS, parses the metadata of incoming packets, and then
emulates the sending of the corresponding RapidIO packet
from the right node, via ERICA Mapper. Conversely, when
receiving data from the simulated network, it rebuilds the IP
packet expected by the upper DDS layers and forwards it via
UDP to the application. This leaves the EricaAppPart fully
transparent from the DDS point of view. EricaAppPart also
contains an input multiport into which simulated applications
can be plugged, allowing mixing of real and simulated appli-
cations.

The ERICA Mapper actor is composed of a mapping
matrix and a script:

• Downstream, it tags the data from the applications
with the target host ID and publishes it to the nodes.
Although each node then receives these data, they
all discard them, except for the node with the cor-
responding host ID. This filtering is done thanks to
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Fig. 10. EricaHostPart model

the EricaHostPart actor (see Figure 10).

• Upstream, the RapidIO node tags the data with his
host ID and publishes it to ERICA Mapper, thanks
to EricaHostPart. The ERICA Mapper compo-
nent then looks into the mapping matrix and forwards
the data to the right application, by tagging them with
the target application ID.

Using this technique, the application set and the network
are almost separated: changing the underlying topology or
the application set only involves editing the mapping matrix
without drawing or deleting any actor link.

3) Wrap-up: With our architecture, the application and
DDS layers may address either UDP/IP or our network,
simulated or in-silicon. Conversely, either these applications,
or simulated ones (based on Ptolemy II source actors) may
address our simulator. However, although this architecture does
work with one application and one node, it does not work
with multiple applications and nodes, for a simple reason:
Ptolemy II does not allow the creation of more than one
Publisher for a given channel, because it would make
the model non-deterministic. We thus have to adapt this base
design, by creating dedicated channels per node (Figure 11).
We are willing to find a better solution than having to manage
so many channels, however. Except for this issue, Ptolemy II
has shown very acceptable performances for the simulation of
RapidIO with our model, given the scenarios we fed it with.

To summarize, our architecture allows real and simulated
components to work together, and to be switched in a flexible
way. This is required in order to experiment with routing
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policies on a step-by-step basis, from full simulation to a real
application on a physical network.

IV. EXPERIMENTS AND RESULTS

Once the simulator behaviour has been validated with
respect to the RapidIO specification, we have to tune the
latencies and verify that end-to-end latencies are consistent
with those measured on the platform. For this purpose, we
firstly use simulated applications (i.e. Ptolemy II source actors)
in order to ensure very simple, harnessed communications.

A. First Step: Overall Checking of the Model

The first scenario is the basic point-to-point sending of a
4-byte payload, RAM-to-RAM. The goal is to validate our
sequential sections and make sure that the overall simulation
architecture is accurate enough with respect to the platform, for
this simple scenario. We measure, on the platform, the values
of latencies for each sequential section, then inject them into
the simulation model, at the places shown in Figure 6. We then
measure the end-to-end (i.e. RAM-to-RAM) latency on the
simulator and the platform in order to compare them. Although
we could just calculate this latency – by summing values – to
make sure that our theorical model is good compared to the
platform, measuring it from the simulator allows us to assess
the actual model in the same process. Measurements have been
performed three times, and average values are given in Table II.

As we can see, there is a huge gap between end-to-end
latencies, although each latency section has been tuned with

TABLE II. MEASURED LATENCIES FOR SENDING OF A SIMPLE 4-BYTE
PAYLOAD

Sequential section Latency (ns)

AXI read 296 ns

Switching delay 56 ns

Emission Buffer 124 ns

Emission Wire 285 ns

Reception Wire 355 ns

Reception Buffer 124 ns

Switching delay (2) 56 ns

AXI-SRIO Bridge 168 ns

AXI write 226 ns

Σ 1,690 ns

RAM-to-RAM on PTII 1,690 ns

RAM-to-RAM on SANDRA 5,100 ns

∆ 67%

TABLE III. MEASURED END-TO-END LATENCIES AFTER THE
IMPLEMENTATION BUG FIX

RAM-to-RAM on PTII 1,690 ns

RAM-to-RAM on SANDRA 1,625 ns

∆ 4%

exact values. This gap is unacceptable because it would mean
that the majority of significant latencies has been neglected,
making our simulation not sufficiently reliable. This issue has
two potential causes: either we have to take other latencies
into account, that we did not think of; or there is an issue
with the platform implementation, leading to the appearance
of an unexpected latency. After investigating this issue, we
find that a data width conversion FIFO (32 bits to 64 bits)
is the source of the problem. This 64-bit bus is used to feed
4 transceivers when running in 4x mode with 16 bits of data
per clock cycle. The FIFO always waited to be filled to 64
bits before forwarding the data. In our case, since there was
only one packet to be sent, the End-of-Packet Control Symbol
was stuck inside it. This would have happened each time the
transferred data were not aligned to a 64-bit boundary. After
having removed this latency, the measured end-to-end latencies
are those given in Table III.

For this scenario, we showed that our model is accurate
enough in terms of latencies, even if the end-to-end value
from the simulator is slightly higher than that measured on
the platform. This is due to measurement uncertainties, notably
for RAM latencies, whose values may significantly vary. As
previously explained, we are not aiming to compute Worst
Case Transmission Time, but only a sufficiently accurate
transmission time.

This first scenario shows the benefit of the symbiotic
approach of ERICA, which is to cross-check values from the
simulator and the in-silicon platform. This approach helped
us to find a major issue within the implementation that we
would probably not easily have found otherwise, considering



TABLE IV. MEASURED LATENCIES FOR THE EMISSION BUFFER
SEQUENTIAL SECTION AND DEDUCED AFFINE FUNCTION

Packet size (bytes) Latency (ns)

4 B 124 ns

32 B 232 ns

150 B 711 ns

248 B 1,096 ns

Deduced function L(S) = 4.00 × S + 107

where L(S) is the latency for an

S-byte payload in nanoseconds

TABLE V. END-TO-END LATENCIES FOR DIFFERENT PAYLOAD SIZES

Packet size (bytes) On PTII On SANDRA

32 B 2,222 ns 2,099 ns

100 B 4,221 ns 4,113 ns

150 B 5,512 ns 5,436 ns

248 B 8,248 ns 8,226 ns

∆ 2.5%

the fact that the latency is very low even with this huge relative
increase.

B. Second Step: Tuning Latencies

Although the latencies configured within Ptolemy II have
led us to a sufficiently accurate end-to-end latency, they are
tuned using values corresponding to a fixed-size payload.
Although this first step was mandatory in order to check
that the overall model was consistent with the SANDRA
platform – and it also led us to a major fix for the latter –,
but we aim to propose a model that is able to compute
accurate latencies, irrespective of the payload size. Latencies
in some sequential sections are constant, while in others they
increase in linear fashion, according to the payload size. For
each sequential section, we thus measure the corresponding
latencies for payloads of multiple sizes. We then deduce the
affine functions to compute latencies in the simulator with
respect to the payload sizes. Since there are some inaccuracies
in measurements, values do not increase in a perfectly linear
way. As a consequence, we use simple linear regression to
find the best approximated functions. An example is given in
Table IV for the Emission Buffer sequential section.

Once we have tuned each sequential section in this way,
we assess this computation model by cross-checking end-to-
end latencies with the SANDRA platform. We use the same
scenario as above (one sending of a packet), but with different
payload sizes. The ensuing results are given in Table V.

This validates the reliability of our method for building an
adaptive though very simple latency computation model.

C. Third Step: Stressed Node

Modelling latencies through several sections will allow us
to maintain accurate latencies irrespective of the complexity
of the scenario, because, as stated above, each sequential
section corresponds to a defined part of the network behaviour.

TABLE VI. END-TO-END LATENCY FOR THE LAST OF 6 × 240-BYTE
PAYLOADS SENT SIMULTANEOUSLY

Latency (ns)

Calculated 20,311 ns

Measured via Ptolemy II 20,311 ns

Measured via the VHDL simulator 19,332 ns

∆ 5%

In a given scenario, each global latency thus results from a
combination of sequential sections, taking into account the
payload sizes and intermediary queues.

We take as an example the sending of six 240-byte payloads
at the same time. We assume, given the payloads size and our
previous measurements, that the bottleneck is located at the
AXIread sequential section. The end-to-end latency for the
last payload should then be:

L(N) = L1 + CSS (S)× (N − 1)

L(6) = L1 +AXIr(240)× 5

L(6) = 20, 311 ns

where:

L(N) is the end-to-end latency for the Nth payload,

L1 is the end-to-end latency for the first payload,

CSS(S) is the latency corresponding to the Critical
Sequential Section, i.e. the sequential section where
the bottleneck is located, given the payload sizes,

AXIr(S) is the latency corresponding to the
AXIread sequential section, for an S-byte payload.

We measure this latency on our simulator and the SAN-
DRA VHDL simulator. We have to use this cycle-accurate
simulator because we are not yet able to run this scenario on
the platform. We obtain the values given in Table VI. The
results show the benefit of our architecture, which is still able
to compute an accurate end-to-end latency when the scenario
is more complex. Of course, this experiment is not sufficient
to strictly validate the model irrespective of the scenario, but
it shows the flexibility and scalability of our approach.

V. DISCUSSION AND ONGOING WORK

Although we have built several scenarios and cross-checked
the simulation model with the SANDRA implementation, the
current state of the latter prevents us from assessing the error
management feature, i.e. the sending of Packet-Not-Accepted
Control Symbols in case of a corrupted packet. We thus plan
to develop an error injection feature and build more complex
scenarios, e.g. communication via several intermediary nodes
or a more stressed network. The presented work helped us
to assess our overall model and the benefit of our symbiotic
approach.

As we explained in the introduction, it is important that the
application clock is consistent with that of the simulator. We



are currently developing a lightweight solution based on open-
source virtualization components. This work is not completely
finished, but has already shown promising results.

As for the SANDRA platform, we will implement RapidIO
DMA logical layer support and integrate it into the DDS
ERICA module (see III.D). This DMA logical layer fits our
needs better than the messaging one we are currently using.

In the longer term, we aim to design an overall software
that makes it easier to conduct experiments with ERICA, for
instance by automatically deploying the applications on the
SANDRA platform or by generating a Ptolemy II model from
a higher level topology drawing. This would also allow us
to build virtual networks and machines to logically separate
applications that are mapped with different RapidIO nodes,
and achieve time consistency.

With regard to the dynamic mesh networking project,
research will now focus on real-time QoS cross-layer support,
i.e. the design of low-level switching and dynamic scheduling
mechanisms and their linking to DDS QoS policies. This work
will be done thanks to ERICA.

VI. CONCLUSION

We are addressing embedded real-time systems whose
communications between components tend to become more
and more demanding and complex. This reflects the increasing
weight of embedded applications in terms of computation and
communication requirements. We consider mesh networking
of sensors and computing units to be an elegant solution to
reconcile real-time constraints with needs in terms of through-
put and dynamicity. However, we need a way of enforcing
guaranteed real-time QoS from the highest layers down to the
mesh network configuration and behaviour. In this paper, we
have presented our symbiotic approach to designing this QoS
support via a discrete-event Ptolemy II simulated network that
is connected with a real implementation of DDS. We have
also described how an in-silicon Serial RapidIO platform can
help us to define a more representative network model, while
the latter may highlight bugs within the implementation. This
symbiotic approach enhances our experimentation process and
makes it more effective by bridging the simulated and physical
worlds. Finally, we discussed the limitations of our approach
and presented some ongoing work.
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Abstract

Most of safety-critical embedded software,
such as �y-by-wire control programs, per-
forms a lot of �oating-point computations.
High level speci�cations are expressed in a
formal model edited manually in SCADE
through a graphical interface. It generally
handles numerical variables and constants
as if they were ideal real numbers. This
work, for the purpose of numerical accuracy
analysis, presents a new version of an Au-
tomatic Code Generator (ACG). This tool
transforms high-level models into C codes
and performs static computations by using
multiple-precision arithmetic. This article
describes a successful way of controlling com-
putation accuracy of numerical constants in
an Automatic Code Generator. An accuracy
analysis on numerical constant values is pre-
sented in a case study.

Keywords: automatic code generator, in-
dustrial software, �oating-point computation,
numerical accuracy, constant propagation

1 Introduction

In this article, we focus on a method for tun-
ing the accuracy of numerical computations in an
avionic Automatic Code Generator (ACG), i.e. a
software tool which aims at transforming a formal
model into a target source code (generally in C).
The generated codes are dedicated to be embed-
ded into avionic systems. Nowadays, the accu-
racy of computations in avionic systems depends
on �oating-point arithmetic. Our motivation is to

study the enhancement of �oating-point computa-
tions in these codes by applying program transfor-
mation [11, 12]. For this purpose and as a �rst
step, numerical error analysis is needed on static
computation of constants during the code genera-
tion. Some constants are computed from the inter-
nal formal model by the ACG for code e�ciency
reasons due to CPU consumption. The analysis is
performed by : a) observing algorithms accuracy
manually or using static analysis by abstract inter-
pretation [21, 20] ; b) checking systematically the
accuracy of the resulting �oating-point values after
generation.

Assurance The embedded software are catego-
rized at a Design Assurance Level depending of the
safety impact on the system, in the sense of the
avionic standard DO-178C/ED-12C [1]. In fact, the
ACG has to be quali�ed as a development tool at
the same assurance level as the generated software.

Numerical optimization In order to lower the
number of computations and accept almost only
arithmetic operations in the embedded code, the
ACG provides simpli�ed constants. A similar situ-
ation in compilers arises when static expressions are
computed at compile-time (e.g const y=1;x=y+1

replaced by x=2 by the compiler.) The fact that
almost any compiler makes the same processings
than our ACG that makes the results presented in
this article rather general.

Floating-point arithmetic errors The
�oating-point representation necessary leads to
numerical errors created by roundings and propa-
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gated by operations. In practice, they are highly
negligible compared with the uncertainty of the
input data (precision of the sensors/actuators).
However as part of a long-term perspective, the
evolution of the hardware precision and the so-
phistication of control algorithms could necessitate
in the future a better accuracy concerning the
computation of numerical operations.

We aim at verifying that a combination of constants
of the high level model is not likely to degrade the
quality of calculations. Indeed, constants are often
called several times inside a loop. The objective in
the present work is to make use of the state of the
art to generate constants as accurate as possible
and then to be able to measuring �oating-point er-
rors. A tunable approach using the rational repre-
sentation [8] for arithmetic operations (+,−,×,÷)
and the extended-precision [9] �oating-point repre-
sentation for elementary functions (such as

√
, tan )

has been selected for the ACG reimplementation.

This article is organized as follows : in Section 2,
we give an overview of the high critical real time
software code generation. Section 3 introduces the
�oating-point arithmetic and its use for constant
propagation. Then Section 4 describes the details
of the reimplementation. Section 5 presents exper-
imental results on a use case. Finally, Section 6
gives general perspectives and Section 7 concludes.

2 Embedded Code Generation

In this section, we describe brie�y the development
of embedded software products. Figure 2 illustrates
the development process.

2.1 Model Speci�cation

In the context of Airbus, the high-level formal spec-
i�cations of avionics program behaviours are ex-
pressed by SCADE sheets [2] and translated into
the Lustre [3] synchronous data-�ow programming
language.

The implementation of this speci�cation is pro-
cessed automatically through an Automatic Code
Generator developed internally.

The model representation consists in data (real, in-
teger or boolean as either constants or variables)

and data-�ow structures (symbols and their in-
puts/outputs). Examples of symbols include delays
and cosines, as depicted in Figure 1.

Figure 1 � An example of a SCADE sheet

Symbols may possibly hold constant parameters,
e.g. the cos symbol in the Figure 1 does not contain
constants while the delay symbol has 3 constants.
Some other constants are global and not directly
referenced in the sheet such as the clock.

2.2 Generated Code Structure

A symbol library is implemented by hand in C
or assembly using macro-functions. The generated
code, which has the same semantics as the initial
formal speci�cation, can therefore call these prede-
�ned macros. For hardware e�ciency and safety
reasons, macros are written as simple as possible
with IEEE754 [4] well-de�ned operations with the
double precision format. Macros and speci�cation
nodes can in addition di�er on the number and the
type of constant parameters since the ACG reduces
the CPU-time by evaluating static expressions dur-
ing the code generation.
A static expression in a symbol can be computed
once for all by the ACG from either input and
global constants in the model or by simpli�cation
of an algorithm thanks to mathematical proper-
ties. This method is similar, from a certain point
of view, to the constant propagation optimization
performed by compilers [5].

2.3 Numerical Error Analysis

In the process of quali�cation, the ACG is subject
to analysis and in particular to �oating-point ac-
curacy. Note that during the step of optimization
that we describe in the next section, the ACG com-
putes values in �oating-point double precision. Two
complementary sorts of analysis are carried out :
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• A handwritten analysis followed by a static
analysis [21] on �oating-point accuracy to over-
approximately estimate the errors generated
by the algorithm.

• A set of tests to verify whether the ACG is
near or far from the expected results.

Our objective is to provide a method to automat-
ically analyse the current ACG with inputs from
the formal model.

Note that some tools are already used for the analy-
sis of control-command programs. Astre computes
safe bounds on �oating-point variables, Fluctuat
computes error bounds between the exact and the
�oating-point semantic, both by abstract interpre-
tation. Compcert is a certi�ed compiler which use
Coq libraries to handle the �oating-point arith-
metic [17].

3 Constant propagation of

�oating point expressions

3.1 The IEEE754 Standard

The IEEE-754 standard [4] describes the �oating-
point number format as well as the elementary op-
erations (+,−,×,÷) and the square root function.
It de�nes:

1. the simple precision on 32 bits with 8 bits for
the exponent e, 23 bits for the mantissa m and
1 bit for the sign s

2. the double precision on 64 bits with 11 bits for
the exponent, 52 bits for the mantissa and 1
bit for the sign

3. the double extended precision on a number of
bits higher than 79 with, more than 15 bits
for the exponent, more than 63 bits for the
mantissa and 1 bit for the sign

It also speci�es several kinds of �oating-point num-
bers, e.g. in radix 2:

• normalized numbers represented by:
f = s · (1.m0...mp−1) · 2e where s ∈ {−1, 1},
p the length of m and Emin ≤ e ≤ Emax
(Emin = −1022 and Emax = 1023 in double
precision)

• denormalized numbers de�ned when e = 0 and
represented by: f = s · (0.m0...mp−1) · 2Emin

• signed zeros +0 and −0

• in�nities ±∞

• NaN (Not A Number)

The standard also de�nes 4 rounding modes :
rounding ◦∼ to nearest, rounding ◦−∞ towards
−∞, rounding ◦+∞ towards +∞ and rounding ◦0
towards zero. Arithmetical operations are exactly
rounded, which means that assuming ↑◦: R → F
the function returning the �oating-point value c
a real number with the chosen rounding mode
◦ ∈ {◦ , ◦−∞, ◦+∞, ◦0}, and an arithmetical oper-
ation � ∈ {+,−,×,÷}, then for all �oating-point
numbers f1, f2 ∈ F :

f1 �F,◦ f2 =↑◦ (f1 �R f2) (1)

Despite this propriety, �oating-point operations
can lead to subtle traps as in logical as in mate-
rial considerations [6, 10]. Among several reasons
of numerical errors, we can cite : the representation
errors, for example the rational number 1

10 is not
representable in �oating-point radix 2 ; the accu-
mulation and propagation of errors through opera-
tions ; the absorption (resp. cancellation), a loss of
precision when adding a number with a smaller one
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from a di�erent order (resp. when subtracting two
numbers approximately equal) ; unstable tests, the
path executed in the control �ow is di�erent from
the one expected in the real semantics.

3.2 Constant propagation

In the long term, we aim at improving the �oating-
point accuracy of the generated embedded code
by reducing error propagation. A �rst step con-
sists in analyzing the �oating-point accuracy of the
computation of constants during the code genera-
tion. Equation (1) gives an example of a �rst order
low-pass �lter algorithm, considering thatX(t) and
Y (t) are temporal values denoting respectively the
input and the output at time t. The constants a, b
and c are related to physical properties.

Y (t) =
2b
a

2b
a

+ 1
Y (t−1)+

1
2b
a

+ 1
(X(t)+X(t−1)) (2)

The terms c1 =
1

1 + 2∗b
a

and c2 = 1 − c1 can be

calculated beforehand. The generated code then
looks like:

Y (t) = c2 Y (t− 1) + c1 (X(t) +X(t− 1)) (3)

The generated constants c1 and c2 appear several
times in a function executed at every tick of a syn-
chronous clock, their numerical accuracy is then
worth to be considered. In addition, the embed-
ded software environment constraints, for example
the real time constraints, e.g. Worst-Case Execu-

tion Time (WCET) [7], are relevant at execution-
time rather than at compile-time. In order to im-
prove their accuracy, the �oating-point operations
can be computed by an arbitrary precision library
such as the Multi-Precision Floating-Point library
(MPFR) [9], which has in addition the bene�t to
be independent from the host machine. Indeed,
static computations achieved by ACG, or more gen-
erally by compilers may be sensitive to the arith-
metic of the processor as well to the dynamic li-
braries of the host machine and libraries get rid of
this issue.

Example of �oating-point rounding errors

A �rst example of �oating-point error that may

arise is a call to the �oor function (returning an in-
teger) after some �oating-point operations. If the
�oating-point arithmetic double precision is used to
implement the real value b x × 1000c when x ∈ R
and b.c : R → Z, the natural way is to write
floor(x×1000) when this time x is a �oating-point
variable, × is the standard �oating-point multipli-
cation and floor the �oating-point �oor function
returning an integer. Some values are error-prone,
for x = 1.001, this implementation leads to an im-
portant relative error : 10−3.

floor(1.001 ∗ 1000) = floor(1.000999999 ∗ 1000)
= floor(1000.999999)
= 1000

(4)

3.3 Static Analysis

In this section, we illustrate the loss of accuracy
resulting from the computation of constant param-
eters by a static analysis on the computation of the
second order low-pass �lter constants.

Low-pass �lter transfer function

H(s) =
1

1 + 2ξ s
ω0

+ s2

ω2
0

This function speci�ed in the formal model is im-
plemented in a way that requires the following con-
stant a :

a =

2

tan2(ω0
∆t
2 )
− 2

1 + 2ξ

tan(ω0
∆t
2 )

+ 1

tan2(ω0
∆t
2 )

(5)

Assuming that the clock ∆t is 0.01 seconds, the
analysis of a with Fluctuat and 1000 global sub-
divisions on ω0 returns the results depicted in Fig-
ure 3.

The range of a is determined by the analysis from
the input range of ∆t, ω0 and ξ and the relative
error is the comparison of the real result and the
�oating-point one. Considering the errors, the gen-
erated �oating-point constant a is sound and com-
plying with the speci�cations.
Assuming that ∆t is 0.02 seconds, Figure 4 show
the relative error on the computation of a. Lower
and upper bound of the relative error are drawn in
the graph.
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Constant Range Relative error

∆t [1.00000000·10−2;1.00000001·10−2] [−2.16840435·10−17;−2.03287906·10−17]

ω0 [6.28318530·10−1;9.42477797·101] [0;0]

ξ [9.99999998·10−2;1.20000001] [0;0]

a [5.95590847·10−1;2.11425866] [−6.52831414·10−15;6.61998150·10−15]

Figure 3 � Results of the static analysis from Equation 4

Figure 4 � Relative error bounds on a

Even though the absolute error stays stable, the
relative error increases when ω0 ' π

2∆t
. A new

implementation of the ACG would be an additive
analysis tool to reinforce the assurance that con-
stants are generated accurately.

4 A Tunable Code Generator

4.1 Alternative Arithmetics

Several works has been done to estimate and to
improve the numerical accuracy of programs [16].
We can cite interval arithmetic which consists of
bounding the exact result by two �oating-point
numbers. Stochastic arithmetic [15] that consists
of running the programs several times with random
rounding modes. Doing so, the round-o� errors are
randomly propagated and the output is eventually
statistically approximated.
The ones that would be considered for the reim-
plementation of the computations in the ACG is
the rational and the extended-precision arithmetic.
The rational representation is de�ned by two un-
bounded integers, a numerator and a denomina-

tor. The computations in this representation is
exact and thus not subjected to any round-o� er-
rors, but valid only for the elementary operations
{+,−,×,÷}. Since the constants of the model are
expressed in decimal and most of the operations in
the ACG are elementary, this arithmetic is well-
suited to this representation. The downside of this
approach is that it is not stable in term of memory
and time costs. Basically, after a certain number of
operations on a variable x, the cost of a new opera-
tion is getting higher and higher due to the possible
increasing length of the numerator and the denom-
inator. However in our context, it does not have
to be taken into account since most of the time
few operations are involved in static computation
of constants and not performed at run time.

In some circumstances, for example on a call to a
tangent or a square root function, the �oating-point
representation with extended precision is more ap-
propriate and can be con�gured with the selected
number of bits.

4.2 Architectures

We reimplement the existing ACG written in Ada
to improve the numerical accuracy of the constant
computations. The current ACG uses the dou-
ble precision complying with the precision of the
IEEE754 double format. As shown in Figure 5a,
the library Ada is used to compute the static ex-
pressions and both the reading and the writing pro-
cess of constants generate rounding errors. In ad-
dition, there is some call to the tangent function
which is not de�ned in the IEEE754 Standard but
which is de�ned in the dynamic mathematical li-
brary of the host machine. Figure 5b describes
the computation process of the new ACG using the
multi-precision rational arithmetic library (MPQ)
from GMP [8] and the MPFR library.
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(a) Static computation in the current ACG
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string

read
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MPQ *1

cast

computation

MPFR *2
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(b) Static computation in the optimized ACG
*1 : only with arithmetic operators
*2 : with elementary functions

5 Experimental Results

In order to have representative results of static com-
putations, the former and the new ACG have been
tested on a use case representative of the model
for a large avionic system (several thousand nodes).
They have been executed on a Sun Solaris platform
on a SPARC architecture. MPFR has been con�g-
ured to the to-nearest rounding mode and 200 bits
of allocation for a �oating-point number. We com-
pare by analysis of the generated constants the nu-
merical errors created by the ACGs. The analysis
calculates for each constant the relative error be-
tween the two values. If c1 is generated by the �rst
ACG and c2 by the second from the same static

expression, the relative error corresponds to |c1−c2|c2
as we suppose that the second ACG computes al-
most exactly. Figure 6 depicts the results. N in-
dicates the number of generated constants whose
relative error from the analysis is greater than the
error �xed in x-axis. For clarity, Figure 7 shows
the index of the most signi�cant bit in the man-
tissa of the absolute error |c1 − c2| between the re-
lated constants c1 and c2 for the 1000 worst cases.
Some conclusions have been raised from this exper-
iment : The results are complying with the accu-

racy requirements for the former ACG. There are
approximately 1000 constants whose relative error
is above 10−10 and 500 above 10−9 on a total of
40000 generated constants. They all are in confor-
mance with the internal error criterion expressed
by an acceptable error bound.

Figure 6 � Relative error between generated constants
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Figure 7 � Index of the most signi�cant bit of the absolute
error

6 Perspectives

The work introduced in this article, concerning the
accurate evaluation of the static arithmetic expres-
sions by ACGs, is a �rst step towards the automatic
generation of fully optimized code with respect to
the accuracy of �oating-point computations. The
next steps are the generation of accurate arithmetic
expressions and, more generally, the generation of
accurate programs. More precisely, in the �oating-
point arithmetic, the accuracy of expressions de-
pends on how formulas are written and mathemat-
ically equivalent expressions give di�erent results,
more or less accurate, when evaluated by the ma-
chine. For example, a+(b+c) is generally di�erent
from (a+b)+c and x+x2 is generally di�erent from
x(x + 1). The choice of the best formula depends
on the ranges of the inputs which can be obtained
by static analysis [20].

Automatic techniques enabling one to �nd a very
accurate implementation of a formula for the
IEEE754 arithmetic have been introduced in [12]
and other work has been done to re-organize larger
pieces of code containing several statements made
of assignments, conditionals and loops [13]. For ex-
ample, x=a+b ; y=c+d; z=x+y may be rewritten
as z=((a+c)+d))+b if this choice is relevant, de-
pending on the ranges of a, b, c and d computed by
static analysis. These transformations still needs to
be extended to the inter-procedural case. At mid-
term, ACGs could take advantage of these tech-
niques to generate accurate code, made of formulas

mathematically equivalent to the ones of the high
level model (e.g. Scade) but taylored to evaluate
very accurately in the computer arithmetic.

The code transformations operated to improve the
numerical accuracy may lead to programs which are
di�erent enough from the original ones while they
still computing the same mathematical results. An-
other important research direction is to take care
of certi�cation. Traceability and a good level of
con�dence in the transformed codes are obviously
mandatory. We aim at generating correctness cer-
ti�cates ensuring that the transformed codes are
mathematically equivalent and more accurate than
the original codes. These certi�cates will be ex-
pressed using formal proof assistants. In practice,
we plan to use the Coq theorem prover. A related
problem, more theoretical is to show that substi-
tuting a more accurate piece of code to an origi-
nal piece of code inside a large program improves
the accuracy of the whole application. Ongoing re-
search in currently done in this direction.

7 Conclusion

In this article, we have shown how the static com-
putations performed by ACGs are sensitive to the
host machine on which the code generation is per-
formed. Indeed, the resulting code may depend
on the arithmetic of the host machine as well as
on the dynamic libraries of its operating system.
This problem is not limited to ACGs. It is gen-
eral to all the modern compilers which perform con-
stant propagation during their optimization passes.
Our experimental results show that large indus-
trial applications may be impacted by this trans-
formation. In addition, even if the accuracy of the
computations done at compile-time without using
any speci�c high precision library like MPFR is
acceptable, reproducibility and maintenance ques-
tions still remain since compiling again the same
program on another machine, possibly several years
later to deliver a new version of the software, may
yield a program embedding constants which are dif-
ferent from these of the original code.

The accuracy tunable ACG is intended to be used
as an analysis tool and may be subject to a process
of quali�cation with the corresponding libraries
GMP MPQ and MPFR in the case of a devel-
opment application.
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Another aspect of the problem of improving the ac-
curacy concerns the execution-time. We wish the
transformed codes, optimized for accuracy, be at
least as e�cient as the original codes. The trans-
formations introduced in [12, 13, 14] neither slow
the applications nor speed them up signi�cantly.
However, the transformation of the arithmetic ex-
pression is only guided by accuracy. The existing
methods could be interestingly extended to search
a compromise between time and accuracy, or, in
other word, a rewriting of the computations which
improves both accuracy and execution-time even if
it not optimal for each criterion taken separately.
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Abstract

CompCert is the first commercially available optimiz-
ing compiler that is formally verified, using machine-
assisted mathematical proofs, to be exempt from mis-
compilation. The executable code it produces is proved
to behave exactly as specified by the semantics of the
source C program. This article gives an overview of
the design of CompCert and its proof concept and then
focuses on aspects relevant for industrial application.
We briefly summarize practical experience and give an
overview of recent CompCert development aiming at in-
dustrial usage. CompCert’s intended use is the compi-
lation of life-critical and mission-critical software meet-
ing high levels of assurance. In this context tool quali-
fication is of paramount importance. We summarize the
confidence argument of CompCert and give an overview
of relevant qualification strategies.

1 Introduction

Modern compilers are highly complex software systems
that try to find a balance between various conflicting
goals, like minimal size or minimal execution time of
the generated code, maximum compilation speed, max-
imum retargetability, etc. The code generation process
itself is a collection of complex transformation steps,
many of which are essentially NP-complete, as e.g.,
the standard backend phases instruction selection, in-
struction scheduling, or register allocation. The qual-
ity of a compiler typically is rated on the efficiency of
the generated code whereas its price should not be too
high. In consequence compilers have to be efficiently
developed, their structure is complex, they contain many
highly tuned and sophisticated algorithms – and they
can contain bugs. Studies like [12, 5] and [14] have
found numerous bugs in all investigated open source and
commercial compilers, including compiler crashes and
miscompilation issues. Miscompilation means that the
compiler silently generates incorrect machine code from
a correct source program. Such wrong-code errors can
be detected in the normal software testing stage which,

however, does typically not include systematic checks
for them. When they occur in the field, they can be hard
to isolate and to fix.

Whereas in non-critical software functional software
bugs tend to have bigger impact than miscompilation
errors, the importance of the latter dramatically in-
creases in safety-critical systems. Contemporary safety
standards such as DO-178B/C, ISO-26262, or IEC-
61508 require to identify potential functional and non-
functional hazards and to demonstrate that the software
does not violate the relevant safety goals. Many verifica-
tion activities are performed at the architecture, model,
or source code level, but all properties demonstrated
there may not be satisfied at the executable code level
when miscompilation happens. This is not only true
for source code review but also for formal, tool-assisted
verification methods such as static analyzers, deductive
verifiers, and model checkers. Moreover, properties as-
serted by the operating system may be violated when its
binary code contains wrong-code errors induced when
compiling the OS. In consequence, miscompilation is
a non-negligible risk that must be addressed by addi-
tional, difficult and costly verification activities such as
more testing and more code reviews at the generated as-
sembly code level.

The first attempts to formally prove the correctness
of a compiler date back to the 1960’s [10]. Since 2015,
with the CompCert compiler, the first formally veri-
fied optimizing C compiler is commercially available.
What sets CompCert apart from any other production
compiler, is that it is formally verified, using machine-
assisted mathematical proofs, to be exempt from mis-
compilation issues. In other words, the executable code
it produces is proved to behave exactly as specified by
the semantics of the source C program. This level of
confidence in the correctness of the compilation process
is unprecedented and contributes to meeting the high-
est levels of software assurance. In particular, using the
CompCert C compiler is a natural complement to apply-
ing formal verification techniques (static analysis, pro-
gram proof, model checking) at the source code level:
the correctness proof of CompCert C guarantees that all
safety properties verified on the source code automati-
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cally hold as well for the generated executable.
Usage of CompCert offers multiple benefits. First,

the cost of finding and fixing compiler bugs and ship-
ping the patch to customers can be avoided. The testing
effort required to ascertain software properties at the bi-
nary executable level can be reduced. Whereas in the
past for highly critical applications (e.g., according to
DO-178B Level A) compiler optimizations were often
completely switched off, using optimized code now be-
comes feasible.

The article is structured as follows: in Sec. 2 we give
an overview of the CompCert design and illustrate its
proof concept in Sec. 3. Sec. 4 summarizes experi-
mental results and practical experience obtained with
the CompCert compiler. Specific developments required
for industrial application of CompCert are discussed in
Sec. 5. Sec. 6 summarizes the confidence argument
for CompCert and discusses tool qualification strategies,
Sec. 7 concludes.

2 CompCert Structure
Like other compilers, CompCert is structured as a
pipeline of compilation passes, depicted in Figure 1
along with the intermediate languages involved. The
20 passes bridge the gap between C source files and ob-
ject code, going through 11 intermediate languages. The
passes can be grouped in 4 successive phases, described
next.

Parsing Phase 1 performs preprocessing (using an
off-the-shelf preprocessor such as that of GCC), tok-
enization and parsing into an ambiguous abstract syn-
tax tree (AST), and type-checking and scope resolution,
obtaining a precise, unambiguous AST and producing
error and warning messages as appropriate. The LR(1)
parser is automatically generated from the grammar of
the C language by the Menhir parser generator, along
with a Coq proof of correctness of the parser [9]. Op-
tionally, some features of C that are not handled by the
verified front-end are implemented by source-to-source
rewriting over the AST. For example, bit-fields in struc-
tures are transformed into regular fields plus bit shift-
ing and masking. The subset of the C language han-
dled here is very large, including all of MISRA-C 2004
[11] and almost all of ISO C99 [8], with the exceptions
of variable-length arrays and unstructured, non-Misra
switch statements (e.g. Duff’s device).

C front-end compiler The second phase first re-
checks the types inferred for expressions, then deter-
mines an evaluation order among the several permitted
by the C standard. This is achieved by pulling side
effects (assignments, function calls) outside of expres-
sions, turning them into independent statements. Then,
local variables of scalar types whose addresses are never

taken (using the & operator) are identified and turned
into temporary variables; all other local variables are al-
located in the stack frame. Finally, all type-dependent
behaviors of C (overloaded arithmetic operators, im-
plicit conversions, layout of data structures) are made
explicit through the insertion of explicit conversions
and address computations. The front-end phase out-
puts Cminor code. Cminor is a simple, untyped inter-
mediate language featuring both structured (if/else,
loops) and unstructured control (goto).

Back-end compiler This third phase comprises 12 of
the passes of CompCert, including all optimizations and
most dependencies on the target architecture. It bridges
the gap between the output of the front-end and the
assembly code by progressively refining control (from
structured control to control-flow graphs to labels and
jumps) and function-local data (from temporary vari-
ables to hardware registers and stack frame slots). The
most important optimization performed is register allo-
cation, which uses the sophisticated Iterated Register
Coalescing algorithm [7]. Other optimizations include
function inlining, instruction selection, constant propa-
gation, common subexpression elimination (CSE), and
redundancy elimination. These optimizations imple-
ment several strategies to eliminate computations that
are useless or redundant, or to turn them into equivalent
but cheaper instruction sequences. Loop optimizations
and instruction scheduling optimizations are not imple-
mented yet.

Optimization passes exploit the results of two in-
traprocedural static analyses: a forward “value” anal-
ysis, that infers variation intervals for integer variables,
known values for floating-point variables, and nonalias-
ing information for pointer variables; and a backward
“neededness” analysis, generalizing liveness analysis by
identifying the bits of a variable or memory location that
do not contribute to the final results of a function.

Optimizations and static analyses are performed
over the RTL intermediate representation, consisting of
control-flow graphs of “three-address” machine-like in-
structions. RTL code is not in Single Static Assign-
ment (SSA) form. Consequently, static analyses are
more costly and optimizations slightly less aggressive
than what is possible with SSA-based compilation algo-
rithms. The reason for not using SSA is that, at the be-
ginning of the CompCert project, the semantic proper-
ties of SSA and the soundness arguments for SSA-based
algorithms were poorly understood. The recent work of
Demange et al. [2] and Zhao et al. [15] provides formal
foundations for SSA-based optimizations.

Assembling The final phase of CompCert takes the
AST for assembly language produced by the back-end,
prints it in concrete assembly syntax, adds DWARF de-
bugging information coming from the parser (cf. Sec. 5),
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Figure 1: General structure of the CompCert C compiler
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and calls into an off-the-shelf assembler and linker to
produce object files and executable files. To improve
confidence, CompCert provides an independent tool that
re-checks the ELF executable file produced by the linker
against the assembly language AST produced by the
back-end.

3 The CompCert Proof
The CompCert front-end and back-end compilation
passes are all formally proved to be free of miscompi-
lation errors; as a consequence, so is their composition.
The property that is formally verified is semantic preser-
vation between the input code and output code of every
pass. To state this property with mathematical precision,
we give formal semantics for every source, intermediate
and target language, from C to assembly. These seman-
tics associate to each program the set of all its possible
behaviors. Behaviors indicate whether the program ter-
minates (normally by exiting or abnormally by causing
a run-time error such as dereferencing the null pointer)
or runs forever. Behaviors also contain a trace of all ob-
servable input/output actions performed by the program,
such as system calls and accesses to “volatile” memory
areas that could correspond to a memory-mapped I/O
device. Arithmetic operations and non-volatile memory
accesses are not observable.

Technically, the semantics of the various languages
are specified in small-step operational style as labeled
transition systems (LTS). A LTS is a mathematical rela-
tion current state trace−→ next state that describes one step
of execution of the program and its effect on the pro-
gram state. For assembly-style languages, the state of
the program comprises the values of processor registers
and the contents of memory. The step of computation
is the execution of the instruction pointed to by the pro-
gram counter (PC) register, which updates the contents
of registers and possibly of memory. For higher-level
languages such as C, states have a richer structure, in-
cluding not just memory contents and an abstract pro-
gram point designating the statement or expression to
execute next, but also environments mapping variables
to memory locations, as well as an abstraction of the
stack of function calls.

A generic construction defines the observable behav-
iors from these transition systems, by iterating transi-
tions from an initial state (the initial call to the main
function): S0

t1→ S1
t2→ ··· tn→ Sn. Such sequences of tran-

sitions can stop on a state Sn from which no transition is
possible. This describes a terminating execution, where
the program terminates either normally (on returning
from the main function) or on a run-time error (e.g.
dereferencing the null pointer, or dividing by zero). Al-
ternatively, an infinite sequence of transitions describes
a program execution that runs forever. In both cases,
the concatenation of the traces t1.t2 . . . describes the I/O

actions performed. Several behaviors are possible for
the same program if non-determinism is involved. This
can be internal non-determinism (e.g. multiple possi-
ble evaluation orders in C) or external non-determinism
(e.g. reading from a memory-mapped device can pro-
duce multiple results depending on I/O behaviors).

To a first approximation, a compiler preserves seman-
tics if the generated code has exactly the same set of
observable behaviors as the source code (same termina-
tion properties, same I/O actions). This first approxima-
tion fails to account for two important degrees of free-
dom left to the compiler. First, the source program can
have several possible behaviors: this is the case for C,
which permits several evaluation orders for expressions.
A compiler is allowed to reduce this non-determinism
by picking one specific evaluation order. For example,
consider the following C program:
#include <stdio.h>
int f() { printf("f"); return 1; }
int g() { printf("g"); return 2; }
int main() { return f() + g(); }

According to the C semantics, two behaviors are al-
lowed, producing fg or gf as output, depending on
whether the call to f or the call to g occurs first. Comp-
Cert chooses to call g first, hence the compiled code has
only one behavior, with gf as output.

Second, a C compiler can “optimize away” run-time
errors present in the source code, replacing them by any
behavior of its choice. (This is the essence of the no-
tion of “undefined behavior” in the ISO C standards.)
Consider an out-of-bounds array access:
int main(void)
{ int t[2];
t[2] = 1; // out of bounds
return 0;

}

This is undefined behavior according to ISO C, and
a run-time error according to the formal semantics of
CompCert C. The generated assembly code does not
check array bounds and therefore writes 1 in a stack
location. This location can be padding, in which case
the compiled program terminates normally, or can con-
tain the return address for ”main”, smashing the stack
and causing execution to continue at PC 1, with unpre-
dictable effects. Finally, an optimizing compiler like
CompCert can notice that the assignment to t[2] is
useless (the t array is not used afterwards) and remove
it from the generated code, causing the compiled pro-
gram to terminate normally.

To address the two degrees of flexibility mentioned
above, CompCert’s formal verification uses the follow-
ing definition of semantic preservation, viewed as a re-
finement over observable behaviors:

If the compiler produces compiled code
C from source code S, without reporting
compile-time errors, then every observable
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Figure 2: Performance of CompCert-generated code relative to GCC 4.1.2-generated code on a Power7 processor.
Shorter is better. The baseline, in blue, is GCC without optimizations. CompCert is in red.

behavior of C is either identical to an allowed
behavior of S, or improves over such an al-
lowed behavior of S by replacing undefined
behaviors with more defined behaviors.

In the case of CompCert, the property above is a
corollary of a stronger property, called a simulation di-
agram, that relates the transitions that C can make with
those that S can make. First, 15 such simulation dia-
grams are proved independently, one for each pass of the
front-end and back-end compilers. Then, the diagrams
are composed together, establishing semantic preserva-
tion for the whole compiler.

The proofs are very large, owing to the many passes
and the many cases to be considered – too large to be
carried using pencil and paper. We therefore use ma-
chine assistance in the form of the Coq proof assistant.
Coq gives us means to write precise, unambiguous spec-
ifications; conduct proofs in interaction with the tool;
and automatically re-check the proofs for soundness and
completeness. We therefore achieve very high levels of
confidence in the proof. At 100 000 lines of Coq and 6
person-years of effort, CompCert’s proof is among the
largest ever performed with a proof assistant.

4 Practical Experience
CompCert targets the following three architectures: 32-
bit PowerPC, ARMv6 and above, and IA32 (i.e. In-
tel/AMD x86 in 32-bit mode with SSE2 extension). On
PowerPC and ARM, the code generated by CompCert
runs at least twice as fast as the code generated by GCC
without optimizations, and approximately 10% slower
than GCC 4 at optimization level 1, 15% slower at opti-

mization level 2 and 20% slower at optimization level 3.
These numbers were obtained on the benchmark suite
shown in figure 2, along with the performance numbers
for a Power7 processor. This suite comprises compu-
tational kernels from various application areas: signal
processing, physical simulation, 3d graphics, text com-
pression, cryptography. By lack of aggressive loop opti-
mizations, performance is lower on HPC codes involv-
ing dense matrix computations. On IA32, due to its
paucity of registers and its specific calling conventions,
CompCert is approximately 20% slower than GCC 4 at
optimization level 1.

CompCert provides a general mechanism to attach
free-form annotations (text messages possibly mention-
ing the values of variables) to C program points, and
have these annotations transported throughout compila-
tion, all the way to the generated assembly code, where
the variable names are expressed in terms of machine
code addresses and machine registers. Apart from im-
proving traceability this source annotation mechanism
enables WCET tools to compute more precise WCET
bounds. Indeed, WCET tools like aiT [6] operate di-
rectly on the executable code, but they sometimes re-
quire programmers to provide additional information
(e.g., the bound of a while loop) that cannot easily be
reconstructed from the machine code alone. When us-
ing CompCert, such information can be safely extracted
from annotations inserted at the source code level. A
tool automating this task was developed by Airbus: it
generates a machine-level annotation file usable by the
aiT WCET analyzer. Compiling a whole flight control
software from Airbus (about 4 MB of assembly code)
with CompCert resulted in significantly improved per-
formance in terms of WCET bounds and code size [3].
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5 Industrial Application
An industrial application of CompCert is not only at-
tractive because of the high confidence in the correct-
ness of the compilation process. As mentioned in Sec. 1
it opens up the possibility to use optimized code even in
highly critical avionics projects, hence enabling higher
software performance. Furthermore, CompCert’s anno-
tation mechanism as described in Sec. 4 can contribute
to further improving confidence by providing proven
traceability information [3].

A prerequisite for industrial use of a compiler is the
possibility to debug the program under compilation.
While previous versions of CompCert only provided
rudimentary debugging support, CompCert now is able
to produce debug information in the Dwarf 2 format.
It generates debugging information for functions and
variables, including information about their type, size,
alignment and location. This also includes local vari-
ables so that the values of all variables can be inspected
during program execution in a debugger. To this end
CompCert introduces an additional pass which com-
putes the live ranges of local variables and their loca-
tions throughout the live range. Furthermore CompCert
keeps track of the lexical scopes in the original C pro-
gram and creates corresponding Dwarf 2 lexical scopes
in the debugging information.

The CompCert sources can be downloaded from In-
ria1 free of charge; the current state of the development
can be viewed on Github 2. In addition, a revisioned
distribution is available from AbsInt, either as a source
code download or as pre-compiled binary for Windows
and Linux. To create the pre-compiled binary, Coq is
executed under Linux to create the OCaml source files
and the corresponding correctness proof. This provides
a proven-in-use argument for Coq usage since there is a
wide community using Coq under Linux/Unix. Further-
more it makes sure the Windows and Linux versions op-
erate on the same sources. Under Windows the OCaml
sources are compiled with a native Windows compiler;
to execute CompCert no additional libraries (e.g., cyg-
win or mingw) are needed. The package also contains
pre-configured setup files for the compiler driver to con-
trol the cooperation between the CompCert executable
and the external cross compiler required for preprocess-
ing, assembling and linking.

Translation Validation. Currently the verified part of
the compile tool chain ends at the generated assembly
code. In order to bridge this gap we have developed
a tool for automatic translation validation, called Valex,
which validates the assembling and linking stages a pos-
teriori.

Valex checks the correctness of the assembling and
linking of a statically and fully linked executable file

1http://compcert.inria.fr/download.html
2https://github.com/AbsInt/CompCert

against the internal abstract assembly representation
produced by CompCert. In order to use Valex, the C
source files for the program must be compiled by Comp-
Cert and the command-line option -sdump must be
specified. This option instructs CompCert to serialize
the internal abstract assembly representation in JSON
[4] format.

The generated .json-files as well as the linked exe-
cutable are then passed as arguments to the Valex tool.
The main goal is to verify that every function defined
in a C source file compiled by CompCert and not opti-
mized away by it can be found in the linked executable
and that its disassembled machine instructions match
the abstract assembly code. To that end, after parsing
the abstract assembly code Valex extracts the symbol
table and all sections from the linked executable. Then
the functions contained in the abstract assembly code
are disassembled. Extraction and disassembling is done
by two invocations of exec2crl, the executable reader of
aiT [1].

exec2crl tries to decode all symbols in the linked ex-
ecutable which have the same name as a function sym-
bol contained in any of the input .json-files. If one
of these symbols in the linked executable is not a func-
tion, exec2crl reports a warning that it cannot decode
the given symbol. The decoded control-flow graph is
linearized to a sequential list of its instructions sorted
by their address.

The main stages of Valex deal with function and vari-
able usage. For every function in the abstract assem-
bly code, Valex matches the instructions in the abstract
assembly code against the instructions contained in the
linked executable. Valex supports both the cases that
an abstract assembly instruction directly corresponds to
one machine instruction, and that it corresponds to a se-
quence of machine instructions. It checks whether the
arguments of the instructions are equivalent and the in-
tended instruction mnemonic is used.

For every variable defined in a C source file compiled
by CompCert Valex checks whether the corresponding
symbol can be found in the symbol table. It also checks
that the corresponding size and initialization data is con-
tained in the linked executable and matches the initial-
ization data in the abstract assembly. Valex reports an
error if one of these checks fails.

In a further stage Valex reconstructs the mapping
from symbolic names and labels to machine addresses
computed by the linker, checks that there is an address
for every symbolic name and label and ensures that all
occurrences are always mapped to the same address.

Additionally, Valex tests for variables and functions
whether they are placed in their corresponding sections,
which are either the default sections, or the sections
specified by the user in the C files using #pragma sec-
tion. When using the GCC tool chain, Valex also checks
whether uninitialized variables that were placed into one
of CompCert’s internal sections Data, Small Data,
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Const or Small Const are contained in the .bss
or .sbss section of the executable.

Currently Valex can check linked PowerPC executa-
bles that have been produced from C source code by
the CompCert C compiler using the Diab assembler and
linker from Wind River Systems, or the GCC tool chain
(version 4.8, together with GNU binutils 2.24).

6 The Confidence Argument
As described in Sec. 3 all of CompCert’s front-end and
back-end compilation passes are formally proved to be
free of miscompilation errors. These formal proofs
bring strong confidence in the correctness of the front-
end and back-end parts of CompCert. These parts in-
clude all optimizations – which are particularly difficult
to qualify by traditional methods – and most code gen-
eration algorithms.

The formal proofs do not cover the following aspects:

1. Correctness of the specifications used for the for-
mal proof, i.e. the formal semantics of C and as-
sembly.

2. The parsing phase, i.e. the transformation from the
input C program to CompCert’s abstract syntax.

3. The assembling and linking phase.

Those aspects can be handled well by traditional quali-
fication methods, i.e. via a validation suite, to comple-
ment the formal proofs. A validation suite for Comp-
Cert is currently in development and will be available
from AbsInt.

Especially the parsing phase (item 2) can be seen
as a straightforward code generation pass which does
not include any optimizations and only performs lo-
cal transformations. Since the internal complexity of
this stage is low, systematic testing provides good con-
fidence. CompCert can print the result of parsing in
concrete C syntax, facilitating comparison with the C
source.

However, it is possible to provide additional confi-
dence beyond the significance of the validation suite, in
particular for items 1 and 3. CompCert provides a refer-
ence interpreter, proved correct in Coq, that can be used
to systematically test the C semantics on which the com-
piler operates. Likewise, the Valex validator described
in Sec. 5 provides confidence in the correctness of the
assembling and linking phase. It performs translation
validation of the generated code which is a widely ac-
cepted validation method [13].

At the highest assurance levels, qualification argu-
ments may have to be provided for the tools that pro-
duce the executable CompCert compiler from its ver-
ified sources, namely the “extraction” mechanism of
Coq, which produces OCaml code from the Coq devel-
opment, combined with the OCaml compiler. We are

currently experimenting with an alternate execution path
for CompCert that relies on Coq’s built-in program exe-
cution facilities, bypassing extraction and OCaml com-
pilation. This alternate path runs CompCert much more
slowly than the normal path, but fast enough that it can
be used as a validator for selected runs of normal Comp-
Cert executions.

In summary, CompCert provides unprecedented con-
fidence in the correctness of the compilation phase: the
’normal’ level of confidence is reached by providing a
validation suite, which is currently accepted best prac-
tice; the formal proofs provide much higher levels of
confidence concerning the correctness of optimizations
and code generation strategies; finally, the Valex transla-
tion validator provides additional confidence in the cor-
rectness of the assembling and linking stages.

7 Conclusions
CompCert is a formally verified optimizing C compiler:
the executable code it produces is proved to behave
exactly as specified by the semantics of the source C
program. Experimental studies and practical experi-
ence demonstrate that it generates efficient and compact
code. Further requirements for industrial application,
notably the availability of debug information, and sup-
port for Linux and Windows platforms have been estab-
lished. Explicit traceability mechanisms enable a seam-
less mapping from source code properties to properties
of the executable object code. We have summarized
the confidence argument for CompCert, which makes
it uniquely well-suited for highly critical applications.
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Abstract We present the development of a model transformation
tool between the synchronous Signal language and QGen model com-
piler’s intermediate language as well as an alternative block sequenc-
ing implementation for QGen which supports strict partial and total
orders. We discuss our contributions and their possible applications
in the field of reactive system design as well as some experiments

1 Introduction
The work presented in this paper is about providing a se-
mantic bridge between the data-flow language Signal and a
model compiler named QGen developed by Adacore. QGen
is the result of a collaborative work made in a project funded
by the French FUI funding framework1, named P, which
was initiated to continue the work made in the Geneauto
project [15]. Signal [3, 1] is a synchronous data-flow lan-
guage for designing reactive systems. The language manip-
ulates clocks and dependencies to perform a static schedul-
ing of computations and data exchanges. Our objective
in the P project was to use the Polychrony toolset of the
Signal language to compute fined-grained static scheduling
of computations and communications for P models based
on architectural properties, as demonstrated in a previous
work [19]. In this paper, we show a translation scheme be-
tween the formalism used by QGen, named P, and the Sig-
nal metamodel, SSME2.

1.1 P project and QGen
The goal of the P project was to develop a qualifiable model
compiler in the context of critical systems, which would
group several existing heterogenous modelling formalisms
under a single language, referred to as P language. The set
of input languages envisioned for P was ranging from ar-
chitecture description languages, such as AADL [11], Sys-
ML [13], Marte [21], to control and command languages
such as Matlab Simulink [8] and SCADE [10]. The motiva-
tion behind the P project and in particular its goals regarding
qualification is explained in details in [4, 5].

QGen is the compiler resulting from this combined ef-
fort and its first version was released February, 2015. It
can import a subset of discrete Simulink models (models
with a fixed time-step) and produce MISRA C [20] or Ada
Ravenscar [6] code along with traceability information and
formal annotations. The P language is layered as multiple
languages describing different views of a same system. (i)
Code Model is a model representation of imperative state-
ments and functions. This language is an intermediate target
before code optimizations and the actual code generation to

1Fonds Unique Interministériel, http://competitivite.gouv.fr/
2Signal’s Syntactic Model under Eclipse

C and Ada. (ii) System Model is inspired by Simulink and
other block diagram formalisms, where systems are orga-
nized as data-flow graphs, connecting blocks by their data
and control ports through signals. (iii) Block library Model
is a configuration language describing block types. Block
types are identified by names (e.g. "Gain", "Product") and
can contain additional parameters. For example, the Sum
block has different meaning depending on the number and
type of its arguments (scalars, vectors, matrices). The QGen
compiler is responsible for translating block instances as
Code Model elements.

Typically, a model is first designed as a System Model
and is gradually refined upto a point where imperative Code
Model elements are generated and optimized. The QGen
compiler is organized as multiple optional steps of trans-
formations. The first one is a preprocessing step which
removes organizational and visual features: for example,
from/goto blocks, used for simplifying data-flow routing
in a model, can be replaced by actual signals; also, artifi-
cial boundaries defined by virtual subsystems are removed,
so that blocks previously grouped in a virtual system are
moved as direct elements of the removed system’s parent.
Another interesting step is block sequencing. As a hierar-
chical data-flow graph, the System Model defines a partial
order among blocks, which must be respected at execution
time. The purpose of the block sequencer is to compute a
sequential execution order for all blocks in a system accord-
ing to data-flow dependencies and other attributes. Finally,
a compilation step transforms System Model elements into
Code Model elements. Without getting into details, each
system is implemented as a function manipulating global
variables, whereas blocks of a system are run in accordance
to the total execution order computed at the previous step.
Nested subsystems are implemented as function calls in the
enclosing system’s associated body. At any stage of the pro-
cessing, the current model can be exported as XMI. Various
options modify the behavior of the whole compilation pro-
cess.

1.2 Signal and Polychrony
Signal is a synchronous data-flow language for designing
reactive systems, based on infinite discrete flows of values
and events called signals. A signal x represents an un-
bounded series (xt)t∈N of values at each logical instant t.
At any instant, a signal may be present, at which point it
holds a value, or absent, which is denoted by ⊥. Signal val-
ues can be constructed from previously known values using
a delay operator denoted $ which shifts values of a signal
by a fixed number of steps.

For each signal s is defined a clock ŝ which can be rep-
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resented as a boolean variable in the domain of clocks. A
clock ŝ denotes the set of logical instants at which the sig-
nal s has a value. The null clock 0̂ is always absent. Signal
programs are described as processes (written here P or Q)
which define relations between clocks and values of signals
through signal equations. (P | Q) denotes the synchronous
composition of processes P and Q where equations repre-
sented by both P and Q are simultaneously considered: it
corresponds to a union of constraints. The process P/x re-
stricts the lexical scope of signal x to the process P .

Signal provides polychronous operators that are inter-
preted as clock constraints on signals, such as when or de-
fault. For example, a when b is an expression over signals
whose clock is â ∧ b̂: this boolean formula means that the
signal a when b is present exactly when both signals a and b
are present. Similarly, a default b has the clock â∨ b̂, which
means that, if during the execution of system being de-
signed, either signal a or b is present, the signal a default b
is also present. Signals having equivalent clocks are said to
be synchronous and can be combined with monochronous
operators, which include numerical operators (e.g. a + b)
and spatial operators (e.g. array access).

A clock d̂ is said to be a child clock of ĉ if d̂ → ĉ:
whenever d̂ is present, its parent clock ĉ is also necessarily
present. The signal compiler organizes clocks into a hierar-
chy during a static analysis called clock calculus. The com-
piler ensures that a signal is computed only when its clock
can be determined to be true: it is the case if the clock is
associated with a concrete boolean signal which is already
known to be present and whose value is true at a particu-
lar reactive step. But it is also possible to infer that a clock
variable is true based on other values and clocks, thanks to
clock constraints. If there are enough constraints on clocks
to generate a deterministic reactive system where clocks are
always known to be either present or absent at runtime the
system is said to be endochronous.

Apart from clocks, Signal also allows to declare depen-
dencies between signals: {a –> b} when c is a conditioned
dependency that is active only when the formula â∧ b̂∧ ĉ∧c
is true: (i) clocks â, b̂ and ĉ must be present, and (ii) the
guard c itself must be true. When this relation holds, the
value of b cannot be computed before the value of a is com-
puted first.

The Polychrony toolset3 provides a model-driven envi-
ronment for the Signal language, including in particular a
compiler, a front-end in the Eclipse platform4, a model-
checker for formal verification and other translators. The
Signal compiler organizes computations as a conditional
directed acyclic graph where arcs are labelled with clock
expressions. Clocks and dependencies allow to easily dis-
tribute computations across multiple processing units (e.g.
threads), while preventing deadlocks and using a miminum
set of communications between units: since clock presence
or absence can often be inferred from exchanged values, it
is not always necessary to reify them as concrete boolean
signals.

3http://polychrony.inria.fr
4Open-source framework POP with the Polarsys Industry Working

Group: https://www.polarsys.org/projects/polarsys.
pop

1.3 Outline
In section 2, we present our work on an unambiguous static
block scheduler for QGen which can compute both partial
and total orders based on user preferences. This scheduler
was developed to help QGen interoperate with other tools
which work on data-flow graphs, like Signal. In section 3,
we describe our transformation function from the P lan-
guage to SSME. In section 4, we discuss some experimental
results with respect to our initial objectives.

2 Block sequencing
In the System Model subset of the P formalism, blocks rep-
resent computation nodes with input and output ports and
signals describe values flowing between ports. Data-flow
graphs encode a partial order of block executions: block
sequencing is the action of finding a strict total order that
refines the partial one. A strict total order is required when
compiling reactive systems into sequential code. A com-
piler that would produce parallel sequences of code would
not necessarily have to produce a total order, as long as
dependencies are satisfied. A block sequencer must also
ensure that circular dependencies are detected and should
reject malformed models. A formally verified sequencer
was implemented for the previous Geneauto [14] project
but could not be used in QGen, which provides its own se-
quencer.

In the particular case of QGen, System Models are in-
spired by the Simulink language and as such, systems are
hierarchical and may be given user-defined priorities (in-
tegers). Moreover, blocks are not necessarily always acti-
vated but subject to activation condition and control signals.
QGen’s earliest version provided a block sequencer that we
will call here sequencer O (“original”). We will also de-
scribe our alternative sequencer implementation called N
(“new” sequencer). Even though sequencer N is not inte-
grated as-is into the current version of QGen, most of the
problems found and reported to the development team of
QGen while working on sequencer N are now addressed in
sequencer O.

2.1 System Model language
2.1.1 Blocks and ports

A system in P is a functional view of a model represented by
a hierarchical data-flow graph of blocks linked by directed
connections called signals. Blocks can be either system
blocks, interface blocks or elementary blocks. Blocks have
input and output ports, which may be either data or control
ports. Signals represent an ordered pair of ports. All blocks
are named and typed according to an external predefined
set of block definitions called a Block library. Block types
are represented by a string and accept generic key/value pa-
rameters which are understood by the compiler to generate
Code Models elements. Elementary blocks provide the ac-
tual computations and are implementation-defined. Inter-
face blocks are used to represent the “port-block” family
of blocks: for each input and output data or control port
of a system, there is a block which represents that port in-
side that system. For example, an Inport block In inside
a system S is an interface block having exactly one out-
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put port o(In) which represents the value received from the
input port in(S)n of S. Interface blocks differ from ele-
mentary blocks in that they hold an attribute called portRe-
ference which represents the interface port associated with
the block. Also, interface blocks implementw some of the
ports’s semantics: the value of output ports can be held or
reset when a port has been deactivated; enabling input con-
trol ports are used to trigger events when the input value is
either raising, falling or changing.

2.1.2 Atomic systems

A system block is a container for nested blocks, and is as-
sumed to be atomic in this section (we assume that models
we consider have been preprocessed): (i) an atomic sys-
tem can be computed only when all of its inputs are avail-
able; (ii) blocks that rely on outputs of an atomic system
can be computed only when all the outputs of the atomic
system have been computed; (iii) finally, while an atomic
block is being computed, computation must not exit this
block until all outputs are computed. See for example the
blocks in figure 1: i1, i2 and i3 (resp. o1, o2 and o3) are
three inputs (resp. outputs) of current subsystem. Blocks
A, B and C are elementary blocks (interface blocks are not
represented). Both blocks A and B are grouped into an
atomic subsystem we call here S. Simple arrows represent
actual signals whereas bold arrows which form crosses rep-
resent the dependencies implied by atomicity. The property
(iii) above means that it is not possible to compute C be-
tween the computations of A and B, even though there is
no dependency required by signals. In other words, the se-
quence (A,C,B) is not a compatible execution order for
those three blocks. We cannot express atomicity with static
partial dependencies because both (A,B,C) and (C,A,B)
are compatible execution orders.

2.1.3 Datatypes

The P language defines a hierarchy of values to represent
types in the target language of a compiled model. Types are
either primitive, array or pointer types. Arrays represent
multi-dimensional arrays and are composed of a base type
and a list of dimensions. Among primitive types, there is a
class of numeric types as well as boolean, string, void and
custom types. Numeric types are divided into complex and
real types (but complex are currently not used in QGen),
where real types include both integer, fixed-point and ei-
ther single or double floating-point values. Numeric types
are described by a boolean value which indicates signed-
ness (returned by isSigned() ) as well as a width represent-
ing the number of bits available for this type (returned by
getNBits() ). Custom types designate external types. The
QGen compiler provides C and Ada definitions for expected
types, such as GAUINT8 for unsigned 8-bits integers, as
well as wrappers around mathematical and logical opera-
tors for those types.

2.2 Partial ordering of blocks
We defined the sequencer N to help QGen fulfill its inter-
operability objectives. QGen is expected to fit into existing
methodological processes, which explains the strong em-
phasis put on separating concerns in the compiler: this can
be witnessed by the existence of compiler flags for choosing

i1

i2

i3

A

B

C

o1

o2

o3

Figure 1: dependencies implied by atomicity of system block (in bold)

which transformations are applied on a model, as well as for
exporting it as an XMI document between steps. In partic-
ular, it can be desirable to delegate block sequencing to an
external tool, such as SynDEX [12, 17] or Polychrony. The
reason is that block sequencing is a type of static scheduling
of resources, which can be optimized by specialized tools,
especially with distributed code.

A requirement of this approach is that the external tool
must provide an ordering that is compatible with QGen’s
ordering of blocks. However, this requires to define a com-
patibility criterion. For example, is the total order provided
by an external tool said to be compatible if that tool ignores
user-defined priorities? Similarly, let us consider control
signals (see section 2.4.2): QGen’s compiler considers that
a block B triggered by a control signal emitted from block
A is implemented as-ifB’s code was inlined inside the body
of A’s code. That semantics leads to additional dependen-
cies which could be seen as artificial for other tools but
should be respected when working with QGen.

In order to satisfy different interpretations of what is the
minimal set of dependencies the sequencer should consider,
we let the user provide a sorting policy list made of prede-
fined sort criteria. Those criteria are names of refinement
steps to be applied on the dependency graph being built. For
example, the DF criterion introduces data-flow dependen-
cies implied by data-flow signals, whereas UP represents
those implied by user-defined priorities. The TR criterion
forces dependencies of triggered blocks to be dependen-
cies of calling blocks (recursively): this criterion is applied
whenever the model is to be compiled by QGen, since it
represents the specific way the tool deals with block acti-
vations, but is optional because one might want to give a
model to another tool. Some criteria represent actions to
perform during block sequencing: LOAD reads all the de-
pendencies currently stored in a model and introduces them
in the dependency graph stored in memory. Another crite-
rion is ENSURE_TOTAL, which makes the sequencer abort
if that graph still represents a partial order at the moment the
criterion is applied. Also, we proposed to modify the exist-
ing sequencer so that it can produce either a partial or total
order, based on those input parameters.

With this approach, we can avoid the problem of hav-
ing to implement multiple block sequencers and we can
apply the following methodology when working with ex-
ternal toolchains: for some input model M1, run QGen’s
sequencer with a given sorting policy P1, which results in
a partial order, exported in model M2. Pass M2 to some
external tool, which can refine block ordering and produce
model M3. In order to check that M3 has a compatible
order with M2, run QGen on model M3 with a modified
policy P2 defined as P1 followed by a LOAD operation and
possibly other refinement steps. Incompatible orderings are
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then defined as those which introduce circular dependencies
in a model. They are detected during the LOAD operation,
which could introduce errors if other tools did not respect
the original partial order.

This approach needs to be able to represent partial or-
ders in P models. This is done by adding a block attribute
named nextExecutableBlocks, the list of all blocks that de-
pend on a particular block. We also tried to adapt the orig-
inal sequencer O so that it could compute partial orders,
but there were shortcomings with the existing approach that
made it easier to write a more general sequencer N . Se-
quencer N , unlike O, is split into two parts (two Ada pack-
ages): (i) a dedicated yet generic graph data-structure repre-
senting partial and total orders and (ii) the actual sequencer
which translates blocks and their attributes as a graph while
processing the sorting policy given by the user. We detail
these in the following sections.

2.3 Graph data-structure
The original sequencerO used to compute dependencies by
assigning a rank to blocks. More precisely, blocks with no
predecessors are assigned rank 0, and blocks for which all
their predecessors have a rank are assigned a rank M + 1,
where M is the maximal rank of those predecessors. This
first step admitted a simple implementation and ensured that
data-flow dependencies were respected. However, ranks
are natural numbers and give an over-constrained view of
data-flow dependencies. In other terms, ranks are already
a refinement of the minimal partial order consisting only of
data-flow dependencies. While this approach was appro-
priate in the context of providing a total execution order of
blocks, as it was the case for sequencer O, it was difficult to
change the implementation to let it represent partial orders.

There are many optimized data-structures for dynam-
ically computing transitive reachability [9]. We imple-
mented a simple graph data-structure based on a dense ma-
trix representation with a fixed set of vertices, for the incre-
mental computation of both the transitive closure and tran-
sitive reduction of a graph while dynamically adding links.

Thus, the size required for a matrix with n nodes is
Θ(n2). Adding links between nodes requires a propaga-
tion step which costs Θ(n2) in time. This propagation step
also detects circular dependencies and maintains both the
transitive closure and the transitive reduction of dependen-
cies. Getting the list of all pairs of blocks that are unrelated
has a complexity of Θ(n2). Checking whether current order
is total is a constant operation. In practice, each cell in the
matrix requires 2 bits of memory5. The number of blocks in
a subsystem is generally low enough to not be problematic
with respect to the space complexity of our approach.

2.3.1 Invariants and properties

A graph of n nodes is represented by a square matrix M of
size n2. Each number k from 0 to n − 1 is associated to a
node named nk. We note < the strict order between nodes
that is represented by a graph. Each cell Mi,j of the matrix
represents whether the relationship ni < nj holds between
nodes ni and nj . Mi,j is one of the three following values:
none, direct or indirect. We ensure that the following in-
variants hold in a matrix: (i) a value of none at cell Mx,z

5Actual size reported by GNAT when providing the Pack directive.

means that nx < nz does not hold; (ii) when the nx < nz
relationship holds, then Mx,z is direct if and only if there
is no indice y such that nx < ny and ny < nz; (iii) other-
wise,Mx,z is indirect. Moreover, the graph is never allowed
to contain circular dependencies. The implementation de-
scribed hereafter maintains the above invariants, which give
us the following properties: (1) The set of cells where
Mi,j ∈ {direct, indirect} represents the transitive closure
of the < dependency relationship. For all indices i and j, a
non-none value at Mi,j means that ni < nj . (2) The set of
cells where Mi,j = direct is a transitive reduction of the <
dependency relationship. For all pair of indices (i, j) such
thatMi,j is indirect, there is a sequence of indices k1, ..., kp
(p > 0) such as Mi,k1 = Mk1,k2 = · · · = Mkp,j = direct.
(3) If and only if the order represented by < is total, then
for all indices i, j either Mi,j = none or Mj,i = none, but
not both. In other words, for a matrix of size n, then < is
total if and only if there are exactly n(n−1)

2 non-none values
in the matrix (more than this number would imply a circu-
lar path; less would leave at least a pair of nodes unrelated).
We rely on the third property above to easily check whether
an order is total.

2.3.2 Link addition in a graph

A graph structure is implemented as an Ada package where
size is a generic parameter. A connectivity matrix of size n2

is initialized with none values. Also, a variable named Re-
maining_Cells is initialized to n(n−1)

2 . Everytime a none
cell in the matrix is changed into another value, Remain-
ing_Cells is decreased. Thus, we can implement Is_Total as
a function which returns whether Remaining_Cells is zero.
Adding a link between two nodes requires a propagation
mechanism to maintain the invariants previously seen. Link
addition is split into two procedures, Basic_Link, which
checks for any circular dependency and decrements Re-
maining_Cells, and Link, which propagates the relation-
ship being added to all predecessors and successors. The
Check_Cycles procedure raises an exception in case of cir-
cular dependencies and is defined as follows:
procedure Check_Cycles
(Self : in out Graph; From, To : Matrix_Index)
is
begin

if From = To or Self.Matrix (To, From) > NONE then
raise Cyclic_Graph;

end if;
end Check_Cycles;

The above is a simplified version of the actual code, which
also logs the offending cyclic path. Basic_Link is defined
as follows:
procedure Basic_Link (Self : in out Graph;

From, To : Matrix_Index;
Link : Link_Type)

is
Previous : constant Dependency :=
Self.Matrix (From, To);

begin
if Previous = NONE then

Self.Check_Cycles (From, To);
Self.Remaining_Cells := Self.Remaining_Cells - 1;

end if;
if Previous = DIRECT or Previous = NONE then

Self.Matrix (From, To) := Link;
end if;

end Basic_Link;

Link_Type is a subtype of Dependency with excludes none.
The above procedure ensures that it is not possible to put a
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direct link if the link was previously known to be indirect.
Indeed, we only add a direct link if there was previously
no link between nodes, to be sure that cells with a direct
value represent the minimal set of edges covering the whole
graph. It is also possible to change a direct link to an indi-
rect one, during the propagation initiated by the addition of
a new, more direct link. The previously direct relationship
can then be deduced transitively, which is why it should be
replaced by an indirect one. This is done by propagating
indirect relationships inside the Link procedure below (the
Self.Precedes function simply checks that there is a non-
none value in the matrix).

procedure Link
(Self : in out Graph; From : Matrix_Index;
To : Matrix_Index; Link : Link_Type := DIRECT)
is

Previous : constant Dependency :=
Self.Matrix (From, To);

begin
-- Add the "from < to" relationship
Self.Basic_Link (From, To, Link);
if Previous > NONE then

return; -- Exit early (*)
end if;

-- Compute transitive connectivity
for Y in Matrix_Index’Range loop
for X in Matrix_Index’Range loop
declare
DX : constant Boolean := Self.Precedes (X, From);
DY : constant Boolean := Self.Precedes (To, Y);
begin
if DX then
-- (x < from) => (x < to)
Self.Basic_Link (X, To, INDIRECT);
end if;
if DY then
-- (to < y) => (from < y)
Self.Basic_Link (From, Y, INDIRECT);
end if;
if DX and DY then
-- (x < from),(to < y) => (x < y)
Self.Basic_Link (X, Y, INDIRECT);
end if;
end;

end loop;
end loop;
end Link;

The above procedure assumes that the graph initially re-
spects the properties expressed in the previous sections and
ensures that they hold after adding the new link. When the
previous value in our matrix at indices From and To was
none, we can exit the procedure early (*). Indeed, by con-
struction a none value means that there are no direct or in-
direct relationship such as From < To. Moreover, if pre-
viously the inverse relationship To < From held, then Ba-
sic_Link would have raised an exception due to a cyclic
dependency, which is not the case at this point. We can then
safely assume that no link propagation is required.

The two nested loops add the required links between
predecessors and successors of our nodes. Even though this
can seem counter-intuitive, nodes previously known as di-
rect are unconditionally changed into indirect ones. This
is because the new direct link being added replaces a none
value in the matrix, which, thanks to cycle detection, im-
plies that the two nodes being linked were previously un-
related. Hence, the new link is currently the only one that
allows to link From and To and cannot be removed. How-
ever, if a predecessor x of From used to be a direct prede-
cessor of a successor y of To, then we have to change it to
an indirect one since now there is another path from x to y

a

b

c

d

(a) Initial graph

a

b

c

d

(b) Addition of b < c

Figure 2: Direct links (thick) being changed as indirect ones (dotted).

(the previous direct link between x and y is not the unique
one anymore). This does not have an impact on links which
already were indirect. See figure 2 for an example of this
behavior.

2.3.3 Internal nodes

We allow to declare additional nodes in a graph, not bound
to actual blocks. For example, an internal node could be
used to model the set of all input ports of a block: the in-
ternal node would have outgoing links to each input port of
the block and we could refer to this node whenever we want
to add dependencies for all inputs. We use internal nodes to
model trigger dependencies, as detailed in section 2.4.2. In
order to handle those nodes, we allowed the size of the ma-
trix n to be defined in terms of two parameters, b (blocks)
and e (extra), such that n = b + e. The range 0..(b − 1)
represent nodes associated with actual blocks, called block
nodes, whereas b..(n−1) represents additional nodes called
internal nodes: only block nodes are taken into account
when checking whether current order is total. The overall
square matrix is divided into two main zones: a square ma-
trix B from (0, 0) to (b−1, b−1) containing links between
block nodes, and the remaining L-shaped region I contain-
ing links involving at least one internal node. We updated
the graph structure with a normalization operation which
projects all links inside I as links in the B area. This opera-
tion may change indirect links to direct ones inB and clears
area I , while preserving the previous properties. Normal-
ization is automatically applied when collecting all links,
before saving current graph. It first clears the I area by
resetting all cells to none, then recompute actual dependen-
cies for block nodes. Computing the actual dependencies
has an effect only on matrix cells Mx,z that are set to indi-
rect. If there is no index y such that nx < ny < nz , then
the dependency is changed as a direct one.

2.4 Converting dependencies as links
Thanks to the graph structure defined previously, the role of
the sequencer is simplified: we only need to convert block
relationships and attributes as links. We first show the gen-
eral approach used when adding dependencies as graph, and
then discuss the particular case of trigger dependencies.

2.4.1 Two-step refinement

We strictly apply the following two-step approach when re-
fining a graph according to a sort criterion: first, compute
the list of all pairs of blocks that are currently unrelated;
then try to add a link between each pair of blocks according
to current criterion. This separation allows us to prevent
modifying the graph while looking for unrelated pairs of
blocks, which would let the order by which pairs are visited
influence block sequencing. For example, let A, B and C
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Figure 3: Converting data and control signals as dependencies

be three blocks; a data-flow signal connects A to B. With
u(x) being defined as the user-defined priority of a block x,
we set block priorities as follows: u(A) = 2, u(B) = 0 and
u(C) = 1.

A

B

C

(2)

(0)

(1)

According to priorities, we have both C < A and B < C.
In sequencer N , when introducing user-defined priorities,
we first collect both (A,C) and (B,C) and then try to add
links for each pair. This leads to a cyclic path in the graph
which is reported to the user. With the original sequencer
O, comparisons are made in an arbitrary order, which de-
pends on implementation details, and eventually give ei-
ther (A,B,C) or (C,A,B) as an execution order: instead
of reporting a circular dependency, sequencing terminates
normally. Note however that the order by which sort crite-
ria are processed in a sort policy matters, because some of
them are intended to refine a graph (e.g. priorities) whereas
others unconditionally add all possible dependencies (e.g.
data-flow dependencies).

2.4.2 Trigger dependencies

For each block b, we denote dp(b) (resp. cp(b)) the set
of direct predecessor blocks according to data-flow (resp.
control-flow) dependencies. Those sets are determined by
visiting incoming control-flow and data-flow signals, while
ignoring blocks like UnitDelay which have no instanta-
neous dependency between input and output ports.

We convert data-flow and control-flow dependencies as
links inside our dependency matrix. In order to do so, we
need to propagate control-flow dependencies so that block
activation follows a function-call semantics: when a block
A is activated, any block B it controls is also activated and
executed during the execution of block A. That means that
(i) all the predecessor blocks in dp(B) must already have
been executed, and (ii) no block C such that B ∈ dp(C)
can be executed before A itself finishes its execution.

In order to express those constraints, we introduce inter-
mediate nodes in our matrix. For all blocks, we define β(B)
(“before”) as either the nodeB or the node which is directly
preceding B with respect to node dependencies. Likewise
α(B) (“after”) is either B itself or the node directly suc-
ceeding B. Here, “directly” means that by construction we
guarantee that no other node is ever scheduled between an
intermediate node and the node of the block it represents.

By definition, β(B) = B for all block B such that
cp(B) = ∅, and α(A) = A for all block A such as there
is no block B in current system block such as A ∈ cp(B).

In other cases, a new node is created and linked to its asso-
ciated block.

Once those nodes are created, we iterate over all blocks
in current system and transform data and control signals as
two different patterns of links, as shown in figure 3. Data-
flow signals between blocks A and B simply add a link be-
tween α(A) and β(B). Control-flow signals are translated
in such a way that predecessor (resp. successor) blocks of
controlled blocks are placed as predecessors (resp. succes-
sors) of the controlling blocks. In figure 3b we can see that
a trigger between blocks A and B introduces links: (i) be-
tween A and B, because B cannot be computed before A,
(ii) between β(B) and β(A) and (iii) between α(B) and
α(A). This transformation scheme is done locally, for each
block, but dependencies are eventually applied transitively
by the underlying data-structure. For example, if block B
was controlling a block C, the predecessors and successors
of C would be scheduled respectively before and after A.
Figure 4 shows an example of transformation from the orig-
inal data-flow diagram to the resulting dependency graph.
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(a) Original data-flow diagram
with a control signal going from
A and controlling the activation of
B (dashed arrow).
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(b) Dependency graph built ac-
cording to transformation rules.
∀n ∈ x, y, z, t, β(n) = α(n) =
n. Also β(a) = a and α(b) = b.
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(c) Equivalent data-flow graph af-
ter transitive reduction, as com-
puted by the sequencer.

Figure 4: Elimination of trigger dependencies

3 Conversion of System Models
We provide a transformation mechanism from the System
Model subset of P to SSME. For that purpose, we also de-
veloped a high-level library on top of the generated EMF
classes.

3.1 Definitions
For each element p in the P language we define 〈p〉 the
unique identifier of p. In practice, 〈p〉 is built from
the unique XMI identifier of element p, which is always
the string representation of a natural number, prefixed
with "P". This naming scheme produces valid SSME identi-
fiers which can be used to link Signal elements to the origi-
nal P elements from which they are generated. Also, for any
symbol m in {label, local}, 〈p〉m is a valid Signal identifier
derived from 〈p〉 but distinct from it.

The translation of an element x of type T as an SSME
element S, with a modifierm and with respect to an environ-
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ment E, is defined by equations of the form Tm(E, x:T) =
S. The result of applying the translation is denoted
Tm(E, x). Modifiers are a way to implement return-type
polymorphism, where the behavior of T is specialized ac-
cording to desired type of the value to be returned. Not all
modifiers are meaningful for all types of inputs. A modifier
m is an optional symbol: we define T(E,P) = T∅(E,P),
where ∅ is the empty modifier. The returned type of the
translation when using the empty modifier is either a pro-
cess expression or a signal expression, whichever is the
most relevant for a given parameter: arithmetic expressions
are translated as signal expressions, whereas data-flow con-
nections are translated as equations.

An environment E is a set of zero or more bindings
si 7→ vi from symbols si to values vi. We note E.s the
value bound to symbol s in environment E. We define
F = E [v1 7→ s1, . . . , vn 7→ sn] any environment F de-
rived from E such that for all i between 1 and n, F.si = vi;
for any symbol w different from all symbols s1 to sn,
F.w = E.w. For conciseness, Tm(P) represents Tm(E,P)
when the environment E can be unambiguously inferred
from the context. There is an implicit default environment
from which other environments are derived where global
options are defined.

3.2 General approach
The conversion function is recursively applied on P hierar-
chical data-flow graphs. Subsystems and blocks are trans-
lated as two nested Signal processes where input and output
ports are represented by input and output signals. The outer
process accepts inputs and outputs as given from the envi-
ronment whereas the inner process is only called when a
particular block is activated. The outer process is thus re-
sponsible for filtering inputs and providing default outputs
according to the expected Simulink semantics of blocks.
We define an auxiliary Signal process which dynamically
computes if a block is active given the block’s control-port,
enable and edge-enable ports:

1 process simulink_control =
2 (? event tick, sample, cp; boolean en, eden;
3 ! event active)
4 (| ckeden := ^eden | cken := ^en
5 | enabled := (eden default tick) and
6 (en default tick)
7 | active := cp ^+ ([:enabled] ^* sample)
8 | active ^# ^0
9 | cp ^# (ckeden ^+ cken)

10 |) where event ckeden, cken; boolean enabled; end;

The above process also accepts input tick and sample
events. The sample event is related to multirate models
which are currently not considered in QGen: as a conse-
quence, the sample event is always present in practice. The
simulink_control process encodes some constraints related
to blocks through clock relations: for example, line 9 rep-
resents the fact that if a block has a control-port, it cannot
also have either an edge-enable or an enable port. Line 7
states that a block is active either if an event is present on
its control-port or if the block is both enabled and at a tick
where it should be computed. The enabled boolean is false
soon as one of the enable (en) or edge-enable (eden) port
has a false value (this value is computed elsewhere). The
[:enabled] expression denotes an event that is present only
when the boolean enabled is true. The above encoding can

be used for all variations of system blocks, even if they do
not have control-ports or enable ports. Indeed, when gen-
erating code for system blocks, it is sufficient to bind some
input signals to the null clock to specify that a port is absent,
which is then simplified by constant folding.

3.3 Dependencies and atomicity
We convert block-level dependencies as computed by QGen
as signal dependencies between labelled process. A labelled
process is a call of a process (e.g. a process representing
a block) where all inputs and outputs are virtually associ-
ated with a label. The label, when used in a dependency,
can be used to schedule all the input and output signals of
a block before or after those of another process. We con-
vert dependencies according to either the nextExecutable-
Blocks or executionOrder attributes of blocks. In order to
model atomicity, we add a particular pragma, namely Un-
expanded, to system blocks. This pragma is sufficient to
instruct the Signal compiler to not interleave computations
inside an atomic block with computations that exist outside
that block.

3.4 System Model
A System Model element is a root element in P. Let s be a
System Model containing n elements ei, 0 ≤ i < n. s is
translated in SSME as a list containing a single module M
named 〈s〉 which contains a declaration D and and process
definition P :

T(E, s : System Model) = [M ]

M = module(〈s〉 , [D,P ])

According to whether E.type is p or signal, declaration
D is respectively either (i) an import statement to a prede-
fined Signal library, namely import("P") or (ii) a predefined
list of external types τ : type(τ, external). P is a process
q = process("main",S,B) with a signature S and a process
bodyB. The P process accepts as many input signals as the
union of input ports of all ei elements and provide as many
outputs as the union of output ports. S is thus defined as
io(∪ni=0Ii,∪ni=0Oi), where for each i such that 0 ≤ i < n:

Ii = ∪p∈In(ei)Tdecl(p) Oi = ∪q∈Out(ei)Tdecl(q)

The body B is a new Signal process defined as:

B = restriction(composition([]), [])

We recall that Signal defines two kinds of expressions: (i)
signal expressions, which are equations over data-flow vari-
ables and (ii) process expressions, which include notably
composition and restriction processes. The B process is
a restriction process, which holds both a sub-expression e
and a set of lexically scoped declarations d. Declarations
made in d are only visible in d and e. Here, e is a com-
position process, i.e. a set of zero or more parallel pro-
cesses. The declarations and expressions in B are initially
empty but eventually populated by the translation of inner
elements. For all elements ei contained in s, we apply
T(E [module 7→M, subproc 7→ q] , ei). The module and
subproc symbols respectively represent the root element of
the generated SSME element and the process associated
with current subssytem: here the “main” process is refer-
enced.
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3.5 System blocks
System blocks contain zero or more children blocks. A sys-
tem block s converted as an expression represents a labelled
call to the process representing s. The arguments of the pro-
cess call are translations of the input ports of s, which are
variables declared in current scope. Likewise, the mutliple
results of the process call are bound to the signals resulting
from the translations of output ports of s.

T(s:System) = labelled(〈s〉label , call(Tdecl(s), I, O))

I = ∪p∈In(s)T(p) O = ∪q∈Out(s)T(q)

The declaration associated with a system block is a process
definition. Each system block is translated as one control
process c calling a body process b. The control process c is
responsible for determining if the block is currently active
and feeds the internal body bwith filtered inputs. Moreover,
the outputs from b are repeated (or replaced by default val-
ues) so that c can provide outputs at the same rate as inputs
are given: c takes care of merging outputs from b either with
a default value or the previous value of each output port, ac-
cording to each port’s resetWhenDisabled attribute.

Tdecl(s:System) = c = node(〈s〉 , S,X)
X = restriction(Y, [D, ldecl])
Y = composition([ldeps, lclock, event, in, out, call])

The signature S is computed as above by converting all in-
puts and outputs of s. The set of declarations of the control
process c holds a label declaration ldecl and a declaration
D for the body process b, detailed thereafter. There are 6
parallel processes being composed, each of them having a
specific purpose: call is a process call to the body process b;
ldeps holds a list of inter-label dependencies, which allows
to encode the partial order provided by the input model;
lclock contains clock equalities for labels, indicating that all
contained blocks are executed synchronously; event calls
the simulink_control external process and contained trans-
lations of control, enable and edge-enable ports according
to their attributes; in and out correspond respectively to fil-
tering and merging equations, where local variables are de-
clared for all input and output data-ports. That process b is
declared in D in a modified environment F :

F = E

[
subproc 7→ b, ll 7→ ldecl,
ls 7→ ldeps, lc 7→ lclock

]

In addition to subproc, other symbols keep a reference to
other parts of the control process where convert can add in-
formation for each block contained in s. Then, D holds a
process definition for b with the same input/output signa-
ture as c and the recursive conversion of each block of s as
expressions in environment F . During this conversion, con-
vert populates the labels declarations and constraints held in
the control process c.

3.6 Elementary blocks
By default, elementary blocks are expressed as external pro-
cesses in Signal. The reason for this is that we do not aim to
provide a complete implementation of Simulink’s semantics
in parallel to the one currently implemented by QGen. In-
deed, there are over a hundred of blocks defined in QGen’s

default Block library and each of them allows multiple set
of configurations that may have an important impact on
their behavior. For example, the Sum block can process
scalars, vectors and matrices depending on the data linked
to its input ports. We would rather reuse the existing code
generation mechanism of the compiler to produce target
code. Indeed, QGen’s Block library defines, for each block,
a set of functions that provide the imperative statements im-
plementing the different steps of computation of this block,
namely Make_Memory_Variables(), Get_InitStatements(),
Get_ComputeStatements() and
Get_MemUpdateStatements(). Those functions encode the
actual semantics of each block according to its parameters
and provide statements or declarations in a subset of P ex-
pressing code, called Code Model (e.g. statements, opera-
tors, functions). Thus, we are interested in converting the
generated Code Model elements as signal expressions in-
stead of providing an ad-hoc implementation of each pos-
sible block. We currently support only a small subset of
Code Model elements. The approach consisting in compil-
ing Code Model elements requires to build a control-flow
graph, as commonly done in compilers [16]. However, we
cannot currently assume that Code Model programs gen-
erated by QGen are in a static single assignment (SSA)
form [7], which would simplify data-flow analysis [18] and
could let us exploit our previous results with translation
from C/C++ to Signal [2].

3.7 Datatypes
We propose two different ways of translating P data-types
to SSME. First, we can treat all types as external types and
translate mathematical operations as call to external pro-
cesses. Alternatively, we can translate types as Signal types
whenever possible, which tend to produce simpler code that
does not depend on the external library of types provided
by QGen. In both cases, it is sometimes necessary to con-
vert values directly as Signal constants, like in array indices
for which QGen does not define a specialized type. There
are however limitations with this approach, because Signal
does not define unsigned types nor 64 bits integers. The
translation is straightforward, except that when an unsigned
type is requested, we use a larger signed type so that all val-
ues can be represented. Also, we produce warnings if the
required number of bits is too large for Signal.

4 Validation and applications
We validated our approach with the test suite used by
QGen which is composed of over two-hundred small-sized
Simulink models. We tested both block sequencing and
model transformations.

4.1 Side-by-side testing of sequencers
We ensured that our implementation did not regress from
the previous one by (i) developing a dedicated sorting pol-
icy and a ranking function for our implementation that repli-
cated the behavior of the existing sequencer, and (ii) com-
paring the results of both implementations with side-by-
side tests. Those tests showed discrepancies for exactly ten
models which were acknowledged to be due to some de-
fects in sequencer O: (i) the failure to reject models where
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some blocks cannot be unambiguously sorted, either be-
cause there were circular dependencies or because blocks
were treated as equal (we found out that the tie-breaking
comparison functions on block names could fail because
systems could contain blocks having the same name after
preprocessing; this was fixed by using the fully qualified
name of blocks) and (ii) the incompatibility between the
computed order and the compilation strategy regarding trig-
gered blocks (sequencer O would produce an order which
would not describe how triggers are implemented).

4.2 From P to SSME
We managed to load and process a public use case provided
by Rockwell Collins France composed of safety-critical
components implementing display logic for helicopter data.
The XMI file resulting from QGen’s compilation weights
9.7MiB and is loaded as an EMF runtime object in our Clo-
jure environment in over 9 seconds; Comparatively, trans-
lation to SSME takes between 1 and 2 seconds, which is
the same time required for pretty-printing the same model
as a Signal textual file; exporting the runtime model as an
XMI document takes a little less than 500ms. The pro-
duced model is made of 287 Signal processes which mir-
ror the hierarchical organization of the original model. It
represents the data-flow and control-flow constraints among
blocks inside the system. We can process that model with
Polychrony in order to compute a flattened network of
blocks grouped by common dependencies into 109 sepa-
rate clusters of sequential code. Polychrony can produce
multithreaded code from clusters where threads synchro-
nize themselves either with a message-passing protocol or
with signal/wait operations [3].

We also experimented with the balance drive controller
model present in QGen’s test suite. We modified the input
model so that each subsystem is declared to be atomic in
order to obtain a hierarchy of Signal processes after trans-
lation. Then, we collected all original P subsystems and
generated a map from their unique identifiers to a unique
natural number, starting from zero and increasing. With
this temporary map, we dynamically added RunOn direc-
tives [3] in our SSME model to each of its processes in order
to bind subsystems to distinct execution units. This manual
step requires fifteen lines of interactive code and simulates
a partitioning of our system according to a possible archi-
tectural description of it. Then, the distributed Signal model
can be used to generate distributed code that complies with
RunOn directives. An automatic translation of architectural
P elements could be eventually feasible in future versions:
even though there is an existing architecture description lan-
guage in P which allows to declare processors and buses,
as well as non-functional properties such as the period and
deadline of a task, there is currently no way to map System
Models to architectural ones.

4.3 From SSME to P
Our original intent when integrating Signal and QGen was
to use Signal as a model optimizer for P, with respect to
static block scheduling, timing and architectural properties.
For example, starting from a multirate model, i.e. a model
where blocks are sampled at different periods, we could
group blocks into different asynchronous components while

preserving or adding synchronization flows when necessary.
In order to perform this task, our tool is expected to return
modified P models. In practice, we effectively have access
to a model m, its translation s in SSME and the model
sp obtained by running Polychrony on s with specific pa-
rameters p. With the known mapping between m and s,
we can determine whether an element in sp was originally
present in s or if that element is introduced by Polychrony
itself. However, we do not have a systematic transformation
scheme to build a meaningful copy ofm taking into account
the modifications of s brought by sp at the model level. In-
stead of trying to modify existing models, we are now im-
plementing a general purpose transformation from Signal
to P, as part of Polychrony, which systematically converts
endochronous processes as a hierarchy of triggered subsys-
tems following the original clock hierarchy. Alternatively,
it would be easier to directly generate P Code Model instead
of System Models.

5 Conclusion
We developed an alternative block sequencer for QGen for
the purpose of computing both partial and total orders from
input models. The purpose of this sequencer is to allow
QGen to interoperate with external sequencing tools while
providing guarantees about the compatibility of external
block execution orders with respect to both QGen’s com-
pilation scheme and user expectations. This sequencer is
available as a separate tool and not fully integrated inside
QGen. Our work contributed nonetheless to test and fix the
existing codebase of QGen.

We also presented a model transformation tool from
the P language used inside the QGen model compiler to
the SSME language representing synchronous Signal pro-
grams. This work is based on a high-level API designed
on top of SSME and can be used to transform a subset of
Simulink to Signal. We ran the conversion tool and the set
of models used by QGen for its regression tests and success-
fully converted medium to large models. The P language is
capable of representing a useful subset of Simulink. That
is why it is an interesting tool to help interpreting Simulink
models and possibly architectural properties as executable
Signal programs. Our perspective for this tool is to add
support for the conversion of more Code Model elements,
as generated by QGen, in order to produce executable pro-
grams with Signal. The programs currently produced with
our transformation tool can be compiled by Polychrony and
reorganized as clusters of smaller processes. We expect
QGen to eventually provide an architecture description lan-
guage inside P, and our perspective with regard to P remains
to be able to automatically distribute models given some of
their architectural properties while preserving synchroniza-
tion constraints.
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Abstract:  We introduce a novel Model-Driven Development (MDD) flow which aims at more simplicity, 

more intuitive programming, quicker turnaround time and real -time predictability by leveraging the use of 

model-interpretation and providing the language abstractions needed to argue  about the timing correctness 

on a high-level. The MDD flow is built around a language called Cyber -Physical Action Language (CPAL).   

CPAL serves to describe both the functional behaviour of activities  (i.e., the code of the function itself) as 

well as the functional architecture of the system (i.e., the set of functions, how they are activated, and the 

data flows among the functions).  CPAL is meant to support two use-cases. Firstly, CPAL is a development 

and design space exploration  environment for CPS with main features being the formal description, the 

editing, graphical representation and simulation of CPS models.  Secondly, CPAL is a real-time execution 

platform. The vision behind CPAL is that  a model is executed and verified in simulation mode on a 

workstation and the same model can be later run on an embedded board with a timing-equivalent run-time 

time behaviour.  

 

Keywords: Model-based design, programming language, model interpretation, design space exploration, 

simulation, timing predictability.  

1  Mo de l  D r i ve n  D eve l op ment  w i th  mo d el  a s  th e  c od e   

Existing commercial MBD flows such as Matlab/Simulink® and Scade® successfully capture most of the 

aspects of model based design: requirements traceability, model design, simulation, code generatio n, test-

cases generation, etc. Even though they are very powerful and successfully used in a wide range of 

industrial applications, these design flows do not cover all existing needs, be it only because they are 

complex and expensive.  

 
Figure 1: Spectrum of model-based design approaches (core of the figure from [Br04] and [Tr09]).   

 

CPAL has been initially inspired by the success of three interpretation-based runtime environments, 

successfully certified at the highest criticality levels and deployed at large scale in railway interlocking 

systems over the last 20 years at SNCF (see [An12]) and RATP in France, and in UK and other countries 

through the Westlock interlocking system from Westingshouse. These technologies have proven to be 

technically successful in the sense that 100s of millions of people rely on them on a daily basis . They are 

however undisclosed proprietary technologies, specific to interlocking systems and have not been designed 

to meet the needs of most of today’s and tomorrow’s applications (Cyber-Physical Systems at large) and 

execution platforms (SOC, multicore, manycore).  
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Except for these applications and some implementations in industrial automata (PLCs), surprisingly, model 

interpretation has to the best of our knowledge not been widely explored yet for developing critical systems 

(see [Hu03] for one of the few notable works in that direction), albeit it possesses a number of key 

advantages: 

 Simplicity for the end-user and quicker turnaround time: once designed and simulated the model can be 

uploaded to the target (e.g., by drag & drop).  

 Verifiability:  there is no discrepancy between the model and the code, and there are no software layers 

causing deviations from the expected temporal behavior at run -time.      

 Less error prone software: because the total software size is greatly reduced both off -line and on the 

target (no operating systems, no compiler, no linker, etc). In particular, the interpreter is a thin software 

layer of a few thousand lines that can be more easily tested and verified than software made up of 

hundreds of thousands lines of code or more. In addition, as argued in [An12], the logic of the 

application is easier to verify since it is fully decoupled from the runtime services and written in a high -

level language. 

 Cost-efficiency: made possible thanks to the simplicity of the design flow and run-time environment. 

 Hardware-independence: thanks to the ability of the interpretation layer to hide the complexity of the 

hardware platform from the programmer. A higher level of abstraction is important in light of the 

ongoing trend towards multi/manycore platforms and more heterogeneous execution platforms (SOC).  

 

CPAL supports two types of model interpretation: the direct interpretation of the design models on an 

interpretation engine running on top of the hardware, called “bare-machine model interpretation” (BMMI), 

and the interpretation on top of an OS. The latter is less predictable from a timing point of view but more 

convenient for development and experimentations. In addition, the interpreter can re-use the interfaces to 

the I/O provided by the OS.  Whatever the type of interpretation, there is a slowdown due to model 

interpretation. However, we believe that for a significant share of embedded systems, the simplified and 

accelerated model development (reduced time-to-market) will outweigh the overhead due to model 

interpretation on the target architecture.  In addition, dedicated hardware support in FPGA or ASIC may 

offset part of the performance loss.  

 

CPAL and associated tools are jointly developed by our research group at the University of Luxembourg 

and the company RTaW since 2011. The CPAL documentation, graphical editor and execution engine for 

Windows, Linux, embedded Linux and RaspberryPI are freely available for all uses at 

http://www.designcps.com. A BMMI port of CPAL is available for Freescale FRDM-K64F boards. A 

commercial version for embedded targets will be introduced progressively.  

2  C PA L :  p ro v id in g  h i gh - l e ve l  abs t ra ct i on s  f o r  e mb edd ed  s ys t e ms  

The main requirement when designing CPAL was to natively provide the high -level abstractions familiar in 

the domain of embedded systems needed to express in an unambiguous and concise manner domain specific 

patterns of functional behaviors as well as non-functional properties. The concept of process is the core 

language entity to implement a recurrent activity having its own dynamic. A process is automatically 

activated at a specified rate, with the optional requirement that a specific logical condition is fulfilled to 

execute (this is called guarded executions). CPAL processes are classically referred to as tasks, runnables 

or threads in other contexts.    

CPAL provides the programmers with high-level abstractions well suited for the domain of CPS such as  

– Real-time scheduling mechanisms: processes are activated with a user-defined period, possibly with 

offset relationship with each other and additional execution conditions such as the occurrence of 

some external events. 

– Finite State Machines (FSM): the logic of a process can be defined as a Finite State Machine (FSM) 

based on Mode-Automata [Ma03] where code can be executed in the states, or upon the firing of 

transitions. The semantics that is implemented in CPAL is to first execute a transition if possible 

and then execute the current state’s code which enables the control program to react faster on 

external events, 

– Communication channels to support data flow exchanges between processes, and reading/writing to 

hardware ports. The semantics attached to a channel can be chosen to be FIFO or LIFO buffering, 

or data overwriting, 

– Introspection mechanisms that enable processes to query at run-time their execution characteristics 

such as their activation rate and activation jitters. This feature is typically used to implement 
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control algorithms that must adapt to their frequency of execution or their execution jitters by 

compensating for them. 

   

The abstract and concrete syntax of CPAL has been inspired by a number of diverse languages such as 

Eiffel, MISRA C and Erlang, model-based design products such as Matlab/Simulink® and Scade®, 

verification frameworks such as Promela/Spin and more generally what is usually referred to as the 

synchronous programming approach, such as Giotto [He03]. However, CPAL has been designed with the 

requirement to remain a small, simple and unambiguous language, easy to start with for the C or Java 

programmer, and less demanding than the synchronous programming models.   

 

The example CPAL program below defines a monitoring process which, when a threshold on the measured 

quantity is exceeded, signals an abnormal behavior and, after a certain time above another threshold, sets an 

alarm. When this happens, another process starts then being executed at a higher rate to confirm with 

measurements from another sensor the alarm condition. This can then be used by a supervision process to 

take the appropriate measures (e.g., error recovery or error mitigation).  

 

 
 

 

 
 

 

Figure 3: Example CPAL program illustrating the concepts of input and output ports, native support for 

FSM, conditional and timed transitions and periodic process activation (with and without guard).  The top-

left graphic is the representation of the FSM embedded in the monitoring process, while the bottom-left 

graphic is the functional architecture with the flows of data, as both seen in the CPAL-Editor.  

 

 
 

 

Figure 4: Gantt diagram of the activation of the processes as seen during execution. On the left, a single 

process is executed while, on the left, the second  and more frequent process is being executed too because 

an alarm condition was signaled by the first one (screenshots from the CPAL-Editor). 
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3  C PA L  to  mod el ,  va l id a te  a nd  execu te  emb edd ed  s ys t ems   

3.1  CPAL use-cases  

CPAL supports several use-cases discussed below. 

3.1.1 High-level programming language for network simulation environments 

CPAL can serve to describe the functional behavior of applications and high-level protocol layers.  A CPAL 

model is for instance used in [Se15] to simulate the SOME/IP Service Discovery protocol in a Daimler 

Car’s prototype network.  Another CPAL program, available in [Fe15], implements the transmission of a 

video stream with segmented messages on an Ethernet network. The model hands over the frames once 

created to the simulation kernel of RTaW-Pegase, a communication architecture performance analysis tool 

from RTaW. Interestingly, the same CPAL simulation model can be executed with no changes on an 

embedded target or a workstation to experiment on a testbed later in the design process.   

3.1.2 Modeling and simulation language for Design Space Exploration 

CPAL is meant to support the formal description, the editing, graphical representation and simulation of 

cyber-physical systems. It can be used in its own development environment, like done for the FMTV 

Challenge [Al15], or within Matlab/Simulink to implement the controller, as done for the landing gear case-

study [Bo14,Na14]. The simulation models can be executed in real -time (i.e., activation periods are 

respected) or as fast as possible in simulation mode.  Simulation mode CPAL interpreters are available on 

Windows and Linux. This case-study is illustrated on the development of a smart parachute for UAVs in 

[Ci16] and further discussed in §3.2.  

3.1.3 Real-time execution engine and overheads data 

The intention of CPAL is to provide not only a modeling language, but also an interpreter which ensures 

equivalence between the simulated behavior of the model and the behavior on the execution platform. There 

are CPAL interpreters in real-time mode available for embedded Linux, Raspberry Pi and a BMMI port for 

the Freescale FRDM-K64F board which is based on a CortexM4 processor. On this latter inexpensive 

platform at 120Mhz (floating point enabled), the overheads we measured with a logic analyzer , or we 

calculated based on the code, are the following: 

- the maximum activation jitter for periodic activa tion is 40us,  

- the timer interrupts which occur periodically during the execution of processes takes less than 70 

cycles, that is less than 0.6us, 

- the time to decide the next process to execute and create future instances is 200 cycles + n * 560 

cycles, that is 1.6us + n * 4.6us, where n is the number of process instances currently active,  

- in-between process overhead is 2us maximum.  

CPAL models are interpreted at run-time which involves a significant performance loss with respect to 

compiled code, typically a slowdown factor larger than 3. For CPS requiring maximal performances, code 

generation from CPAL or hooks to call native object code from CPAL processes would be feasible options. 

This latter technique seems promising to us since it enables to keep most of the additional control and 

monitoring capabilities of interpretation while allowing the re -use of legacy code and a close to compiled -

code execution speed. 

3.1.4 CPAL for learning and teaching    

CPAL has been used for teaching since 2012 at our University at the 3
rd

 year Bachelor level.  CPAL is used 

to teach model-based design (MBD) for embedded systems with practicals such as programming a capsule 

coffee machine, a simplified programmable floor robot and elevator control system, etc. Our experience has 

been positive in terms of how fast students have been able to work autonomously on the development of the 

system. Indeed, most students are to master the language within a few hours. In addition to the simplicity of 

the language, the free availability of the tools, the on -line examples and the CPAL-Playground facilitate the 

learning process. Improvements ahead of us include a better tool support for 1) methodological processes 

such the ability to link design artifacts with requirements and 2) verification tools that exist at a 

prototypical stage (WCET and response time analyzers, state -space exploration).  
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3.2  Solv ing  the FMTV chal lenge 2015  

The Formal Methods for Timing Verification (FMTV) Challenge 2015 is a schedulability analysis problem 

proposed by Thales that challenges current techniques and tools from the timing verification community. 

The challenge is built around an aerial video tracking system and consists of 4 sub-challenges. A number of 

solutions using different formalisms were presented at the WATERS Workshop 2015 (see [Wa15]).  To 

solve the sub-challenges, we proposed solutions relying on CPAL for the modeling and the simulation along 

with manual schedulability analysis. The reader is referred to [Al15] for a more comprehensive description.  

 

Our key takeaways from the FMTV2015 challenge are the following: 

- The modeling efforts were limited and the complete models were written in CPAL within less than 3 

hours, which was significantly faster than the development of the automata based models. 

- The CPAL model, along with the associated graphical representations,  reveals ambiguities in the 

description and thus forces the system designer to consider  each important aspect of the modeled 

system.  

- The simulation capacity of CPAL allows to explore the timing behavior at design-time and to 

validate or disprove assumptions about it.  For instance, deriving the solution for the first challenge 

by hand proved to be error-prone, and the use of simulation was helpful to  better understand the 

dynamics of the system, and specifically check whether the worst -case conditions we devised could 

actually happen. 

- If worst-case behaviors are looked for by simulation, simulation should  be biased to explore parts 

of the search space we know are likely to contain such behaviors. For instance, i n order to increase 

the likelihood to meet unfavorable scheduling scenarios, we used a random number generator that 

gave higher probability to the bounds of the interval, instead of a  uniform distribution. This simple 

strategy was effective in creating situations leading to  the maximum interferences in our 

experiments on the first challenge. This is however clearly an open research problem.   

- With the help of a simple utility it is possible to extract  from the CPAL model the characteristics of 

the tasks and automate the schedulability analysis.  However, we were unable and do not see how to 

answer in an automated manner complex questions like asked in sub-challenges 1A and 1B without 

resorting to ad-hoc analyses. Identifying the scope of what can be fully, or partially, automated is in 

our view a question that deserves future work.  

 

 

 

 

Figure 5: Excerpt of the CPAL Code for Thales FMTV Challenge 1. Process activation conditions are 

specified at the definition of the processes (e.g., t1 is activated upon the arrival of a frame from the camera). 

The annotations in the comments are used for the simulation and the analysis of the model. The complete 

code is available at http://www.designcps.com/wp-content/uploads/fmtv15.zip. 
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Verification outside schedulability analysis (see §4.3) in CPAL currently relies on simulation. The complete 

language is not amenable to formal verification by model -checking or theorem proving. Although 

simulation does not offer exhaustive evaluation and hence, does not equate to formal verification, it is 

applicable on systems of any size. Simulation of CPAL code is timing accurate through the use of timing 

annotations (see line 40 in Figure 5 for instance), which can be derived by measurements on target 

architecture or WCET analyses. We believe also that heuristics, such as biasing  random number generation 

towards the bounds of the interval as we experimented in [Al15], and search -intensive algorithms (see 

[DA14]) are promising techniques to efficiently direct the simulation towards unfavorable trajectories of 

the system. Although this remains to be demonstrated, such worst -case oriented simulation may be a 

practical alternative to formal verification for some systems, especially early in the design phases.  

4  S ch edu l ing  a nd  t imi n g  c o rr ec tn es s  

4.1  Timing predictabil ity  in CPAL 

The correctness of a cyber-physical system usually does not only depend on its functional behavior, but also 

on its timing behavior.  Similarly to functional determinism, i.e., the same input always leads to the same 

output, we may want systems where events occurs at pre-determined points in time. This notion of time 

determinism, at the heart of the synchronous approaches, is for instance discussed and advocated in [He08].  

 

Modern architectures with history-sensitive components such as caches and  buffers, however, lead to 

significant variations of execution times and are increasingly complex to analyze. Despite the determinism 

of all individual hardware components, the complex interplay thereof appears non-deterministic if it cannot 

be fully comprehended. In addition, changing environmental conditions, such as temperature or EMI, will 

affect the functioning of the system. For instance, signifi cant clock drifts are caused by varying 

temperatures [Mo11]. Complete time-deterministic systems as defined in [He08] are thus hard to achieve. 

 

With respect to the synchronous programming models, CPAL implements a weaker version of time-

determinism, still providing a form of timing-predictability sufficient in many applications while remaining 

closer to mainstay software development practices.  Our experience is indeed that timing-correctness most 

often does not necessitate time-determinism. For most systems, it is sufficient if the timing of events 

respects a set of constraints specific to the needs of the cyber-physical system, thus allowing a substantial 

degree of freedom. For instance, a system may has to react to an input within a given time bound, the order 

of some events may be essential, or  a computation may has to be repeated periodically with limited jitter. 

Several, distinct systems can exhibit distinct timing behaviors, which are all considered co rrect, and 

furthermore, systems can show substantial timing variations at run-time and still be considered correct. In 

any case, a time-deterministic system is not a necessity for timing correctness for all systems.  

 

Instead of a fully time-deterministic system, the execution framework enforces a fixed and deterministic 

event ordering irrespective of the execution platform. The exact timing of an event may be subject to 

variations that can be evaluated by a schedulability analysis, but the order in which observable events, such 

as process invocation or process termination, happen shall be statically defined. We refer to this property as 

event-order determinism. This allows the CPAL program to be developed in simulation mode on a 

workstation and to be later run on an embedded board with an equally acceptable timing behavior. More 

fine-grained timing constraints such as deadline constraints can be verified with the help of sc hedulability 

analysis (see $4.3). 
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Figure 5:  Event-order determinism of the task scheduling ensured by CPAL is a main dimension of timing 

equivalence between design time and run-time. Optionally, it is also possible to annotate a CPAL model 

with execution time information, obtained by measurements on target or WCET analysis, so as to achieve 

timing-accurate simulation of the model.  

4.2  Scheduling model  

If we solely concentrate on implementing a system's timing correctness, we can usually select from several 

scheduling policies and execution models.  Among the various scheduling algorithm, we selected FIFO 

scheduling which is a predictable and lightweight policy pa rticularly suited to our needs. Indeed, FIFO 

schedules processes non-preemptively and ensures event-order determinism, i.e., the order of process 

executions is defined statically and immutable. With this choice, we favor predictability of the run-time and 

simplicity of the execution engine over an optimized use of the computational resources. 

 

In FIFO scheduling, processes are released strictly period and are executed in order of process release.  

Processes can be assigned priorities that serve as tie breakers in case of simultaneous process releases. 

Nevertheless FIFO scheduling is – in stark contrast to static-cyclic scheduling – a work-conserving 

scheduling policy which means that no CPU time is wasted. A system-wide clock is required to trigger 

process activation and to ensure determinism. All process release times are thus subject to the very same 

clock drifts, enforcing the unique execution order, but also restricting the system to uni-core processors or 

partioned multicore scheduling.  

 

FIFO scheduling is well known to perform worse regarding schedulability than priority-driven dynamic 

scheduling policies such as rate-monotonic or earliest deadline first. For purely periodic systems like in 

CPAL, execution offsets [Mo12] can however be chosen so as to distribute the workload evenly over time, 

which significantly improves the ability of FIFO to meet real-time constraints [Alt15b]. Although FIFO fits 

well CPAL, the scheduling model of CPAL is not restricted to FIFO and can be extended to other policies 

such as Fixed Priority Preemptive Scheduling.   

4.3  Schedulabi l ity  analysis  and scheduling synthesis  

The CPAL execution engine possesses mechanisms to monitor and record at run -time the execution time of 

the processes. This feature can be taken advantage of by the designer to estimate the Worst -Case Execution 

Times of the processes making up the application. Since the workload submitted to the runtime environment 

is statically defined and fully characterized, it is possible to derive a schedulability analysis for a set of 

CPAL processes. We developed in [Alt15b] two schedulability analysis: an exact test based on simulation 

and an approximate test based on the schedulability test for non-preemptive scheduling with offsets [Pe05]. 

A feasibility test via simulation requires simulation up to twice the hyperperiod, which may be infeasible in 

many situations. In the latter case, we have to resort to the approximate schedulability test.  

 

We believe that significant progresses in terms of development time and correctness can be achieved by 

further automating the design process. In the timing dimension, this can for instance be done by 

synthesizing a feasible scheduling solution with this two -steps approach developed in [Al15c]:  
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- the developer states the permissible timing behavior of the system using a declarative language for 

the specification of non-functional timing properties, 

- a system synthesis step involving both analysis and optimization (e.g., periods and offsets) then 

generates a scheduling solution which at run-time is enforced by the execution environment.  

The interested reader can refer to [Al15c] for a more comprehensive discussion on scheduling synthesis in 

the CPAL framework. 

5  R ela t ed  w o rk  

A motivation behind CPAL is that general purpose programming languages abstract away timing 

considerations, and non-functional properties at large. They also lack the domain-specific constructs that 

are needed to speed-up the development, facilitate the re-use and the understanding of real-time embedded 

software.  

 

Synchronous programming models, be they functional like Lustre [Ha91] and Signal [Be91] or imperative 

like Esterel [Bo91], propose an effective and sound answer to facilitate the correct design of reactive 

systems made up of concurrent tasks. Thanks to their formal semantics, they have brought major progresses 

to the development of safe embedded systems over the last 30 years, and are certainly well suited in some 

application domains such as safety-critical systems. However, the learning curve is steep for programmers 

used to more conventional programming languages. In addition, the complexity of the formalisms that need 

to be understood or manipulated is a hindrance to their adoption by the practitioner. Also the programming 

style and the abstractions offered by the languages do not fit all problems and programmers. In many cases, 

we also believe that more lightweight and less demanding programming models are equally able to 

guarantee the necessary timing predictability without over-constraining the design and development.  

 

Amongst the synchronous approaches, CPAL has been inspired by Giot to [He03] which is a time-triggered 

architecture language. Indeed, several mechanisms available in Giotto are re-used such the task activation 

models (e.g., periodic process, guarded executions). In that respect, the current task activation model of 

CPAL can be seen as purely time-triggered. However, on the contrary of CPAL, neither Giotto defines a 

runtime environment nor is it a programming language to express functional behavior.  In addition, 

although we could imagine implementing an execution semantics in CPAL compliant with Giotto, CPAL 

currently relaxes the programming model of Giotto in several ways:  

- No system-wide mode change mechanisms as in Giotto are defined in CPAL, which supports mode 

changes through guarded executions at the process -level. 

- Although the order of observable events is deterministic in CPAL, t he outputs of a process are not 

produced at a predetermined point in time. They may be several output times that may be subject to 

variations depending on the actual execution times of the processes, but the interval where they 

happen can be bounded by schedulability analysis.  

- Unlike in Giotto, input ports of a process are read at the actual start of the process execution and 

not upon (or before) its release time. The process thus works on the most recent data.   

- In CPAL it is possible to explicitly re-read an I/O-mapped variable or to perform several writings to 

an output port during the execution of a process (e.g., to drive serial communication by bit -banging, 

send segmented messages, etc). This is done though the dedicated syncIO()function. 

 

A more recently proposed architecture description language is Prelude [Fo09,Fo10] which extends 

synchronous approaches, such as Lustre, to facilitate the development of multi-rate applications with 

complex communication patterns between tasks.  Prelude builds on the formal synchronous model to offer 

powerful operators (e.g., over and under-sampling) to define the flows of data between functions potentially 

operating at different rates. Prelude is able to perform correctness checks that ensure that the program has a 

deterministic semantics.  Then, the Prelude compiler translates the program into a set of communicating 

real-time tasks scheduled in such a way as to meet the timing constraints. Like Giott o, Prelude is not a 

programming language to define the actual functional behavior of the tasks, neither is it an execution 

platform. Preliminary experiments on examples such as the flight application software in [Fo10] suggest 

that most of the semantics of Prelude programs can be captured in CPAL. Future work will be devoted to 

assess the feasibility of transforming CPAL programs into Prelude programs in order to take advantage of 

the data-flow verification framework readily available within Prelude.  
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6  C on c lus i on  

The CPAL programming language and associated toolset is a model-driven development flow aimed at the 

development of timing-predictable embedded systems. Our priority in the language design has been to favor 

simplicity, user-friendliness and expressive power both in the functional and non-functional dimensions.  In 

particular, CPAL provides language abstractions needed to define real-time applications and argue about the 

timing correctness on a high-level.  

 

In that way, CPAL is a contribution towards addressing what Thomas Henziger called the grand challenge 

in embedded software design [He08]: "offering high-level programming model that exposes the execution 

properties of a system in a way that permit the programmer to express desired reaction and execution 

requirements, permits the compiler and run-time systems to ensure that these requirements are satisfied".  

CPAL provides a programming model, easier to handle for most programmers than synchronous approaches, 

which aims at ensuring timing-predictability instead of time-determinism which is over-constraining in 

many real-time applications.  

 

CPAL has been already successfully used to answer several industrial problems (Al15, Ci16,  Se15), as well 

as to teach MDD. Upcoming releases of the development environment and the CPAL interpretation engine 

will gradually offer an integrated support for off -line and on-line verification activity.  
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1 Introduction

Facing parallelism, determinism, and timelines problems, a real-time system de-
signer attempts to master design complexity by making abstractions and creating
models. For instance, somebody modeling a pressure controller may assume the
pressure sensor and the alarm never fail. Beyond this simple example, it clearly
turns that a real-time system model is valid for a precise set of assumptions. An
explicit knowledge of these assumptions is an asset to make the model easy to
share. Moreover, this knowledge contributes to remove ambiguities.
Surprisingly, little work has been published on the necessity to make modeling
assumptions a full part of a system model. Conversely, this paper advocates
for an explicit inclusion of modeling assumptions into the system model and dis-
cusses solutions in the context of the OMG’s System Modeling Language (SysML
[1]). The solution illustrated on the definition of so-called ”Modeling Assump-
tions Diagrams” is not restricted to SysML and may be reused, e.g., for UML or
AADL. An important issue discussed by the paper is the versioning one. Indeed,
our approach proposes to explicitly set or release modeling assumptions along
an incremental modeling process.
The paper is organized as follows. Section 2 sketches a process that explicitly
include modeling assumptions definition. Section 3 introduces Modeling Assump-
tion Diagrams (MADs fort short). The TTool tool [4] adds MADs to SysML.
Section 4 discusses a case study: a UAV platform for autonomous navigation
across buildings. Section 5 surveys related work. Section 6 concludes the paper.

2 Process

The SysML standard defines a notation, not a method. We thus need to associate
a process with the SysML language. The one described below is supported by
the free (i.e., ”libre”) TTool tool [4]. The latter supports several UML/SysML
profiles. The SysML framework considered in this paper is called AVATAR [2].
TTool supports the Modeling Assumption Diagram presented in this paper as
well as the whole AVATAR process described below.



1. Assumptions. One or several Modeling Assumption Diagrams captures as-
sumptions linked with the system under design and its environment.

2. Requirement capture. A Requirement Diagram hierarchically organizes safety
and security requirements with explicit notion of refinement and derivation
of technical requirements from logical ones.

3. Analysis. One or several Use-Case Diagrams identify the main functions and
services offered by the system. The use cases are documented by scenarios
(sequence diagrams) and flow charts (activity diagrams).

4. Design. An AVATAR design defines the architecture of the system and the
behaviors of the block instances the architecture is made up of. The ar-
chitecture and the behaviors are respectively modeled by a Block Instance
Diagram and State Machine Diagrams.

5. Design validation. To check an AVATAR design against errors and its ex-
pected requirements, the model itself is analyzed using simulation and ver-
ification tools directly accessible from TTool with a push-button approach.
Available techniques include early debugging using step-by-step and random
simulation, safety property verification using invariants search techniques or
UPPAAL [5], and security flaws detection using Proverif [3]. Both simula-
tion and safety/security verification are driven from TTool and the results
are displayed on the SysML model itself or at a high level that does not oblige
the SysML model designer to investigate an intermediate formal code.

6. Design prototyping. Model transformations techniques enable generation of
C/POSIX code from AVATAR design diagrams. Linking TTool to SocLib
allows one to prototype the generated code in complex platforms [21].

3 Modeling Assumptions Diagrams

A Modeling Assumption Diagram captures a set of assumptions, with their re-
spective attributes, as well as the interconnections between assumptions.

3.1 Assumption Nodes

There exists two types of assumption nodes, respectively stereotyped by <<
System >> and << Environment >>. The former (resp. the latter) is used
for assumption linked to the system itself (respectively the environment of the
system). Both System and Environment assumption nodes share the following
list of attributes:

– Durability. Because modeling is usually an incremental process, a modeling
assumption does not necessarily apply to all the versions of the model. For
instance, a system model that first ignores maintenance may be upgraded to
make the user interface interact with a supervisor in charge of maintenance.
The assumptions associated with the maintenance receives a Durability at-
tribute equal to temporary (as opposed to permanent). Another attribute
states whether the assumption remains applied in the current version of the
model or whether it it has been alleviated in the current or in a previous
version of the model.



– Source. An assumption may originate from the end-user, the stakeholder or
the creator of the model, respectively.

– Status. The status gives an information on whether an assumption is totally
applied or partially applied (aleviated) in the model.

– Scope may take one or several of the following values:
• Language addresses either a syntactical restriction, a semantics-related

limitation, or a limited expression power of the modeling language.
• Tool denotes a limitation of the tool (e.g., an unsupported construct of

the modeling language, a limited resource, e.g., memory).
• Modeling activity relates the way the company uses the modeling lan-

guage and the tools, e.g., by forbidding non deterministic constructs.
• Verification deals with the verification limitation introduced by specific

underlying verification toolkits. Examples include state space explosion
problem, undecidability, and non support of temporal constraints.

3.2 Relations between assumptions

The metamodel also defines relations that link pairs of assumptions.

– Containment. A complex modeling assumption is split up into two or several
elementary assumptions. Its semantics is similar to the one of the require-
ment containment in SysML.

– Versioning. It links two assumption nodes a and b. The relationship <<
versioning >> going from a to b, and qualified with {x → y} means that
assumption a applies until version number x and is superceeded by assump-
tion b starting at version number y.

– Relation between an assumption and a reference to a modeling element. The
<< impact >> relation states that the referenced element at the destination
of the link is directly impacted by the assumption at the origin of the link.
The referenced elements can either be a diagram, or a modeling element,
e.g., a block, the state of a state machine, etc.

– Composition relations between a reference to a diagram and references to
elements. The composition relation can be used to make more explicit the
fact that a diagram contains impacted elements.

4 Case Study

A UAV system serves as case study. All the diagrams have been edited using the
latest release of TTool, which supports MADs.

4.1 Informal specification of the UAV

In the incoming years, micro-drones could play a key role in our society, namely
the role of assistant, in particular in the scope of disasters. However, their ma-
nipulation currently requires specific skills (flying skills, mission-related skills)



that rescue teams are not ready to invest on. Thus, drone autonomy is a research
topics on which Telecom ParisTech and EURECOM have been working on for
several years in the drone4u project [22]. In particular, drone4u studies how
to perform autonomous drone navigation in harsh conditions, in particular in-
side buildings. Drone4u has already investigated three scenarios of autonomous
navigation:

1. Following and understanding marks, e.g., a red line located on the floor,
indication marks on doors.

2. Analyzing the environment (obstacles, etc.) with image-based processing
techniques (3D reconstruction).

3. 3D reconstruction with human assistance in order to go through obstacles
that a drone cannot handle on its own, e.g., entering in a room when the
entrance door is closed.

4.2 Modeling assumptions

The first model considers only the first scenario. The corresponding MAD is
given in Figure 1. The main assumption concerns the signs that are necessary to
navigate, in particular the red line located on the floor. DroneDesign1 handles
that line-based guidance, and implements it, in particular, with a block named
LineRecognitionAlgorithm, see Figure 2.

<<impact>>

<<impact>>

<<System Assumption>>
SignsToNavigate

Text="Assumption description:
Double-click to edit"
Durability="Permanent"
Source="Stakeholder"
Status="Applied"
Scope="Undefined"

<<System Assumption>>
RedLine

Text="A reline is assumed
to be paintd/sticked
on the floor in order
to guide the drone."
Durability="Temporary"
Source="Model creator"
Status="Applied"
Scope="Modeling activity"

<<System Assumption>>
CrossingSigns

Text="The drone is informed
about the crossing
identified with a sign"
Durability="Permanent"
Source="Model creator"
Status="Applied"
Scope="Modeling activity"

<<Element ref.>>
Block_LineRecognitionAlgorithm

<<Diagram ref.>>
DroneDesign1

Fig. 1. Modeling Assumption Diagram - version 1

In scenario 2, the drone does not follow a line anymore, but uses images
from the camera to detect paths to follow and obstacles. The RedLine assump-
tion is thus now deprecated and replaced by a new assumption named Three-
DRecognition (see Figure 3). The design named DroneDesign2 handles that new
assumption by two means. First, the introduction of a new block named Three-
DRecognitionAlgorithm and second, the modification of the block Camera.



<<datatype>>
Command

- pitch : int;
- roll : int;
- yaw : int;
- mode : int;

<<block>>
Camera

- p : Picture;
- x : int;
- interframeDelay = 20 : int;
- bottom = true : bool;

~ out sendPicture(Picture p)
~ in stopMe()
~ in startMe()

<<block>>
EngineController

- lastCommand : Command;
- currentPosition : Command;

~ in getCommand(Command c)
~ out sendPosition(Command c)

<<block>>
MainController

- nbOfCrossings : int;
- aliveTimer = 100 : int;
- mode : int;
- currentPicture : Picture;
- movementTimer : Timer;
- command : Command;
- movementDelay = 100 : int;
- found : bool;
- position : int;
- hasCurrentPicture : bool;

~ out sendCommand(Command c)
~ in getPosition(Command p)
~ in readNextPicture(Picture p)
~ out startCamera()

<<block>>
LineRecognitionAlgorithm

- found = false : bool;
- foundI : int;
- position : int;
- minComputationTime = 30 : int;
- maxComputationTime = 50 : int;
- p : Picture;

~ in compute(Picture p)
~ out result(bool found, int position)

<<datatype>>
Picture

- sizeH = 0 : int;
- sizeV = 0 : int;
- data = 0 : int;
- bottom : bool;

<<block>>
RemoteUser

- place : int;
- status : int;

~ in placeReached()
~ in missionAborted(int status)
~ out reach(int place)

<<block>>
CrossingRecognition

- foundI : int;
- found = false : bool;
- p : Picture;
- minComputationTime = 10 : int;
- maxComputationTime = 10 : int;

~ in compute(Picture p)
~ out result(bool found)

Command values:
-----------------
0: negative value
1: nothing
2: positive value

Command mode:
---------------
0: must take into
account
pitch, roll and yaw
1: takeOff
2: land

Fig. 2. Avatar block instance diagram - Drone Design 1

At last, scenario 3 takes into account the fact that the drone can go through
doors. It means that scenario 2 was assuming there was no door (but negative
assumption are more rarely expressed), and scenario 3 now assumes that a person
must assist the drone to go through doors. A new MAD is thus used to express
those new assumptions (see Figure 4). In particular, the temporary ”NoDoor”
assumptions applies until version 2, but no more in version 3, in which the
”FollowingPersons” applies.

The design DroneDesign3 (see Figure 5) handles the FollowingPersons as-
sumption. Modifications to meet that assumption impact two blocks: MainCon-
troller and RemoteUser. The two blocks are enhanced with signals (e.g., DoorDe-
tected, DoorHandled), attributes and their state machine diagram can handle the
new situation (going through doors).

4.3 Discussion and limitations

The case study demonstrates the facility to manage assumptions for different
versions of the same system: assumptions, as well as their main characteristics
can easily be captured, and the versioning is explicit in the diagram. The impact
of modifying assumptions can be traced both at diagram level, and at modeling
elements level.



<<versioning>>
{1->2}

<<impact>>

<<impact>>

<<impact>>

<<impact>>

<<impact>>

<<System Assumption>>
SignsToNavigate

Text="Assumption description:
Double-click to edit"
Durability="Permanent"
Source="Stakeholder"
Status="Applied"
Scope="Undefined"

<<System Assumption>>
RedLine

Text="A reline is assumed
to be paintd/sticked
on the floor in order
to guide the drone."
Durability="Temporary"
Source="Model creator"
Status="Applied"
Scope="Modeling activity"

<<System Assumption>>
CrossingSigns

Text="The drone is informed
about the crossing
identified with a sign"
Durability="Permanent"
Source="Model creator"
Status="Applied"
Scope="Modeling activity"

<<System Assumption>>
ThreeDRecognition

Text="the drone can follow
corridors without any
sign. It recognizes the
path to take by understanding
its 3D environment."
Durability="Permanent"
Source="Model creator"
Status="Applied"
Scope="Modeling activity"

<<Element ref.>>
Block_LineRecognitionAlgorithm

<<Diagram ref.>>
DroneDesign2

<<Diagram ref.>>
DroneDesign1

<<Element ref.>>
Block_ThreeDRecognitionAlgorithm

<<Element ref.>>
Block_Camera

Fig. 3. Modeling Assumption Diagram - version 2

Consistency checking inside of Modeling Assumption Diagrams, and with
regards to referenced elements, has also been defined. For example, concerning
versioning, an assumption modeled as deprecated in version x, should not itself
deprecate another assumption in version x. For referenced elements, if an ele-
ment, e.g., a block, meets a new assumption in version x, it should be different
from the same block in version y with y < x. TTool already partly performs
these coherency checking, which are necessary for correctly handling assump-
tions traceability and interest. Similarly, helping the designer to rework the MAD
while improving the other diagrams is a point that we intend to address in a
near future.

Currently, one needs to open a MAD to see which elements are impacted
(<< impact >> relations) by given assumptions. It could also be interesting to
vizualize directly on design diagrams the assumptions linked to elements, e.g.,
blocks, states of state machines. For example, when passing the mouse pointer
over a given element, TTool could display in a popup window all the related
elements. Table-oriented views could also be used to better trace assumptions
and modeling elements, in the same way as TTool can currently make it for
requirements.

Last but not least, TTool can perform simulation and formal verification
of safety and security properties on designs. However, TTool cannot (yet) use
the modeling assumption diagrams to evaluate which parts of the design have



<<versioning>>
{2->3}

<<System Assumption>>
NoDoor

Text="The drone cannot
go through doors "
Durability="Temporary"
Source="Model creator"
Status="Applied"
Scope="Modeling activity"

<<System Assumption>>
FollowingPersons

Text="The drone can follow
a person when it needs
to go through an
obstacle, e.g., a door"
Durability="Permanent"
Source="Model creator"
Status="Applied"

<<Diagram ref.>>
DroneDesign3

<<Element ref.>>
Block_RemoteUSer

<<Element ref.>>
Block_MainController

<<impact>>
<<impact>>

<<impact>>

Fig. 4. Modeling Assumption Diagram - version 3

evolved - using the << impact >> relation - in order to restrict the proof to
the properties that still have to be proved again in a new design version.

5 Related Work

A survey of the literature indicates that numerous authors (e.g. [14] [15]) share
the following idea: specifying the assumptions is a system-engineering task.

[14] adds that ”model assumptions must be stated explicitly”. [17] says ”Some
authors treat a list of assumptions as if were a conceptual model. It is not; but a
conceptual model should include a list of assumptions”. [18] further states ”We
want to have an argument that increases our confidence that the model represents
the system correctly”. Therefore we document some of the modeling decisions in
form of a list of the systems assumptions made while modeling. Given a real-time
system boiled down to a controller and an environment termed as ”plant”, [18]
categorizes assumptions that respectively apply to the system’s components, to
the properties related to the mechanical, electrical and software that form the
aspects of a system.

[16] categorizes the artifacts of conceptual modeling into ”knowledge acquisi-
tion” and ”model abstraction”. The former demands to acquire knowledge about
the real world and to derive a system description. The latter abstracts a concep-
tual model from a system description, which implies specifications are made.

[10] further categorizes assumptions into technical assumptions, organiza-
tional assumptions and managerial assumptions. Examples of technical assump-
tions include programming languages as well as database and operating systems.
Conversely, the paper advocates for a clear distinction between the system’s en-
vironment (in terms e.g. of network connection and operating system) and the
modeling or programming language used to design and develop the system. In



<<datatype>>
Command

- pitch : int;
- roll : int;
- yaw : int;
- mode : int;

<<block>>
Camera

- p : Picture;
- x : int;
- interframeDelay = 20 : int;
- bottom = false : bool;

~ out sendPicture(Picture p)
~ in stopMe()
~ in startMe()

<<block>>
EngineController

- lastCommand : Command;
- currentPosition : Command;

~ in getCommand(Command c)
~ out sendPosition(Command c)

<<block>>
MainController

- nbOfCrossings : int;
- aliveTimer = 100 : int;
- mode : int;
- currentPicture : Picture;
- movementTimer : Timer;
- command : Command;
- movementDelay = 100 : int;
- found : bool;
- position : int;
- hasCurrentPicture : bool;
- oldMode : int;

~ out sendCommand(Command c)
~ in getPosition(Command p)
~ in readNextPicture(Picture p)
~ out startCamera()
~ out stopCamera()
~ in reach(int place)
~ out missionAborted(int status)
~ out placeReached()
...

<<block>>
ThreeDRecognitionAlgorithm

- found = false : bool;
- foundI : int;
- position : int;
- minComputationTime = 30 : int;
- maxComputationTime = 70 : int;
- p : Picture;

~ in compute(Picture p)

<<datatype>>
Picture

- sizeH = 0 : int;
- sizeV = 0 : int;
- data = 0 : int;
- bottom : bool;

<<block>>
RemoteUser

- place : int;
- status : int;
- doorTime = 100 : int;

~ in placeReached()
~ in missionAborted(int status)
~ out reach(int place)
~ in doorDetected()
~ out doorHandled()

<<block>>
CrossingRecognition

- foundI : int;
- found = false : bool;
- p : Picture;
- minComputationTime = 10 : int;
- maxComputationTime = 10 : int;

~ in compute(Picture p)
~ out result(bool found)

Command values:
----------------
0: negative value
1: nothing
2: positive value

Command mode:
---------------
0: must take into
account
pitch, roll and yaw
1: takeOff
2: land

Fig. 5. Avatar block instance diagram - version 3

terms of organizational assumptions, our paper does not cover all the issues (de-
velopment team, workflow, company standard) addressed by [10], assuming the
method associated with AVATAR is compatible with the practice in use in the
company. Also, the paper does not address managerial assumptions. Finally, [10]
associates assumptions to architectural models and therefore to design decision
where the paper also enables to link assumptions to analysis and behavioral
diagrams.

[17] defines an assumption and the way a system uses it. [17] terms as ”refer-
ent” the model or system component that the assumption is about; it compares
to the ”impact” relation in MADs. Also, [17] terms as ”scope” a description of
which parts the assumption refers to; it compares to the ”impact” relation in
MADs. [17] also distinguishes between the system and its components.

Assumptions management is a key issue for versioning. [17]’s classification on
change management in the context of requirement diagrams may be a source of
inspiration for classifying the operations associated with a << versioning >>
relationship: (1) New assumption added, (2) Existing assumption removed, (3)
Part remove from an assumption, and (4) New part added to an assumption.
Whatever the operation, the effect of applying a new modeling assumption at
the end side of a << versioning >> relation may easily span over several
diagrams. Evaluating that effect may rely on a dependency graph computed
from the relations that link assumptions to diagram and diagram elements.

The tutorial in [8] mentions ”List requirement and assumptions” as an early
stage of a process applied to a distiller. The authors use the ”Rationale” keyword
to characterize an assumption described in a comment. The latter is attached to
a requirement. Nothing is said about the traceability of the assumption made as
a comment.



[20] addresses assumptions in a UML/SysML context. The paper proposes
to extend UML/SysML with contracts. A contract associated with one compo-
nent is a pair (assumption, guarantee) where an assumption is abstraction of
the component’s environment behavior and the guarantee is an abstraction of
the component’s behavior given that the environment behaves according to the
assumption.

[19] also addresses assumptions in a SysML context. Given safety require-
ments arise from assumptions about the system’s context, [19] introduces the
concept of environmental assumptions and describes them by two means: SysML
parametric diagrams for continuous properties of a hardware entity, and OCL
constraints for discrete properties of a software entity. Besides standards, cus-
tomers and domain experts, environmental assumptions belong to the list of
sources the requirements come from.

6 Conclusions

A model is hard to understand and transmit as long as one ignores the assump-
tions made by the engineers who elaborate that model. Therefore, the authors
of the paper strongly advocate for an explicit inclusion of modeling assumptions
inside the model. The paper implements the idea in the context of AVATAR,
the real-time variant of SysML that is supported by the TTool tool. Adding
Modeling Assumption Diagrams to AVATAR is the main purpose of the paper.
A MAD defines a set of modeling assumptions nodes that describe and catego-
rize the assumptions made to elaborate the model. A complex assumption may
be split up into elementary ones. A versioning arrow between two assumptions
enables to achieve versioning. Also, an assumption may be linked to a diagram
it has an influence on. Precision may be added on the way diagram elements are
impacted by the diagrams themselves influences by one or several assumptions.
The autonomous UAV that serves as case study is a real UAV
(https://www.youtube.com/watch?v=tamYpmGvzRw).
All the diagrams presented in the paper have been edited using TTool.

The concept of Modeling Assumption Diagram could be applied to OMG’s
SysML and to UML, as well as to UML profiles in general. The concept of
versioning deserves further investigations in the view of optimizing the simulation
and formal verification activities that may applied on AVATAR models.
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Abstract 

Safety-critical systems require specific development and evaluation activities in the software development life cycle 
to ensure that the product is safe. Some of these activities are aggregated into comprehensive safety engineering 
practices, which are standardized within an industry, such as Aerospace Recommended Practice (ARP) 4761 in the 
aircraft industry. These techniques focus on individual component failures and reliability. More recent techniques 
such as the Systems-Theoretic Process Analysis (STPA) go beyond reliability of individual components to consider 
the interactions among the components. In this paper we present the Architecture-Led Safety Analysis (ALSA) 
method that is part of the Architecture-Led Safety Engineering practice. ALSA combines the development and 
analysis of at least a partial architecture model using notations such as the Architecture Analysis and Design 
Language, its Error Model Annex, and existing ARP 4761 and ARP 4754A practices such as Functional Hazard 
Assessment, Preliminary System Safety Assessment, and System Safety Assessment as well as the emerging 
technique of STPA. This work contributes an illustration of using ALSA to analyze a Full-Authority Digital Engine 
Controller. The method is supported by the Open Source Architectural Tool Environment and has been piloted on an 
industrial-strength example. 

Keywords: safety analysis; architecture-led; error model 

Introduction 

Safety-critical systems require specific development and evaluation activities in the software development life cycle 
to ensure that a system is safe. Some of these activities are aggregated into comprehensive safety engineering 
practices, which are standardized within an industry. Standards such as Aerospace Recommended Practice (ARP) 
4761 in the aircraft industry define very specific techniques for assessing the safety of life-critical systems [1]. 
These techniques focus on individual component failures and their associated reliability. More recent techniques 
such as the Systems-Theoretic Process Analysis (STPA) go beyond methods based on the reliability of individual 
components to consider the interactions among the components [2]. 

The increasing complexity of current embedded systems is driving the need for increasing automation of all 
activities, including safety analysis. The goal of our research is to create a safety engineering practice that blends 
existing safety analysis techniques with an error ontology and a model-based architecture representation of the 
system and its operational context that will more effectively and efficiently discover hazards in the interactions 
among system components. The practice enables increased automation to support iterative development. Our 
technique differs from some existing practices as described in Chen and Biehl that use EAST-ADL [3–5]. EAST 
ADL focuses on supporting system engineering mapping functional architectures onto hardware. It does not support 
modeling of the software architecture. In contrast, AADL allows modeling of system and software architectures. By 
supporting safety analysis across both, it addresses hazard contributions by software. There is plenty of recent 



evidence that software has become a major source of hazards; thus, it is crucial to extend safety analysis into the 
software system architecture. 

In this paper we present the Architecture-Led Safety Analysis (ALSA) method and demonstrate its use. ALSA is 
part of an Architecture-Centric Virtual Integration Process (ACVIP) within a comprehensive, architecture-led 
systems engineering practice [6]. Figure 1 shows steps in the ACVIP, with the ALSA steps in boldface. We apply 
these process steps repeatedly down the hierarchy of subsystems. The diagram conveys that the ACVIP and ALSA 
steps are closely coupled and involve iteration and concurrency of activities. 

 

Figure 1: Process steps for ACVIP (lightface) and ALSA (boldface). 

Our practice combines features of several existing safety engineering practices, model-based requirements analysis, 
and architecture design practices. It incorporates development and analysis of at least a partial architecture model 
using notations such as the Architecture Analysis and Design Language (AADL) [7]. The method incorporates 
existing ARP 4761 and ARP 4754A practices such as Functional Hazard Assessment (FHA), Preliminary System 
Safety Assessment, and System Safety Assessment. Our method also uses techniques similar to those in STPA, 
including a specially constructed set of guidewords. The unique contribution of our work is the use of an 
architecture representation of the system and its operational context and an error ontology to support hazard 
identification. An early version of this method was validated by its use in the System Architecture Virtual 
Integration technique [8]. 

We create the architecture representation, which supports our practice, using AADL and elaborate it over multiple 
iterations of analysis and design. Several annexes to the core AADL have been defined and we particularly use the 
error annex, referred to as EMV2 (error model version 2), in this safety analysis method. EMV2 supports expressing 
the error behavior of a component and its subcomponents using a state machine construct linked to the component’s 
ports. Component connectors between ports and error flows through the connectors allow the designer to explicitly 
plan error propagations through the system. Work around, restart and other error recovery strategies can be modeled 
and analyzed. EMV2 defines the error ontology that is a center piece of the safety analysis method. The ontology 
provides guide words that are used to help locate safety hazards, which are added to the error model as properties 
that can be used to produce hazard analysis reports.      

An architecture model created using the process in the rest of this paper supports safety analyses at user-selectable 
levels of detail. Certain analyses are conducted on an instantiation of the selected component including any 
subcomponents of the selected component. The algorithms are defined to accept the scope of the selected entity and 
to apply the analysis technique within that scope.  The highly extensible OSATE predefines analyses such as FHA 
but as an open source tool based on Eclipse any analysis can be added to the tool set.                                                                                                      



The practice is composed of four steps that we apply in a top-down manner to the system hierarchy. Feedback from 
lower levels drives the next iterations with new information. The individual steps interface with the encompassing 
ACVIP practice and inform other integration activities. The four steps are 

1. Identify Operational Safety Risks: This step involves identifying operational system-level accidents, 
incidents, and contributory system-level hazards by considering the context in which the system is 
engineered and operates as well as its interfaces with the environment. This step requires significant 
stakeholder engagement, especially safety engineering, operational, and mission expertise. 

2. Identify Operational Hazards and Hazard Contributors: Step 1 helps to establish a minimal system 
architecture, associating identified accidents with various aspects of the system. The error ontology defined 
in the Error Model Annex of AADL provides guidance in identifying hazards and their contributors. 

3. Identify Safety Requirements: The sources of error are used to define safety requirements that mitigate the 
identified hazards. While designated as a distinct step, safety requirements can be defined concurrently 
with hazard identification. 

4. Develop Safety Architecture Design: A safety architecture is designed based on the safety requirements 
identified in the previous step. The safety architecture merges the safety aspects of the product into the 
overall product architecture. 

The ALSA practice is supported by the Open Source Architectural Tool Environment (OSATE) [9]. It is conducted 
in coordination with the general systems requirements definition and initial architecture design activities in an 
iterative, incremental development approach. The architecture representation includes information about nominal 
and error flows in the system. These flows are analyzed end to end to identify hazards that may appear only when 
complex interactions among multiple components are considered together. As hazards are discovered, the 
architecture representation is annotated with information about the hazards, making this information available in 
future iterations of analysis as the system definition evolves. 

The example in the next section illustrates elements of the ALSA approach but is not intended to represent a 
comprehensive safety assessment. In practice, experts utilize these techniques to develop the technical and safety 
aspects of the systems they analyze. In presenting the ALSA process, we assume that readers are familiar with the 
AADL, the AADL Error Model Annex (EMV2), and their application [10–12]. 

Example 

This is an example application of the ALSA safety process to a representative Full-Authority Digital Engine 
Controller (FADEC) system. For our purposes, we address only the operating process aspects of the broader system-
level theoretical framework presented in Figure 1. The example focuses on the fuel flow control aspects of the 
system as shown in Figure 2 and taken from [13]. The design presented here is illustrative, does not represent any 
specific or operational FADEC system, and is not intended for implementation. Nominally, a safety analysis is 
conducted for the complete aircraft, but in this problem (i.e., the system) we focus on the aircraft engine. A technical 
report is in preparation and will provide many details that are omitted here due to space limitations. We apply each 
of the four steps in the safety process and explain the interactions among the steps. 

Identify Operational Safety Risks 

This initial step interfaces with the encompassing ACVIP and defines the operational safety context for the system 
as part of the ACVIP context-definition activity. In this step, we identify safety risks (accidents, incidents, and top-
level operational hazards). As noted earlier, the specific procedures, techniques, and outputs depend on the 
preferences and norms of an organization. In some cases, certifications require specific practices. 
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Figure 2: FADEC fuel flow control example [data adapted from 10]. 

Various techniques can be used to identify system-level hazards in the ALSA process. Traditionally FHA has been 
the technique used to identify operational safety risks [1]. More recently, Leveson’s STPA has also been used [2]. 
An FHA output table for the FADEC is shown in Table 1. For our purposes, we consider only the hazards and 
descriptions for the control thrust function while the aircraft is in motion and do not specify other entries in the table. 
Table 2 shows the results using STPA. 

Table 1: Hazards identified using FHA. 

Function Failure Condition 
(Hazard Description) Phase Effect of 

Failure  
Classifi-
cation 

Reference to 
Supporting 
Material 

Verification 

Control 
Thrust 

Engine provides no thrust 
Engine provides too little thrust 
Engine provides too much thrust 
Engine is slow to provide 
commanded thrust (increase or 
decrease) 
Engine will not shut down when 
commanded 
Engine cannot be controlled – 
Loss of Engine Thrust Control 
(LOTC) 

Taxi 
Takeoff 
Landing 
Flight 

    

 
Table 2: Results of applying STPA. 

Accident System-Level (Operational) Hazards 
A-1: Loss of life or serious injury 
due to aircraft engine 
 
A-2: Catastrophic damage to 
aircraft or other property due to 
aircraft engine 

H0: Ineffective thrust to maintain controlled flight or safe taxi 
H1: Engine provides no thrust 
H2: Engine provides too little thrust 
H3: Engine provides too much thrust 
H4: Engine is slow to provide thrust (increase or decrease) 
H5: Engine will not shut down when commanded 
H6: Complete LOTC 

At this point, we identify the top-level safety requirements that prevent hazards or accidents (termed safety 
constraints [2]). The top-level safety requirements for the engine hazards are shown in Table 3. Defining safety 
requirements in concert with identifying hazards can be more effective, since experienced engineers with the 
requisite expertise are focused on the specific details of a hazard and immersed in the overall safety context. Often 



during the hazard-identification activities of ALSA, engineers implicitly assume or identify requirements, identify 
implicit architecture assumptions or alternatives, or make architecture decisions. For example, engineers may 
develop a requirement that a combat aircraft will include an ejection set for the pilot. At this point, they can begin to 
develop an operational model of the top-level system architecture and include an ejection system, along with 
potential alternative designs. 

Table 3: Hazards and safety requirements. 

Hazards Safety Requirements  
H1: Engine provides no thrust SC1: Thrust must be provided at all times when commanded.  
H2: Engine provides too little thrust 
H3: Engine provides too much thrust 

SC2: Thrust level must be provided at the commanded level. 

H4: Engine is slow to provide commanded thrust  SC3: Engine must provide commanded thrust within the required interval.  
H5: Engine will not shut down when commanded [Relevant safety constraints arising from H5 include SC1, SC2, and SC4.] 
H6: Engine cannot be controlled – LOTC SC4: Engine must respond to all commands. 

SC4.1: Engine must start when commanded. 
SC4.2: Engine must shut down when commanded. 

Identify Operational Hazards and Contributors 

In this step, we detail hazards and identify hazard contributors by incrementally extending the hazard analysis into 
lower levels of the system operational and architectural hierarchy. Consequently, it is necessary that additional 
details or working assumptions about the architecture exist and possibly alternative architecture designs for 
consideration have been defined. These steps incorporate hazard analysis techniques—such as fault tree analysis, 
event tree analysis, and hazard and operability study from ARP 4761—as well as the STPA and are connected 
with the identification of safety requirements and the development of a safety architecture. 

In the initial activities of this step, we establish the boundaries of the system and its subsystems and define the types 
of errors that can propagate among them. For the FADEC example, we choose to partition the relevant system into 
the cockpit (including the pilot), a separate autopilot, and the remainder of the physical aircraft. External elements in 
the environment may impact the system via sensors or other input (e.g., light entering the aircraft can produce heat 
within the aircraft). The system-level diagram shown in Figure 3 reflects an architecture in which pilot and autopilot 
commands to the aircraft’s FADEC are separate and parallel. 

 

Figure 3: Example aircraft decomposition. 

A common way of viewing a system in its operational context is as a control system that involves interactions via 
Monitored and Controlled Variables. This approach, documented in the FAA Requirement Engineering Management 



Handbook [14], has its roots with Parnas and Madey [15]. These variables can be used to represent states that 
characterize unsafe system conditions and interactions. The STPA utilizes a control loop representation for hazard 
identification [2]. 

Two principal considerations in identifying hazards are exceptional conditions within architecture elements 
(characterized using the ALSA error ontology) and mismatched assumptions (mismatched assumption-guarantee 
contracts between systems) about their interactions. Exceptional conditions and mismatched assumptions are 
hazardous (undesired) states of a system. Those that pose a threat to the well-being of people or offer the potential 
for catastrophic consequences to the environment are safety hazards. 

As seen in Figure 3, the Pilot_Cockpit system provides control commands to the Autopilot and the Aircraft. We 
consider the port connections between the elements and choose the error types: no data is sent (service omission), 
bad data is sent, and data is sent late. We assume that the data is a single content record sent on some schedule. As 
we define the details of the communication between the components more specifically, we can define the amount of 
acceptable delay and adjust the model to accommodate these details. This information is summarized in Table 4, 
whose columns are labeled with the relevant error categories from the error ontology. 

Table 4: Interface errors. 

Component Interface Service Errors Value Errors Timing Errors Replication Errors 
Pilot_Cockpit to 
Autopilot 

No command to 
autopilot (may not 
be a hazard – need 
details on 
assumptions of the 
autopilot system) 

Bad value input 
into Autopilot 

Late delivery 
(since this is 
specified as a 
message, potential 
timing errors need 
additional analysis) 

 

Pilot_Cockpit to Aircraft No command to 
aircraft  

Bad value input 
into Aircraft 

Late delivery  

Autopilot to Aircraft No command Bad value Late delivery  
Aircraft to Pilot_Cockpit No data Bad value Late delivery Potential for 

asymmetric missing, 
value or timing error Aircraft to Autopilot No data Bad value Late delivery 

The engine system within the aircraft system implementation is shown in Figure 4. For clarity, other internal aircraft 
components are not included. The FADEC within the engine system can be commanded by either pilot or autopilot 
input, and the FADEC does a signal selection based on the operational mode. The engine receives a command from 
the FADEC and provides engine turbine fan speed back to the FADEC. 

 

Figure 4: Major engine system components. 



Identify Safety Requirements 

Operational safety hazards, errors sources, and other contributors to those hazards are used to establish safety 
requirements—statements about the desired operation and capabilities of a system that address safety hazards. As 
we have shown, safety requirements arise out of hazards and hazard contributors and can be identified throughout 
the ALSA process. Consider the example in Table 4; the identification of the hazard that an asymmetric 
transmission error can occur leads to a requirement to address asymmetric errors in the system. 

Develop Safety Architecture Design 

Developing a safety architecture is synergistic with the hazard analysis process and the general architecture design 
efforts. Especially for safety-critical systems, the safety requirements (safety constraints) identified in earlier steps in 
the process guide the engineering of the system. In safety-guided design, safety requirements drive the overall 
architecture development and define safety-specific architecture elements, such as redundant hardware, highly 
reliable communication, and low workload interface designs. Safety requirements significantly influence, and often 
dictate, architecture and detailed design trade-off decisions and overall system assurance activities.  

In ALSA, standard error patterns such as the standard-error state machine shown in Figure 56 are collected in 
libraries that can be reused across architectures. The safety analysis is tied directly to the architecture by recording 
the identification of a hazard in the error model for the appropriate AADL component, as shown in Figure 67.  

error behavior Basic_Three_State 
use types ErrorLibrary, FADEC_Error_Library; 
 
events 
Bad_Data: error event {Bad_Data} if "occurrences resulting in bad values 
being computed"; 
No_Data: error event {No_Data} if "occurrences resulting in no data 
computed"; 
Repairs: error event if "repairs are made"; 
 
states 
nominal: initial state; -- component is operating normally 
B_Data: state ; -- component is computing and outputting bad values 
Failed: state ; -- component is not outputting data 
 
transitions 
Data_Bad: nominal -[Bad_Data]-> B_Data; 
Major_Fail: nominal -[No_Data]-> Failed; 
Fault2: B_Data -[No_Data]-> Failed; 
Recovery1: Failed -[Repairs]-> nominal; 
Recovery2: B_Data -[Repairs]-> nominal; 

end behavior; 

nominal

Failed B_data

Bad_DataNo_Data

Repairs

 

Figure 5: Three-state error model. 



 EMV2::hazards => 
 ( 
  [ 
   CrossReference => "Hazard H0"; 
  Description => "Ineffective thrust to maintain controlled flight 
or safe taxi"; 
  Severity => 1; 
  ] 
 ) applies to Engine_System.ineffective_thrust; 

Figure 6: Hazard record in an error model. 

Errors may be propagated from hardware into software components, or from one component to another, and may 
arise from the implementation and operation of the component itself, as shown in Figure 78. The error propagations 
can also lead the system/subsystem hierarchy, as shown in Figure 89. Making these error propagations explicit in the 
architecture description makes design decisions much more straightforward. This ties the safety architecture into the 
architecture design activity of the encompassing ACVIP. 

system FADEC extends Top_Level_Pkg::FADEC 
 
annex EMV2 {** 
  use types FADEC_Error_library; 
error propagations 
autopilot_PLA_Cmd: in propagation {No_Data,Bad_Data,Late_Data}; 
fan_speed: in propagation 
{No_Data,Bad_Data,Late_Data,AsymmetricSpeedFeedback}; 
pilot_PLA_Cmd: in propagation {No_Data,Bad_Data,Late_Data}; 
cmd_to_engine: out propagation {No_Data,Bad_Data,Late_Data}; 
end propagations;  
**};  
end FADEC; 
 
device engine extends Top_Level_Pkg::engine 
 annex EMV2 {** 
  use types FADEC_Error_library; 
error propagations 
engine_cmd: in propagation {No_Data,Bad_Data,Late_Data}; 
fan_speed: out propagation 
{No_Data,Bad_Data,Late_Data,AsymmetricSpeedFeedback}; 
end propagations;  
**}; 

 end engine; 

Figure 7: Tying the FADEC to the higher level engine package. 

OSATE is extensible using the Extend language. By defining domain specific properties and encoding an 
algorithm to compute a measure from those properties a new analysis is added to the toolkit. Future work is 
intended to add to the analysis set and to enhance usability. 



 

Figure 8: Dual redundant fuel flow. 

Conclusion 

The ALSA process involves assessing interconnected elements within an architecture, considering the potential 
EMV2 errors that may apply to the interconnections, and representing each architecture element as an error state 
machine based on the impacts of these errors. The error model also includes considerations of the operational 
paradigm and system model of the component. ALSA also involves assessing the interaction paths between 
architecture components. Within ALSA, systems engineers consider system interaction scenarios in which each 
component representation is based on an assumed architecture model of the system and assumed operational 
paradigms (algorithms) that are premised on that model. Each component interaction can be affected by one of the 
EMV2 error types via its interaction with other components. These are errors output by or received by a component. 
ALSA is a safety engineering practice that blends existing safety analysis techniques with an error ontology and a 
model-based architecture representation of the system and its operational context. Using this blend, engineers can 
more effectively and efficiently discover hazards in the interactions among system components, increase automation 
to support iterative development, and help to ensure that a safety-critical system is safe. 

Acknowledgments 

Copyright 2015 Carnegie Mellon University 
 
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally 
funded research and development center. 
 
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE 
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO 
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, 
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, 
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON 
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM 



PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. 
 
This material has been approved for public release and unlimited distribution. 
 
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. 
 
DM-0002899 

References 
1. SAE ARP4761, Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne 

Systems and Equipment, December 1996. 
2. Nancy G. Leveson, “A Systems-Theoretic Approach to Safety in Software-Intensive Systems,” IEEE Trans. 

Depend. Secure, 1(1), 2004, pp. 66–86. 
3. DeJiu Chen et al., “Modelling Support for Design of Safety-Critical Automotive Embedded Systems.” In 

Computer Safety, Reliability, and Security, Springer, 2008, pp. 72–85. 
4. Matthias Biehl et al., “Integrating Safety Analysis into the Model-Based Development Toolchain of Automotive 

Embedded Systems,” ACM SIGPLAN Notices, 45(4), 2010, pp. 125–132. 
5. Hans Blom et al., EAST-ADL: An Architecture Description Language for Automotive Software-Intensive 

Systems (White Paper Version 2.1.12), Maenad, 2013. 
6. Huafeng Yu et al., “Towards an Architecture-Centric Approach Dedicated to Model-Based Virtual Integration 

for Embedded Software Systems,” First Int. Workshop on Architecture Centric Virtual Integration (ACVI), Co-
located with MoDELS 2014, September 2014. 

7. Peter H. Feiler and David P. Gluch, Model-Based Engineering with AADL: An Introduction to the SAE 
Architecture Analysis and Design Language (SEI Series in Software Engineering), Addison-Wesley, 2012. 

8. Peter Feiler et al., System Architecture Virtual Integration: An Industrial Case Study (CMU/SEI-2009-TR-017), 
Software Engineering Institute, Carnegie Mellon University, 2009. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=9145 

9. Software Engineering Institute, Open Source AADL Tool Environment (OSATE), 2006. 
https://wiki.sei.cmu.edu/aadl/index.php/Osate_2 

10. SAE AS5506B, Architecture Analysis & Design Language (AADL), September 2012. 
11. SAE AS5506, Architecture Analysis and Design Language (AADL), Annex E: Error Model Annex, September 

2015. 
12. Julien Delange et al., AADL Fault Modeling and Analysis Within an ARP4761 Safety Assessment (CMU/SEI-

2014-TR-020). Software Engineering Institute, Carnegie Mellon University. 2014. 
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=311884 

13. Sanjay Garg, Fundamentals of Aircraft Turbine Engine Control, NASA, 2011. 
http://www.grc.nasa.gov/WWW/cdtb/aboutus/Fundamentals_of_Engine_Control.pdf 

14. Federal Aviation Administration, Requirements Engineering Management Handbook (DOT/FAA/AR-08/32), 
FAA, 2009. 

15. D. Parnas and J. Madey, Functional Documentation for Computer Systems Engineering (Version 2, Technical 
Report CRL 237), McMaster University, Hamilton, Ontario, 1991. 



Session 9

Design Space Exploration 2

Thursday 28th, 09:00 – Auditorium St Exupery

237



Model-compilation challenges
[for Cyber-Physical systems (CPS)]

B. BEN HEDIA, E. HAMELIN, C. MRAIDHA & S. TUCCI-PIERGIOVANNI

CEA, LIST, Gif-sur-Yvette, France

{belgacem.ben-hedia, etienne.hamelin, sara.tucci@cea.fr, chokri.mraidha}@cea.fr

Abstract

There are several “disconnects” which need to be ad-
dressed to provide effective means for engineering Cyber
Physical Systems (CPS). One of them is how to construct
an optimized application starting from high-level specifi-
cations taking into account exacerbated interactions with
the physical environment and in the same time address-
ing new paradigms like mixed criticality, and distributed
multi/many-cores platforms. We introduce in this position
paper a new methodology called model-compilation for
Cyber-Physical systems. This methodology introduces new
concepts and process that can be seen as a specification that
tool editors and CPS application developers can integrate (
instantiate ) in their tool chain or development process.

Keywords: Cyber Physical Systems (CPS), model-
compilation, real-time and embedded system, design space
exploration, correct-by-design, mix-criticality

1 Introduction

Cyber Physical Systems (CPS) [25] can be considered as the
next level of embedded systems [27]. Where an embedded
system was mainly concerned with the computational ele-
ments for controlling systems, CPS are a network of com-
plex interacting elements which require different physical
inputs and outputs and therefore the stress is put on the
interaction between separate elements rather than on the
computation of a standalone device. However, most of the
added value comes from this complex interaction between
several devices and the physical environment[26]. The Eu-
ropean consumer electronics industry is among one of the
strongest players in the fierce global competition for leader-
ship in the embedded systems domain and is now leading
the way in CPS.

In CyPhERS project [9] report, for instance, we read: the
principal barrier to developing the field of Cyber-Physical Systems
(CPS) is the lack of a theory and of application best practices that
comprehend cyber and physical resources in a single unified frame-
work. There are several “disconnects” which need to be addressed
to provide effective means for engineering CPS.

One need that became apparent while building several
European project proposals on the development of CPS is
to reduce the gap between high-level modeling tools (for in-
stance: Simulink for control and Modelica for physical mod-

eling) aiming at describing functional behaviors and struc-
ture, and the actual software implementation on the target
platform.

Given the new CPS design challenges [26, 22, 39], the CPS
domain needs to move forward from traditional approaches
[22], where transition from model to software relies either
on fully manual rewriting (a highly error-prone activity), or
on code generation tools that can only perform a simple, un-
optimized transformation, hard to fine-tune to a given plat-
form architecture. These tools do not address distributed
multi/many-cores platforms. Only few research tentatives
aim at generating correct-by-design multi-task code from
high-level modeling languages, e.g. [40] which addresses
the modular generation of multi-rate solvers for Modelica
models, and [20] which focuses on reliability aspects.

In our opinion these traditional approaches are not ask-
ing the right questions, and limits rapid application pro-
totyping. During the ITEA2 project OPENPROD [19], we
have worked on how to construct a software architecture
and generate source code starting from a Modelica [3] model
for a time-triggered execution platform. At the end of this
project, we came to the conclusion that, before starting to
build a software architecture and subsequently generate an
optimized source code, there are many questions that need
to be answered:

• How to generate an optimized software architecture
and source code well suited for a given target plat-
form?

• How to integrate the specificity of a given execu-
tion platform model (HW platform, communication
and runtime support, mix-criticality) during this pro-
cess, especially with distributed multi/many-cores
platforms?

• How to construct the CPS software application struc-
ture that will take into account the structural elements
available in the high-level model?

• How to construct a CPS process application that re-
spects all requirements described in the high-level
model, especially with mixed degree of dependability
for different functions and data, through all construc-
tion steps, without systematic a posterior V&V meth-
ods. In other words how to make the CPS application
correct-by-design?

To sum up, we need to construct an approach or method-
ology that allows the integration of existing tools and tech-
niques and that meets two main concerns:

1
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1. Design space exploration and optimization of software
architectures for CPS applications.

2. Correct-by-design methods for CPS applications con-
struction, from high-level model to binary code into
execution platform.

This position paper aims at presenting the first rationale
of this methodology and at defining key concepts in order
to develop an emerging domain of research and technol-
ogy that we call model-compilation: this term denotes the
semi-automated, multi-criteria optimized synthesis of dependable
and efficient software implementations distributed on a network
of multi/many-cores embedded computers, from abstract system-
level models (including multi-physics hybrid control models).

Integrated into a model-driven system development
methodology, the model-compilation methodology will
help system, control, software and safety engineers work
together to generate a software implementation respect-
ing all their concerns at once, in a holistic, iterative and
de-verticalized way. By automating the optimization and
trade-offs selection during the software architecture cre-
ation, the model-compilation methodology will also en-
able faster development cycles from concept to realiza-
tion and validation, up to rapid-prototyping of complex,
safety-critical applications and hence reduce the develop-
ment costs and enhance the qualities of cyber physical sys-
tems in many industrial domains.

The model-compilation methodology can then be seen as
a specification that tool editors and developers or CPS appli-
cation design and development teams can integrate ( instan-
tiate ) in their toolchain or adopt as a development process
with the goal to construct their CPS application. Through-
out this paper we illustrate the model-compilation method-
ology concepts on a use-case represented in figure 1.

This position paper is organized as follows: section 2 will
introduce the new challenges of software architecture for
CPS applications in terms of design space exploration and
optimization; section 3 will detail the model-compilation
methodology and how to integrate its different steps into
existing toolchains or how to adopt it as a development pro-
cess; in section 4 we present how the model-compilation
methodology answers the challenges expressed in section
2 and its applicability to a use case; section 5 gives an
overview of related works in the state of the art; and finally
we conclude the paper in section 6

2 CPS challenges

The challenge of implementing a cyber-physical system, as
many engineering challenges, can be described in the form
of an optimization problem. Some parameters of this opti-
mization problem will be specific to one application domain,
however many parameters can be seen as generic problems,
only to be weighted differently among use-cases. The opti-
mization problem can be written in the form of:

{
Minsys Cost(sys)
Feasible(sys)

In other words: “find a system implementation (sys) which
minimizes the cost function, such that the system is feasible”.
In a traditional mathematical optimization formulation, the

Cost() function has as output a single scalar value, whereas
the Feasible function is a vector of several feasibility con-
straints of the form Feasibilei(sys) 6 0

The Cost() and Feasible() functions are specific for each
CPS problem; however they are built using generic build-
ing blocks, with estimations/weights specific to the prob-
lem. Within the Cost function, most CPS domains will enlist
the aspects of the system that should be minimized or opti-
mized:

• Cost aspects (accounted positive, to be minimized):

– Recurring or per-unit costs: e.g. most hardware
costs, cabling requirement, devices.

– Non-recurring costs: e.g. specific HW and SW
engineering and development costs, certification
costs.

– System usage costs: e.g. power consumption,
maintenance costs.

• Quality and performance aspects (accounted positive,
to be maximized):

– Functional performance of the implemented
functionality.

– Reliability of components.

At this point it is important to note that, since the output
of Cost function is a scalar evaluation of a proposed system
implementation, a weight must be given to all cost compo-
nents enlisted above: this weight distribution will drive the
resolution of necessary trade-offs between performance and
cost aspects (e.g. a “low-cost” vs. “premium” strategies).
Within the feasibility function many CPS domains will en-
list all their domain-specific engineering constraints:

• System minimal viability requirement:

Per f ormance > required
(threshold for functionality to be granted)

• System resource constraints:
{

SW memory usage 6 HW memory available
SW proc. & comm. usage 6 HW capability

• Certification/qualification constraints:

Evaluated sa f ety level > required level

The canonical method for minimizing Cost(sys) such that
Feasible(sys) is satisfied is to explore the domain of feasi-
ble system implementations sys, while keeping a track of
the best one. Most optimization solvers choose smart strate-
gies to avoid exploring the whole feasible domain, through
backtracking and iteration, and split the optimization pro-
cess into several successive approximations.

The theoretical difficulty is that an accurate
cost/performance and feasibility evaluation can only
be performed on a concrete system implementation -which
makes this optimization-driven engineering method just
useless. Moreover, the engineering time spent on finding
the optimum of this problem is also part of the non-
recurring cost valuation, and may become crucial when
time-to-market is a stringent requirement.
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It thus becomes necessary to perform “approximate” cost
& feasibility evaluations. However an implementation op-
timal wrt those approximations may consequently not be
optimal to the exact cost & feasibility evaluation, should
it be performed. It becomes useless looking for an opti-
mal solution, one should rather look for an implementation
“good enough” wrt. estimated cost/feasibility. Moreover
estimations can be performed at intermediate steps in the
design process, i.e. during phases in which the system im-
plementation is only partially known or specified: on sys-
tem design models. These estimations should however be
checked again a posteriori on the concrete system, once im-
plemented. A large effort is dedicated, in the CPS commu-
nity, to developing tools and design patterns that help de-
sign more robust and simple model-based approximations
of certain system costs/feasibility evaluations.

As an intermediate conclusion, we assume that CPS sys-
tems design is an optimization process, where design con-
straints and costs are rarely well specified and hard to eval-
uate accurately, and in which we only look for good-enough,
but practical, implementations.

One classical way to speed up approximate optimization
problems is to partition variables into mostly-orthogonal
sets. An example is usually to split up CPS design into sep-
arate dimensions, e.g. with one team exploring the HW
trade-offs (against estimated SW requirements), and an-
other team exploring the SW implementation choices. How-
ever recent evolution in the CPS industry show that cross-
domain optimizations are highly demanded:

• Embedded systems design used to involve both hard-
ware and software engineers to explore cross-domain
trade-offs for higher performance control and commu-
nication systems,

• Mechatronics systems design used to mix previous em-
bedded systems teams with mechanical engineers to
explore tighter system integration,

• Now Cyber-Physical Systems implies to cooperate
with multi-physics modelling, instrumentation and
control engineers, for flexible, distributed systems in-
teracting with humans and physical systems.

The whole model-compilation challenge relies in:

• identifying how much of the approximate-
optimization problem solving can be assisted by
automatic computer reasoning;

• defining cross-domain interfaces that allow control,
software, and hardware engineers cooperate on coher-
ent models, to allow for multi-domain trade-off selec-
tion;

• setting-up practical tools through which multi-domain
experts can cooperate with computer-aided design
choices, in order to develop feasible, good-enough sys-
tem implementations.

We call this process model-compilation, as a tribute to the
software compilation process, in which a high(er)-level lan-
guage is automatically transformed into a lower-level (as-
sembly, then binary) implementation, through a roughly-
optimizing compilation process.

When compilers were introduced, an assembly expert
could certainly write a fine-tuned, high-performance im-
plementation of a given algorithm, it would take so much

time that the system performance drawback of using a com-
piled language is undoubtedly outweighed by the produc-
tivity of the software engineer. Today assembly is used only
in very specific situations, and the performance drawback
is moreover significantly reduced thanks to compiler and
high-level languages improvements. We expect similarly
that model-driven engineering will take over, thanks to gen-
eral adoption of both model-driven engineering and step-
wise improvements in the implementations generated by
model-compilers, so that within a couple decades most of
a CPS’s implementation will be semi-automatically gener-
ated, and CPS software engineers only have to implement
specific aspects such as low-level glue between HW and the
generated SW part.

The model-compilation process can be seen as a multi-
domain toolbox that enables control engineers, embedded
software architects, and hardware designers share their
domain-specific requirements and iterate on multi-domain
trade-offs. The control engineer in particular expects to:

• express the CPSystem’s functionality, often in the form
of a block chain involving sensing, filtering and predic-
tion, communication and actuation;

• validate system functionality, stability, robustness and
reactivity in various scenarios, usually through MiL
(model-in-the-loop) simulations involving intercon-
necting the controller model with a model of the phys-
ical plant under control;

• assess, at each iteration of the domain-space explo-
ration process, that a given software/hardware im-
plementation is functionally correct w.r.t. the origi-
nal control model, e.g. through semantically-correct-
by-construction software generation, or MiL or SiL
(Software-in-the-Loop) validation.

The hardware engineer expects to:

• define a hardware architecture made of ECUs in-
terconnected through networks, each node having
specific computing structure (e.g. a specific SoC
with single/multi/many-core architecture), and spe-
cific limitations (e.g. memory/computing/bandwidth
resource);

• perform preliminary safety assessment of the effects of
common HW failure modes:

• negotiate HW/SW trade-offs with SW engineer, e.g.
upgrade a CPU computing power, or downgrade SW
functionality.

The software architect expects to:

• assess software architectures, at several abstraction lev-
els (functional component, task, runnable, or source-
code block), for feasibility, performance, and safety
metrics;

• explore software architectures with computer assis-
tance towards a nearly-optimal choice;

• automatically generate a correct source code imple-
mentation of the chosen software architecture, that
suits a specific RTOS API, and if necessary re-write
only the performance-critical part of it;

• iterate quickly with hardware or control engineers on
SW/control or SW/HW trade-offs.
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Fig. 1: Adaptive cruise control and collision avoid-
ance system

Fig. 2: Global model-compilation methodology

3 Model-compilation (methodology &
approach)

In order to best present the complete end-to-end approach,
and how it is integrated within a model-driven devel-
opment process, this section highlights the application of
the model-compilation methodology on an adaptive cruise
control and collision avoidance system. This system is
sketched by figure 1.

Figure 2 gives an overview of the model-compilation
process. Like a third generation programming language
compiler, the model-compiler is composed by a front-end,
middle-end and back-end parts.

3.1 Front-end: from multiple
heterogeneous high-level models

The system is first designed as a conceptual systems archi-
tecture, using a general purpose or domain specific archi-
tecture modelling tool, where main system constituents and
their relations are identified as illustrated on the following
Unified Modelling Language (UML) diagram. The Cruise
control and collision avoidance system is composed of a set
of sensors, actuators as well as a human-machine interface
(HMI) and a controller.

At this level, a first safety analysis and risk assessment
can be conducted to estimate the level of risk associated
with specific items (elements of the architecture). Since we

Fig. 3: Conceptual systems architecture

Fig. 4: SysArch: Systems Architecture model

are considering an automotive use case, for risk assessment
we will use the concepts coming from the functional safety
standard for automotive equipment, the ISO26262 standard.
Accordingly to ISO26262, the risk level is specified through
an Automotive Safety Integrity Level (ASIL). A Safety Goal
is then defined for each hazardous event identified (e.g.
“when the brake pedal is pushed, a braking torque must be
applied to the wheels”) as well as a set of essential safety
requirements.

SysArch: systems architecture model The component-
based design is then detailed as an abstract data flow dia-
gram, illustrated below. This diagram is usually hierarchic,
for sake of representation and understanding. This diagram
will later be referred to as the functional architecture, or sys-
tems architecture: in brief SysArch.

This SysArch can efficiently be used to perform several
design activities relevant at the systems abstraction level, as
required by the ISO26262 standard. This activity includes
the definition of functional safety requirements and their al-
location to this preliminary functional architecture. At this
phase the System Hazard Analysis (SHA) is conducted to
study the propagation of failures across the system archi-
tecture. A preliminary safety assessment is conducted as
well through Fault Tree generation and qualitative Analy-
sis (FTA), Failure Mode Effects Analysis (FMEA) and Com-
mon Cause Analysis (CCA). These methods aim at analyz-
ing fault propagation through the system and help in the
definition of safety goals and ASIL criticality level. For in-
stance, a functional chain that supports a ASIL C safety
goal should rely on functional blocks assigned a criticality
of ASIL C or higher.

This functional system architecture model can also be
used for the specification of timing requirements. Some
chains of functions can be identified and used to define
global end-to-end deadlines (e.g. “latency from brake pedal
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Fig. 5: SimModel: Simulation Model

signal acquisition to the corresponding brakes actuation
should always be under 10ms“).

SimModel: the Simulation Model Then, for the control
engineering team to work out the regulation principles, the
data flow model is turned into a simulation model that will
be used in particular to design and validate the controller
regulation parameters, and assess their stability and robust-
ness. This simulation is built from the same architecture,
except that it includes a simulation of the environment (e.g.
of the vehicle dynamics). The Simulation model is specified
in a multi-physics modelling language.

Some blocks of the original systems diagram have been
abstracted away: mainly the controller’s interfaces to the
external world are replaced with simulation stubs. For in-
stance, some sensor blocks have been replaced by input sig-
nals (the orange blocks) that connect to external signal sce-
narios (e.g. a list of cruise control set speeds, brake pedal po-
sitions, etc. at given simulation time instants). Some other
blocks (like actuators and sensors) are replaced with trans-
parent connections to signals from/to the vehicle dynamics
simulation or a simulation of the sensor or actuator’s inter-
nals. The “human-machine interface” and “parameter se-
lection” blocks are also abstracted away by the “cruise con-
trol mode & set speed” input signal block, because these
blocks represent a graphical user-interface and menu han-
dling functions, therefore are not suitable for multi-physics
simulation.

Although the final software implementation of the whole
cruise control and collision avoidance system will be real-
ized by purely discrete computations, at this point both the
vehicle dynamics and the controller may be specified with
either discrete or continuous (i.e. time-differential) equa-
tions. Typically the “vehicle state estimation” block in the
controller will integrate differential equations. Many pa-
rameters evaluated during this simulation will be used to
drive the model-compilation.

PfArch: the Platform Architecture In parallel to the sim-
ulation modelling activity, a hardware platform model, here
named PfArch, is defined. It can be represented by a
graph of interconnected computing, communication, sens-
ing/actuating resources as illustrated below. Each compu-

Fig. 6: PfArch: Platform Architecture

tation resource should be annotated with its own specific re-
source constraints, e.g. CPU speed, RAM and ROM memory
limits, hardware peripherals available, maximum criticality
allowed (i.e. ASIL qualification level); and similarly buses
may be annotated with a bandwidth or any other required
by later feasibility analyses.

In many cases, it can be allowed to change this architec-
ture to some extent in order to meet the needs of the fi-
nal software implementation. In this case, some production
rules may be defined, together with an associated cost value,
that allow the computer-assisted optimization to create a
new platform architecture from the initial one if the applica-
tion does not meet the constraints of the initial platform ar-
chitecture (e.g. “another Electronics Component Unit (ECU)
can be added on a bus, at some cost; a bus can be replaced
with one with higher bandwidth, at some cost, etc.”).

3.2 Middle-end: model-compilation into
software architecture

The middle-end part is at the heart of the model-
compilation approach and lies in the optimized and effi-
cient synthesis, from a system architecture model (SysArch),
of a software architecture (SwArch) mapped onto the plat-
form architecture (PfArch), that simultaneously satisfies
safety, timing, resources and behaviour requirements. The
model-compilation is implemented by a combination of op-
timization algorithms and heuristics for transforming, in an
optimized manner, a system-level model into a software im-
plementation mapped onto a platform architecture model:

1. Optimisation algorithms aim at finding a solution
correct-by-construction, i.e. the transformation itself
is proven to guarantee that the SwArch produced re-
spects all the constraints related to timing, safety, be-
haviour, resources, etc. Such approach called multi-
staged optimization approach for multi-objective opti-
mization has been already investigated in our previous
works [30, 42]. The approach was able to find correct
solutions which respect a wide range of constraints in-
cluding causality and schedulability, while identifying
design trade-offs. Note that producing correct solu-
tions means that the analysis supposed to verify cor-
rectness is included in the optimization algorithm as a
set of constraints.

2. Heuristics fall in a trial-and-error paradigm: here the
SwArch obtained with the heuristics must be anal-
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ysed a-posteriori (i) to establish if all the constraints
are respected and (ii) if the required trade-offs are met.
Heuristics will be applied whenever the overall com-
plexity of the problem hinders the application of de-
terministic optimisation algorithms. One example of
efficient trial-and-error strategy is to use coarse esti-
mates of parameters to produce several nearly-optimal
feasible solutions (e.g. use only a coarse estimate of
CPU utilization factor for task creation step), then ap-
ply fine-grain analysis only to those few solutions (e.g.
validate schedulability with a detailed period & WCET
analysis).

For the automated transformation to be possible, either
as correct-by-construction generation or as analysis-driven
trial-and-error, all concerns must be first formalized and
quantified. Some requirements will be quantified as quan-
titative relationships that must be verified, whereas some
other requirements will be defined as the maximization of
some quantified objective. To enable multi-concern trade-
offs, a single objective (usually a weighted sum of all sub-
objectives) shall be defined. Different weights could be
selected depending on the application. [13, 14] aimed to
integrate the specificity of an execution paradigm (RTOS)
during the model-compilation process by integrating some
characteristics of the execution platform when the SwArch
is generated. Since then, the generation process became
more accurate, since it now integrates information about the
paradigm of the execution platform.

It should be noted that both optimization algorithms
and heuristics accept some degree of parameter uncer-
tainty. For instance, worst case execution time estimates
could be extracted from in-situ measures (when reusing a
function or task), or safe over-approximations (when us-
ing static analysis tools on the actual software), or only
coarse estimates when the function has not yet been imple-
mented/generated.

SwArch: Software Architecture intermediate represen-
tation Concretely at the end of the model-compilation
process, all functional blocks from the SysArch model are
transformed into some software code mapped onto one or
several tasks or runnables, each allocated to a CPU, and
all data or events (the edges of the SysArch diagram) are
mapped to variables or inter-task communication messages
or to bus messages; all tasks and signals have scheduling
parameters assigned, in such a way that on each computa-
tion unit all tasks are schedulable, messages are schedula-
ble on each bus, all end-to-end latency constraints are met,
no CPU resource is exhausted, items of different criticality
levels are separated and monitored by safety elements qual-
ified at the appropriate criticality level, etc. Several reports
may be produced together with the SwArch, for instance:
a schedulability report for each CPU, an analysis of end-
to-end latency constraints, a safety analysis at the software
architecture level demonstrating the respect of criticality-
related constraints, etc.

In the following illustration, functions of different criti-
cality levels are mapped onto tasks. Tasks of different ASIL
levels are separated either physically or in software by a
SEooC RTOS providing sufficient partitioning mechanisms.
A first work addressing the co-simulation of the SimModel

Fig. 7: SwArch: Software Architecture output

and SwArch is provided in [32].

3.3 Back-end: transformation into
concrete target platforms

A rather simple model-to-code transformation back-end
translates the SwArch model, into a set of files that actually
implement in a software language e.g. C, all these tasks,
and properly configure each CPU and RTOS instance. A
first work [13, 14] was carried out to integrate a generic
services of an execution paradigm (RTOS) during a model-
compilation process and integrate some information about
execution plate-form in the generated SwArch, with the in-
tention of making easier the Back-end stage. The back-
end of the model-compilation process then relies on off-
the-shelf C compilers to generate the binary file that will
be loaded on each ECU. This translation back-end is spe-
cific to the RTOS since it relies on the specific RTOS ap-
plication programming interface (API) and services for the
use of temporal control flow and inter-task messaging for
instance. For some blocks of the SysArch where only a
wrapper/placeholder was given in the simulation model,
an empty task or runnable is generated together with the
inter-task communication infrastructure, so that it still re-
mains easy to manually add the manual implementation
part. The wrapper & placeholder method facilitates the in-
tegration of existing tasks into the model-compilation pro-
cess.

3.4 Design iterations
For each artifact of the SwArch model (task, runnable, mes-
sage, etc.), a traceability annotation ensures that a straight-
forward link identifies the SysArch functional block or sig-
nal it was generated from and the design constraints that
apply.

When the generated code is run on the actual platform
properly instrumented, it is possible to measure relevant
metrics at actual runtime: for instance measure actual exe-
cution times with real-time tracing/debugging tools. These
runtime metrics can then, thanks to the traceability fea-
ture, be retro-annotated onto the SwArch model, then on
the SysArch model. In many cases these actual metrics are
much more accurate than the estimations given at first (if
any), and can be used to perform another run of the model-
compilation for a more optimized or more accurate synthe-
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sis. This iterative design approach also allows an expert
engineer to identify on actual execution abnormalities, vi-
olations of unexpressed or soft requirements, bottlenecks,
sources of possible optimizations unseen before, etc. In this
case, the engineer can annotate the SysArch model with
different constraints that drive some steps of the model-
compilation towards his preferred solution, applying the
model-compilation process again.

4 Model-compilation methodology
assessment

Here we address the question whether, and how far, the
challenges defined in sections 1 and 2 can be resolved by
implementing the approach illustrated in section 3.

Applicability of model-compilation approach The
model-compilation methodology would be applied by
first implementing all (semi-)automated analysis and opti-
mization algorithms into already-existing tools, and then
applying the development method to realistic use-cases.

1. Integration/implementation by existing tools. To ef-
fectively support the model-compilation process, anal-
ysis/optimization plug-ins and model transformations
must be integrated to existing model-based develop-
ment (MBD) tools:

• A set of model analysis/optimization techniques
will refine different aspects of the SwArch model.
Most model-based development (MBD) tools al-
low to define specific languages and therefore
support the SwArch models; moreover they sup-
port plug-ins and extensions mechanisms, within
which feasibility, performance evaluation and
optimization techniques can be implemented.
Our previous work [13, 19, 14, 42, 30, 33] address
different analysis & optimizations techniques as
a proof of concept of this methodology.

• The development process defined here certainly
needs to rely on several engineering tools, there-
fore some bridges are required to support a seam-
less workflow along several iterations of individ-
ual steps of the model-compilation methodol-
ogy. This generic toolbox can then be tailored by
each engineering team into a product-specific de-
velopment method, in which eventually a set of
process guidelines can also be enforced through
tool usage rules. Each process step should more-
over be formalized with a set of hypotheses and
guarantees, so that it could be eventually possi-
ble to verify the overall coherency of each specific
workflow – this point will be further detailed in
forthcoming publications.

2. Realistic use-case application. The illustrative use-
case detailed in section 3 proves that the approach is
applicable, through several analysis & transformation
steps, on a virtual use-case representative of a realistic,
non-trivial, industrial system.

Productivity enhancements The CPS development pro-
ductivity will be illustrated on three main axes:

1. (semi-)automation of individual steps. Several tasks
are automated or computer-aided, especially those
most labor-intensive, with low systems-engineering
added value, or most error-prone. Common MBD tools
usually generate hardly-readable source-code in only
one iteration, are poor at engineer interaction, with lim-
ited (if any) analysis or user-guided optimization facil-
ities.

2. Overall workflow acceleration. With model-
compilation, the CPS development workflow enables
an exploration and optimization of SwArch. This
allows to quickly evaluate several configurations of
the software before choosing which one to apply
for the final source-code generation. Existing tools
generally generate code that is poorly structured,
therefore adaptation to a specific execution platform
(RTOS) or HW platform is very costly. Architectural
exploration is subsequently only manual, and very
long. Within the model-compilation methodology,
all necessary information for the SwArch exploration
phase are integrated, so that exploration steps are
quickly iterated.

3. Early feasibility assessment. The feasibility and
cost/performance evaluations performed at different
phases during architecture exploration allow to early
focus only on feasible alternatives.

5 Related works

This section presents the current state-of-art of some re-
search areas relevant for CPS development, which in our
opinion need further consideration.

Model-based methodologies for safety and timing
Considering the whole body of work on development
methodologies for systems and software is of course unfea-
sible. Nevertheless we are interested in giving an overview
particularly focused on safety, timing and methodologi-
cal management based on the use of modelling languages,
which narrows the scope of this literary review.

Methodologies for safety management have been mainly
proposed by T.Kelly and his group [18, 38, 17, 16]. These
methodologies focus on how to build a safety case both at
system and software level. Safety case patterns are pro-
posed to ease this task [16], however, these approaches pro-
pose only an abstract methodology, i.e. they are not focus-
ing on the use of either particular language (e.g. SysML,
UML, etc) or models. This lack of concretization also im-
plies a lack of methodology automation. A model-based
approach has been proposed in the FP7 MAENAD project,
where the GMP pattern methodology developed in TIMMO
and TIMMO-2-USE projects has been instantiated on EAST-
ADL models. This concretization allowed the automation of
some safety activities such as FMEA and static and tempo-
ral FTA; still the automation support is partial with respect
to the whole safety management, and safety case patterns
were not integrated.
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On the timing side, while a vast number of model-based
approaches have been proposed for performance prediction
[29], methodologies enabling analysis of timing constraints
are more recent and are gaining a growing interest with the
increasing complexity of embedded real-time systems [8, 4].
A UML based methodology based on the Y-chart princi-
ple has been proposed18 which then envisages the use of
mapping algorithms (model-compilation) but not specifi-
cally focusing on timing analysis. A UML-based methodol-
ogy for the analysis of objected oriented models but without
proposing an automated mapping step has also been pro-
posed [21]. Mraidha et al. [33] proposed a MARTE based
methodology based on a scenario-based mapping and en-
abling schedulability analysis of mono-processor systems.

Note that the only methodological attempt, we are aware
of, about the integration of safety and timing has been pur-
sued in TIMMO and TIMMO-2-USE projects with the GMP
pattern methodology. However this methodology is very
general and do not specify how safety and timing manage-
ment interact during the development process, this speci-
fication is left to the system engineer. New methodologies
proposing a tighter integration of safety and timing activ-
ities throughout the development processes are needed to
better support the development of CPS with mixed-critical
constraints.

Model-compilation In the development of cyber-physical
systems, abstraction levels must be used to manage com-
plexity [24]. Industrial standards (like the automotive
AUTOSAR [1] and the Model-Driven Architecture from
the OMG [24]) and academic frameworks (including the
Platform-Based Design [37]) recommend system develop-
ment along the lines of the Y-chart approach [23]: a func-
tional model representing the system functions and the sig-
nals exchanged among them (model often represented by
Simulink-like models ) is deployed onto an execution plat-
form model consisting of nodes, buses, tasks and messages.
Throughout this paper we call model-compilation the re-
finement of a functional model in its “execution counter-
part”: functions concretised by software modules (code) de-
ployed across sofware (middleware, OS, etc...) and hard-
ware (CPUs, memories, buffers, etc..) execution architec-
tures, mostly distributed (as for CPS). Correctness of model-
compilation implies that this functional execution counter-
part must respect timing and safety constraint when run-
ning in the target platform.

On this topic, the current state of the art has been de-
veloped by two rather separated communities: the formal
methods community focusing on functional model schedul-
ing [28, 7, 36, 34] (with implicit assumption about a deploy-
ment on uni-processor platforms) and the real-time commu-
nity focusing on allocation and scheduling of tasks models
(with a large use of optimization and design exploration
techniques), leaving the function-to-software transforma-
tion to the designer [15, 35, 11, 31, 10].

Providing a holistic optimization approach for model-
compilation, i.e. optimization applied to the deployment
of a functional model over a multi-processors architecture
(multi-core and/or distributed). In this direction recent
works, such as Mehiaoui et al. [30] and Wozniak et al.56
proposed a two-staged multi-objective optimisation tech-
nique able to output schedulable solutions for functions to

be deployed in a distributed architecture. These approaches
must be extended to specifically address safety constraints
and mixed-criticality. Another important research topic
about model-compilation concerns model transformations
for Matlab Simulink models. While semantics preserving
translations of Simulink models into tasks exist for discrete
models, the translation of continuous blocks is an open re-
search issue.

Physical modelling Historically, physical modelling and
discrete control have mostly been treated as separate engi-
neering activities. However, over the years, due to an in-
creasing demand in tools covering a wider range of prod-
uct lifecycle, the need for more integrated approaches has
emerged [41].

Today, industrial applications of physical modelling are
handled by tools providing informal semantic models
mostly inspired from results in the field of continuous sys-
tem simulation. Discrete aspects, despite being essential
even in pure physical applications, are generally poorly sup-
ported by modelling tools, sometimes leading to important
issues as soon as discrete aspects have to tightly interact
with continuous ones [12, 5, 6].

Currently, tools essentially resort to their own semantic
models, believed to be compatible with the operational re-
quirements of some emerging standards such as Modelica
[3] and FMI [2]. “High-level” proposals such as Modelica,
VHDL-AMS and Verilog-AMS, and “low-level” proposals
such as FMI attempt to provide a common basis for different
users using different tools to describe models in such a way
that tool interoperability and model exchange are hopefully
possible. However, to the best of our knowledge, none of
these proposals currently attempt to fully formalize the op-
erational semantics required to reach the desired portability
of hybrid models, especially their continuous-time part [6].
This means that a sound operational semantics for physi-
cal models is yet to be defined so that models coming from
various sources (so including physical models) have to be
combined in a sound way.

On the other hand, the situation is more comfortable
in pure discrete-time applications since many semantically
sound approaches have been proposed over the years to
cope with them, one of the most prominent among them
being the synchronous approach. Many tools targeting em-
bedded applications (among which CEA’s tools) support a
form of synchronous approach. This approach allows one to
reason about logical timing properties of models at a high
level of abstraction, even before target code has actually
been generated. This makes the synchronous level of ab-
straction an attractive “common denominator” for models
that need to be checked for semantic compatibility and for
qualification for embedded purposes. However, no tool al-
lows physical models to be rigorously transformed into this
intermediate form currently [6], which clearly constitutes an
important challenge to be addressed.

6 Conclusion

In this position paper, we have defined a roadmap for
a method of development for cyber-physical systems, to
address the new challenges of rapidly designing multi-
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viewpoint optimized implementations, that we call model-
compilation. The proposed approach addresses two main
concerns: design-space exploration and optimization of a
software architecture, and correct-by-design construction
from high-level models to source code and binary for a
given execution platform. The model-compilation method-
ology can then be seen as a general specification that tool
editors and CPS design teams can integrate (instantiate) in
their toolchain, or adopt as a development process.

This roadmap is deemed feasible through several previ-
ous work and publications by the authors, but many aspects
will be further detailed to confirm that the whole model-
compilation approach can be efficiently implemented in in-
dustrial practice.
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Abstract—Increasingly complex functionality in automotive
applications demand more and more computing power. As room
for computing units in modern vehicles dwindles, centralized ar-
chitectures - with larger, more powerful processing units - are the
trend. With this trend, applications no longer run on dedicated
hardware, but share the same computing resources with others
on the centralized platform. Ascertaining efficient deployment
and scheduling for co-located applications is complicated by the
extra constrains which arise if some of them have a safety-critical
functionality.

Building on our pre-existing design space exploration solution,
we integrated safety constraints, such as ASIL and HW failure
rates, as well as practical aspects, such as component costs, and
extended the approach to allow for multi-criteria optimization.
The work was implemented into our seamless model-based
research CASE tool AutoFOCUS3 and evaluated using a non-
trivial industrial-inspired case study. The solution is capable of
synthesizing deployments together with corresponding schedules,
which satisfy different safety and resource constraints. The
deployments can subsequently be integrated into the safety case
argumentation of AutoFOCUS3, leveraging the tool’s seamless
capabilities to support safety evidence and certification.

Moreover, we are not interested in merely valid solutions,
but in good ones. We hence developed a multi-objective opti-
mization algorithm, which synthesizes solutions pareto-optimized
for safety, resource usage, timing and any other constraints
the user defines. Our approach demonstrates the feasibility
and effectiveness of using formal methods to generate correct
solutions for safety-critical applications, increasing the confidence
and validity of safety cases.

Index Terms—Design Space Exploration, AutoFOCUS, Op-
timization, SMT, Safety, Resource Optimization, Deployment,
Scheduling

I. INTRODUCTION

Connected vehicles and advanced driver assistance systems
(ADAS) are just a few of the latest technological drivers
increasing the demand on computing power in classical do-
mains of embedded systems development, such as the au-
tomotive sector. Given the already high number of ECUs

(electronic control unit) in today’s automobiles, there is a
clear trend towards centralized architectures featuring larger,
more powerful (potentially multi-core) platforms. This trend
lends increased urgency to the problem of mapping logical
computational tasks to the hardware (HW) nodes that will
execute them. This task is intrinsically difficult in embedded
systems, because their limited resources add many constraints
to the deployment problem that have to be respected, e.g.,
execution timing, memory constraints, power consumption,
bus loads and many more. If the applications to be deployed
are safety-relevant, this adds a new dimension to the de-
ployment problem, increasing the difficulty many-fold. Safety
standards dictate design patterns, such as partitioning accord-
ing to criticality, to maintain freedom from interference, but
also set requirements for the hardware nodes’ reliability. This
adds multiple criteria (some orthogonal) to both the problem
space (software components) and the solution space (hardware
nodes). Mapping logical/software components to a hardware
architecture goes beyond the simple task of mere allocation,
and onto the generation of a deployment and corresponding
schedule, which satisfies different constraints, be it related to
safety, resource or cost.

The work presented in this paper is a part of ongoing
research efforts into design space exploration (DSE), which
aims at facilitating the seamless development of safety-critical
applications in the embedded domain. DSE is defined as a
process of systematically finding a solution from a set of
possible designs, w.r.t. a set of given constraints [1]. Building
on our pre-existing approach for the efficient generation of
embedded system architectures with multi-criteria optimiza-
tion (e.g., memory usage, power consumption, bus loads), we
expanded the approach to include safety attributes, such as
hardware failure metrics, but also practical aspects of real-
time development, such as HW costs. The presented approach
computes task and message schedules that are optimized with
respect to a global discrete time base. As a part of the solution,
the approach generates an optimized assignment of tasks to
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computation resources (cores). The approach is integrated into
the AutoFOCUS3 (AF3) tool-chain, as presented in [2].

This paper presents the approach, and demonstrates its use-
fulness using examples which illustrate the effect of different
criteria on deployment synthesis and how the approach can be
used to optimize the generated valid solution for one or more
criteria. Prior to this work, there was no support for generating
and optimizing deployments in AF3 while simultaneously
satisfying safety metrics, resource constraints and hardware
costs.

Furthermore, AF3 integrates multiple dedicated architec-
tural views, covering not only logical (software) and technical
(hardware) architectures, but also requirements and safety
case expression. Therefore, the method presented here can
be integrated into a seamless development approach that
allows arguing evidence on a formal basis, as well as reusing
argument structures and reducing the costs of component as
well as design (re-)certification for safety-critical applications.

A. Related Work

Approaches where computer-aided methods are used for
system analysis and optimization are not new, having been
proposed as early as in the late fifties, such as the optimiza-
tion approach for register transfer systems towards cost and
performance presented in [3].

Recent works address higher levels of abstraction, such as
the mapping of software to hardware and the corresponding
scheduling [4]; memory optimization [5]; or finding suitable
platform architectures [6][7][8]. In this paper we address the
joint problem of finding an optimized platform, deployment
and schedule w.r.t. to safety, cost, performance and resource
consumption.

The applicability of solvers for finding deployments and
schedules was shown in [9] and [2]. The possibility of using
various solvers for DSE problems was further discussed in
[10] and [11], which – similarly to our work – use a solver to
find valid or optimized solution.

Furthermore there are approaches, which take safety into
account. [12] – for instance – combines FTA analysis and
optimization techniques to find optimal system configura-
tions; [13] optimizes automotive architectures towards cost
and safety; and [14] uses a brute-force algorithm to gener-
ate safety-compliant deployments for avionic systems. Com-
pared to those approaches, the optimization problem we are
considering is more complicated (higher number of criteria
and/or degrees of freedom), and furthermore we integrate our
approach into a model-based framework, which makes it more
usable for practitioners.

There are a number of frameworks with Design Space
Exploration capabilities, which were proposed over the years.
Some of them use their own DSLs to specify DSE Problems,
such as FORMULA [15] and AAOL [16]. Others use well-
established formalisms, such as EAST-ADL[17], UML [18]
and AADL[19]. We integrated our approach in the AutoFO-
CUS3 Framework 1, which is based on the FOCUS method-
ology [20] and was shown to be compliant to AUTOSAR

1http://af3.fortiss.org/

2 in [21], leveraging the framework’s seamless development
capabilities.

The safety metrics used in the multi criteria optimization
have their foundations in the ISO26262 automotive functional
safety standard, and investigations into architecture bench-
marking in the ITEA2 SAFE research project3 published in
[22].

Due to the seamless nature of AF3, our approach demon-
strates how an integrated model-based framework can prag-
matically provide formal support for practical problems in
the development and certification of safety-critical systems
in compliance with the relevant standards – in our case
ISO26262.

B. Structure of Paper
Chapter II gives an overview of background information

building the fundamentals of this paper. In III the model-
based CASE tool AutoFOCUS is presented. In this tool, we
integrate our proposed approach from chapter IV. We evaluate
our work using a non-trivial case-study in chapter V and finally
we conclude in VI.

II. BACKGROUND

This section introduces briefly some concepts necessary for
understanding the rest of the paper.

A. SMT
A satisfiability (SAT) problem consists of variables repre-

sented in a formula, with the goal being to determine whether
there exists an assignment of variables that makes the whole
Boolean formula satisfiable [23]. Satisfiability modulo theories
(SMT) generalize boolean satisfiability by adding equality
reasoning, arithmetic, arrays, quantifiers and other first order
theories. SMT solvers are tools for deciding the satisfiability
of formulas in those theories [24], which can be used to solve
various classes of problems, such as software and hardware
verification; test case generation; planning; or scheduling and
deployment [25, Ch. 2, p. 89ff]. Solvers may be designed
to not only be capable of determining whether a formula is
unsatisfiable or not but also point to the set of clauses which
are not satisfiable, called unsatisfiable cores or UnSAT Cores.

B. Safety
The work presented here was carried out within the SAFE

research project, which targeted the model-based development
of software architectures for safety-critical applications in the
automotive domain. Hence, we focus on metrics identified
in the ISO26262 automotive safety standard. These include
ASIL (Automotive Safety Integrity Level), as well as hardware
failure metrics identified in clauses of part 5 of the standard.
The proposed metrics include PMHF (probabilistic measure of
random hardware failures) the maximum probability of vio-
lating a top level safety goal, shown mapped to corresponding
ASIL levels in Table 1 - and FRC (failure rate classes) an
evaluation of each cause of safety goal violation. These metrics
are explained in more detail in [22].

2http://www.autosar.org/
3http://www.safe-project.eu/
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ASIL Level Probability of random hardware failures (PMHF)

D < 10�8h�1

C < 10�7h�1

B < 10�7h�1

A < 10�6h�1

TABLE I: Target values for hardware architectural metrics

C. Multi-objective Optimization

As an optimization problem, we consider the search of
a good (optimized) or best (optimal) solution of a decision
problem among a set of alternatives, assuming the existence
of a set of objectives, according to which the quality of
the alternatives can be measured [26]. Cases in which an
optimization problem does not only have one objective, but
several ones are called: multi-objective optimization, and these
objectives are often contradictory. Therefore, in most cases of
multi-criteria optimization problems, there is no single optimal
solution for the problem under consideration, but a set of
solutions, where each is optimal to a subset of objectives. This
set of solutions is called Pareto-efficient or the Pareto front.

III. AUTOFOCUS3

AUTOFOCUS3 (http://af3.fortiss.org) is a re-
search CASE tool that allows modeling and validating concur-
rent, reactive, distributed, timed systems on the basis of formal
semantics [27]. Furthermore – in [21] – it was illustrated
how AF3 modeling concepts fit into concepts provided by
AUTOSAR.

A. Levels of Abstraction

An AF3 system model is divided into several models that
provide different levels of abstraction, while supporting dif-
ferent views on the system model, e.g., from the model-based
requirements view down to the hardware-related platform
view.

The Requirements Specification and Analysis View provides
for requirements specification, documentation, and analysis of
the requirements of a system.

The Logical Architecture View of a system is defined by
means of components communicating via message passing
through typed channels, using a clearly defined model of
computation. Messages exchange is synchronized with respect
to a global, discrete time base. Components can directly
implement behavior or consist of other components that do
so.

The Technical Architecture View describes a hardware topol-
ogy that is composed of hardware units, e.g. CPUs of a Multi-
Core Board, hardware ports (sensors or actuators), buses and
a shared-memory component.

Furthermore, AF3 supports so-called integrated or weav-
ing models, which hold information from different levels of
abstraction and thereby connect them. The deployment view
is one example of such an integrated model, which maps
elements from the component to elements of the technical

architecture. This provides traceability between modeling ar-
tifacts [1].

Another example is the AF3 support for a safety-case view,
which is supported by integrated models, linking the safety
case elements to all the other AF3 artifacts in support of the
argument structure.

B. Design Space Exploration in AF3

A valid deployment and schedule pair for any system under
consideration has to fulfill certain constraints, for instance,
precedence constraints or resource utilization (two tasks can’t
run in parallel on the same node). These constraints can be
formalized in such a way that they can be used as input for a
state-of-the-art SMT solver. In this sub-section we provide a
small overview of work done in [2], which we extend in the
following sections.

The approach uses the integrated deployment model, which
combines information from the logical and technical archi-
tecture (cf. III-A). From the logical architecture this model
contains a set of logical components (which, in this context,
we call tasks) T = t0, t1, ..., tn passing messages M =
m0, m1, ..., mk via channels. This communication structure
results in dependencies between the tasks. Those dependencies
can be used to derive constraints, such as the execution order
of tasks, for the schedule generation.

Additionally, this model contains information from the
technical architecture, such as a set of computational resources
(nodes) N , a set of buses B, and in some cases memories
MEM . Nodes are used to store and execute the tasks from
the logical architecture, whereas buses and memories are used
to exchange messages between the tasks.

By encoding this information in a SMT solver, it is possible
to synthesize a valid deployment and schedule pair, if they
exist. Furthermore, it is possible to produce not only valid but
also optimized solutions (cf. [2] or [28]), using a meta-search
on top of the SMT solver, which manipulates constraints –
max. execution time, for instance–after every SMT request.

IV. SAFETY-ORIENTED DEPLOYMENT AND SCHEDULING
IN AF3

In this section we present how using a SMT solver makes it
possible to synthesize safety oriented deployments, which are
either valid or optimized w.r.t. to certain criteria. Furthermore
we discuss how we integrated this approach in AutoFOCUS3.

A. Artefact properties in AF3

As already explained in III, AutoFOCUS3 view on the
system is divided in different levels of abstraction. Each of
these levels contains a set of artifacts (i.e. ECU in Technical
Architecture). Using the ”annotation” concept of AF3 it is
possible to assign properties to each artifact (i.e. Failure Rate
to an ECU). For our approach a set of safety and resource
related properties were needed, which partly already existed
and partly were added by us.

In context of safety we added the possibility of annotat-
ing PMHF values for ECUs and busses. This value is then
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Fig. 1: Seamless model-based development in AF3

translated to ASIL according to table I. This way it is more
convenient to compare with the safety integrity level values of
the logical components. The possibility of assigning (A)SIL
values to logical components was already given.

Furthermore we added the possibility of assigning energy
consumption, memory and cost to the hardware elements as
well as memory consumption and taswk duration to the logical
components.

B. Scheduling and Deployment Constraints
The constraints – introduced in this sub-section – are already

formalized. Together with instructions, such as in [29] or
examples such as in [2], these formalized constraints provide
enough information to be encoded as a SMT problem.

1) PMHF Constraint for ECU: This constraint states that
a task t 2 T can only be mapped on a node n 2 N , if the
PMHF value of the node n is compliant to the ASIL value
of the task t according to table I. Let � : T 7! N be a
function that allocates tasks to nodes, then the constraint can
be formalized as follows:

8t 2 T 0, where T 0 = {t0|�(t0) = n}! t.asil  n.asil (1)

2) PMHF Constraint for BUS: As defined in [2], if two
tasks titk 2 T communicate with each other and are deployed
on different nodes, such that �(ti) 6= �(tj), they have to
communicate over a bus b 2 B, which also has a PMHF value.
Furthermore, we respect ASIL propagation, which means that
tasks can only exchange messages via bus, if the bus is
sufficiently reliable, as indicated by its PMHF value. This
constraint affects the allocation of communciating tasks. If ti
sends a message to tk and those tasks are mapped on different
nodes, the constraint can be formalized as follows:

b.asil � tk.asil (2)

3) Memory Constraint: In real-life embedded systems re-
sources, such as memory, are limited. We assume that each
hardware node n offers a certain amount of memory that can
be used by the tasks t allocated to it, and must not be exceeded.
To define this constraint, we first have to sum up the memory
which is used by each node:

8t 2 T 0, where T 0 = {t0|�(t0) = n}!
n.used memory =

X
t.mem (3)

Having determined the memory used by each node, we
can now ascertain that the used memory does not exceed the
available memory (n.ram):

n.used memory  n.ram (4)

4) Maximum Number of Nodes: In some cases it is inter-
esting to know whether the deployment of tasks is possible
on less nodes than currently used or available. To define a
constraint limiting the number of used nodes, we first have to
find out which nodes are currently used (has tasks deployed
on it). We can formalize this as follows:

n.used =

(
1, 9t 2 T : �(t) = n

0, otherwise
(5)

Next, we identify how many nodes are currently used:

total used nodes =

NX

n

n.used (6)

Finally, we can formalize the constraint as follows:

total used nodes  max nodes (7)
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5) Cost: Cost is a very important factor in industrial
projects. This is especially true in context of automobile
industry, since even a small saving in component costs can
impact a lot due to the large numbers of produced cars. As
already discussed, PMHF values of hardware components can
be mapped to ASIL values, but also to component costs, under
the assumption that hardware with more stringent failure rates
is also more expensive to build. It is thus relevant to define a
separate constraint to limit component costs, without violating
any other constraints. We first need to know which nodes are
used in the current deployment, the formalization of which has
already been shown in (eq. 5). Based on this knowledge, it is
possible to calculate the total cost of the system:

total cost =
NX

n

n.cost⇥ n.used (8)

Subsequently we restrict the maximum cost of the system as
follows:

total cost  max cost (9)

6) Power Constraint (Energy Constraint): Energy con-
sumption is another important factor in embedded systems and
hence we generate deployments that take energy efficiency into
account. In our simplified energy model we assume that each
node consumes energy only as long it is active (non-idling).
Therefore the non-idling time can be calculated as follows:

nnon idle time =
X

t2T 0
tduration

where T 0 = {t0|�(t) = n} (10)

Since power is defined as energy over time the energy con-
sumption of a node n can be formalized with the following
equation:

n.energy = n.power ⇥ n.non idle time (11)

Using (eq. 12) it is now is possible to calculate the total
energy consumption of the system. This value again can be
constrained by the maximum allowed energy consumption (eq.
13).

total energy consumed =
NX

n

n.energy (12)

total energy consumed  max energy (13)

C. Pareto-efficient Deployments

In the previous sub-section we presented the constraints,
which – in scope of this work – are used to synthesize valid
deployments with certain characteristics. In the following sub-
section we discuss how to find optimal (or at least optimized)
deployments w.r.t. certain criteria.

The problem of generating the pareto-optimal deployments
can be formulated in terms of objectives to be optimized and
constraints to be satisfied (as shown below). The formulation
is followed by a brief explanation of the objectives and an
introduction of the proposed optimization algorithm.

Minimize
number of nodes
memory per node

total sil
e2e latency

such that
number of nodes  max nodes

memory per node  max memory
total sil  upper bound sil

PMHF constraint holds

The values of variables max nodes, max memory and
upper bound sil are entered by the user, if they choose to
generate pareto-optimal deployments. The PMHF constraint
are also needed to be satisfied while generating the pareto-
optimal deployments. Since we are aiming at minimizing the
total SIL of the hardware architecture, we do not use cost
constraint and energy consumption constraint explicitly.

1) Optimization Criteria: In [30], it was illustrated that
participants of the survey – if it comes to system design
optimization – are interested in such criteria as safety, timing,
resource usage, energy consumption and cost.

Following this line of argumentation we implemented a
multi-objective optimization algorithm which takes number of
used nodes, used memory per node, as well as hardware costs
and energy consumption as optimization criteria. For simplic-
ity, we assumed hardware costs and power consumption to be
directly correalted to the ASIL value, and thus used total ASIL
as a proxy optimization criterion.

Furthermore, we took timing (end-to-end latency) into ac-
count using a solution, which, while not being Pareto-optimal
according to the definition in II-C, was still optimized as
explained in IV-C2.

2) Optimization Algorithm: Our algorithm works in three
steps: reduction of the search-space, generation of all valid
solutions for the reduced search-space, and elimination of
dominated solutions, i.e., those solutions which are superseded
by the pareto front.

In the first step, our approach reduces the search-space by
calculating lower bounds for the criteria memory per node and
number of nodes. Consider a scenario wherein the logical ar-
chitecture contains 5 components and each component requires
10 units of memory. Let the values of variables max nodes and
max memory (as entered by the user) be 4 and 20 respectively.
It is clear that there will be no possible solution if the
number of nodes in the technical architecture is less than 3,
since the total memory needed to accommodate the 5 logical
components is 50 and maximum memory allowed per node
is 20. Similarly, the memory per node can be no less than 20
(assuming memory per node is a multiple of 10). As the result
of this step we get a set of possible configurations in terms
of a range for number of nodes i.e. [min nodes, max nodes]
and for memory per node i.e [min memory, max memory].

In the second step, we generate valid solutions for all
possible combinations of nodes and memory found in the
previous step. This is illustrated in the algorithm 1 below.

Lines 2-4 shows that for each pair of nodes and memory
in decision variable space, a constraint satisfaction problem
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Algorithm 1 Valid Solutions
1: procedure VALIDSOLUTIONS

2: for nodes in min nodes .. max nodes do
3: for memory in min memory .. max memory do
4: result CheckSAT (nodes, memory, upper bound sil)

5: if result is SAT then
6: solution parse(result)
7: store solution to UniqueSolutions

8: total sil extractSIL(solution)
9: while result is SAT do

10: total sil total sil � 1

11: result CheckSAT (nodes, memory, total sil)
12: if result is SAT then
13: solution parse(result)

14: store solution to UniqueSolutions

is created which is solved by the Z3 SMT solver. The
checkSAT () function formulates the problem in Z3 syntax,
where the parameters nodes, memory and upper bound sil
defines the upper limits for assertions used in node usage,
memory per node and total sil constraints, respectively . Line
5 checks if the constraint satisfaction problem is satisfiable.
In case it is satisfiable, the output of the Z3 solver is parsed
to fetch number of nodes, memory per node, total sil and
e2e latency. These variables are combined into a solution
(line 6) and stored into a set of unique solutions (line 7), as we
do not want to duplicate the set of valid deployments. We then
try to optimize the total sil by reducing it in steps of 1 (line
10) and check the satisfiability of new constraint satisfaction
problem (line 11). The reduction of total sil continues until
Z3 cannot find a solution to the constraint satisfaction problem
(line 9).

In the last step, the algorithm eliminates the solutions which
are dominated by other solutions w.r.t. number of nodes,
memory per node, total ASIL and thereby builds a Pareto front.
As mentioned earlier our approach chooses a solution with
the lowest end-to-end latency from the set of valid solutions,
which were produced in step 2. For that reason we call this
solution not optimal but optimized.

D. Integration in AutoFOCUS3

In scope of this work we integrated our synthesis approach
together with the constraints and the optimization algorithm
(introduced in the previous sub-sections) in the AutoFOCUS3
development methodology.

A typical development process in AF3 could look as fol-
lows. An engineer, designing a safety-critical system in Aut-
oFOCUS3, ideally starts with the definition of requirements.
Among other things in this phase, he will identify a set of
safety goals which the system under development will have
to fulfill. One of the safety goals could be that safety-critical
software should not be compromised due unsafe hardware it
is running on, which corresponds to the constraints 1) and 2)
from IV-B.

In the next step, the engineer starts to design the structure
and the behavior of the system in the logical architecture (cf.
III-A). After that he can assign certain properties (cf. IV-A),
such as Safety Integrity Level, to the elements of this level of
abstraction. At this step it possible either to continue with the

design of the technical architecture (i.e. the technical platform
of the system is already fixed) or use the optimization approach
from IV-C to find an optimized technical architecture together
with the corresponding deployment and schedule. Regardless
which option the engineer takes at some point he will end up
with a logical and a technical architecture. Now he can use
either the constraints from IV-B or the approach from IV-C
to find either valid or optimized deployments and schedules
w.r.t. the constraints he is interested in (cf. fig. 2).

Fig. 2: Choosing constraints in AF3

The deployments and schedules which are found during this
Design Space Exploration activity are valid towards certain
constraints (such as 1) and 2) from IV-B). Therefore, the
results of this DSE run can now be used as an evidence in a
safety case to prove that the safety goal is reached by design.
The integration of safety cases into AF3 development process
was demonstrated in [31].

Fig. 3: Finding the unsatisfiable constraints

Given the potential complexity of the optimization prob-
lems addressed by our approach, it is possible to define the
constraints so tightly that no solution can satisfy them all. For
instance, the provided pool of ECUs – even if all of them were
used in combination – does not provide enough memory to run
all the software components. It is thus just as useful to support
the user by providing guidance as to which constraints could
not be satisfied. For this case we integrated the Z3s UnSAT
Core functionality (cf. sec. II-A), which identifies unsatisfiable
constraints for the current DSE problem. As seen in figure 3,
this feature points the user exactly to the constraint which is
not satisfiable and, hence, needs to be adjusted.

V. EVALUATION

A. Description of the Case Study

We evaluated our approach using an industrial-like case
study, which was created in the scope of the SAFE Project.
This case study was modeled in AutoFOCUS3 and consists



7

ASIL Level Components
ASIL D c1, c2, c3, c4, c5
ASIL C c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17
ASIL B c18, c19, c20, c21, c22, c23, c24, c25, c26, c27
ASIL A c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39
QM c40, c41, c42, c44, c45, c46, c47, c48

TABLE II: Logical Architecture of the Case-Study

of both a logical and technical architecture. The logical archi-
tecture consists of 48 components, connected by 65 channels.
The components have different ASIL levels, as described in
table II.

The technical architecture consists of 9 nodes connected
by a bus. Each hardware component was assigned a predeter-
mined PMHF value (and ergo ASIL compliance) and cost (cf.
table III). These values can, of course, be modified by the user
to represent different hardware characteristics.

ECUt 1 2 3 4 5 6 7 8 9
PMHF 0.1 0.1 0.3 0.4 0.6 0.6 0.8 0.9 1.0
ASIL D D C C B B A A QM
Cost 10 10 8 8 5 5 3 3 1

TABLE III: Technical Architecture of the Case-Study

B. Cost versus Safety

In our investigations, we analyzed how manipulating the
criteria - both individually and collectively - affects the deploy-
ment and schedule generation process. The investigation is too
large to list in detail here; more results are provided in [22].
To demonstrate the approach, we will focus on one example:
how cost reduction affects safety-oriented deployments; an
optimization problem reflecting design trade-offs, under the
assumption that hardware with more stringent failure rates
is more expensive to build. The results are shown in chart
form in the next figure. The chart (cf. fig. 4) shows possible

Fig. 4: Effect of Cost Constraint (non-uniform cost) on de-
ployment (ASIL-D BUS)

deployments to satisfy the multi-criteria problem, while op-
timizing for power consumption, total cost of hardware, and
total number of nodes. The results show that it is possible
to satisfy the problem with various configurations and allows
the user to choose which criteria are more relevant, and hence

which deployment – among the multiple valid ones – is most
suitable to their needs.

C. Evaluation of the Optimization Approach

In our second experiment, we investigated how long our
approach would take to find a set of non-dominated, i.e.,
optimized, solutions. As input we used the case-study from
section V-A. The search space was restricted using the fol-
lowing intervals: 1 to 9 nodes; 1 to 36 as total ASIL; and 10
to 100 MB memory per node (using a 10 MB iteration step).
As discussed in section IV-C, the end-to-end latency does not
have to be restricted because our approach picks the solution
with the best end-to-end latency from all the solutions it finds.
The total ASIL constraint represents the hardware cost factor,
by assigning a high number to more capable hardware nodes.

Number of nodes Memory per node E2E latency TotalSIL
5 100 263 10
7 70 292 14
6 80 248 16
6 80 257 14
6 90 210 11
8 60 269 17
6 80 281 13
8 90 192 13

TABLE IV: Pareto deployments for industry-like use case

In our experiment we used the Z3 solver with a 6 hours
time limit for each evaluation. This means, that after this time
period the Z3 solver times out with the best solution so far,
which might be not the overall optimal solution. The result
of this experiment, presented in table IV, was calculated in
126 hours. Given the size of the case study and the degrees of
freedom under consideration (deployment, schedule, memory,
SIL distribution, timing) we think that this time period is
reasonable and feasible in a practical setting.

Most importantly, the approach allows for the explicit
optimization for selected criteria, the impact of which can be
seen in the last tables. One can have different deployments on
the same as well as different numbers of nodes with different
effects on resource usage, system attributes, and hardware
costs. For instance, if the number of nodes is the absolute
limiting factor, then one can choose the first deployment with
5 nodes. If however, one can accommodate a design with 6
hardware nodes, then it is possible to choose a solution op-
timized for Memory consumption and hardware costs, which
also provides a comparatively low latency value. More details
on the different effects of optimizing for different criteria are
given in [22].

Above all, these outcomes are based on formal methods,
they are deterministically reproducible, and form a solid foun-
dation for safety assurance and correct/safe-by-construction
solutions.

VI. CONCLUSION AND FUTURE WORK

In the engineering of reliable and safe automotive sys-
tems, the process of mapping software to hardware is an
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essential design step. In this paper we presented a design
space exploration approach for multi-criteria optimization of
the deployment problem, formalizing constraints relevant for
system development according to ISO26262.

Not limiting our interest to generating merely valid so-
lutions, but in good ones, we developed a multi-objective
optimization algorithm, which synthesizes solutions pareto-
optimized for safety, resource usage, timing and any other con-
straints the user defines. A state-of-the-art SMT solver is used
in conjunction with the formalized constraints to find valid
solutions, which satisfy the constraints, while a meta-search
on top of the SMT solver provides the optimized solutions.
In our example, we derived 6 constraints and implemented
an optimization algorithm for 4 criteria, with ongoing work
to give users more freedom to define their own constraints
and criteria. Above all, the generated results are based on
formal methods, they are deterministically reproducible, and
form a solid foundation for safety assurance and correct/safe-
by-construction solutions.

Our approach demonstrates the feasibility and effective-
ness of using formal methods to generate correct solutions
for safety-critical applications under real-world scenarios, in-
creasing the confidence and validity of safety evidence for
certification.

Solutions to software engineering problems are most useful
when bolstered by tool-support; we integrated our work in
a model-based framework, called AutoFOCUS3. Due to the
seamless nature of AF3, our approach demonstrates how an
integrated model-based framework can pragmatically provide
support for practical problems in the development and certi-
fication of safety-critical systems in compliance with the rel-
evant standards, and just as importantly, how formal methods
can easily be made more accessible to practitioners without a
formal background.
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Abstract—In system and software engineering, the analysis of
architectural variants is most of time irrational and manual. The
most common approach for comparing variants is comparing
results for each variant evaluation. Most advanced approaches
available in architecture evaluation are suffering from three
principal weaknesses: the absence of criteria elicitation method,
no representation of real-life strategies and no explaination of
the outcomes. This paper relates experiments of a MCDA tooled
method addressing these weaknesses. The experimentation is
supported by an industrial use case consisting in selecting the best
platform for an handheld Software-defined Radio. Its architec-
ture description is formalised with model-based design tools. As a
result we conclude the experimented approach provides sharper
results than classic approach on the class of decision problem
exposed by avoiding false positives. This approach seems to be
promising to improve the confidence in our Decision Analysis
Report and their quality in terms of argumenting the reasons of
a decision.

Keywords: System engineering, Decision model, Tradeoff,
Multi Criteria Decision Analysis

I. INTRODUCTION

In system and software engineering, the analysis of architec-
tural variants is most of the time subjective and manual. The
justification of a variant is seldom based on the assets, the
flaws and strengths of the different options. Ideally, assessing
or comparing several candidate architectures (variants) should
be based on some decision criteria – corresponding to a
Multi- Criteria Decision Aiding (MCDA) problem. Among the
classic hand-made ”Decision Analysis Report”, widely used in
the industry, the industrial methods and tools state-of-the-art
presents several weaknesses.
This paper presents an industrial practical experience based
on a MCDA tooled method for evaluating and comparing
several candidate deployments of a Software-defined Radio
application on hardware platforms1 in a Model-based system
engineering (MBSE) context.

A. Needs for decision aid to select the best candidate alter-
native

In [11] the empirical demonstration has been made that
variability in the description model of the architecture allows

1The research activities were conducted in the context of ITEA2-MERgE
(Multi-Concerns Interactions System Engineering, ITEA2 11011), a European
collaborative project with a focus on safety and security

to easily construct a set of candidate architecture descriptions.
Then one aims at finding the options that best fits with the
needs of the various stakeholders. This choice problem can be
formulated as the maximization of a set of decision criteria.
The difficulty is that the decision criteria are usually numerous
and conflicting. One may indeed have performance criteria
versus cost criteria which cannot be met both at the same time.
The difficulty is manifold. First of all, the decision criteria are
described by metrics and one first needs to identify a set of
relevant metrics. Then, the selection of one alternative among
several on the basis of a set of metrics is complex since there
are commensurateness issues (combine ”apples with oranges”
as the metrics are given in different units), and one aims at
making arbitrage between the metrics.
Nowadays, in system and software engineering, practices make
this analysis most of the time empiric and irrational ([9], [8],
[1], [5] and [7]) as described in subsection II-A. One may say
deciding is an essentially irrational activity [12]. Therefore
it is not very surprising to find irrational analysis practices.
Rational analysis requires providing arguments about choices.
MCDA approaches allow this. Moreover the justification of the
choice of an alternative is very seldom based on the assets and
flaws of the different options. Assessing or comparing several
candidate alternatives on the basis of some decision criteria
corresponds to a Multi-Criteria Decision Aiding (MCDA)
problem. The approach consists in constructing an explicit
multi-criteria decision model. The main benefits of explicitly
constructing such a model are to reach objectivity in the anal-
ysis, come up with a recommendation from a well-established
methodology, and the possibility to justify the results. The
model is elicited from interviews with the stakeholders and
expresses the preference of these actors.

The Section 2 presents an analysis of existing approaches in
engineering and the flaws induced, the Section 3 presents our
approach, the Section 4 describes the experimental use case
and the evaluation preparation, finally the Section 5 concludes
on the results and discusses about the proposed approach
applicability.



II. ANALYSIS OF THE EXISTING MULTI-CRITERIA
APPROACHES IN ENGINEERING

The problem of identifying a set of relevant metrics has been
performed in different domains such as performance ([16]),
availability ([14]), modifiability ([13]). Moreover, the Software
Engineering Institute (SEI) has developed the Architectural
Trade-off Analysis Method SM (ATAM SM) and validated its
usefulness in practice ([15]). ATAM aims at making rational
choices among competing architectures. It bases its criteria
elicitation on stakeholders scenario over the system in consid-
eration. The ATAM uses stakeholders’ perspectives to produce
a collection of scenarios that define the qualities of interest for
the particular system under consideration. Scenarios give spe-
cific instances of usage, performance and growth requirements,
types of failures, and possible threats and modifications. Once
the important quality attributes are identified, the architectural
decisions relevant to each one can be analyzed with respect
to their appropriateness. The ATAM was designed to make
rational choices among competing architectures, based upon
well-documented analyses of system attributes, concentrating
on the identification of trade-off points. The ATAM also serves
as a vehicle for the early clarification of requirements. As a
result of performing an architecture trade-off analysis, enacting
ATAM allows an enhanced understanding of, and confidence
in, a system’s ability to meet its requirements. It helps also
eliciting a documented rationale for the architectural choices
made, consisting of both the scenarios used to motivate the
attribute-specific analyses and the results of those analyses.
Compared to traditional MCDA methods, ATAM does not
perform multicriteria analysis. It qualifies the link between the
description of the architectures (e.g. through a feature model)
and the criteria, thanks to concepts such as sensitivity points
(a feature that has a large influence on at least one criterion) or
trade-offs (a feature which has a positive impact on a criterion
but at the same time a negative impact on another criterion).
ATAM and MCDA approaches are complementary: ATAM can
be used as a complement to a MCDA approach as well as
ATAM can be completed by a MCDA approach.

A. Flaws of the existing MCDA methods used in system or
software engineering

If one wishes to interpret the metrics and be able to
assess the architectures or compare architectures, one needs
to add further information. We have identified four levels of
information that can be added:

Level 0. This is the case when one has no further infor-
mation than the list of metrics, except the sense of preference
on each metric. When one has only the list of metrics and
the sense of variation on each metric, e.g. for a cost metric,
the smaller the better. This ordering is not discriminating and
does not allow selecting the best option. The Pareto ordering
is useful when the number of criteria is small (usually 2
or 3), and when the number of options is large. These two
assumptions are false in our context.

Level 1. One is assumed here to provide at least one
reference value on each metric. The most usual reference value

in engineering is the ”target value” which is the budget value
of the metric for which the associated requirement is met.
Additionally, one may also add the ”threshold value” which
is the maximal or minimal value of the metric for which the
utility of the system is seriously questioned. At this level, one
may say whether a given criterion is either completely satisfied
(comparison of the metric with the target value) or not satisfied
at all (comparison of the metric with the threshold value) but
no interpretation of the other values of the metric can be given.
The methods on the engineering of requirements belong to this
level but as the criteria are not combined, these approaches do
not allow to perform a trade-off analysis between the attributes.
This is however necessary when not all requirements can be
met all together and some compromise shall be reached.

Level 2. On top of level 1, one assumes that a satisfaction
function that provides the degree to which the criterion is
satisfied for every value of the metric. This is usually described
as a piece-wise affine function. This does not specify how to
weigh up the values of the various criteria to provide an overall
assessment of the alternatives.

Level 3. On top of level 2, one assumes that the way
the different criteria shall be combined, is specified. This
is classically done through weights assigned to the criteria.
In order to make recommendations over the options that
go beyond the Pareto ordering, one needs to go to Level
3. The most elaborate MCDA methods available in system
engineering is the use of a weighted sum in a quantitative
utility method. This allows computing an overall assessment
of the candidate options. The existing approaches suffer from
three main limitations.
No elicitation method. In the existing tools, the stakeholders
enter directly the thresholds and the weights. The understand-
ing of a stakeholder on the parameters of the model is always
limited when they are out his expertise domain. The conclu-
sions of the evaluation cannot be justified if the stakeholder
provides directly the values of the parameters. Rather one shall
ask the stakeholder to provide information that are confident
with, e.g. example of decision or assessment, and deduce the
values of the parameters. Hence some elicitation methods to
construct the values of the parameters shall be used.
No representation of real-life decision strategies. Most
of the aggregation functions used are the weighted sum. A
weight is assigned to each criterion, quantifying the impor-
tance of criteria. The main asset of this model is to be
easily understandable. However, this simple model suffers
from several limitations. It assumes preferential independence
between the criteria: the contribution of one criterion to the
overall evaluation does not depend on the marks with respect
to the other criteria. This independence is often not met due to
the presence of interaction between criteria. A typical example
is the presence of a veto criterion. In system analysis, one has
often to consider high level consequences (such as operational,
financial, human factor, and so on) at the highest level of
analysis. The most important criterion concerns surely the
operational aspects since the other ones are more or less non-
functional. As a consequence, if the operational part is not



well-satisfied there is no other well-satisfied criterion that can
save the solution. There is no analyst that is happy of a solution
that completely misses the mission but costs very little. This
means that the operational aspects behave like a veto. This
cannot be modeled by a weighted sum.
No explanation of the outcomes. The decision maker is
usually the person who is responsible for the decision. He
often has to explain his decision to other actors - for instance,
peers, managers, executive board or shareholders. These actors
have often no time to go into the technicality of the decision
model. In order to convince them on the merits of the
decision, a synthetic explanation needs to be given such as an
argumentation about metrics interpretation based on criteria
thresholds, weights and interactions.

B. Existing Metric Analysis Approaches in Engineering

In existing approaches, levels 2 and 3 are often put together.
We will consider these levels together in the following. We
present the review of the existing approaches used in architec-
ture trades studies in model based system engineering among
the levels of information described above.

Methods at Level 0: The construction of the Pareto frontier
among the set of options is proposed in the ASDL (Aerospace
Systems Design Laboratory) developed at Georgia Tech [9][8],
and also in the ESTECO tool for multi-domain engineering[1].

Methods at Level 1: The methods on the engineering of
requirements belong to this level but use only one level. The
two objective and threshold levels are used in the capability-
based approach developed by the US Department of Defense.
In order to meet the future needs, the force transformation shall
be analyzed according to seven concerns summarized under
the acronym DOTMLPF (Doctrine, Organization, Training,
Materiel, Leadership, Personnel and Facilities)[5].

Methods at Levels 2 and 3: Levels 2 and 3 are often put
together. The most elaborate MCDA methods one can find in
system and software engineering is the use of a weighted sum
in a quantitative utility method. Some workflow simulation
tools such as SIMUL-8 [2] are based on a MCDA weighted
sum model. SIMUL-8 integrates a MCDA tool called VISA[3].
A simple MCDA approach based on a weighted sum has
recently been integrated in the IBM Rhapsody tool to perform
trade studies[4]. The Canadian Department of Defense has
also developed its approach for Capability Based Planning.
The evaluation for each capability domain is performed at the
strategic, operational and tactical levels against six concerns
summarized under the acronym PRICIE (Personnel, Research,
Infrastructure, Concepts, Information et Equipment)[21]. An
evaluation in the numerical scale [0,100] is performed on each
concern and a relative importance between the concerns is
expressed. This allows computing an overall assessment of
the candidate options, using a simple weighted sum model.

III. OUR APPROACH

Myriad[17] is an experimental tool for MCDA developped
at Thales Research and Technology France. It proposes ad-
vanced methods and tools for decision making. It has been

successfully experimented in several operational cases in aid-
ing in decision making.

Myriad proposes criteria elicitation tooled method for defin-
ing criteria relative weight and thresholds based on a technique
among which an extension of MACBETH[10] to account for
interacting criterion. Its aggregation function, the Choquet
integral, is capable of taking into account important cases
(veto, favor, complementarity among criteria) for simulating
real decision strategies. Myriad proposes key features such as
production of evaluation reports. These reports are about eval-
uation results explanation based on the evaluation model anal-
ysis, augmented with improvement recommendations sorted
by potential score impact for each criteria. Moreover, when
multiple evaluation are done using the same evaluation model,
the report proposes evaluations comparison argumentation.
Regarding ATAM, the presented method does not addresses
the metrics identification or architecture description updates
recommendations for improvement. For this latter part, in
[20] Montmain et al. proposed an extension of the method
presented in this paper. It consists in an optimization algo-
rithm recommending feature variables updates that maximizes
the overall criteria satisfaction based on an influence model
relating the feature model to criteria. For these reasons we
propose to experiment the capability of Myriad to go beyond
limits of existing approaches.

A. Basic concepts
The three basic concepts in the evaluation tree are:
Metric ”U”. Usually, a metric is a numerical quantity to

assess the level of one objective achievement. We will use
the word “metric” in a broader sense (like attribute)[22]:
instrument which synthesizes in qualitative or quantitative
terms, certain information which should lay the foundation
for a judgment of an alternative relative to certain of its
characteristics, attributes or effects (consequence).

Criterion ”C”. A criterion is a specification of the prefer-
ence that an individual has on the values of a metric relatively
to a concern. This specification amounts to construct a function
– called utility function – which returns for each value of
the metric the relative performance level (goodness) which
positions it on a preference scale. The underlying scale is
often a numerical scale, such as the [0,1] interval in which
the value 0 is judged unacceptable relatively to the concern
of the criterion, and value 1 is judged perfectly satisfactory
relatively to the concern of the criterion. One can give an
absolute judgment on an alternative according to a criterion.

Aggregation[22] ”A”. This is a procedure that produces
an evaluation of any alternative by taking into account, in a
comprehensive way, the performance levels of the alternative
according to the criteria corresponding to a set of concerns.
There are often nested aggregations. The hierarchical organi-
zation of criteria in nested aggregations is due to done to group
criteria according to similar concerns.

B. Concept related to utility functions
The construction of a utility function requires two ele-

ments. Firstly, an interval scale is needed. The evaluation



Fig. 1. The three main concepts.

is not simply ordinal since the scales coming from different
criteria are combined trough arithmetic operators to allow
compensation among criteria. The underlying scale is often
a numerical scale, such as the [0,1] interval in which the
value 0 is judged unacceptable, and value 1 is judged perfectly
satisfactory relatively to the concern of the criterion. An
interval scale is a scale in which the notion of difference
makes sense. In the scale [0,1], going from utility 0.1 to
0.2 is equivalent in terms of satisfaction gain to going from
0.8 to 0.9. Secondly, commensurability between the different
criteria is required. Commensurability means that a same
evaluation on different criteria has the same meaning. For
instance, evaluation 0.3 shall have the same interpretation
whatever the criterion. Commensurability is very complex to
obtain for ordinal scales, as the user needs to compare all
elements of all metrics together. By contrast, interval scales
can be made commensurate more easily. An interval scale has
two degrees of freedom. In order to fix entirely an interval
scale, it is sufficient to fix the utility for two values of the
metric. These particular elements will have the same utility
on the different criteria, and are called reference elements. A
reference level is an abstract level for which one can identify
a reference element on each metric which corresponds to the
abstract level. In the literature, several reference levels have
been defined.

Completely Satisfactory the criteria is completely met. It
is a saturation level in the sense that one cannot do better than
this level in terms of satisfaction.

Budget (target value) This is the expected value in the
requirement provided by the customer.

Satisficing This word has been invented by the sociologist
H. Simon. The decision maker is happy when this value is
reached, even if better elements exist. The user does not
basically look for better elements than the satisficing element.
The satisficing element usually corresponds to the budget
element.

Neutral This level is neither good nor bad. The decision
maker is indifferent when he encounters such element. Values
better than the neutral element are considered as Good whereas
values worse than the neutral element are considered as Bad.

Not satisfied at all The criterion is not met at all for this

value. This is also a saturation level as one cannot be worse
than this level.

Unacceptable It is similar to “not satisfied at all”, except
that one means that this is a veto value. An architecture having
an unacceptable value on a criterion cannot be selected.

For simplicity in the following case the utility function
is described by 3 levels of criteria satisfaction level: Not
satisfying at all value, Budget and Completely satisfactory
corresponding respectively to 0, 0.5 and 1 satisfaction marks
as illustrated in Fig. 2.

1
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Fig. 2. Shape of a basic utility function

C. MCDA model building

The construction of a MCDA model is composed of the
following stages [22]:

1) Stage 1: It is the structuring phase. The goal is to
construct a tree representing a hierarchy of concerns using
the basic concepts defined above in which the root represents
the overall evaluation, and the leaves are the metrics. All
nodes except the leaves to return a numerical evaluation that
is a satisfaction degree. The process is decomposed as the
following.

Specify concisely the expected issue of the global eval-
uation. The first step consists in defining in one sentence
what the overall evaluation aims at representing. This helps
to prevent from taking into account non relevant aspects. This
also helps, within future discussions, to retarget the debate by
reminding when necessary the objective of evaluation.

Identify the stakeholders. The objective of this step is
to itemize the list of stakeholders being involved and in
particular to identify all necessary competences. A significant
number of stakeholders may intervene in the decision aiding
process. Meaning stakeholders are, among others, the Decision
Maker(s), responsible of the decision that will be taken. It can
be an end user or a customer. Other important stakeholders
are the Expert(s) which can be any person that may give his
opinion in order to help the construction of the evaluation
model. Examples of experts are operational and technical
experts. The customer may be seen as an expert in some
situations. For complex decision problems involving many
stakeholders a Facilitator may be useful. He is more likely
an external consultant rather than a ”classic” stakeholder. He
helps the stakeholders to structure the debate by bringing a



methodology and his external understanding of the problem,
by asking the relevant questions and reformulazing what the
stakeholders express. He also helps to establish confidence
amongst stakeholders and to converge towards a common
understanding of the problem shared by all stakeholders.

Build a hierarchy of concerns. The number of relevant
criteria is often relatively large and can be larger than several
dozen in complex problems.With more than 7 or 8 criteria,
psychological studies [19] have shown that human being
generally use only simplistic strategies. He decomposes the
criteria into two groups: the important ones and the other
ones. Only the important criteria are dealt with in a subtle
way, taking them separately. The human being makes only
a global reasoning on the less important criteria - based for
instance on some kind of simple average. The less important
criteria are thus not taken into consideration in a subtle way.
For these reasons, one shall proceed at a structuring phase. The
aim is to construct a hierarchy of concerns, that is, several
nested levels of aggregations. In order to perform such a
hierarchy, one shall succeed in grouping the criteria according
to a classification that makes sense of the stakeholders. At the
end of this step, one shall obtain the relevant criteria together
with their organization in a tree. Top-down (objective oriented)
and Bottom-up (alternative oriented) approaches are possible
even if mixing both approaches is often preferable.

Operationalize the concerns. The concerns that have been
identified and grouped in a tree in preceding step are abstrac-
tions. We need to identify measurable variables representing
these abstractions at best. The difficulty is to identify the
right measurable datum which synthesizes the different aspects
included within the consequence of each studied concern. In
practice, there are often many metrics that can be seen as
good representative of a given concern. There are two types of
metrics: the natural metric is typically a statistical indicator
whose expression can be easily described. A particular case
concerns the proxi-attributes. These are metrics which link
on the concern is not at first sight obvious. To illustrate
this, let us mention the metric “concentration of pollutant”
to measure the consequence on the concern of the effect on
health. The constructed metric is computed. The stakeholders
shall wonder how to specify a given concern into a value that
can be computed. This is not always simple, especially when
the available information is in limited quantity.
There are two types of constructed metrics. The first type is
the aggregated metrics constructed by aggregating the values
of small components such as the “general load of a system
combining the load of sub-systems”. The other type of metric
is ex-nihilo metrics for the purely subjective judgments such
as the “workload of an operator operating a system”.

Specification of the preference ordering on the metrics.
Each criterion shall depict a different aspect of the overall
evaluation. In any case, the larger the utility the better it is. A
metric is not any variable having a more or less direct influence
on the overall evaluation of the alternatives. There necessarily
exists a preference regarding each criterion. This preference
indicates the values of the metric that are judged good, fair,

bad, . . . The preference associated to a metric regarding the
consequences on a concern is specified through a preference
relation called criterion. A criterion is characterized by a value
function which returns a utility to each value of the metric.
This is the utility function. This specifies the better and the
worse. One shall specify the sense of the preference regarding
a metric, all else being equal on the other metrics. The most
commonly encountered senses of variation are ”the larger the
metric the better” as for a performance metric, ”the smaller
the metric the better” as for a cost metric and ”the closer to
a given value the better” as for some soft requirements.

Validate a family of criteria. This step validates the
hierarchy of criteria. It consists in checking whether the
selected criteria and metrics satisfy to some elementary prop-
erties. Some important conditions to consider are the set of
selected metric form the only variables on which the overall
evaluation will be based. All information necessary to assess
the alternatives shall be contained in the list of metrics. The
set of criteria shall be independent.
Multi-Criteria Decision Aid has formalized the concept of
consistent family of criteria. A family of criteria is said to
be consistent if the following three properties are fulfilled:
Exhaustiveness - The family of criteria is sufficient to com-
pare any alternativeness (i.e. there is no missing criterion). If
two alternatives are judged identical regarding all the criteria
(same preference), then these two alternatives shall be globally
judged identically. Cohesion - No criterion is useless. For each
criterion, there exist at least a couple of alternatives for which
one is globally strictly preferred to the second one such that,
if one is strictly preferred to the other on this criterion, they
are judged identically on the other criteria. Non-redundancy -
There are no two identical criteria, suppression of one criterion
yields the violation of one of the two previous properties.

2) Stage 2: It consists in quantifying the evaluation tree
on the criteria nodes. In other words, we need to construct a
judgment for each attribute separately. This amounts to ask
“Is this value for this attribute is good or bad?”. This is
quantified by a satisfaction function. The construction of this
function results from an interview with the domain expert. It
is characterized by some thresholds that need to be identified.
For the construction of the curve on intermediate values of
satisfaction, we use dedicated methods from measurement to
quantify the preferences of the expert into numerical utilities.
A utility function on a metric is a scale representing the
preferences of a stakeholder. There are basically two types of
scales: the ordinal scales and the interval scales. An ordinal
scale is rather poor, and does not really permit to handle
numbers, since usual arithmetic operations are not meaningful
here. In an interval scale, the concept of difference makes
sense.
Aggregating different criteria requires that they are commen-
surable. This implies that one shall be able to compare any
element of a metric with any element of any other metric.
It is not possible to ask to a stakeholder to perform such a
comparison since the direct comparison of elements belonging
to different metrics does not make sense for human beings. The



MACBETH approach[10] allows solving these difficulties in
a way that is completely satisfactory for the stakeholders and
is relevant from a mathematical standpoint.

MACBETH approach overview. To explain the MAC-
BETH approach, let us first note that in an interval scale, the
notion of comparison of discrepancies makes sense. Moreover,
an interval scale is given up to a dilation and a shift. This
implies that it is enough to fix two points in an interval scale
to entirely fix the scale. This is done for the utility function
(which corresponds to an interval scale) on each criterion. As
a consequence, the commensurateness assumption will be sat-
isfied if one is able to find on metrics two elements, having the
same meaning throughout all criteria. The second ingredient
necessary to construct an interval scale - a specification of the
difference between pairs of elements of the metrics - in terms
of satisfaction degrees.

Definition of the reference levels on each attributes.
The value of the utility function is interpreted as a degree
of satisfaction regarding the preferences of stakeholders. This
satisfaction degree corresponds to the same scale on all
attributes. Such a degree belongs to the [0,1] unit interval,
where 0 corresponds to the total absence of satisfaction and
1 corresponds to the complete satisfaction. The two reference
levels are identified to these two levels. The stakeholder is thus
asked to identify on each metric two elements :

• The first, named ”U”, is thought by the stakeholder as
completely unsatisfactory relatively to his concerns w.r.t.
criterion, its satisfaction will be valuated to 0.

• The second, named ”P” is considered as perfectly
satisfactory[10], its satisfaction will be valuated to 1.

Identification of referent values on each attribute. If
the metric is continuous and is an interval, it is not possible
to elicit the utility function for all values of the metric. In
practice, we elicit the utility function from the preferences
of the stakeholder for only a finite set of elements of the
metric. The two reference levels U and P shall be part of
the considered subset of the metric in order to normalize the
construction of the utility over these elements. The utility
function of the metric is constructed by linear interpolation
from its value on the identified subset.
Let us discuss on the construction of the elements of the
subset when the metric is continuous. Since the [0,1] unit
interval is a bounded unipolar scale, and is thus bounded
from above and below, the two utilities 0 and 1 correspond
to saturation levels. In the example of Figure 3, any element
lower than 5 (resp. greater than 13) has a utility equal to
0 (resp. 1). More generally, if the utility function is non-
decreasing (i.e. the larger the value of the metric, the better),
U is the largest element of the metric for which all the lower
values are uniformly judged as unacceptable. Likewise, P is the
smallest element of the metric for which all the above values
are uniformly perfectly satisfying. The same identification of
the relevant levels U and P can be made for non-increasing
utility functions and other types of monotonicity.

We identify the two elements U and P as we have just
described. These are the first two elements of subset of the

Fig. 3. Piecewise function caracterized by the values {5,7,9,13}

metric. Let us explain how to define the other elements of the
subset. Firstly, the number of intermediate points between U
and P basically corresponds to the complexity of the utility
function. In general, it is between 2 (no intermediate point)
and 7. For the identification of subset values, the segmentation
is not necessarily uniform, depending if the shape is convex,
concave or more or less linear. The idea is that the majority of
points is placed where variations are the more important. For
concave curves, we put more points close to U than to P. This
is the case in the example of Figure 3. For convex curves, we
put more points close to P than to U. The identification of the
subset is easier when the metric is a finite set. In this case,
the subset is often equal to the metric definition set.

Construction of the utilities on the elements of met-
ric subset. The stakeholder is asked to answer to types of
questions regarding the utilities of the elements of the metric
subset: Ordinal information Given two elements of the metric
subset, what is the preference between these two elements?
The stakeholder has the choice between three answers: (1)
the first is strictly preferred to the second, (2) the first and
the second are judged indifferent, (3) the second is strictly
preferred to the first. Cardinal information: Given two ele-
ments for which the second is strictly preferred to the first,
what is the satisfaction gain (attractiveness) when going from
the first to the second? The answer shall be given within
the following finite scale: Unknown, Very Weak, Weak,
Moderate, Strong, Very Strong, and Extreme. Hesitation
between several values can be expressed as an interval of
values in the previous finite scale.
In the Figure 3, 13 is strictly preferred to 9, which is strictly
preferred to 7, which is strictly preferred to 5. Moreover the
cardinal information is gathered in the matrix I.

13 9 7 5
13 - Weak Moderate Very Strong
9 - Weak Strong
7 - Moderate
5 -

TABLE I
EXAMPLE OF A CARDINAL INFORMATION MATRIX.

3) Stage 3: It consists in quantifying the evaluation tree
on each aggregation node. One needs to aggregate the partial
evaluations to obtain higher level evaluations. Considering
for instance an aggregation of three criteria, this amounts
to know whether the satisfaction attached to an alternative



that is for instance good over the first criterion, fair on the
second criterion and bad on the last criterion, is considered
as rather good, or rather bad. It is likely that the overall
satisfaction will equal some value in between. A trade-off or
compromise shall be made amongst all the criteria used to
compute the aggregation node. This is obtained with the help
of compensatory aggregation functions. People use here most
often the weighted sum. At the end of this stage, the evaluation
model is thoroughly specified.
We are interested here in the construction of the aggregation
function at a node. Basically, there are four types of methods
to learn the parameters of aggregation methods:
Direct assessment of the parameters. The stakeholders di-
rectly assign numerical values to the parameters of the decision
model. This approach is not satisfactory. On one hand, the se-
mantics of the weights is not so clearly understood by humans.
The concept of weight is used in different methods (weighted
sum, weighted ordered average, weighted minimum, weighted
majority,. . . ), and the weights have different meaning in each
method. On the other hand, for a weighted sum, weights do
not make sense in the criteria are not commensurate.
The notion of importance can be rigorously defined once
commensurate scales are defined on the metrics. For instance,
a criterion is twice as much as important as another criterion
if an increase of one unit on the first criterion is equivalent to
an increase of two units on the second criterion. This unit or
standard corresponds to the commensurateness assumption. In
order to identify the precise relative importance ratio between
two criteria, one shall ask the stakeholder to identify tradeoffs
between these two criteria. Thus, it is delicate to ask directly
the weights to the stakeholders. A learning phase by indirect
questioning is preferable by large.
Expression of the preferences as a language. In Artificial
Intelligence, it is usual to describe all possible models as
well-formed formulas defined from a language. This allows
a compact representation of the preferences. The idea of these
approaches is that the stakeholder can then directly express
his preferences in this language. This approach is not possible
with the model that we consider.
Elicitation of the parameters from learning examples pro-
vided by the stakeholder. A very commonly used approach is
to learn the decision model parameters from a set of learning
examples provided by the stakeholders. Such examples are
typically comparisons of alternatives or assessment of alterna-
tives, which values of all attributes or criteria are known. From
the learning data, one can analyze the potential inconsistencies
or the incompatibilities with the model that is considered and
analyze the completeness of the learning data.The difficulty
of this approach arises when the previous set of compatible
parameters is large:it is not easy to determine the most relevant
learning examples that shall be given in order to reduce the
size of the set of compatible parameters as much as possible.
This difficulty yields to the last approach.
Elicitation of the parameters from learning examples con-
structed by the approach. In this approach, the parameters of
the decision model are also constructed from a set of learning

examples. But instead of asking the stakeholders to provide
them, the idea is to construct a set of alternatives from which
questions will be asked to the stakeholders. These alternatives
are optimally determined so as to maximize the accuracy of
the identification of the model parameters. This has some links
with some statistical methods such as experiment design, or
active machine learning.
The corresponding elicitation process is explained hereafter.

Identification of the relevant alternatives: the binary al-
ternatives. The preferential information that can consider here
is a generalization of what is used in the MACBETH approach.
The MACBETH approach is dedicated to a weighted sum.
For a weighted sum, the weight of a criterion represents its
sole importance in the aggregation. We wish to generalize this
to a 2-additive Choquet integral. On top of representing the
importance of criteria, it can also model interaction between
pairs of criteria. Instead of allowing the options to be perfectly
satisfactory on one attribute only, one may allow the options
to be perfectly satisfactory on two attributes at the same time.
These alternatives are called binary as they can take only two
values on the different criteria.
Construction of the parameters from the binary alterna-
tives. The stakeholder is asked to provide some ordinal and
cardinal information on the binary alternative. The ordinal
and cardinal information are of the same nature as presented
before. More precisely, the stakeholders are asked to answer
questions regarding the utilities of the elements of binary
alternative. Ordinal information: Given two elements x and
y of the binary alternative, what is the preference between
these two elements? The stakeholder has the choice between
three answers: (1) x is strictly preferred to y, (2) x and y are
judged indifferent, (3) y is strictly preferred to x. Cardinal
information: Given two elements x and y of the binary
alternative for which x is strictly preferred to y, what is the
satisfaction gain (attractiveness) when going from y to x?
The answer shall be given within the following same finite
scale than for the utility function with the same pratice when
hesitation occurs.

The analysis of the inconsistencies is much more complex
than in the utility construction. This is due to the monotony
conditions for the 2-additive Choquet integral. The description
of the handling of the inconsistency is not the purpose of this
document. One can see that the number of elements of binary
alternatives increases with the square of the criteria at the level.

IV. INDUSTRIAL CASE-STUDY

The design of complex systems such as radio commu-
nication products requires taking into account various and
sometimes contradictory concerns such as security and per-
formance. Indeed, radio communication equipment exhibits
strong requirements in terms of size, weight, power consump-
tion, security and real-time performance. One of the most
challenging aspects in system engineering is to analyze the
combination of numerous concerns.



A. Secure Radio Architecture.

A secure radio platform is basically divided into three
parts: The Red security domain receives sensitive information
from the user point of view (data plan) such as plain text
data that need to be ciphered; The Black security domain
deals with nonsensitive information that are ciphered for data
information and may be ciphered or not for control infor-
mation; An Information security domain (InfoSec) handles
communications between Red and Black domains. It ciphers
data information from Red to Black domain and deciphers
them from Black to Red domain using cryptographic channels.
Control information may go between Red and Black domains
without ciphering using bypass channels. For strong security
and safety needs, a physical separation is enforced for the
Red, Black and InfoSec domains. Each domain is implemented
by a dedicated board in the radio equipment and has its
own independent processor. The introduction of multi-core
processors, hypervisor and separation kernel technologies in
embedded systems allows a new security/safety architecture
with a logical separation between the Red, Black and InfoSec
domains. Basically, each domain may be implemented on
a single multi-core processor. Multiple processors may be
replaced by a single multi-core processor at lower frequency.
This reduces power consumption as it roughly grows linearly
with the processor frequency and the number of processors.

B. Hardware/Software Architecture.[6]

A radio platform is the set of software and hardware
layers that provide the services required by the Software
Radio Protocol (SRP) application layer through Application
Programming Interfaces (APIs). A radio platform includes sys-
tem components: Radio Devices (RD) (e.g. Ethernet Device,
Audio device) and others Services (e.g. management service,
IP and routing service). The SRP application and Software-
Defined Radio (SDR) platform components may be designed
for different security/safety levels (e.g. Common Criteria (CC)
for security and/or DO178 for safety). Figure 4 presents the
SRP application high level architecture.
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Fig. 4. SRP application high-level architecture

In addition to the SRP application components (Red and
Black Radio App), the use case architecture consists of the
following SDR platform components: the Ethernet Device

abstracts an Ethernet network interface of the target SDR
platform, the Management Service checks and dispatches
control and management requests to SRP and platform compo-
nents. For instance, it allows the configuration of component
properties such as the MAC address or the transmission power
of the radio equipment, the Radio Security Service (RSS)
provides security channels to cipher/decipher user information,
and forward control information without encryption (bypass),
the Modem Device abstracts the Physical layer implemented
on DSP, FPGA and the Radio Frequency (RF) front-end(s).

C. The experiment.

This experiment focus evaluations on the SRP sub-system
of the SDR. Based on the same logical model, different
deployments of the component-based radio application may
be compared according to various criteria. Each security/safety
partition may be physically isolated in boards or logically iso-
lated in virtual machines (VMs). As described above there are
three security domains: Red, InfoSec and Black domains, and
five security/safety partitions for Red Application components,
Red Platform components, InfoSec components, Black Ap-
plication components and Black Platform components. Each
domain and partition may have different Saftey/security level
depending on the final product target application. Considering
the number of boards and VMs reliable variants have been
automatically derived from a variability model connected to
business architecture patterns described in [11]. These reliable
variants are presented in the Table II.

Solution Description Board(s) VM(s)
S1 1 board per safety partition 5 0
S2 1 board per security domain 3 0
S3 1 board per sec. dom. and 1 VM per saf. part. 3 5
S4 1 board and 1 VM per security domain 1 3
S5 1 board and 1 VM per safety partition 1 5

TABLE II
CANDIDATE ARCHITECTURE VARIANTS.

D. Evaluation Criteria.

A solution may be applicable to a specific usage in the SDR
productline. The objective is selecting the best design for a
hand-held SDR (low power, safe and secure, high availability).
The identified criteria are listed in the Table III.

Id Criteria
Not
satisfying
at all value

Budget
value

Completely
satisfactory
value

1 Software part. for Security 0 3 3
2 Hardware part. for Security 1 3 3
3 Software part. for Safety 0 3 3
4 Hardware part. for Safety 1 3 3
5 Used CPU Resource ratio 0.55 0.50 0.25
6 SoC Lifetime (h) 50000 60000 90000
7 Communication overhead (us) 1500 1000 200
8 Maintenance period (h) 90000 70000 60000
9 Cost per equipment (Euro) 1000 600 200
10 Power consumption (mWh) 2000 1700 1000

TABLE III
EVALUATION CRITERIA.



The Criteria are aggregated into several Aggregations map-
ping the principal concerns of the architecture description.
Such mapping is often questionable and requires experts
consensus. The resulting Aggregations are the following:

• Security aggregates Criteria 1 and 2;
• Safety aggregates Criteria 3 and 4;
• Availability aggregates Criteria 5 and 6;
• RoI aggregated Criteria 8 and 9;
• Criteria 7 and 10 remain untouched.
Aggregations and Criteria are aggregated under a single Ag-

gregation, the model root, representing the overall assessment.
The resulting model overview is represented in Figure 5.

Experts expressed the constraint that a solution presenting a
top-level Aggregation or Criterion evaluated as ”Not satisfying
at all” must be evaluated under ”Budget”. This constraint has
been translated by automated learning into a nearly global
complementarity between these Aggregations and Criteria
weights; the complementarity between criteria is interpreted
as the min of evaluation of theses criteria by the 2-additive
Choquet integral. The resulting relative weight schema is
represented in the Figure 6.

V. RESULTS AND CONCLUSION

For concrete understanding of the proposed approach value
we compare results of the proposed approach with the usual
weighted sum approach, both are using the same aggregation
model and utility functions. The expressiveness of weighted
sum make us adapt manually the relative weight of top-level
Aggregations or Criteria as described in the Figure 7.

Results are compiled in the Table IV2. The comparison
criteria is the overall score interpreted as a utility function, the
higher is the better: a 0 score is interpreted as ”Not satisfactory
at all”, a 0.5 score is interpreted as ”Budget” and a 1 score is
interpreted a ”Completely satisfactory”. The objective is then
selecting solutions evaluated above 0.5 and, in case of multiple
selection, choose the one with the highest mark.

Solution Weighted sum
@1000Mhz

Myriad
@1000Mhz

Weighted sum
@800Mhz

Myriad
@800Mhz

S1 0.41 0.24 0.43 0.29
S2 0.54 0.36 0.56 0.43
S3 0.62 0.32 0.64 0.39
S4 0.59 0.42 0.74 0.78
S5 0.56 0.39 0.72 0.76

TABLE IV
OVERALL EVALUATION RESULTS.

A. Results

At 1000 Mhz Weighted sum proposes four satisfying so-
lutions meanwhile Myriad-based evaluation cannot find any
satisfying. Looking into details, Power consumption is ”not
satisfying at all” in all cases. Good scores on other criteria
are compensating Power. The Myriad-based evaluation make
us conclude there is no satisfying solution. This conclusion
is operationally valid for the target usage. Because Power is

2Full evaluation models and results are available on demand.

outside acceptable range while CPU Resource exceeds the ex-
pectations, lowering SoC frequency may improve Power eval-
uation while keeping CPU Resource satisfying. At 800 Mhz
Weighted sum evaluation proposes four satisfying solutions.
Other criteria scores balance the unacceptable score of Power
for S2 and S3 meanwhile S4 and S5 are identified as satisfying
solutions. Myriad-based evaluation exclude all solutions other
than S4 and S5. These solutions are operationally acceptable,
both methods agree on this.

B. Comparison justification

When deciding, one has to justify the choice. Myriad
generates an argumentation report justifying evaluation and
comparison towards the evaluation model. As example,
the following is the raw result generated from the Myriad
evaluations comparison at 800 Mhz, focusing on S4.

S4 is clearly preferred to S1 on the criterion ”SDR Overall Assessment”. ”S4” is
preferred to ”S1” since the intensity of preference of ”S4” over ”S1” on the criteria
”Communication overhead”, ”RoI” and ”Power” is MUCH LARGER than the intensity
of preference of ”S1” over ”S4” on criterion ”Availability”.

S4 is a bit preferred to S2 on the criterion ”SDR Overall Assessment”. ”S4” is
preferred to ”S2” since the large importance of the criteria ”RoI” and ”Power”
reinforces the relative strength of ”S4” compared to ”S2” on these criteria, the
small importance of criterion ”Availability” minimizes the relative strength of ”S4”
compared to ”S2” on this criterion.

S4 is preferred to S3 on the criterion ”SDR Overall Assessment”. ”S4” is
preferred to ”S3” since the intensity of preference of ”S4” over ”S3” on the criteria
”Communication overhead”, ”RoI” and ”Power” is MUCH LARGER than the intensity
of preference of ”S3” over ”S4” on criterion ”Availability”.

S4 is almost similar to S5 on the criterion ”SDR Overall Assessment”. ”S4”
is preferred to ”S5” since the intensity of preference of ”S4” over ”S5” on the
criteria ”Communication overhead” and ”RoI” is MUCH LARGER than the intensity
of preference of ”S5” over ”S4” on nothing.

Despite its automatic syntax, the generated argumentation
helps in producing justification report, producing a complete
argumentation of the evaluation for each Aggregation.

C. Conclusion

In this paper we illustrated the use of a tooled method
for comparing evaluations of different solutions to a given
problem in an objective way. Evaluating is always a irra-
tional activity. The preference model synthetizes experts know-
how. It is built by a method attempting to bring maximum
rationality: utility and weights are computed by automated
learning based on experts decisions. An often used approach
consists in changing the criteria weights during the decision
process in order to reach the expected alternative. This is of
course very debatable. The methodology proposed represents
better the decision maker preferences than when fixing directly
utilities and weights. A preference model addresses a mean of
answering to a question, not the definition of truth. If the radio
was designed for being embedded in a vehicle, the preference
model, although having the same aggregation structure, would
have different utilities and weight for criteria such as Power
consumption or CPU resource usage. The results would have
been different.

The presented tooled method gives an evaluation thanks
to a preference model, with evaluation result justifications.
Deciding implies responsibility and for this reason remains



Fig. 5. MCDA model

Fig. 6. Aggregation and Criteria relative weights, MYRIAD method.

Fig. 7. Aggregation and Criteria relative weights, Weighted sum method.

an expert activity. The role of tooling is only to help decision
maker in his task.

According to the experiment both evaluation methods high-
light the best solutions. The Weighted sum proposes false
positives because it requires independent variables. This hy-
pothesis is not true in our case: we need to model ”if one
of Criteria is Not Satisfying At All then Evaluation is under
Budget”. Giving artificially strong weights to such criteria does
not work here because of compensation. The Weighted sum is
not adapted to decision making problems such as choosing a
design for a given usage because one of application hypothesis
is not satisfied. Myriad uses the Choquet integral for aggre-
gating criteria satisfaction. It acts as a Weighted sum when
variables are independent and manages variables interaction.
It is an adapted tool to the problem class illustrated.

The presented tooled method requires the capability of
sorting criteria, not possible when the criteria number is high
and/or preference sorting is not possible. In this case one needs
a new preference model and aggregation function class such
as Generalized Additive (GAI) model[18].
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Abstract: Switched Ethernet is a technology that is profoundly reshaping automotive communication 

architectures as it did in other application domains such as avionics with the use of AFDX backbones. Early 

stage timing verification of critical embedded networks typically relies on simulation and worst-case 

schedulability analysis. When the modeling power of schedulability analysis is not sufficient, there are 

typically two options: either make pessimistic assumptions or ignore what cannot be modeled. Both options 

are unsatisfactory because they are either inefficient in terms of resource usage or potentially unsafe.  To 

overcome those issues, we believe it is a good practice to use simulation models, which can be more 

realistic, along with schedulability analysis. The two basic questions that we aim to study here is what can 

we expect from simulation, and how to use it properly? This empirical study explores these questions on 

realistic case-studies and provides methodological guidelines for the use of simulation in the design of 

switched Ethernet networks. A broader objective of the study is to compare the outcomes of schedulability 

analyses and simulation, and conclude about the scope of usability of simulation in the desi gn of critical 

Ethernet networks. 

Keywords: timing verification, timing-accurate simulation, ergodicity, automotive Ethernet, simulation 

methodology, worst-case response time analysis.  

1  C on t ext  an d  ob ject i ve s  o f  th e  s tud y  

Ethernet is meant in vehicles not only for the support of infotainment applications but also to transmit time-

sensitive data used for the real-time control of the vehicle and ADAS functions. In such use -cases, the 

temporal behavior of the communication architecture must be carefully validated. Early stage timing 

verification of critical embedded networks typically relies on simulation and worst -case schedulability 

analysis, which basically consists in building a mathematical model of the worst possible situations that can 

be encountered at run-time.  

When the modeling capabilities of schedulability analysis is not sufficient, which given the complexity of 

today’s architectures is in our experience in many practical situations the case (see [Na13,Na14] and § 2.4), 

there are typically two possibilities.  The first option is to make  pessimistic assumptions (e.g., modeling 

aperiodic frames as periodic ones), which is not always possible because for instance it may  result in 

overloaded resources (e.g., link utilization larger than 100%) . The second option is to ignore what cannot be 

modeled (e.g., ignoring transmission errors, aperiodic traffic, etc). Both options are unsatisfactory because 

they are either inefficient in terms of resource usage or potentially unsafe. In addition, it can happen that 

schedulability analysis tools provide wrong results, most often because the analysis’ assumptions are not 

met by the actual implementation, or possibly because of numerical issues in the implementation (e.g., if 

floating point arithmetic is used), or simply because the analysis is flawed (see for instance [Da07]).  

To overcome these issues, we believe that it is needed to use simulation along with schedulability analysis, 

so that the results of the two techniques can be cross -validated. Compared to schedulability analysis 

models, simulation models can be more realistic since it is feasible for a network simulator to capture all 

timing-relevant characteristics of the communication architecture and reproduce complex traffic patterns  

specific to 

o A higher-level protocol such as SOME/IP SD [Sey15], or the many different frame triggering 

conditions in AUTOSAR Socket Adapter  (see [SoAd] §7.2.2), 

o An applicative-level software component. 

The main shortcoming of simulation is that it does not provide any guarantees on the relevance of the 

results, and the user remains always unsure about the extent to which simulation results can be trusted.   

                                                           
1 Jan Seyler was at Daimler AG, Mercedes-Benz Cars Development, at the time the study was conducted. An oral -only presentation 

with the same title was given at SAE World Congress 2015, "Safety-Critical Systems" Session, Detroit, USA, April 21-23, 2015. 
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Simulation can lead to wrong decisions because of mistakes in methodology (e.g, simulation time, number 

of experiments, etc) or simply because the performance metrics under study are just out-of-reach of 

simulation.  The two basic questions that we aim to study here is what can we expect from simulation , and 

how to use it properly? This empirical study explores these questions a nd provides methodological 

guidelines for the use of simulation in the design of switched Ethernet networks. A broader objective of the 

study is to compare the outcomes of schedulability analyses and simulation, and conclude about the scope 

of usability of simulation in the design of critical Ethernet networks.  

We paid a special attention in this study that the models used in simulation and schedulability analysis are 

in line, which means that they model the same characteristics of the system and make the s ame set of 

simplifying assumptions (see §2.1) regarding behaviors of the system that we believe are not central in this 

study. In many practical cases, this will however not be the case because the schedulability analyses 

available today are not able to capture the whole complexity of most communication architectures.  

The article is organized as follows. We first study the following methodological questions:  

o Q1: is a single simulation run enough or should the statistics be made out of several simulations 

with different initial conditions since simulation results depend on the initial conditions? 

o Q2: can we run several simulations in parallel and aggregate the results? 

o Q3: what is the appropriate minimum simulation length? 

Answering these three questions first requires to know whether the simulated system is ergodic (see §3.1) 

or not.  We then assess the scope of usability of simulation by comparison with schedulability analysis, and 

explore the followings questions:  

o Q4: are the latency upper-bounds derived by schedulability analysis, based on the state of the art of 

the Network Calculus, as used in this study, accurate wrt to the latencies that can actually occur in 

the worst-case?  

o Q5: is simulation an appropriate technique to derive the worst-case communication latencies? 

2  E xp er i me n ta l  s e tup  

2.1  System under  study and  assumptions  

In this work, we consider a standard switched Ethernet network supporting uni- and multicast 

communication between a set of software components distributed on a number of stations. In the following, 

the terms flow or streams refer to the data sent to a certain receiver of a multicast connection; all packets, 

also called frames, of the same traffic flow are delivered over the same path.  

In order to identify the primary impacting factors, the following set of assumptions is placed: 

o The exact architecture of the communication stacks is not considered (e.g, AUTOSAR 

communication stack). It is assumed that frames are waiting for transmission in a queue sorted by 

frame priorities then arrival times. If packets have no priority, as in case-study #2, the waiting 

queue is FIFO, 

o The routing of the packets to the destination nodes is static,  

o It is assumed that there are no transmission errors,  

o Nodes’ clocks are drifting away with the clock drifts being random but constant over time (see 

§2.6). The clock drift rates used in the experiments (±200ppm and ±400ppm) are realistic in the 

automotive domain [Na12], 

o There are no buffer overflows in the Ethernet switches which would cause packets to be lost. In 

practice, this has to be avoided and can be ascertained by schedulability analysis, or, with a high 

confidence, by simulation, 

o The packet switching delays in the Ethernet communication switches is assumed to be upper 

bounded, and vary from packet to packet according to a uniform distribution in the interval [0.1* 

bound, bound],   

o Streams of frames are periodic and the successive frames of a stream are all of the same size,  

o The communication switches are all store-and-forward switches.  
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2.2  Case-studies  

The 3 case-studies described hereafter are considered in the experimentations. The first case -study is a 

prototype automotive network developed by Daimler [Se13, Se15]. The characteristics of tomorrow’s large 

automotive Ethernet network, for instance Ethernet as a high-speed backbone supporting mixed-criticality 

traffic, are still unsure at the time of writing and we had no such large network at our disposal for the 

experiments. To perform experiments also with larger con figurations, we included in this study two 

avionics configurations.  

 

 

 

 
 

Figure 1: topology of case-study #1 (Daimler prototype network), case-study #2 (medium AFDX network) and 

case-study #3 (large AFDX network). A multi-cast stream is shown on each topology. 

Case-study#1: Daimler prototype Ethernet networks.  The use-case of this prototype network from 

Mercedes Cars is to support ADAS functions and exchange real-time control data. The exact specification 

of the case-study, such as the set of streams and the functions involved cannot be communicated for 

confidentiality reasons. Case-study #1, like it is done for the two other case-studies, is defined by a set of 

characteristics summarized in Figure 2 while its topology is shown in Figure 1. 

Case-study #2: medium AFDX network. The second case-study is a sample configuration of RTaW-

Pegase that is available upon request. It is scaled-downed version of the third case-study, which models the 

kinds of large AFDX networks that can be found in large ci vil aircrafts. In addition to the size, another 

difference with the two other case-studies is that the frames do not have priorities, they are thus scheduled 

on a FIFO basis in the nodes as well as in the transmission switches.  

Case-study #3: large AFDX network. The third test configuration is a sample file of RTaW-Pegase that is 

available upon request. It aims to model the AFDX backbone networks [It07,Bo12] used in large civil 

aircrafts.  

 Case-study #1 Case-study #2 Case-study #3 

#Nodes 8 52 104 

#Switches 2 4 8 

#Switching delay 6us 7us 7us 

#streams 58 3214 5701 

#priority levels 2 None 5 

Cumulated workload 0,33Gbit/s 0.49Gbit/s 0.97Gbit/s 

Link data rates 100Mbit/s and 1Gbit/s 
(2 links) 

100Mbit/s 100Mbit/s 

Latency constraints confidential 2 to 30ms 1 to 30ms 

Number of receivers 1 to 7 (avg: 2.1) 1 to 42 (avg: 7.1) 1 to 83 (avg: 6.2) 

Packet period 0.1 to 320ms 2 to 128ms 2 to 128ms 

Frame size 51 to 1450bytes 100 to 1500bytes 100 to 1500bytes 

Figure 2: Summary of the case-studies characteristics.  
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Due to space constraints, the results are not always shown in this paper for all the configurations. The 

reader is referred to [Na15] for the complete set of experimental results.  

2.3  Software Toolset  and performance evaluation techniques  

This study has been conducted using RTaW-Pegase 2.1.7 timing analysis software, a product of RealTime-

at-Work developed in partnership with ONERA research lab. RTaW-Pegase provides: 

o Timing-accurate simulation . Conceptually, at each step n of the simulation, the system is fully 

characterized by a state Sn and the set of rules to change from state n to n+1: Sn+1 = F( Sn+1) is 

defined by the simulation model.  The evolution of the system depends on this set of rules and the 

sequence of values provided by the random generator.  

o Worst-case latencies (i.e., worst-case response times calculation) using a state-of-the-art network 

calculus implementation [Bo11]. The pessimism of this schedulability analysis is known to be 

limited as it has been experimentally evidenced in the non-prioritized case in [Bo12] and in the 

experiments of §4.1, 

o Lower-bound on the worst-case latencies. This information is key to estimate how tight the 

schedulability analysis is. The algorithm implemented in RTaW-Pegase is based on [Ba10]. 

Simulation results are of course much more fine-grained since the distributions of all quantities of interest 

can be collected during simulation runs.  In the experiments of this study, the simulator is able to compute 

about 4.1 mega events per second on a single core of a standard desktop workstation (Intel I7-2600K 

3.4Ghz), which means for instance that it can simulate 24  hours of communication for the first case-study in 

about 1h57mn, or less than 15mn with 8 simulations executed in parallel on a 8 core machines. This speed 

of execution is achieved by abstracting away all characteristics of the system without impact on its timing 

behavior. Speed is indeed crucial for simulation used in the design of critical systems since the  samples of 

values collected must be sufficiently large to derive robust statistics with respect to  the criticality of the 

application (i.e., samples sufficiently large for 1-10
-5

 quantile values, see [Na14]). Schedulability analysis 

is much faster that simulation, it takes about 15 seconds for the largest case-studies on the workstation used 

in the experiments. This speed of execution can be explained firstly because Network Calculus scales 

extremely well due to its low algorithmic complexity, and also because the implementation has been 

optimized since it has been started to be developed in 2009 in the P egase collaborative project, see [Bo11]. 

2.4  Why schedulabil ity  analysis alone i s  not  suff ic ient  

Worst-case response time (WCRT) analysis, also referred to as schedulability analysis, is often considered 

as the technique that is the best suited to provide the guarantees that are needed in critical networks.  

Indeed, as soon as the workload submitted is bounded and the resource behaves in a deterministic manner, 

then it is always possible in theory to derive a worst-case schedulability analysis. Our experience with 

schedulability analyses has been however that they suffer from limitations in many practical cases due to 

the following issues: 

1. Pessimism due to coarse-grained or conservative models (e.g., as in [Da12]) potentially leading to 

hardware resource over-provisioning. This might even rule out the use of analytic techniques in 

contexts where resource usage optimization is an industrial requirement,  

2. Complexity  that makes them error prone and hard to validate, especially since the analytic models 

used are most often not published
2
 and the software implementing them is a black-box for the user, 

3. The inability to capture today’s complex software and hardware architectures. Using an inaccurate 

model can lead to inefficient resource usage or even unsafe design choices. What makes this 

perhaps the biggest issue is that it is hardly possible to foresee the effect of simplifying 

assumptions, given the non-monotonous and non-linear behavior of the model outputs.     

An illustration of the latter point is that at the time of writing there is, as far as we know, no schedulability 

analysis that captures the complex frame transmission policies in the AUTOSAR Socket Adapter behavior 

[SaAd15], while simulation of this component is readily available in RTaW -Pegase for instance. Here we do 

not mean that schedulability analysis is never an appropriate technique, but simply that it is best suited to 

systems which have designed and implemented with simplicity, determinism and analyzability as primary 

design objectives. The reader can refer to [Na13, Na14] for a more thorough discussion on the 

complementarities of verification techniques in the design of automotive communication architectures.  

                                                           
2 The core timing analysis algorithms of RTaW-Pegase have been published, e.g. [Bo07,Bo11], and partly formally proven in 

[Ma13,Bo14b]. 
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2.5  Rando mness in the simulat ion  

Our simulation model of the Ethernet communication system is stochastic in the sense that two different 

simulation runs of the same configuration will not lead to the exact same tr ajectory of the system. Under the 

assumptions made in this study (e.g., no transmission errors , fixed packet size and period) the randomness 

comes entirely from:  

o the offsets of the nodes, which is the initial time (wrt the network’s origin of time) at which the 

nodes start to send messages (e.g., not all nodes will start to transmit simultaneously because of 

different boot times),  

o the clock drifts of the nodes: the clocks that drive all activities on their host processor including the 

communication, do not operate at the exact same frequency,  

o the switch commutation delay, that is the time it takes to copy a frame from its input port to a 

waiting queue on the output port.  

These characteristics of the system are drawn at random according to the p arameter ranges specified by the 

user (e.g, ±200 ppm maximum for the clock drifts) , and their exact value depends on the seed of the random 

generator that is used for the simulation.  

2.6  Modeling c lock-drift s  

The clocks of the CPUs of the network nodes never operate exactly at the same rate and thus they are 

slowly drifting away. These clock drifts result from various factors, the main ones being fabrication 

tolerance, aging and temperature (see [Mo12] for a discussion of the main factors of clock drifts and their 

quantification in automotive systems). Clock drifts are measured in “parts per million” or ppm, which 

expresses how slower or faster a clock is, as compared to a “perfect” clock. For instance, 1ppm corresponds 

to a deviation of 1µs every second.  In this study, we assume that clocks drifts are constant throughout the 

simulation run and use the same model as in [Mo12]. For a given clock c driving an Ethernet node, its local 

time tc with respect to a global time t is determined as follows in the simulation model : tc (t) = φc + δc · t 

where φc is the initial start time (the offset) of the node with regard to the bus time referential, and δc is 

the constant drift value. For instance, a drift rate of +100ppm means that δc = 1.0001. In this work, every 

node j is assigned a clock defined by the tuple (φj , δj) which is chosen at random according the simulation 

parameters. 

2.7  Performance  metr ics for fra me latencies  

The main performance metric for real-time communication networks is the communication latency, also 

called frame response time, which is the time from the production of a message until the reception by the 

stations that consume the message. The latency constraint, or deadline constraint, is the maximum allowed 

value for the response time. This deadline is typically inherited from applicative level constraints or 

regulatory constraints (e.g. , time to answer a diagnosis request).  

 

Figure 3: Metrics of the frame latencies and techniques to verify them. The black curve shows an idealized 

distribution of a frame response times (from [Na14]). 

The aim of timing verification is to make sure that deadline constraints are met. Timing verification on 

models, by simulation or schedulability analysis, allows deriv ing a number of metrics on the frame response 

times. Those metrics, along with the corresponding timing verification techniques are shown in  Figure 3. 

What is said in this paragraph holds equally for other quantities of interest such as buffer usage in 

communication switches and communications stacks.  
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The bound on the response time, which is the outcome of a schedulability analysis, is usually larger than the 

true worst-case possible response time (denoted by WCRT). In general schedulability analysis is pessimistic 

to an extent that cannot be predicted. However, in some cases it is possible to derive lower-bounds on the 

WCRT based on a pessimistic trajectory of the system that we know can happen. This is an analysis  

performed in §4.1. The maximum value seen during a simulation is most often less than the WCRT, here 

again the distance between both values is unknown and depends on the network configuration as shown in 

the experiments of §4.2. In the context of networks, the WCRT is also sometimes referred to as Worst -Case 

Traversal Time (WCTT), this is the term used in the rest of this document.  

In the design phase, the quantiles of the quantities of interest are often other meaningful performance 

metrics. Formally, for a random variable X, a p-quantile is the smallest value x such that P[X>x] < 1- p. In 

other words, it is a threshold L such that for any response time,  

o the probability to be smaller than L is larger than p,  

o the probability to be larger than L is smaller than 1 – p. 

For example, the probability that a response-time is larger than the (1-10
-3

)-quantile, denoted here by Q3 

quantile or Q3 for short, is lower than 10
-3

. For a frame with a period of 10ms, the Q3 will be exceeded on 

average once every 10
3
·10ms=10

4
ms, that is 10s. Table 1 shows how quantiles translate to deadline miss 

frequency and average time between deadline misses, for frames with a period equal to 10ms and 500ms 

and deadlines assumed to be equal to quantiles.  

Quantile Deadline miss every Mean time to deadline 
miss if period is 10ms 

Mean time to deadline 
miss if period is 500ms 

Q3 1000 10 s 8mn 20s 

Q4 10 000 1mn 40s ≈ 1h 23mn 

Q5 100 000 ≈ 17mn ≈ 13h 53mn 

Q6 1000 000 ≈ 2h 46mn ≈ 5d 19h 

Table 1: Quantiles and corresponding frame deadline miss frequencies for frame periods equal to 10ms and 

500ms, and frame deadlines assumed to be equal to quantiles values (from [Na14]). 

As exemplified in [Na14], verifying timing constraints with quantiles involves the following steps:  

1. Identify the deadline for each frame, 

2. With respect to the deadline miss probability that can be tolerated by the application, set the target 

quantile for each frame,  

3. The objective is met if the target quantile value derived by simulation is below the frame deadline. 

3  Met hod ol og y  and  p a ra me t er s  f or  s imu l a t ion  

In this section we explore the following questions pertaining to the choice of a proper methodology and 

setup for simulation:  

o Q1: is a single simulation run enough or should the statisti cs be made out of several simulations 

with different initial conditions since simulation results depend on the initial conditions? 

o Q2: can we run several simulations in parallel and aggregate the results?  

o Q3: what is the appropriate minimum simulation length? 

Answering these three questions requires first to know whether the simulated system is ergodic. 

In the simulations performed in this work, except if otherwise stated, the following set of parameters was 

used: 

o The clock drift of each node is chosen at random in ±200ppm. Simulations performed with 

±400ppm returned results that were not significantly different,  

o The offsets of the nodes are chosen at random in [0,100ms]. Simulations performed with offsets in 

[0,1s] returned results that were not significantly different,  

o Each experiment is repeated 10 times with random offsets and clock drifts,  

o Simulation time was at least 2 days of functioning time, corresponding to samples with more than 

20 values above Q5 for sub-90ms flows.   
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3.1  Ergodicity  of  a  dyna mic process and practical  impl icat ions  

Intuitively, a dynamic system is said to be ergodic if, after a certain time, every trajectory of the system 

leads the same distribution of the state of the system, called the equilibrium state. If the system that is 

simulated is ergodic, it means that all statistical information can be derived from one sufficiently long 

simulation, since all simulations cover the state space of the system in a “similar” manner.  

A single simulation of an ergodic system, or a few shorter simulations executed in parallel on a multicore 

machine, will lead to the same results as a large number of simulations with different initial conditions. 

This means from a practical point that we do not have to care about the number of distinct experiments that 

are to be performed, as long as each of them are “sufficiently” long, and the results obtained hold whatever 

the exact initial conditions of the system are.  

The question that is experimentally investigated next is whether the ergodic property holds true or not for 

the system under study. In the latter case, this would imply that we would need to examine a large number 

of trajectories of the system, as done in the analytic techniques to calculate frame response time distribution 

in AFDX [Mau13] and CAN [Ze09, Ze10].  

3.2  Do init ial  condit ions have an impact  on s imulation’s result s?  

If the distributions of the quantities that are observed during the simulation are not  identical for different 

initial conditions, then it implies that the simulated process is not ergodic.  To empirically study that 

question, we performed for each case-study at least 10 simulations with different initial conditions:  

o Random offsets and random clock drifts, 

o Random offsets and fixed clock drifts,  

o Fixed offsets and random clock drifts. 

We are here interested in the frame latency distribution , our main performance metrics.  We checked 

manually the convergence of the latency distributions obtaine d in different simulations for several frames in 

each case-study. The convergence could always be visually confirmed. This is for instance what is shown in 

Figure 4 for a 100ms frame of the first case-study. 

 

Figure 4: Case-study #1 - comparison of the distribution latency for frame E27 (ECU6 to ECU7) obtained in 3 

simulations with different random offsets and different random drifts.  

In the following, we will not directly check the convergence of the distributions but this will be done 

through the value of the Q5 quantiles. Indeed, we are in the context of critical systems mostly interested in 

the convergence of the tails of the distributions . Q5 is chosen because it remains possible to estimate for a 

large number of simulations, as required by the experiments, and corresponds to the kinds of constraints one 

can expect for most automotive functions (see [Na14] for an example). 

Whatever the exact initial condition, each of the simulation run led to close estimations of the Q5 values for 

the different frame. This can be seen on Figure 5 were the Q5 curves obtained in 3 simulation runs are 

almost superposed for each of the case-study shown. The average difference between the minimum and 

maximum value of the frame quantiles is  below 2.5% for each of the case-study.  
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Figure 5: Comparison of the Q5 quantiles of the frame latencies obtained in 3 distinct experiments with 

different random offsets and different random drifts for case -study #2 and #3. The average difference between 

the maximum and minimum Q5 value obtained in the 3 experiments ranges from 1.9% to 2.3% in the 3 case -

studies. 

It should be noted that the points where the curves are not superposed often correspond to frames whose 

periods are larger than 100ms and thus for which the simulation length may be too short. For instance, in 

case-study #1 there are several frames with a period equal to 1s, and a large fraction of the frames have a 

period of 128ms in case-study #2 and #3.  

For all three case-studies, we obtain empirical evidence that the simulated network is ergodic. This implies 

that we do not have to consider the exact initial conditions
3
 and that a single long simulation run is 

sufficient to derive reliable statistics. It also means that it is possible to aggregate the results of different 

simulations runs done in parallel, if we are interested in the value of higher quantiles such as Q6 or Q7 or if 

the simulation model is larger. Future work should be devoted to determine what the exact requirements are 

for a simulation model to remain ergodic. This will enable us to model the embedded systems in a more 

fine-grained manner by modeling the behavior of higher level protocol layer s (e.g. Some IP, see [Se15, 

Sey15b]), models of ECUs and tasks.  

3.3  Q3: what i s  the  appropriate s imulation run?  

A difficult issue in simulation is to know what the minimum appropriate simulation time is . Indeed, even 

with a high-speed simulation engine, simulating many variants of large communication architectures, as 

typically done during the design process, is a time -consuming activity and too much time and computational 

resources should not be wasted.  

This question is discussed in this paragraph in the case where the simulated system is ergodic. A first 

intuitive answer to this question is that the length of simulation should be long enough so that  the start-up 

conditions do not matter anymore. Indeed, if the simulation time is too short, the transient behavior 

occurring at the beginning will induce a bias in the statistics (see for instance statistics in the synchronous 

case in [Na15]). One way to deal with that is to remove the transient period at the beginning from the 

statistic samples. Although there are heuristics for that, it is not clear -cut to know exactly what defines a 

transient state and where it ends (see [Cl15] for a recap). The other approach adopted here is to simulate 

sufficiently long so that the transient state is amortized.  

In our experiments with random offsets, samples of quantile values with at least 10 points lead to robust 

results in the vast majority of cases. In a few cases, statistics out of 20 values were needed and we set this 

as the requirement in this study. Such sample sizes can be obtained by simulating 2 days of communication 

for frames with a period lower than or equal to 85ms. The corresponding simulation takes several hours to 

perform on a single processor, which remains practical for system designers.  

                                                           
3 The configuration where all nodes start to transmit at the same time, in a synchronous manner, leads to results that are 

distinctively different from any random startup that we have simulated. The reason underlying this behavior is studied in [Na 15].  
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4  S cop e  o f  app l i ca t i on  o f  s i mula t i on  w i t h  resp ec t  to  s ch ed u lab i l i t y  

a na l ys i s  

Simulation is well suited to estimate, early in the design phases, the kind of performances that can be 

expected in the case of a typical functioning mode of a system. This can be done with a high statistical 

confidence with the use of higher quantiles of the distributions of the quantities of interest (see [Na14]). 

Another advantage of simulation, especially when it is coupled with the right analysis and visualization 

tools, is that it provides a valuable help to understand the behavior of the system in some specific 

conditions that can be reproduced (see [Na15]).  Here we experimentally estimate the extent to which 

timing-accurate simulation is able to identify the largest possible latencies that can be observed in a 

switched Ethernet network.  

4.1  Q1: are worst -case  traversa l  t imes co mputed with Network Calculus  accurate?  

The pessimism of a schedulability analysis is in general not known and that makes it difficult for the system 

designer to rely on it for the design choices.  In [Ba09], the authors propose a technique to identify for each 

flow in the system an unfavorable scenario leading to latencie s close to the worst-case situation. These 

unfavorable scenarios provide lower-bound on the WCTTs which can serve to estimate the accuracy of the 

WCTT upper bound analysis. Indeed, if the real worst-case latency for a flow is unknown, one knows that it 

lies between the WCTT upper bound and the lower bound. RTaW-Pegase implements an algorithm inspired 

from the one first proposed in [Ba09]. However, this WCTT lower -bound calculation is not available yet in 

RTaW-Pegase in the prioritized case, thus it can only be applied on case-study #2.  

 

Figure 6: Case-study #2 - upper bounds on the Worst-Case Traversal Times (black curve) shown with a lower 

bound on the WCTT (blue curve). The flows on the graph are sorted by increasing latencies of  the WCTTs, 

which explains why the lower curve is not monotonous unlike the WCTTs (screenshot from RTaW -Pegase). 

The results in Figure 6 show evidence that, except for a small fraction of the flows, the WCTT analysis is 

accurate: the average difference between the lower bounds and the WCTT upper bounds being on average 

4.7% (up to 35% in the worst-case). Similar results were obtained for non-prioritized versions of the two 

other case-studies, and these results are in line with experiment published in [Bo12] on a different case -

study.  Though these experiments have been conducted in the non-prioritized case, this result suggests to us 

that WCTT should also be accurate with priorities. 

4.2  Q3: maximum observed response t imes versus worst -case traversa l  t imes  

The question that is here experimentally investigated is whether the maximum values of the response times 

that can be observed during a simulation are close to the WCTT upper bounds obtained by analysis.  

Simulations of the three case-studies have been performed with two clock drift rates (±200ppm and 

±400ppm) and various offset configurations: 

o 10 random offset assignments where nodes starts within 100ms after the startup of the system,  

o a configuration where this startup delay is extended to 1000ms,  

o a configuration where all offsets are null , and thus nodes start synchronously ( refer to as the zero-

offset configuration in the following).  
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Results discussed here have been obtained with a simulation time set to 8 days of functioning time, The 

same experiments performed with 2 days of simulation lead to the same results for the two larger case-

studies while for case-study #1 simulating 8 days instead of 2 days allowed to decrease the difference with 

WCTT by 3% both for the average and max value.  Whatever the case-study, what we observe is that no 

random offset assignments lead to significantly different results than the others. For instance, in case-study 

#1 the average difference for the maximum latency is 6.3% among 10 simulations with distinct random 

assignments of 2 days. Larger offset intervals and clock drift rates did not make a difference either in our 

experiments.  

In case-study #1, random offsets and synchronous offsets do not behave significantly differently in terms of 

WCTTs as can be seen in Figure 7 (left graphic), with WCTTs that are on average about 20% less with 

simulation with respect to schedulability analysis . However a notable difference can be seen on the two 

larger case-studies when all offsets are set to zero. Explanations for this behavior are discussed in [Na15]. 

 

 

Figure 7: Case-study #1 – Left: upper bounds on WCTTs derived by schedulability analysis (black curve) and 

the maximum response times observed in simulation. The blue cur ve is obtained with null offsets for the nodes 

(i.e., zero-offset configuration), the green curve with random offsets.  On average, the simulation with zero 

offsets leads to response times that are 21% less than the WCTTs, up to 48% maximum (with 5 points above 

35%). Right: memory use in switches and nodes (in bytes) as derived by a long simulation (random  startup 

offsets) and schedulability analysis.  

Figure 7 (right graphic) shows for case-study #1 the difference between the maximum amount of memory 

used in the switches/nodes during a long simulation and the upper bounds computed by analysis. Both 

techniques lead to the same maximum memory usage in the stations, this is because the worst -case situation 

(one frame for each of the flow of the station) is encountered durin g each simulation since there are no 

offsets among the flows of the same station (unlike in [Bo14] for instance where frame offsets are known 

and accounted for). This observation holds for all case -studies. In case-study #1, the maximum memory 

usage observed with simulation is at most 31% less (switch #2) than the upper bound calculated by 

schedulability analysis. This result can be explained by the fact that there is direct relationship between 

frame latencies and memory size needed in the swi tches. 

 

 

Figure 8: Case-study #3 – Left: difference between upper bounds on WCTTs derived by schedulability analysis 

(black curve) and maximum response times in simulation (blue curve). The blue curve is obtained with null 

offsets for the nodes (i.e., zero-offset configuration), the green curve with random offsets. On average, the 

simulation with zero offsets leads to response times that are 56% less than the WCTTs, up to 88% maximum.  

Right: memory use in switches (in bytes) as derived by simulation and schedulability analysis.   
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In case-study #3, the WCTTs obtained by simulation are on average 56% smaller than the WCTTs obtained 

by schedulability analysis (up to 88% for a given flow). The maximum memory consumption observed with 

simulation is at most 76% less than the upper bound calculated by schedulability analysis  (for switch R2). 

This result can be explained by the large discrepancy there is between the maximum frame latencies derived 

by simulation and analysis.  However, during this study, we identified sources of pessimism in the memory 

analysis which can help to reduce the gap between simulation and analytic results.  

Our conclusion is that simulation becomes quickly unable to identify large frame response times as the size 

of the system increases: the average difference over all flows ranges from 23% for the smallest case-study 

to 56% for the largest case-study. The same observation holds equally for the maximum memory 

consumption in the switches.  

Given the length of the simulations and the diversity of experimental conditions in this study , this also 

suggests that response times close to the WCTT upper bounds are extremely rare events. Indeed, since Q6 

values are lower than the WCTT, it means that no more than one frame e very million transmissions will  

experience latencies larger than Q6 and up to the WCTT. In systems, where deadline misses provided that 

they are rare enough and quantified, can be tolerated, simulation will lead to much more efficient resource 

usage than schedulability analysis.   

5  C on c lus i ons  

There are networking technologies such as AFDX or TTP/TTEthernet which have been conceived with the 

requirement that the temporal behavior of the network must be predictable, if no t deterministic, and are thus 

amenable to worst-case verification with limited pessimism (see [Bo12, Bo14] for AFDX).  AUTOSAR-

based automotive architectures, based on CAN or Ethernet, are in our experience not as easily analyzable 

from a timing point of view, because of their complexity, heterogeneous hardware and software 

components, and because the temporal behaviors of the ECUs and gateways are less constrained.   

On the other hand, AUTOSAR offers a wide range of configuration options and complex execution 

mechanisms to support in an efficient manner the numerous requirements of automotive communications, 

and the scope of what is possible is still increasing with for instance the introduction of SOME/IP [Vo13] in 

AUTOSAR. As a result, schedulability analyses for automotive systems are in our opinion not able today to 

capture the entire complexity of the system with the risk to be pessimistic and possibly unsafe. In addition, 

it is acceptable for most automotive functions to tolerate occasional deadline misses and message losses, 

provided that the risk is well quantified and the functions made robust to these events. These two reasons 

motivate in our view the use of simulation along with schedulability analysis for the design of automotive 

systems, as this is explored in this paper.  

Simulation models when used in the design critical system imposes the use of high-speed simulation 

engines in order to derive statistical samples of sufficient size for the required confidence level.  With the 

computing power readily available today on desktop workstations, it is possible to simulate complete 

heterogeneous automotive communication architectures  made of CAN, Ethernet and FlexRay buses.  

However, complete system-level simulations, which would include models of the functional behavior, will 

require distributing the computation on clusters of machines. Performing simulations on different 

processors and aggregating the results, would be thus key to allow system-level simulation with high 

confidence level.  

In this work, we have provided empirical evidence that the simulated model of a switched Ethernet network 

is ergodic and thus that this approach leads to correct results. This question remains however to be 

answered in a more formal manner and at the scope of a complete electronic embedded architecture.  One 

possibility is to identify the conditions under which the simulation model is equivalent to a Markov Chain 

and study its ergodicity.   
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I. ABSTRACT

Embedded systems highly contribute to the efficiency,
safety, and usability of our present-day means of transport
like cars and airplanes. Due to the possible hazards and risks
involved with their operation, safety standards like DO-178C
for avionics and ISO 26262 for automotive commend the
application of methods and tools according to the state of
the art. Functional safety requirements imposed on hardware
and software imply the detection of malfunctions and taking
corrective actions, before hazards actually occur. As described
in [5] one of the key challenges thereby is the prediction
and verification of the system’s timing behavior. In this paper
we describe a model-based approach for real-time simulation
focusing on complex end-to-end data flows typically encoun-
tered in safety-critical automotive control applications. Based
on first-hand experiences gained during the development of
an electrical power steering control system, we illustrate how
real-time simulation models can be utilized to guide design
decisions, and help to achieve safety goals defined at system
level. Furthermore, we discuss the issues of response time
analysis for dynamic state-dependent data flows considering
different semantics for communication in the context of the
AUTOSAR standard.
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III. MOTIVATION

Engineers developing electrical / electronic systems for the
automotive or avionics domain have to manage a high degree
of functional, technological, and organizational complexity.
Design and implementation of highly dynamic safety-critical
applications make a model-based approach with careful con-
sideration of fault tolerance indispensable. A fault-tolerant
design follows a safety strategy which defines the (worst)
conditions that a system must cope with, and defines safety
mechanisms for fault detection and error handling that must be
implemented. Such a design ensures that a system experiencing
malfunctions remains operational – possibly with reduced
functionality – and transits into a safe error-free state.

Safety mechanisms built into a system are liable to hard
real-time requirements. Hence, the transition into a safe state
must be achieved under all possible conditions with respect to
a limited time span, the so called fault tolerant time interval
(FTTI) as defined in [23]. However, if one considers the many
different factors that influence a system’s timing behavior, e.g.
the number of possible faults and failure states, the complexity
of the data and control flow, or the scheduling properties of
different hardware and software variants, it turns out, that find-
ing a robust and reliable dynamic architecture design is a very
challenging task. The problem of verifying the schedulability
of processes and messages in a distributed system is NP-hard
[7], and besides hard real-time requirements, for safety-critical
systems additional requirements must be considered in order
to guarantee dependability.

During the past decades, since Liu and Layland in [19]
presented their work about rate-monotonic scheduling (RMS),
research in scheduling theory has developed a large number
of concepts and mathematical proofs in order to take on
the challenges presented by the analysis and optimization of
embedded control applications. But, despite the many advances
in extending their scope and applicability as described by
Sha et al. in [22], most theoretical approaches remain limited
to specific use cases as typically some of their constraints
are violated in real industrial systems. Examples for those
limitations and constraints are given by Cooling in [9] and
Davis et al. in [10]. A more recent study taking into account
precedence relations between tasks is provided by Kermia in
[16].

The software standards developed by the Automotive Open
System Architecture (AUTOSAR) partnership [3] have dramat-
ically changed the way automotive systems are built today,
and the transformation of processes, methods, and tools is
not yet finished. Since AUTOSAR release 4.0 there is also
a dedicated specification [4] for the formalized description
of timing properties and constraints available. And although,
this helps to identify and exchange timing-related information
in a complex automotive supply chain, AUTOSAR does not
address the issue of how this information can be obtained, or
a timing analysis can be performed.

In order to evaluate a system’s performance, interoperabil-
ity, robustness, and eventually its safety, the specific charac-
teristics of the AUTOSAR operating system and run-time en-



vironment (RTE) must be considered on implementation level.
These comprise concepts like OS applications, IOC, shared
(multi-core) resources, schedule tables, and extended tasks.
For AUTOSAR compliant real-time systems, Anssi et al. in
[1] presented a study, where the applicability of schedulability
analysis is evaluated using an open source implementation
[12] of Palencia’s and Harbour’s algorithm [21]. Additional
evaluations are provided by Hladik et al. in [15].

Viewed from the system engineering perspective eventually
one key issue remains: Even if state of the art scheduling
analysis methods can be applied, they can only provide true
or false statements on the feasibility of a given system con-
figuration. However, in order to perform design modifications
efficiently, engineers need more fine-grained information about
their system’s dynamic behavior, e.g. obtained by statistical
analysis of trace data coming from target measurements or
real-time simulation.

IV. CASE STUDY: ELECTRONIC POWER STEERING

The research results presented in the following are based on
the observations and experiences made by the authors during
the development of an electronic power steering (EPS) system
at Hella Engineering in Toulouse, France. Due to the safety
and hard real-time requirements for this system, a model-
based approach using SysML at logical architecture level, and
AUTOSAR methodology at technical architecture level was
implemented. For the simulation, visualization, and exploration
of various design alternatives methods and tools [14] provided
by INCHRON were also used from the very beginning of this
project.

A. System overview

The electronic power steering system in our case study as
depicted in figure 1 uses a brushless motor to assist the driver
in steering his vehicle. Position and torque of the steering
column are permanently measured by sensors and processed
by the steering control module (SCM), which calculates an
assistive torque that is applied depending on different driving
conditions. Advantages of an electronic power steering system
over a comparable hydraulic solution are improved fuel effi-
ciency and greatly simplified manufacturing and maintenance
processes. Also, in combination with an electronic stability
control it vastly contributes to improved driving safety.

B. Objectives

A major challenge during the development of embedded
systems such as the electronic power steering is the verification
of end-to-end latency requirements. The difficulty lays in
the fact that these systems feature many different functional
and dysfunctional modes of operation with corresponding
hard real-time requirements for monitoring, error detection,
and error handling. Depending on the required safety level,
the implementation of these safety mechanisms in addition
to the actual control functionality, drastically increases the
complexity of the data and control flow. As a consequence for
the EPS system development, following a classical integration
and test approach solely based on measurements on the target
hardware, seemed not feasible. In order to reduce the time
and effort, that it takes to find resource bottlenecks, timing

Figure 1. Electro-mechanical components of the electronic power steering
system

errors, and eventually to verify the real-time requirements, it
was one of our main objectives in this case study to apply state-
of-the-art methods and tools, aiming at a virtual integration
of the system in earlier development phases. Furthermore,
the verification of an embedded system requires that timing
properties and constraints are specified in a formal, unam-
biguous way, matching with the semantics of the formalism
which is used for the analysis. Thus, another objective was to
check if all the system information, needed by either formal
schedulability analysis or model-based scheduling simulation,
is available in a real project environment. Finally, we wanted
to achieve a seamless integration of all methods and tools
avoiding redundant modeling of the same information as much
as possible.

C. Design of the dynamic architecture

An important part of the dynamic architecture design for
the SCM was planning the execution of tasks and interrupt
service routines (ISR) on the main microcontroller. The initial
design was created according to the strategy of deadline-
monotonic scheduling (DMS) [18] where tasks are assigned
priorities depending on their deadline with priorities being
inversely proportional to the length of the deadline. Compared
to RMS, deadline-monotonic priority assignment is an optimal
strategy for tasks that can have a deadline equal or smaller
than their activation period. Furthermore, Audsley and Burns
[2] [7] showed that with additional schedulability tests, the
deadlines of sporadic tasks can be guaranteed within the
deadline-monotonic theory.

Table I shows the initial scheduling configuration for the
SCM according to the deadline-monotonic priority assignment
strategy.1 In order to preserve most of the scheduling charac-
teristics guaranteed by DMS, the SCM design was restricted to
only use time-triggered, basic tasks with no priorities shared
between two different tasks.

For the model-based simulation with the INCHRON Tool-
Suite a project file (.ipr) of this configuration needed to be

1Note, that due to intellectual property rights of the companies involved in
the development of the SCM, only anonymized and simplified versions of the
original system information can be documented.



Table I. SCHEDULING WITH OS COUNTER TICK OF 1MS

Name Type Period
(µs)

Deadline
(µs)

Offset
(µs)

Priority

Torque_Manager Task 1000 100 async 200

Analog_Manager Task 1000 500 0 102

ASIC_Manager Task 1000 1000 0 95

Mode_Manager Task 5000 5000 2000 70

Com_Rx Task 5000 5000 2000 50

Com_Tx Task 5000 5000 2000 45

Temp_Manager Task 10000 10000 4000 20

Memory_Manager Task 10000 10000 9000 5

Diagnosis Task 10000 10000 8000 2

created. As suggested by the TIMMO-2-USE project in [11],
there are basically two different possibilities to create a model
for the simulation: either top-down based on requirements and
design specifications in an early project phase, or bottom-up
by reverse-engineering the necessary information based on an
existing (prototype) implementation of the system. In this case
study the initial simulation model was generated by importing
the AUTOSAR ECU configuration data of a prototype sample
into the INCHRON Tool-Suite.

Another very important input parameter required for the
schedulability analysis and simulation is the core execution
time (CET) of the scheduled processes. Obtaining actual
and reliable execution time information in reality is not an
easy task. Even if sophisticated measurement capabilities are
available, it can be very difficult or nearly impossible to
do measurements for all possible operation states and (er-
ror) conditions in many different variants. An alternative to
measurements on the target hardware is to predict worst case
execution times by using static code analysis, e.g. as suggested
by Ferdinand in [13]. However, this approach also has its
limitations: for example increasingly complex caching and
pipelining solutions found in modern microcontrollers, make
it very difficult to predict the time consumption of machine
code instructions.

In the case study, the model-based simulation of different
scheduling scenarios was performed by using execution time
information which was measured on the target hardware.
Measurements were taken for various operation states, whereas
focus was laid on those configurations that covered the most
complex execution paths (in case of the control functions).
In order to further increase the confidence into the results,
we applied scaling factors to some of the measured values
for those functions where behavioral details were unknown.
However, it should also be noted, that for the verification and
optimization of end-to-end latencies in a distributed system,
time delays caused by asynchronous process executions can
be more important, than the deviation of individual execution
times.

D. Event chains with hard real-time latency requirements

A temporally ordered sequence of correlated events, that
can be observed or measured in a system, is referred to as a
chain of events, or event chain. Applied to embedded real-time
systems, the concept of an event chain can be used to specify
a sequence of function executions and (communication) data

flows between them, which are subject to safety and real-time
requirements. Figure 2 shows an example for such an event
chain in the SCM, starting with the sampling of the torque
sensor and ending with the control of the motor realizing the
steering assistance.

Figure 2. Event chain with end-to-end latency requirement

The event chain concept is a very useful abstraction in order
to describe the scope of an end-to-end latency requirement
from the perspective of a control or system engineer, consider-
ing the influence of both the hardware and the software. In the
automotive industry it is a widely used concept, but only since
its formalization by the AUTOSAR standard, the semantical
pitfalls of ambiguous textual and visual descriptions could be
mitigated.

A key issue in the formal semantics of an event chain
concerns the definition of data flow properties: the data flow
in a system results from the production, transmission, and
consumption of data by different hardware and software func-
tions. In a distributed system the deployment (location) of a
function mostly determines the means by which this function
is able to communicate with other local or remote functions,
e.g. via messaging over a network, shared variables etc. As
the interpretation of an event chain depends on the behavior
of the functions in its scope, and again their behavior depends
on the value, state, order, and age of the processed data, a
formal semantics of the data flow needs to take the different
communication means and their characteristics into account. At
the same time, the mathematical model which is used by the
analysis or simulation, must be able to handle that formalism.

Initially, at the beginning of the case study, the data
flow between hardware and software components at system
level was modeled by using the flow port concept of SysML
[20] as depicted in the figure 3. This modeling view helps
to understand the relationships between architectural blocks,
differentiated between hardware and software. However, some
essential data flow characteristics as described above, were not
supported by that concept. Furthermore, we also tried to derive
a communication model from the AUTOSAR meta-model, but
that approach turned out to be too complex, as the specification
of the communication and the dependencies between basic
software modules is significantly different from the concepts
used for the application software. A further restriction was the



difficulty to adequately describe the behavior and influence of
hardware functions.

Figure 3. Simplified SCM model as SysML internal block diagram

Eventually, in the case study a rather simple but sufficiently
powerful formalism, derived from the co-design methodology
for embedded systems (MCSE) [8], was used for the specifi-
cation of data flows as follows:

• Shared variable (or permanent data): Data which
can be read / written at any time. In order to avoid
data inconsistencies, the access to shared variables
must be protected against simultaneous read and write
operations by asynchronous processes.

• Event: An (activation) event that triggers the execu-
tion of a process.

• Queued: Data is buffered in a queue with FIFO
mechanism where the oldest data in the queue is read
first. In control theory the queue size usually directly
depends on the execution periods (frequency) of the
producing and consuming processes.

Figure 4 shows the application of the co-design methodol-
ogy for the modeling of the SCM system architecture.

Figure 4. Technical architecture of SCM with functional and dysfunctional
data flows

This model describes the main hardware and software
functions, and also the data and control flow connections
according to the MCSE semantics. Compared to the basic

SysML semantics (see figure 3), the most important differences
are as follows:

• Rich data flow semantics: MCSE supports different
types (shared variable, event, queued) for data flows,
which allows abstract modeling of the most common
communication mechanisms encountered in real sys-
tems.

• Activation flow: Event-triggered activation of pro-
cesses is explicitly supported by MCSE, but not the
basic SysML model.

• Timing properties: Task periods, interrupt inter-
arrival times, and other timing parameters can be
specified as properties of a (software) block.

• Closer to AUTOSAR model: MCSE is closer to
the AUTOSAR meta-model (the SCM is based on
AUTOSAR), and offers better support for the concepts
used in the specification of the software architecture.

In the case study, this model was used as a starting point for
the definition of the data and control flow in the INCHRON
Tool-Suite. Basically, the MCSE concepts could be mapped
one-to-one to semantically equivalent communication concepts
in the tool. A further advantage of this approach is that event
chain definitions for the functional and dysfunctional operation
states of the system can be described in a common model,
using the same data and control flow concepts. For this paper,
we have selected two (dysfunctional) event chains, in order to
demonstrate the application of our approach for the verification
of end-to-end FTTI requirements. Figure 5 shows the sequence
of process executions for each event chain similar to the
definition in the simulation tool.

Figure 5. Event chain definition for Temperature Error and Analog Input
Error

They start with the detection of a failure at different
signal sources, but then follow the same sequence of function
executions until they end with the transition into a safe state
(here disabling the application of the motor torque to the
motor power stage). Arrows between the processes represent
a (typed) data flow connection in the model, which are then
traced and highlighted in the simulation (see figures 10, 11,
13, 14).

In general, a failure of the system can have different
underlying causes originating from either the environment
(e.g. the system operating under conditions different from its



specification) or the system itself (e.g. a malfunction of an
electrical, electronic, or mechanical component). However, at
software level for the verification of FTTI requirements, this
difference can be neglected. For example, if the system needs
to shutdown when sensors indicate a too high temperature, we
do not need to care, if this indication is caused by a sensor
malfunction, or the system temperature being actually too
high. Regardless of the failure source, the dynamic architecture
design must ensure, that monitoring, error detection and error
handling processes are executed in a deterministic way, and
meet the FTTI requirements.

In a real system the malfunction causing the system failure
can occur at any time, and in order to verify the compliance of
the dynamic software architecture with the FTTI requirements,
it is necessary to recreate the different scheduling situations in
the simulation. Therefore, it is not sufficient to induce an error
just once, but it must be done repeatedly over the time of the
simulation. For the SCM the stimulation generator of chron-
SIM was used to define an environment model (scenario), that
would randomly induce an error with respect to the activation
period of the concerned monitoring or error detection process.
For example, if the error detection is executed every 10ms,
then a uniform random variation between 0 and 10ms was
chosen for the error induction. Figure 6 shows the stimulation
scenario defined for the different errors induced during the
simulation.

Figure 6. Stimulation scenario defined with the INCHRON Tool-Suite

The main benefit of this approach is, that it allows to reach
a high coverage of the various, relevant preemption situations
in a very short time – much shorter than in a hardware-in-the-
loop (HIL) or prototype test environment.

V. SIMULATION AND OPTIMIZATION

Using the INCHRON Tool-Suite we performed several
simulation runs in order to compare alternative scheduling
configurations for the SCM. The traces generated by the
simulation were evaluated according to the following quality
criteria:

• Deadline violations

• Response time distribution

• CPU peak load in certain averaging intervals

• Start-to-start jitter

• End-to-end latencies of dedicated event chains

According timing requirements were specified directly in
the simulation tool, and evaluation statistics were automatically
generated after each iteration. After analyzing these results,
the (scheduling) configuration was modified manually, and a

new iteration was started. The most important observations and
conclusions made during the case study, are presented in the
following.

A. Adjustment of start offsets

Figure 7 shows an excerpt from the simulation trace of
the initial system configuration as specified further above in
table I: process executions (indicated by green areas within
the rectangular process box) and preemptions (white areas) by
higher priority processes are depicted as a Gantt diagram.

Figure 7. Gantt chart view of processes inside the SCM

One observation made during the analysis of simulation re-
sults for the initial scheduling configuration was, that CPU load
peaks can occur when processes with relatively large execution
times are activated at the same time. For example the time-
triggered processes ASIC_Manager and Analog_Manager both
with a period of 1ms were affected. Furthermore, Com_Tx and
Com_Rx with a period of 5ms also had this issue. An obvious
solution to smooth the peak load, would be to introduce a
time delay (offset) between the activations of the processes
in question. For example for the ASIC_Manager task, an
activation offset of 500µs against the Analog_Manager task
seemed feasible.2 However, the granularity of the underlying
OS counter tick was just 1ms, and thus shifts between the
activations were only possible in steps of 1ms. For this reason,
the OS configuration was modified, and the granularity of the
OS counter tick was reduced to 500µs.

Table II. ADJUSTED START OFFSETS FOR ASIC_Manager AND Com_Tx

Name Type Period
(µs)

Deadline
(µs)

Offset
(µs)

Priority

. . .

ASIC_Manager Task 1000 1000 500 95

. . .

Com_Tx Task 5000 5000 3500 45

. . .

The activation offsets for ASIC_Manager and Com_Tx
were adjusted as shown in table II.

B. Deadline violations

In the case study deadline requirements were defined for
all processes. These were monitored and checked during the

2The worst-case response time determined for the ASIC_Manager task was
lower than 500µs.



simulation of the different scheduling configurations. The
simulation tool shows the evaluation of all (response time
and other) requirements in a dedicated requirements evaluation
view, where the number of successful, critical, and failed
checks for each requirement is summarized (see figure 8). A
concrete response time check is considered critical, if a certain
predefined margin relative to the actual deadline is exceeded.

Figure 8. Evaluation of response time requirements

For example, we can see that the response time of Com_Rx
is considered critical, as it exceeds the safety margin. Overall,
we observed no hard deadline requirement violations in the
case study.

C. Execution jitter

In order to monitor the efficiency of a specific scheduling
configuration, it may be necessary to monitor additional pro-
cess statistics. A very useful indicator is the execution jitter.
Figure 9 for example shows the time distribution of the start-
to-start (purple bars) and terminate-to-terminate jitter (green
bars) for the Com_Rx task.

Figure 9. Distribution of execution jitter (start and terminate) for task Com_Rx

In the histogram, we can see that the start time of Com_Rx
fluctuates between 4.98 and 5.03ms due to preemptions caused
by interrupts and higher priority tasks.

D. Evaluation of event chain ’Temperature Error’

A Temperature Error is indicated by the task
Temp_Manager when the temperature value measured
by the temperature sensor exceeds a predefined threshold. If
this is the case, the Mode_Manager task shall switch into a
corresponding failure mode, and send an error notification
PWM_Stop to the power stage which is driving the motor.
According to the system specification, the end-to-end latency
requirement goal for this event chain was 12ms.

The simulation of the SCM with chronSIM predicted, that
violations of the end-to-end latency requirement are possible,
although no activation violations occur and all processes meet
their deadline requirements. An example from the simulation

which shows such a requirement violation is given in figure
10.

Figure 10. Violation of end-to-end latency requirement (Temperature Error)
detected in the simulation

In this particular case, we can observe that the end-
to-end latency mainly arises from the 10ms period of the
Temp_Manager task, and from the additional delay (almost
3ms) between the execution of the Temp_Manager and the
Mode_Manager task. One possible solution would be to in-
crease the execution frequency of the Temp_Manager task, in
order to reduce the time delay which occurs after the provision
of new sensor values by the Analog_Manager task. However,
this would also increase the CPU load.

Alternatively, a solution would be to reduce the time
delay between the activation of the Temp_Manager and
Mode_Manager task, by adjusting the start offsets. Further-
more, it is also necessary, that Temp_Manager gets a higher
priority than Mode_Manager, so it is scheduled first. Al-
though, this priority change contradicts the DMS strategy –
Temp_Manager has a bigger deadline than Mode_Manager –
it seems to be the most feasible solution to reduce the event
chain latency.

Table III. ADJUSTED SCHEDULING WITH OS COUNTER TICK OF 500US

Name Type Period
(µs)

Deadline
(µs)

Offset
(µs)

Priority

Torque_Manager Task 1000 100 - 200

Analog_Manager Task 1000 500 0 102

ASIC_Manager Task 1000 1000 500 95

Temp_Manager Task 10000 10000 2000 71

Mode_Manager Task 5000 5000 2000 70

Com_Rx Task 5000 5000 2000 50

Com_Tx Task 5000 5000 3500 45

Memory_Manager Task 10000 10000 9000 5

Diagnosis Task 10000 10000 8000 2

After the adjustment of the scheduling as defined in table
III, a rerun of the simulation shows, that the end-to-end latency
of the event chain now remains under the deadline of 12ms.
An example for a successful evaluation of the requirement is
shown in figure 11.



Figure 11. Successful evaluation of end-to-end latency requirement (Tem-
perature Error)

The distribution of the end-to-end latency for the event
chain Temperature Error predicted by the simulation is shown
in figure 12.

Figure 12. End-to-end latency distribution for event chain (Temperature
Error)

According to these results, the latency of the event chain
ranges from 0.3ms up to 10.4ms.

E. Evaluation of event chain ’Analog Input Error’

In addition to the main temperature sensor, the SCM
processes temperature information from two additional tem-
perature sensors in different locations. These are connected
to the SCM via two multiplexed (switched) analog inputs.
The multiplexing is controlled by an ASIC using synchronous
SPI bus communication. Depending on the SPI pin selection
controlled by the ASIC_Manager, the ADC reads the sensor
signal from either Analog_Input 1 or Analog_Input 2.

As shown in figure 13, the switching between the analog
inputs every 6ms can lead to a delay for the recognition of
a potential Analog Input Error. In this situation, we can see
that an input error propagating from Analog_Input 1 is not
processed immediately by the Analog_Manager task, but only
after an additional switching cycle, when Analog_Input 1 is
selected again after Analog_Input 2 was read. Considering the
simulation results we can see that the switching frequency is
highly relevant for the optimization of the end-to-end event

Figure 13. Violation of end-to-end latency requirement (Analog Input Error)

chain latency. If we increase the frequency (decrease the
period) switching inputs every 1ms, thus accepting a slight
increase of the CPU load, we can reduce the time delay for
the error indication to propagate and reach the power stage in
less than 12ms as depicted in figure 14.

Figure 14. Successful evaluation of end-to-end latency requirement (Switched
Analog Input Error)

VI. COMPARISON OF CPU LOAD FOR SCHEDULING
ALTERNATIVES

Finally, after the optimization of the end-to-end latencies
for the different event chains, we compared the CPU load char-
acteristics of the different scheduling alternatives, as described
in table I and III.

Figure 15. Simulated CPU load average for initial configuration



Figure 15 shows the CPU load for the initial configuration
of the SCM before the optimization, and figure 16 shows the
CPU load for the final configuration. In both cases the CPU
load curve was calculated for a smoothing interval of 1ms
with a granularity of 10us.

Figure 16. Simulated CPU load average for final configuration after
optimization

We can observe that the CPU load peaks in the initial
configuration reach up to 64%, and are slightly higher than
those observed in the optimized configuration. The decrease
from 64% to 58% was achieved mainly by the re-adjustment
of the start offset for the ASIC_Manager task.

VII. GENERIC DESIGN RULES LEARNED FROM THE CASE
STUDY

A key question for the optimization of the scheduling in
the SCM was to know which configuration parameters can be
changed, and which changes are the most effective in order
to fulfill the timing requirements. The theory for preemptive
fixed-priority scheduling usually focuses on the optimization
of process priorities and relative activation offsets. As we have
shown in this paper, the optimization of offsets – even when it
is done manually – is very effective to minimize the number of
context switches3 and to smooth the CPU load in time intervals
which show high CPU load peaks. At this, it is important
to follow the precedence relations imposed by the data flow
in the system, as otherwise the end-to-end latencies of event
chains will be unnecessarily prolonged. However, we have
also shown that for the optimization of event chains, it can
be very useful to consider changing also other aspects of the
system configuration, like activation periods, or the number
and decomposition of processes:

• Periods of time-triggered processes: Usually, the ac-
tivation period of a time-triggered processes is de-
duced from the system requirements of the functions
allocated to this process. Nevertheless, in some cases
the activation period can be relaxed without violat-
ing any constraints. For example in many control
systems, processes concerned with the sampling and
(pre-)processing of sensor data are usually scheduled
with a higher frequency than necessary, in order to
compensate for unpredicted scheduling effects.

3A context switch in an AUTOSAR OS with memory protection may
consume several microseconds.

• Number and decomposition of processes: The number
of processes and their decomposition, as a matter of
fact the allocation of basic and application software
functions (or runnables) to processes, is guided by
both functional and safety requirements. As the end-
to-end latency of an event chain results from a prede-
fined, sequential chain of function executions and data
flows, and thus depends on the timely interaction of
the involved processes, it can only be optimized under
consideration of the underlying process architecture.
In a complex control system, consisting of many event
chains with different criticality, designers must find a
trade-off between the separation of concerns driven by
safety requirements, and the compliance with real-time
requirements imposed by the functional domain.

• Execution order: In general, the execution order of
functions within one process should follow the data
flow between the functions. In some cases, additional
design techniques must be employed to break up
feedback loops in the data flow.

• Core affinity: On multi-core processors, the core affin-
ity of a process defines on which core(s) this process is
allowed to execute. In order to avoid expensive cross-
core communication between processes, functions of
the same event chain should not be allocated to
processes which execute on different cores.

VIII. EXTENDED TIMING-AWARE CO-DESIGN
METHODOLOGY

Based on the experiences made in the case study, we
have enhanced our development process for the verification of
(safety-critical) event chains with hard real-time requirements.
A seamless workflow as depicted in figure 17 combining
timing measurements on the target hardware with model-
based timing simulation was defined, and feasibility of the
approach was tested using the commercial tools chronVIEW
and chronSIM developed by INCHRON.

Sensors
Actuators

Microcontrollers / CPUs
Peripherals

Busses

Tasks / ISRs
Shared resources

CPU / Core mapping
Scheduling parameters

Execution times

Functional
data and control flow

Dysfunctional
data and control flow

Functional
timing requirements

Dysfunctional
timing requirements

Timing simulation

Safety analysis
(FMEA, FTA)

Hardware and software
architecture model

Trace analysis

Target measurement
(Hella specific tooling)

Optimize configuration

Refine simulation

Figure 17. Model-based timing simulation of AUTOSAR compliant systems

The following work tasks shall be performed iteratively:



• Specify the structural system architecture comprising
the basic hardware and software elements using the
MCSE modeling concepts.

• Identify the interactions between application and basic
software (e.g. required services), and basic software
and hardware peripherals (e.g. sensor data acquisi-
tion).

• Specify the dynamic system architecture comprising
the basic execution and communication blocks (tasks,
interrupts, messages) and their associated timing prop-
erties (BCET, WCET, period, offset, deadline, priority
etc.).

• Specify the functional data and control flow consider-
ing all relevant modes of operation.

• Perform safety analysis and deduce the dysfunctional
data and control flow for all relevant fault conditions.

• Create (using chronSIM’s model editor directly) or
generate (using the INCHRON python API) a timing
simulation for the chronSIM tool out of the various
architecture models.

• Define simulation scenarios in chronSIM for the var-
ious modes and fault conditions and perform simula-
tion runs.

• If available perform measurements of the integrated
target and import and analyze the measured trace with
the chronVIEW tool.

• Extract timing properties and update simulation pa-
rameters with measured values. This is already done
automatically by the tool.

• Iteratively perform simulations and target measure-
ments until all functional and safety requirements can
be fulfilled by the current set of timing properties.

IX. CONCLUSION AND FUTURE WORK

Following the practical approach described in this paper,
we have shown how state-of-the-art model-based simulation
techniques can be used to support the dynamic architecture
design of complex automotive control systems. Although,
it may appear that adjusting the scheduling configuration
in the presented examples is not too complicated, and the
proposed solutions may seem obvious, one should consider
the number and complexity of the entire event chains in the
SCM. In reality, system engineers and software architects
responsible for integration and testing, have to achieve many
different competing, and sometimes contradicting design goals,
especially concerning the dynamic behavior of the system.
Model-based simulation and statistical analysis tools as pro-
vided by INCHRON greatly help to detect possible real-
time requirement violations, and furthermore offer guidance in
order to adjust and optimize an existing system configuration.
Eventually, they help to document and prove4 the feasibility
of the dynamic architecture design or subsequently proposed
design modifications.

4Depending on the safety and integrity level (SIL) standards like IEC 61508
or ISO 26262 for automotive require or at least recommend the usage of
analysis and simulation tools for the verification of the dynamic architecture.

Another goal of the case study was to explore possible
options for the integration of the different tools used in this
project, e.g. for modeling the system architecture, compiling
the AUTOSAR configuration, performing the timing simula-
tion, and debugging and tracing on the target microcontroller.
Although, some tool-integrations already exist, for example
the INCHRON Tool-Suite can generate a model out of an
AUTOSAR configuration in .arxml format, not all the relevant
information is represented adequately in each model. In some
case, we used the Python programing language and the model
API of the INCHRON Tool-Suite to automatically generate
the simulation model, and to extract execution times from
a measured trace in order to update the parameters of the
simulation model. In other cases, e.g. for the modeling of event
chains or real-time requirements, the transformation from the
system architecture model into the simulation model was done
manually, mainly due to issues with the interpretation of the
data flow semantics discussed in section IV-D of this paper.

In the future, we intend to increase the efficiency of the
integration between the simulation and system modeling tools
by extending the UML/SysML meta-model profile with the
semantics defined in the MCSE methodology. This will make
it possible, to automatically generate the event chain and
requirement definitions used by the simulation, directly from
the system architecture model, and thus eliminate the need
to re-model them manually. This solution would also use
the existing model API of the simulation tool, and can be
maintained without high effort.

After that, we also want to evaluate, if formal verification
methods as described in [6] can be applied in a real project en-
vironment, in order to find possible inconsistencies concerning
the data and control flow already in the structural architecture
model, and thus reducing the number of required simulation
iterations for the optimization of the system. Finally, we
plan to migrate the case study to a multi-core platform, in
order to analyze and verify our assumptions for multi-core
architectures.
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Abstract 

Complex industrial systems need extensive validation and verification. Methods for this are well advanced in 
case of discrete systems. However, for hybrid systems that combine discrete and continuous aspects, they are not 
as well developed. To deal with this, qualitative simulation can be used, based on the principle of discretization 
by identifying domains of variation of continuous variables and tracking the evolution of these variables. A 
system can be discretized by representing its continuous parts, which are described by differential equations. 
When these are coupled with the discrete parts of the system, a fully discrete global model is obtained, on which 
formal techniques can be applied for the validation process. If the differential equations cannot be expressed 
clearly, it is necessary to establish a qualitative model describing the laws of evolution of continuous variables. 
We defined and tested a novel methodology that represents variations of continuous variables and the causal 
links between them to obtain mappings of system behaviors that are suitable for validation.  

Keywords: hybrid systems, formal methods, qualitative simulation, validation 

1. Introduction 

Industrial systems are becoming increasingly more complex, requiring more powerful formal methods of 

verification and validation. Large models are usually difficult to solve analytically, so engineers use numerical 

simulations to study their behavior. But numerical simulation has limitations. It requires determining the values 

of parameters and initial conditions. In practice, these are often difficult to specify. Another difficulty is 

needlessly calculating the behavior of a system for parameter values that are of no practical interest in a lot of 

situations. More often it is of greatest interest to determine what class of behaviors is to be expected for a given 

constraint imposed on the initial conditions and parameters. That is why qualitative models and simulations have 

been used; they can cope with imprecise knowledge and with infinite numerical value domains by compacting 

them into abstractions, and using qualitative predictions to predict the significant qualitative classes of system 

behaviors. This type of qualitative reasoning is also suitable for process analyses and verifications. 

In this paper we describe an approach proposed by CEA LIST, which uses formal techniques in order to 

automatically prove safety properties and to automatically generate a set of corresponding test scenarios. To that 

end, a methodology and a corresponding tool (named DIVERSITY) based on symbolic execution were 

developed at CEA LIST. This technique allows generating symbolic scenarios corresponding to classes of 

system behaviors, which are sequences of well-defined actions. Once the set of all possible symbolic scenarios is 

computed, it is possible to prove properties on this set and to generate concrete numerical tests from them (a 

single numerical test is sufficient to represent a given symbolic scenario). Symbolic execution is a proven way of 

overcoming both combinatorial explosion and computational redundancies. However, to analyze complex 

systems that include continuous components that are classically modeled by hybrid automata, it was necessary to 

extend the simulation method used in the DIVERSITY tool to support qualitative methods.   



Qualitative reasoning has been applied in different domains as Artificial Intelligence, mathematics, economy, 
and much in bioinformatics this last decade [MGCL07]. Recent developments of formal tools and the increasing 
power of computers lead us to believe that these methods can be applied effectively to industrial-size hybrid 
systems. 

State of the art 

Hybrid systems can be described by a finite set of continuous processes and transitions, and a set of real and 
discrete variables on which they operate. The processes are generally defined by differential equations that give 
changes in the real variables. Transitions are discrete assignments and guarded with variables. 

There are several classes of hybrid systems: if the differential equations, guards and assignments are linear, then 
the hybrid automaton is said to be polyhedral (polyhedral hybrid automaton). If the differential equations are 
equalities and inequalities that include constant parameters, then it is called rectangular (rectangular hybrid 
automaton). Finally, if the differential equations are equalities and inequalities that include the unit of time as a 
parameter, the system is said to be timed (timed automaton) and real variables are clocks (clocks). Timed 
automata are specially handled by the Uppaal [Be02] and Kronos [Bo98] tools. 

For other types of hybrid systems, we can mention the following tools and methods, which are used to calculate 
a set of accessible states approximated by a superset of those states: Hytech [HHT97] for rectangular hybrid 
automata with transitions with linear guards; Checkmate [CK03] for non-linear continuous evolutions but with 
linear guards, evolutions approximated by a polyhedral; the Tiwari & Khanna method [TK02] for polynomial 
continuous evolutions, where the system is abstracted as a discrete system whose guards are polynomial. This 
latter approach [TK02] was chosen in our work because it can manipulate polynomial constraints that are widely 
used in differential equations involved in embedded systems, especially in the mechanical domain. The 
QEPCAD tool was used to deal efficiently with constraints including polynomial expressions [Br03]. 

If the system is not clearly described by differential equations, a qualitative model must be established using 
specifications that describe the evolution of continuous variables. Many works have been published on this topic 
and a good survey of them has been presented in “Modèles et raisonnements qualitatifs” [TD03], and, prior to 
that, in “A Survey of Techniques and Applications” [Qr95]. 

Technical context 

A hybrid automaton [H96] is defined by a set of states and discrete and continuous variables. A transition 
between states has a guard that depends on the values of the variables and will assign new values to the variables 
corresponding to the new target state. For continuous variables, the laws of evolution can be described by more 
or less accurate differential equations in the context of the various possible formalisms and methods [TD03]. 
Continuous variables change according to these laws, representing the different states of the system. System 
states are timed in the sense that they have a duration. In contrast, the transition time between states of the 
system is assumed to be zero, as the system performs instantaneous assignments to variables. 

To simulate this type of model, qualitative simulation [K86] [TK02], which is an alternative to numerical 
simulation is used. It is based on the principle of discretization by partitioning domains of variation of the 
continuous variables, based on the evolution trends of these variables (increasing, decreasing, or constant) 
indicated by the signs of their first derivatives (positive, negative or null). In this way, one can get a tree of 
abstract behaviors [RGLG03] that allows for coverage of the system states [GP14]. If these are coupled with the 
discrete part of the system, a fully discrete global model is obtained on which formal techniques can be applied.  

If the differential equations are not available, it is necessary to establish a qualitative model that describes the 
laws of evolution of the continuous variables. One solution is to represent the velocity of variations for 
continuous variables and to establish causal links between them. This construction of automata modeling the 
evolution of continuous variables requires specific rules that we present here. These rules allow the definition of 
qualitative states and associated transitions where each qualitative state corresponds to a set of values for 
continuous variable with regards to its evolution law (corresponding to the sign of the derivative: positive, 



negative or null). Each transition defines a rule that allows the evolution to move from one set to another (e.g., 
move from a zero to a positive derivative). 

2. Models with differential equations 

As part of our study we retain the framework of models with differential equations of the first order (i.e., with 
first derivatives only), with polynomial integer coefficients, but to any degree and with any number of variables 
(this is the framework chosen by Tiwari [TK02] for qualitative simulation). Higher-order differential equations 
can be reduced to first-order differential equations by changing variables. 

In summary, continuous variables change continuously with time and they can be calculated by the differential 
equations applied to the control states which define the laws of change. When a guard of a transition whose 
source state is the current state of control becomes true, this transition is fired, resulting in new values being 
assigned to certain variables. In the new state of control, which is the target state of the transition, the new 
differential equations applying to that state provide the corresponding laws for the further evolution of the 
continuous variables.  

Qualitative simulation with differential equations 

In this section, the context is assumed to be a continuous system described solely by differential equations. 

Qualitative simulation, whose core principles were well defined in the 80s and which was refined in the 2000s, is 
based on the principle of discretization by partitioning areas of variation of the continuous variables of the 
system, based on their evolution trends (increasing, decreasing or constant) based on the signs of their first 
derivatives (positive, negative or zero). When all the discrete states corresponding to this qualitative partitioning 
are created, we can apply a simple algorithm based on the possible evolution of each variable. That is, a 
derivative may change its sign only when vanishing, because the process is continuous (for example a positive 
derivative must first be zero before becoming negative). This limits possible evolutions and thus reduces the size 
of the corresponding graph. Finally, the differential equation system allows generation of a transition system 
whose states are based on partitioning continuous variables into change in areas as described above and whose 
transitions are possible evolutions of these states. It has been shown that the result of such a qualitative 
simulation is an abstraction of the original differential equation system. 

Symbolic execution 

In the following, we describe the classical technique of symbolic execution used in the DIVERSITY tool as it is 
a based on the method presented in this paper, with an adaptation to hybrid automata context. 

Starting from a transition system whose transitions are labeled by conditions and assignments to variables, it is 
possible to produce its corresponding symbolic execution tree, in which variables are described by expressions 
with parameters.  

Given the current state S of the transition system, and a condition which is associated with the current state, the 
path condition PC, a symbolic execution constructs the tree of sequences of symbolic states, based on the 
following rules: 

The root of the tree is the initial state (the current state at the beginning of the process); 

For each possible successor of the current state S, a path can be constructed, if and only if the condition C on the 
parameters that makes a state S’ a successor of the current state can be true; in that case, an edge is constructed 
from S to S’ and the new symbolic values of variables are evaluated, applying the assignments, their symbolic 
values having been updated by substitution and simplified by a simplification procedure (for instance, if x + y is 
assigned to x, with a and b as initial values of x and y, then the final value of x will be a + b); 

S’ is associated with a new constraint PC’, which is the conjunction of PC and C (if the PC is evaluated to false 
by a constraint solver then the path is cut); 



The process is repeated with the successors of S’; 

If a new symbolic state has already been reached along the same path (or in a previously calculated path if a 
more compact tree is required), then the execution of this path stops: this can be determining by comparing the 
appropriate sets of variables, by the criteria of inclusion (or equality if more precise calculus is required), for 
instance if the PC is x>0 in the previous state, and PC’ is x >1 in the final state, then the set of possible values of 
x in the final state is included in the previous state and the path can be cut; 

The symbolic execution is over when all the possible paths have been assessed. 

The discretization process  

The discretization process requires creating a state machine for each variable representing an abstraction of its 
evolution. A variable x can be increasing, decreasing or constant, which is equivalent to the differential 
equations dx/dt > 0, dx/dt < 0, dx/dt = 0. This will be represented by a state machine with 3 states and the 
possible transitions between them corresponding to possible evolutions of the system.  

Each transition is defined by an initial state, a guard, a final state, and a constraint expressed by a formula that 
must be evaluated a posteriori and whose evaluation will be based on each variable value after having been 
updated by its own state machine. The update of the variable depends on its direction of change (e.g., the new 
value of x > old value of x if dx/dt > 0 ...). As the constraints represent the differential equations according to the 
direction of evolution of the synchronized variables, the conjunction of these constraints represents the overall 
constraint that must be satisfied if the overall step of simulation is possible. To evaluate this overall formula the 
tool QEPCAD was used, which handles polynomial constraints. If the formula evaluates to false, the 
corresponding branch in the execution tree is cut. This process is repeated until the entire execution tree has been 
computed. As control states correspond to the direction of variation of each variable, we obtain for 3 states for 1 
variable, and 3n states for n variables. As the set of states is finite, the process will necessarily terminate. This 
number of states (3n) gives a good idea of the potential complexity of the resulting models. It is clear that, in the 
worst case, the number of paths may be excessive. However, we assume that, if the method is applied to models 
of real-world systems, the number of classes of behaviors represented in this way will generally not be too large. 

Complete system 

In the case of a "traditional" hybrid system, the differential equation system which describes the continuous part 
of the system is combined with a discrete system in which there are discrete variables and transitions that affect 
these variables. For the qualitative simulation the discrete part of the system is unaffected by the discretization 
method described above. Control statements are for discrete variables "simple" states, while for continuous 
variables they are continuous process. The latter can be discretized with the qualitative simulation mechanism 
described above. Consequently, the entire resulting system is discrete, which means that it can be treated using 
traditional mechanisms (verification, test generation) that are applicable to discrete systems. 

Nevertheless, there is a case which can be problematic: it occurs when the discrete part of the system contains 
variables whose domains of definition are infinite. Indeed, the number of states of the system in that case is 
potentially infinite, limiting the ability to fully analyze the system. In practice, if one is faced with such systems, 
several techniques are possible. We have chosen symbolic execution, which provides a representation that is 
either equivalent to the real system or a valid abstraction of it. It has been shown that when symbolic execution is 
applied, if the cut-off criterion is the equality of domains, then the execution tree is bi-similar to the digital 
implementation of the numerical tree. On the other hand, if the cut-off criterion is the inclusion of domains, then 
the symbolic execution tree is an abstraction of the numerical implementation of the system tree. 

Working with Booleans or integers in the scope of Presburger arithmetic ensures the decidability of the process 
of the equality or inclusion. In this context, applying the symbolic execution to the discrete part of the system 
produces at least an abstraction of the execution tree of the system. As qualitative simulation also produces an 
abstraction of differential equations that it processes, the product of qualitative simulation and symbolic 
execution gives an abstraction of the execution tree of the system. 



If we place ourselves in a less constrained framework, for example in the context of handling complex 
calculations of real numbers, we cannot apply the preceding cut-off criteria for the calculation of the symbolic 
execution tree (equal criterion or inclusion). In that case, the cut-off criterion chosen is generally a criterion of 
depth in the execution tree. In this case, we know that to this depth the symbolic execution tree is bi-similar to 
the numerical execution tree. It is thus necessarily an abstraction, and, therefore, for a chosen depth, we have as 
in the previous case of Presburger arithmetic, the ability to produce an abstraction of the numerical tree of the 
system. 

As a result, we have an original method and an associated tool – based on symbolic execution for discrete parts 
of models and qualitative simulation for continuous parts – which can provide a usable abstraction of models of 
complex systems in every case. This approach reduces path redundancies to a minimum and, thereby, provides 
efficient support for analysis and verification of system properties. 

Implementation 

Qualitative simulation produces a discrete graph that is an abstraction of the system of the represented 
differential equations. The discrete graph is implemented by a transition system expressed in XLIA, which is the 
internal language of DIVERSITY. 

Similarly, the discrete parts of the system can be translated from a model expressed in an industry-standard 
language like UML, SDL, or Matlab/Simulink, into XLIA, to be processed by the DIVERSITY tool. 

Therefore, it is planned to jointly run the two systems (discretized differential equations and discrete system) 
translated into XLIA in a model by creating a model that includes these two XLIA models along with the 
connections between them. In the preceding discussion, it was assumed that the system has just a single 
differential part; but one can generalize this reasoning to a system with multiple differential parts, each of which 
can be discretized using the same process and then translated to XLIA. 

An example: The Brusselator 

The Brusselator is an example of an oscillating autocatalytic chemical reaction [AH03]. Its mechanism is given 
by the four following chemical equations: 

1. XA →  

2. XYX 32 →+  

3. CYXB +→+  

4. DX →  
 

The dynamics of this system are described using differential equations and are typically resolved by a Jacobian. 

Our goal is to provide a discrete description of the dynamics of the Brusselator. For this we divide the plane (X, 
Y) in areas according to increase/decrease X and Y, wherein these domains are synthesized by abstract states. 

We thus obtain the graph of abstract states of X and Y, and therefore the behavior of the Brusselator system. 

Equations 

Vx = 1 - (b + 1) X + a X2 Y (the growth rate of the concentration of X) 

Vy = b X – X2 Y (the growth rate of the concentration of Y) 

Note 1: variables X, Y, and parameters a and b are positive. 

Note 2: If  the speed Vx is positive [resp. negative], the concentration of X increases [resp. decreases]. 



Abstract space 

Division of space: 

- 3 possible states for Vx (Vx = 0, Vx> 0 or Vx <0); 

- 3 possible states for Vy (Vy = 0, Vy > 0 or Vy <0). 

This makes a total of nine states (3x3): 

State S1: Vx < 0 and Vy > 0 

State S2: Vx = 0 and Vy > 0 

State S3: Vx > 0 and Vy > 0 

State S4: Vx > 0 and Vy = 0 

State S5: Vx > 0 and Vy < 0 

State S6: Vx = 0 and Vy < 0 

State S7: Vx < 0 and Vy < 0 

State S8: Vx < 0 and Vy = 0 

State S9: Vx = 0 and Vy = 0 

 

The diagram represents the qualitative simulation of the Brusselator. 

Dynamic analysis 

Calculating all the possibilities of movement is equivalent to firing all transitions from each abstract state of the 
abstract space listed above. The simulation then yields the tree of all possible paths, which captures all possible 
dynamic behaviors. 

Qualitative simulation shows strictly and explicitly the loop operation, which is characteristic of the Brusselator, 
without having to unfold the standard calculations of numerical analysis (by the Jacobian). On the other hand, 
the resulting abstract model provides an excellent support for the proof (e.g., it can show a loop clearly, or 
evaluate the intersection of the set of qualitative states with a forbidden region), especially for temporal logic 
properties. Finally, the abstract model can also help in the definition of test sequence (in this case, it 
demonstrates a characteristic sequence of the main loop by an experiment). 

3. Models without differential equations 
 

The method can be applied to a system including the physical data subsystem that is continuous. For this type of 
model the evolution of continuous variables laws can be described by differential equations or by abstract 
equivalents based on the tables of variation. In this section, we focus on the second case. The objective is to 
realize a hybrid automata representation of the system, and to apply to this model the technique of qualitative 
simulation that provides classes of behavior. The value of having such classes is to gain generality when 
validating the simulated model. Thus, if a loop is detected, it can be deduced that this loop exists for all the 
corresponding numerical paths. A major application of the qualitative method is getting a "mapping" of the 
behavior of the system. This mapping is intended to serve as a support for other purposes, such as co-simulation, 
HMI validation, etc. 

Modeling the hybrid system 

The inputs to the tool are specifications (which may be textual) and known data of the system, including 
engineering experiences. The model can then be encoded directly into XLIA, the internal language of 
DIVERSITY, in the form of concurrent state machines. It may be encoded using an industry-standard such as 



SysML (an objective for our future work), but it is necessary to translate this to XLIA to use the DIVERSITY 
tool. 

When the differential equations of a system are not available to describe the behaviors of the continuous 
variables, their laws must be expressed by hybrid automata, which must conform to specific methodological 
construction rules. These rules are summed up by the following diagram, which represents the possible 
sequences of qualitative states. 

Indeed, they may be to the Nul state, their values are constant. They 
can begin to grow, which corresponds to the Pos Start state, or begin 
to decline, which corresponds to the Neg Start state. They may 
continue to decline, which corresponds to the Neg state, or continue 
to grow, that is to say the Pos state, eventually reaching either the 
Max or the Min state. 

From the XLIA model DIVERSITY generates a tree of behaviors 
that can be represented in a graphical format for easier 
comprehension. For example, system cycles can be highlighted in 
this way. 

Thus execution traces resulting from DIVERSITY simulations of the model can be analyzed and compared with 
potential scenarios configured by the operator in the simulator. In addition, one can compare the execution traces 
produced by the numerical simulator to what is expected by the qualitative model, to establish compliance of the 
numerical simulation to the qualitative simulation. DIVERSITY includes a feature that can automatically 
generate a compliance verdict. 

Outputs 

DIVERSITY calculates a symbolic execution tree in which each execution path corresponds to a potential 
system behavior. If test is provided for each such path, a satisfactory coverage of behaviors can result. 

The classical system properties that can be identified with this technique include detecting cycles (e.g., 
oscillations) and reachability (or not) of specific states (critical, non-critical, etc.). 

Case study 

This technique was applied to the SRI temperature control model (Intermediate Cooling System [NDB14]), 
which was coded directly into the internal language of DIVERSITY. The SRI is a basic system found in French 
nuclear power plants, which is used to provide cooling of auxiliary secondary circuits connected to the turbine 
process. This is a device for cooling several hot sources through an interface with a cold source, controlled by 
exchangers. It is of reasonable size and is sufficiently independent without being too simple, permitting it to be 
used in “Cluster Connexion” (a French BGLE2 project, 
COntrôle commande Nucléaire Numérique pour l’EXport et la 
rénovatION)) with available project resources. It contains 
logical and analog parts, and is, therefore, a good candidate for 
our study, which was coded directly into the internal language 
of DIVERSITY using the modeling methodology described 
above. 

Three state variables in the SRI model were the primary subject 
of the simulation process study: the hot temperature of the 
circuit (input to exchangers), the cold temperature (output from 
exchangers) and the flow in the exchangers (given by the rate 
of the flow within an exchanger). All other parameters were 
assumed to be constant. 



From the qualitative SRI model DIVERSITY generated a behaviors tree that could be represented in a graphical 
format for readability. This set of paths can highlight any potential oscillation in the control cycle, which can 
occur when the set temperature is exceeded, giving rise to several control cycles before stabilizing. 

Another useful input to the DIVERSITY tool is a set of traces based on numerical simulation scenarios of the 
system. These traces capture observable variables in the numerical simulations. They can be used to demonstrate 
compliance of the numerical model with the XLIA model. Namely, the execution traces of the simulator can be 
compared to those of the qualitative model so that compliance of the numerical simulation with the qualitative 
simulation modulo these traces could be established. This was done by considering changes in temperature 
measurements in the circuit (by observing the oscillatory phenomenon of the regulation). 

The following are graphical representations of the three main automata of the model that was realized in 
DIVERSITY and the graphical representation of the results of the qualitative simulation calculated by the tool:

Cold Temperature: TCold. 
Variation of TCold: dTCold 

 

 

Hot Temperature: THot. 
Variation of THot: dTHot 

 

 

Exchange rate: Rate. 
Variation of Rate: dRate 

Note: ∆HeatSource>0 (resp. < 0) means an increasing (resp. decreasing) of heat source. 
Thus we finally obtain a set of paths containing all potential behaviors. The following picture describes one of 
them. 

 

For this global case study we obtained a behaviors tree containing 49 states and 18 paths. Each path is a behavior 
cycle of the system. The longest path contains 19 states. 

The complexity of the approach without using differential equation is similar to the complexity encountered with 
differential equations, in terms of numbers of states and potential paths of the produced tree. Based on that so we 



anticipate that, for reasonable case studies we will not have to model systems with very large numbers of distinct 
classes of paths, and that the method will remain practical. This will have to be evaluated more in the future with 
larger experiments. 

4. Conclusion 
 

The technique of qualitative simulation with differential equations has been evaluated using the CEA LIST 
DIVERSITY tool on several different models, including a model of chemical equations (the Brusselator), which 
is completely nonlinear. The main result of this was that a mapping of the behaviors of such systems can be 
calculated very quickly and presented in an abstract form, using qualitative states and transitions. For instance, in 
the chemical model example we obtained a single path which synthesized many concrete numerical paths.  

Applying the method to the case when differential equations cannot be expressed clearly was also evaluated. A 
model of the cooling system in the French BGLE2 project “Cluster CONNEXION” was used. It provided 
interesting results, allowing the comparison of qualitative paths against the numerical paths obtained by 
numerical simulation, which are difficult to classify for validation activities. Since the qualitative paths are an 
abstraction of the numerical ones, they are more usable for formal activities and provide a more human-friendly 
and more suitable representations of behaviors (e.g., detecting oscillations or proving essential properties of the 
system).  

Prospect 

A tree produced by DIVERSITY can be used in co-simulation to validate other systems that interact with the 
hybrid system represented in this way. Indeed, co-simulation generally involves numerical simulators which 
often involve long computation times and which are necessarily configured only for specific scenarios, thus 
reducing the scope of exploration. In contrast, qualitative simulation provides a good abstraction of all system 
behaviors, which requires less computation time and thereby enables more exhaustive exploration. 

We plan to construct a component FMU (Functional Mockup Unit) from the execution tree generated by 
DIVERSITY, which can play the role of observer and actuator, and which can be interfaced with a simulated 
system. This component can then be used to automatically drive a pre-computed execution scenario replacing the 
need for a human operator of the simulator. 

Bibliography 

[AH03]  Ault, Shaun; Holmgreen, Erik. “Dynamics of the Brusselator” Academia.edu, 16 March 2003. 
11/27/10 http://fordham.academia.edu/ShaunAult/Papers/83373/Dynamics_of_the_Brusselator 

[Be02]  Bengtsson, J., Griffioen, W. O. D., Kristoffersen, K. J., Larsen, K. G., Larsson, F., Pettersson, P., 
and Yi, W. (2002). Automated verification of an audio-control protocol using UPPAAL. Journal of 
Logic and Algebraic Programming 52-3, 163-181. 

[Bo98]  Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., and Yovine, S. (1998). Kronos: A model-
checking tool for real-time systems. In Computer Aided Verification, LNCS 1427, 546-550, 
Springer. 

[Br03]  C.W. Brown. QEPCAD B: a program for computing with semi-algebraic sets using CADs. SIGSA 
Bulletin, 37 (2003), pp. 97–108 

 [CK03]  Chutinan, A., and Krogh, B. H. (2003). Computational techniques for hybrid system verification. 
IEEE Transactions on Automatic Control 48, 64-75. 

 [Qr95]  Qualitative reasoning: A survey of techniques and applications, P. Bourseau, K. Bousson, P. Dague, 
J.L. Dormoy, J.M. Evrard, F. Guerrin, L. Leyval, O. Lhomme, B. Lucas, A. Missier, J. Montmain, 
N. Piera, N. Rakoto Ravalontsalama, J.P. Steyer, M. Tomasena, L. Trave-Massuyes, M.R. Vescovi, 
S. Xanthakis, A. Yannou, AI Communications. Special Issue MQ&D: Qualitative Reasoning, Vol.8, 
N°3/4, pp.119-192, Sept-Dec 1995  



[GP14]  Jean-Pierre Gallois et Jean-Yves Pierron, INTERVAL, instanciation d'une plate-forme de validation 
pour les spécifications industrielles dans le cadre du projet CONNEXION, Génie Logiciel Hors-
série « L'initiative Connexion : IDN et Contrôle-Commande »: 32-38, 2014. 

[H96]  T. Henzinger, The Theory of Hybrid Automata, Proceedings of the 11th Annual IEEE Symposium 
on Logic in Computer Science (LICS 96), pp. 278-292. 

[HHT97] Henzinger, T. A., Ho, P. H., and Toi, H. W. (1997). HYTECH: A model checker for hybrid systems. 
STTT 1(1/2), 110-122. 

[K86]  KUIPERS B.J. (1986). Qualitative simulation.  Artificial Intelligence vol 29 n3  239-388. 

[MGCL07] Daniel Mateus, Jean-Pierre Gallois, Jean-Paul Comet and Pascale Le Gall, Symbolic modeling of 
genetic regulatory networks, Journal of bioinformatics and computational biology, Imperial College 
Press 05, 627 (2007) 

[NDB14]  Maxime Neyret, François-Xavier Dormoy et Jean-Christophe Blanchon, Méthodologie de validation 
des spécifications fonctionnelles du contrôle-commande, Application au cas d’étude du Système de 
Réfrigération Intermédiaire (SRI),  Génie Logiciel Hors-série « L'initiative Connexion : IDN et 
Contrôle-Commande »: 12-25, 2014. 

 [RGLG03] Nicolas Rapin, Christophe Gaston, Arnault Lapitre, Jean-Pierre Gallois Behavioural Unfolding of 
Formal Specifications Based on Communicating extended automata  ATVA 2003 

[TD03]  Travé-Massuyès Louise, Dague Philippe, Modèles et raisonnements qualitatifs ; TraitéIC2, série 
Systèmes automatisés, ISBN : 9782746207448, 2003. 

[TK02]  Tiwari, A., and Khanna, G. (2002). Series of abstractions for hybrid automata. In Hybrid Systems: 
Computation and Control, LNCS 2289, 465-478, Springer.  



Session 11

Virtual Platforms

Thursday 28th, 09:00 – Ariane 1

299



Xvisor VirtIO-CAN: Fast Virtualized CAN
Jimmy Durand Wesolowski12, Aymen Boudguiga2, Anup Patel3,

Julien Viard de Galbert1, Matthieu Donain4, Witold Klaudel5 and Guillaume Scigala1
1OpenWide, 23 Rue Daviel 75013–Paris, France, firstName.lastName[-lastName2]@openwide.fr

2IRT SystemX, 8 avenue de la Vauve 91120–Palaiseau, France, firstName.lastName[-lastName2]@irt-systemx.fr
3Individual Researcher, Bangalore, India, anup@brainfault.org
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Abstract—Nowadays, vehicles are embedding more and more
electronics to support new functions such as driver monitoring,
lane keeping and adaptive cruise control. However, adding elec-
tronics makes vehicles more expensive. Fortunately, virtualiza-
tion, via a hypervisor, reduces the number of embedded chips in
vehicle by running different guests, i.e. Operating Systems (OSes),
offering several services on the same board.

As the communication between embedded controllers is com-
pulsory for vehicles to function, an optimized virtualization of the
Controller Area Network (CAN) bus becomes mandatory. CAN
bus virtualization is challenging as it has to tackle the CAN
arbitration mechanism and to provide CAN frame broadcast in
a transparent manner. In this paper, we use the VirtIO virtual-
ization interface with a virtual CAN service and framework to
manage virtualized system external and internal CAN messaging.

Index Terms—Embedded Systems, Controller Area Network,
Virtualization, VirtIO, Xvisor

I. INTRODUCTION

By the end of the last century, transportation systems
and especially vehicles replaced some of their mechanical
functions by electronically controlled applications. Such ap-
plications include automatic control of windows, fuel injection
supervision and automatic activation of car headlights. By
the end of 2010, cars relied on software containing millions
lines of code on 70 to 100 microcontrollers, namely Electronic
Control Units (ECUs) [1], [2]. Nowadays, the customers needs
for new Advanced Driver Assistance Systems (ADAS) services
are increasing and so is the total number of embedded ECUs
in the vehicles [3]. In fact, proposing new services for drivers
on the road implies embedding more electronic boards, more
communication buses, more cables and more software, ending
up by increasing vehicle complexity. Consequently, car price is
rising with respect to the number of its embedded ECU while
it has to stay competitive on the market in order to attract
more customers.

One interesting solution to reduce the number of vehicle
embedded ECUs consists in using virtualization via a hyper-
visor. Virtualization allows to run different virtual automotive
Operating Systems (OSes), called guest OSes or guest systems,
simultaneously over one single physical board. Virtualization
defines the hypervisor as a software layer (called host) between
the guest OSes and the real hardware. The hypervisor emulates
the hardware board for each guest system (Figure 1). In

addition, it manages resources sharing between all the guests.
However, virtualization comes with a major drawback which is
computation overhead. As virtualization introduces the hyper-
visor layer between running guests and the board, it naturally
induces a delay for accessing the hardware. That is, a virtual
guest takes more time to access the memory, the network
interfaces and the CPU than a classical OS running directly
on the hardware. In fact, every time a virtual guest needs
to access a resource, it has to pass through the hypervisor
which introduces some overhead. Reducing this computation
overhead is really important especially for communication
scenarios. In practice, vehicle ECU exchange real time data
frames through the Controller Area Network (CAN) bus [4].
When virtualization is used, CAN bus virtualization overhead
must stay as low as possible.

Hypervisor (host)

Guest system 1 Guest System 2

Real hardware

Fig. 1. Bare metal hypervisor

In this paper, we introduce an optimized virtualized CAN
device. We use VirtIO API [5][6] to implement it for our
hypervisor namely Xvisor [7].

The remainder of this paper is organized as follows. Sec-
tion II reviews the CAN specification and introduces VirtIO
and Xvisor. Section III depicts our solution. Section IV con-
cludes the paper.



II. STATE OF THE ART

In this section, we give a brief description of the CAN
protocol. Then, we introduce VirtIO and Xvisor.

A. Controller Area Network

The Controller Area Network (CAN) connects Electronic
Control Units (ECUs) via a broadcast bus [4]. Each ECU is
in charge of controlling multiple actuators or sensors. In mid-
range cars, ECUs are used for Adaptive Cruise Control (ACC),
fuel injection supervision, anti-lock braking system and com-
fort services management. ECUs communicate by exchanging
CAN frames. These frames have one of the following types:

• Data frames exchange data between ECUs.
• Remote frames request the transmission of a specific Data

frame.
• Error frames indicate the presence of an error over the

CAN bus.
• Overload frames add an extra delay before the next frame

transmission.

CAN frames do not contain information about their sender
(i.e. source) or receiver (i.e. destination). They do not rely on
interfaces addressing. In practice, each ECU manages a limited
set of unique and distinct frame identifiers. A frame identifier
defines an action that must be taken by the frame receivers.

CAN bits are encoded using a Non-Return to Zero (NRZ)
code where 0-bits and 1-bits are encoded with different non-
null voltage. The value of each transmitted bit is sampled at
the end of a nominal bit time i.e. a bit time slot. In practice,
CAN 0-bits are generally referenced as dominant bits and 1-
bits as recessive bits.

CAN relies on Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) with a bitwise arbitration as bus
access method. The bitwise arbitration concerns the value of
frame identifiers. When two ECUs start the delivery of two
different frames at the same time, the ECU sending the frame
with the greatest identifier value stops its transmission at the
reception of a dominant bit while it is transmitting a recessive
bit.

B. Virtual Input Output

Virtual Input Output (VirtIO), is a virtualization abstraction
API. It was created by Paul “Rusty” Russel to create a
common layer for most virtual devices. As such, it avoids
the proliferation of virtualization techniques in drivers, whose
code and execution is similar to each others [8].

We choose to use VirtIO for CAN interface virtualization
for three reasons. On the one side, VirtIO defines a clear
and flexible API with well defined and optimized transport
abstractions, that fit our needs. On the other side, VirtIO
API is becoming the virtualization standard for host-guest
communication interfaces [9]. Finally, it is recommended and
supported by the LINUX community.

C. eXtensible Versatile hypervISOR

The eXtensible Versatile hypervISOR (Xvisor) is a type-1
monolithic embedded open-source hypervisor. A type-1 hyper-
visor, also known as bare metal hypervisor, is a virtualization
layer that runs directly on the hardware. Meanwhile type-2
hypervisor is executed on top of an operating system. Xvisor
is said to be Monolithic, as it has a common software for host
hardware access, CPU virtualization, and guest IO emulation.
Meanwhile, micro-kernelized software kernels contain basic
hardware access and CPU virtualization, but they relies on a
management guest to handle the other services (e.g. drivers,
file systems, . . . ) [7].

By design, it has a fast interruption management. Bench-
marks demonstrated a low overhead on both guest instruction
execution and guest memory operations [10]. For example,
a Xvisor guest yields an average of 2.550.336 Dhrystone
Millions of Instruction Per Second (DMIPS), compared to
2.558.851 DMIPS for a native system. In addition, the Read-
Modify-Write throughput on a guest is about 556,13 MB/s
compared to 564,58 MB/s on a native system.

Xvisor allows having an emulated interface if needed, a
paravirtualized one, or even a direct access to hardware when
the resource is not shared.

To conclude, Xvisor flexibility suits well our need to use
the already existing VirtIO interfaces, and to adapt it to create
a new one for the CAN bus VirtIO-CAN.

III. THE CAN VIRTIO

In the following section, we first list the industrial contraints
that must be fulfilled by our proposed solution, VirtIO-CAN.
Then, we describe it in details.

A. VirtIO-CAN Prerequisites

The following list depicts the requirements regarding CAN
virtual software:

1) The guest high level (userland) certified softwares must
remain the same. Thus, the interface for the CAN
must not change, i.e. it has to present a SocketCAN
compatible driver for LINUX guests.

2) The different guest systems can communicate not only
together, but also indistinguishably with the external
physical bus.

3) The access must be controlled. Some systems must not
have access to or read from the virtual and physical
buses.

4) The message priority must be supported.
5) Even guest-to-guest messages must go through the phys-

ical bus, as those frames can be used for monitoring or
debugging, for example, during a diagnosis with an On-
Board Board Diagnostics plug.

6) Xvisor interface for the CAN management must be
simple.

7) The overall performance must be comparable, if not
indistinguishable, from a non-virtualized (or native) sys-
tems.



B. VirtIO-CAN

In order to reach good performances, the CAN communi-
cation cannot be fully emulated, i.e. a fully virtualized. Full
virtualization implies trapping and handling every operation on
the device from the virtualized system, in a complex manner,
to simulate the hardware expected behavior.

As CAN resources are shared, direct hardware access,
namely passthrough, cannot be used. This would give all
guests the complete access to the same hardware and registers
in particular. A guest could then overwrite the controller
configuration or the data set by another guest. In addition,
it may perform conflicting operations that cause errors. In
the worst case, it may render the whole controller or system
unsusable. Thus, direct hardware access can only be used for
exclusive hardware access from one system, either the host or
one guest.

Our considered solution, referred to by paravirtualization,
uses a compromise between full virtualization and passthrough
approaches. The guest driver provides only an interface on
the host, with no knowledge of the underlying hardware. This
results in a better overall performance and a lower complexity
than emulation. Meanwhile, paravirtualization keeps the latter
advantages of controlling the resource access.

We choose to achieve this communication through the
VirtIO mechanism (presented in Section II-B). VirtIO defines
a communication standard for the virtualization of multiple de-
vices (console, network, disk, and soon graphical devices) over
a variety of tranport medium (memory-mapped or PCI bus). It
allows an identification of the device type, with the available
features on the host and the guest side, and the configuration
desired by the guest. High throughput data can be passed
through VirtIO queues called virtqueues, and smaller specific
data through the VirtIO configuration read/write functions.

VirtIO queues are designed for large data transfers. Their
data footprint is at least 4 KB of memory with a queuing
mechanism. CAN data frame has 29-bit long identifier and
64-bit long payload. Consequently, using VirtIO queues is
inadequate because it introduces a large footprint and a cum-
bersome overhead. So, we decide to use the alternative data
transmission mechanism: read/write configuration functions.
That is, the guest access are done at specific offset on the host
interface through VirtIO.

IV. VIRTIO-CAN IMPLEMENTATION

In this section, we describe the implementation and mecha-
nisms of the virtual CAN. First, we describe the initialization
of the different layers. Then, we not only depict a frame
transmission from a virtual system to the physical bus, but
we also detail the reception process in the opposite direction.
Finally, we present an internal frame transmission between
guests on the same board.

A. Initialization Phase

1) Initializing the hypervisor driver: In order to avoid
mixing the virtualization mechanism and the hardware man-
agement, the hardware controller driver is initialized and

operates the same way without virtualization. Depending on
the underlying material, CAN mailbox number varies. Note
that a mailbox is a buffer designed to filter CAN frames with
an identification mask. Each mailbox contains only one CAN
frame. It is used as reception and emission buffer with a
priority management. Mailboxes can be grouped to be used
as First In First Out (FIFO) queues. Due to the design of the
CAN bus, mailboxes assignment and setup is known and set in
advance. We can define the priority of mailboxes and FIFOs.
That is a FIFO contains a group of mailboxes with a defined
set of priority.

FIFOs are set if the number of virtual-mailboxes is greater
than the one available in the hardware controller. If the
hardware does not allow setting FIFOs, the service will not
be initialized to prevent misuse.

CAN hardware controller

Mailboxes

RxRx Rx Rx Rx RxTxTxTxTxTx Rx Rx queue

Defined by hardware (can be configurable)

Priority+ -

Fig. 2. CAN hardware controller system

2) Initializing the hypervisor service: We denote by
VirtCAN the hypervisor service for the CAN framework. As
such we avoid the ambiguity with the VCAN [11]. VirtCAN
creates virtual-mailboxes with FIFO support to separate the
hardware support from virtual system needs. It also provides
a communication layer through the VirtIO framework to the
guest system.

The host configuration sets the number of mailboxes and
FIFOs to be created (Figure 3). The virtual-mailboxes are
buffer slots of four 32-bit words each. The three first slots
correspond to the CAN frame itself, and the last one serves
for control and status storage (Figure 4).

VirtCAN framework service

Mailboxes Rx queue Rx queue Tx queue

Defined by the host VirtCAN configuration

Priorit
y

+ -

Fig. 3. VirtCAN system

Sending a frame on a particular mailbox returns an error to
the guest if the latter already stores one that was not sent. A
mailbox read twice without new matching frame also returns
an error. However, by design a CAN messaging system avoids
that.

The virtual FIFOs use the same buffer format (Figure 4), but
frames are queued. A guest system can read or write a defined
number of frames before an error is reported. In general, FIFOs
are used for lower priority frame reception.



However, the VirtCAN also permits the creation of trans-
mission queues.

VirtCAN frame buffer format

frame buffer 4 32-bit words
ID (11 or 29 bits) Data (0 – 3 bytes) Data (4 – 8 bytes) Control

Reserved / Unused

Fig. 4. VirtCAN framework buffer format

The hypervisor also has a configuration file for each guest
to describe which and how a virtual-mailbox is used by this
virtual system. Two guests cannot share the same virtual-
mailbox to transmit or to receive a frame. However, they
can have access to the same FIFOs. Each guest mailbox is
a memory pointer to a virtual-mailbox.

Mailboxes Rx queue Rx queue Tx queue

Priority+

Guest 1 (highest priority system)

Mailboxes

Tx Rx Rx Rx Tx Tx Tx Rx

Guest 1 configuration

Guest 2 (low priority system)

Mailboxes

Tx Rx Rx Rx Tx Tx

Guest 2 configuration

Guest 3 (low priority system)

FIFOs

Rx Tx

Guest 3 configuration

VirtCAN
Xvisor

-

Fig. 5. Guest to VirtCAN mailbox association

3) Initializing the guest driver: The guest driver uses the
VirtIO API to detect the VirtIO device and configure the
required mailboxes and FIFOs. The hypervisor checks every
guest setup to ensure its consistency.

B. Guest CAN Frame Transmission

Guests start transmitting at the end of the initialization
phase. The VirtIO driver receives the frame from the higher
layers (application, library, runnable, task,. . . ). Then, it sends it
to the hypervisor VirtCAN framework. The guest side VirtIO
writes the frame at the offset formed by the addition of the
mailbox or FIFO offset and an initial base offset for mailboxes.
The latter is set by the VirtIO-CAN API.

The CAN frame identifier (ID) is written on a 32-bit word
while the frame data are written on 8 bytes. Finally, the 32-
bit control word is set. Note the frame payload can be less
than the reserved 8 bytes. If a guest try to write a CAN frame
with an unauthorized identifier, it is discarded and a warning
is returned by the framework.

For example, to write a frame in its mailbox n , a guest has
to write the 4 words of 32-bit in the VirtIO device at the offset:
mailbox offset + VirtCAN buffer size × n

When the control word is written, the hypervisor VirtCAN
service writes the frame to the CAN hardware controller. If

virtual-mailboxes number exceeds the physical-mailboxes one,
the excedent content is written in the highest priority transmit
FIFO. The system integrator knows the number of excedent
mailboxes as he knows the total number of the mailboxes of
the guest, the VirtCAN and the hardware.

Mailboxes Rx queue Rx queue Tx queue

Priority+ -

VirtCAN framework service

CAN hardware controller

Mailboxes
RxRx Rx Rx Rx RxTxTxTxTxTx Rx Rx queueTx queue

Priority+ -

Fig. 6. VirtCAN mailbox to hardware frame transmission

C. Guest CAN Frame Reception

The frame reception process adapts the same idea of frame
transmission of Section IV-B. When a frame is received by the
hardware controller, it is copied in the virtual-mailbox match-
ing the frame identifier. The number of physical-mailboxes
can be lower than the total number of virtual-mailboxes. Then,
the host must be able to receive all the frames. If no mailbox
matches a frame identifier, it is queued in the highest priority
FIFO. Note that the physical-mailboxes must be principally
used for the higher priority frames. If all the reception FIFOs
are full, or if there is no FIFO at all, the frame is discarded.
In addition, an error message is returned.

Once a message is received in the VirtCAN layer, the
service checks which guest is associated to this mailbox, write
a flag corresponding to the guest mailbox number in the VirtIO
configuration memory at a specified offset, and triggers a CAN
interrupt to the guest.

When the guest driver receives the interrupt, it reads the
VirtIO device for the mailbox flags. Then, the driver can
submit the frame content to the upper layers. The reception
flags synchronization between VirtCAN and the guest is not
necessary. In fact, all VirtIO write operations done by the
guest are trapped by the hypervisor. Then they are used by
VirtCAN which updates itself the real flag status.

D. Guest-to-Guest CAN Frame Transmission

The Guest-to-Guest CAN frame transmission matches the
aforementioned CAN frame transmission. The different layers
operates as described in Section IV-B. In addition, we create
a special association between a guest reception mailbox and a
transmitting virtual-mailbox. When a frame is sent by a guest,
these association sets are checked to notify the destination
guest(s). Then, VirtCAN sends the frame to the hardware
controller.



Mailboxes Rx queue Rx queue Tx queue

Priority

+

-

Guest

Mailboxes

Tx Rx Rx Rx Tx Tx Tx Rx

Guest 1 configuration

VirtCAN framework service

CAN hardware controller

Mailboxes
RxRx Rx Rx Rx RxTxTxTxTxTx Rx Rx queueTx queue

Priority+ -

Mb flags

Fig. 7. Hardware frame reception to guest layers

If the frame is also destinated to another guest on the
same board, VirtCAN set the guest flags, accordingly to the
predefined association.

Mailboxes Rx queue Rx queue Tx queue

Priority+ -

Guest 1

Mailboxes

Tx Rx Rx Rx Tx Tx Tx Rx

Guest 1 configuration

VirtCAN

CAN hardware controller

Mailboxes
RxRx Rx Rx Rx RxTxTxTxTxTx Rx Rx queueTx queue

Priority+ -

Flags

Mailboxes

Tx Rx Rx Rx Tx Tx Tx Rx

Guest 2 configuration

Xvisor

Guest 2

Fig. 8. Internal frame communication

V. CONCLUSIONS

In this work, we propose a framework, VirtCAN, to
manage internal and external CAN bus virtualization with error
management. The virtualization scheme is also preserved, as
the hardware and the virtualization layers are clearly separated
as seen in Figure 9.

As presented in the Xvisor memory benchmarks [10], the
memory throughput of emulated operating systems is as good
as a native one (up to 98%). There are only two memory copies
for both frame direction: one from the guest to VirtCAN,
and one from VirtCAN to the hardware for a frame emission
or reception. Moreover, no specific scheduling is required to
implement this mechanism.

Our future work consists in implementing VirtCAN. As
the higher CAN transmission speed is up to 1 MB/s, and the
memory throughput between guests and host is superior to 100
MB/s, we expect a low virtualization overhead, and a very
close bus occupation and behavior between the native system
and the virtualized one.

Hypervisor (host)

Guest system 1

Real hardware

VirtIO-CAN

Application

CAN controller

VirtIO-CAN

Virtual-mailboxes

Virtual-queues

VirtCAN

Driver

VirtIO

VirtIO

Guest system 1

VirtIO-CAN

Application

VirtIO

Fig. 9. System design
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Abstract: Virtual engineering methods and tools 
based on simulation have become a privileged mean 
to reduce time-to-market and product cost. However, 
design and verification activities still need to be im-
proved to manage the ever increasing complexity of 
electronic products and their interactions with hetero-
geneous environments. In particular, an important 
challenge is to master the real time properties of the 
product composed of interacting hardware and soft-
ware components.  

In this paper we propose a pragmatic approach to use 
virtual platforms to verify gradually and accurately the 
properties of a system under design. We illustrate the 
approach on an example.  

Keywords: Virtual platform, SystemC, Verification. 
Simulation, Heterogeneous environment. 

1. Introduction and Motivation 

New embedded electronic systems impose a new 
leap in product integration. The progress of the Sys-
tem on Chips (SoC) market share clearly illustrates 
this need. In parallel, embedded electronic systems 
or Electronic Control Units (ECU) need to be opti-
mized to integrate new functions usually developed 
using analog parts at an acceptable cost.  
Basically, the challenge is to maximize the usage of 
SoCs while keeping reasonnable development costs.  
Embedded electronic systems are usually reactive: 
they are part of some control loop closed through their 
environment. The temporal properties of the elements 
of this loop are of prime importance as they determine 
the overall performance of the implemented function 
(response time, stability, etc.). Accordingly, those 
properties must be carefully monitored and the prod-
uct (including drivers, IPs, sensors, actuators…) shall 
be carefully designed to comply with those properties. 
In this context, being able to simulate a complete con-
trol chain within its environment is of major interest, 
and the benefits of the approach are as high as it can 
be applied soon, continuously and “smoothly” during 
the development process.  

Towards this goal, there is a strong need to move 
from segregated hardware and software simulation to 
system-level simulation. This requires the modelling 
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and simulation of the system’s components and envi-
ronment at various levels of abstraction, representa-
tiveness, and accuracy. The SystemC language and 
simulation kernel [1] provide such capabilities.  

SystemC is supported by an open source ecosystem 
organized in the context of Accelera Systems Initia-
tive [1]. Recently, the Electronic Design Automation 
tools industry (EDA) extended commercial offers by 
integrating SystemC. The tool environment offers 
modelling services on the top the language, scripting 
capabilities to automate test execution, co-simulation 
interface to interact with external tools or actual elec-
tronic prototypes, etc. 

Despite (or because of) the large offer of technical 
methods and tools, some methodological guidance is 
required to ensure a safe, high-quality, and cost-ef-
fective development and verification process.  

Therefore, we (i) propose an iterative process to opti-
mize the use of SystemC, (ii) apply it on part of a sys-
tem, and (iii) show its benefits. Focus is placed on ver-
ification activities carried out with the system’s envi-
ronment to demonstrate the preservation of the com-
ponents properties during the successive develop-
ment phases. 

Our paper is structured as follows. Section 2 intro-
duces the virtual platform concept and gives an over-
view of some significant related works. Section 3 pre-
sents the proposed approach for an iterative develop-
ment and verification process. In section 4, the exper-
imental setup is explained and section 5 gives some 
evaluation results. Finally, the conclusion reports 
feedback on methods and tools evaluation by appli-
cation of the process and draws perspective for future 
work.  

2. Related Work 

A virtual platform is a hardware simulator executing 
embedded software. The hardware simulator is usu-
ally built on top of an Instruction Set Simulator (ISS) 
of the processor connected via buses to memory and 
peripherals such as timers, general I/O, communica-
tion interface, etc. The ISS may be implemented in 
SystemC or in any other general purpose language. 

In a typical configuration, communications are mod-
elled using SystemC Transactional Level Modelling 
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(TLM) in order to achieve high simulation speed. Pe-
ripherals and memory are register accurate, they 
communicate according to the TLM paradigm, and 
their behaviour is implemented in SystemC/C++. The 
application software is the actual code compiled for 
the target processor. The SystemC non-preemptive 
simulation kernel orchestrates the execution of all 
components of the platform.  

Among typical examples of virtual platforms, we can 
mention the Infineon TricoreTM SoC [2] based on the 
QEMU ISS or the SockROCKET LEON3 virtual plat-
form developed by ESA [3] implemented in Python 
with SystemC/TLM buses and peripherals. Note that 
the ISS can be developed by silicon suppliers from 
proprietary architecture modelling languages, such as 
Freescale’s ADL/uADL [4], and then be integrated 
with peripherals to build a complete platform.  

Virtual platforms have been experimented on various 
industrial use cases, such as automotive power train 
applications [6]. Those experiments have demon-
strated the need for appropriate methods during the 
development of the platform components and their in-
tegration.  

In the industry, the different uses of virtual platforms 
map to the organisation of the supply chain: design 
and verification of SoC on the silicon suppliers side 
(component), design and verification of software on 
the equipment suppliers side (system).  

On the system side, virtual platform are used to esti-
mate the performances of hardware and software ar-
chitectures, and perform early verification activities. In 
particular, debug and verification phases are simpli-
fied thanks to the high observability and controllability 
of virtual platforms compared to real hardware. Fur-
thermore, using virtual platforms moves the simulated 
hardware parts out of the critical path: hardware de-
velopment phases can start once the definition of the 
hardware has matured and has been (virtually) vali-
dated.  

Finally, virtual platforms also provide:  

- A high configurability and flexibility allowing a par-
ticular platform to be configured and elaborated 
within minutes provided that the models are avail-
able.  

- A capability to integrate models with heterogene-
ous abstraction levels (in particular temporal ab-
stractions thanks to the versatility of Sys-
temC/SystemC-TLM/ SystemC-AMS)  

In its Return On Investment (ROI) analysis on elec-
tronic system level design, Synopsys [5], one of the 
main EDA tool supplier, announces cost reduction op-
portunities by reducting the number silicon iterations 
and a productivity increase of x2-x5 for software de-
velopment. 

To reach such a ROI, the virtual platform design flow 
shall be optimized so as to (i) minimize the cost of 
models and (ii) maximize the credit one may take from 

verifications performed using those models. An ap-
proach consists to use simulation models as a form of 
an “executable design artifact” that is refined all along 
the development process, from the implementation 
agnostic logical level down to the physical software 
and hardware levels. Obviously, this approach is con-
ditionned by the quality of the model and particularly 
on the properties preserved by the model. Those 
qualities must be clearly stated and become part of a 
contract binding the provider and the user of the 
model. A specific care shall be taken on timing prop-
erties of the hardware model and of the environment 
impacting the overall system behaviour.  

The Socket project [7] has proposed such a design 
flow for the development of critical embedded SoCs. 
The development steps maps to the SystemC/TLM 
modelling styles. This allows to co-simulate hardware 
and software, and to introduce and verify properties 
gradually (in particular temporal properties). The top 
level design of the SoC architecture is focused on 
hardware bus traffic optimization, not on the complete 
set of properties allocated to the SoC. In this project, 
the modelling of the environment is limited since the 
systems considered are not reactive.  

The COMPLEX project [8] uses UML/MARTE to 
model and explore the design space of embedded 
systems. Power and performance are the exploration 
criteria. The various abstractions of the processor mi-
cro-architecture, of the SoC internal buses, etc. allow 
an early and efficient simulation. Those abstractions  
also impair accuracy and raise sensitivity problems (in 
particular with target compiler optimization versus na-
tive compiler and internal SoC bus communication 
control). Compared to Socket, COMPLEX placed fo-
cus at system level where interconnected ECUs com-
municate through communication buses. The preci-
sion in low-level modelling is not considered besides 
the use of existing SystemC component libraries. Ad-
ditionally the verification activities are not formalized.  

With respect to the previous works, our approach is 
aimed at covering a larger modelling spectrum, from 
high level models down to behavioural hardware 
models. Emphasis is placed on verification of real-
time properties considering the ECU’s environment. 

3. An Approach for the Development 
and Use of Virtual Platforms  

To benefit the virtual platform’s “good properties”, the 
objective is to (i) minimize the development cost of the 
virtual platform and (ii) maximize the usage of the vir-
tual platform. 

To achieve the first objective, one shall (i.a) maximize 
the reuse of existing models (possibly reusing them 
from previous developments), (i.b) maximize the au-
tomatic generation of platform models (or skeletons) 
from existing design models, (i.c) develop simple 
models covering the necessary and sufficient features 



 Page 3/10 

and details with respect to the validation and verifica-
tion objectives. These topics will be addressed in Sec-
tion 4.d. 

To achieve the second objective, the strategy is two-
pronged: (ii.a) the “most expensive” problems shall be 
identified and tackled first, (ii.b) the model shall be de-
tailed up to the point where the necessary and suffi-
cient precision and accuracy are obtained to solve 
(ii.a). 

Here, we propose an informal approach somewhat 
similar to a Failure Mode and Effect Criticality Analy-
sis (FMECA) applied on a development process. This 
approach takes into account: the cost of evaluations 
including the cost of model development, the cost of 
model execution and the risk inherent to a “sloppy” 
evaluation. According to this interpretation, the fre-
quency of occurrence of an error is related to the qual-
ity of the measures (its accuracy and precision). The 
gravity integrates the potential impact of the error on 
the development process (e.g., the number and na-
ture of the activities to be redone), and the impact on 
the product under design. Once the analysis is com-
plete, reducing the overall risk consists to reduce the 
probability of occurrence of the evaluation error (e.g., 
by refining the model in order to account for phenom-
ena that have a significant impact on the behaviour of 
the system), (ii) reduce the gravity of the error by im-
proving the robustness of the process (e.g., by intro-
ducing margins), (iii) detect evaluation error by adding 
additional checks. 

In this paper, focus is placed on the temporal proper-
ties, so the trade-off between cost and accuracy/pre-
cision is essentially focused on the modelling of tem-
poral aspects. We consider the three levels — or pro-
gramming styles —defined by SystemC-TLM: un-
timed (U or functional), loosely-timed (LT), and ap-
proximately-timed (AT). As the design improves, the 
verification objectives get more and more focused 
and may eventually require a fine grain temporal mod-
elling. This change is determined by the property to 
be verified.  

Failure modes  

Contrary to hardware devices, there is no common, 
standardized list of failures at functional level. Candi-
date failure modes are identified and selected on the 
basis of expertize, experience, etc. Here, focus is 
placed on temporal errors such as under and over es-
timation of delays, non-compliance with SW/HW inter-
action sequencing or hardware design constrainst. 
The objective is to determine which verification tech-
nique to apply by considering the design faults, their 
effect on the system and the cost of the detection / 
mitigation means.  

Criticality 

Our estimation of criticality is (roughly) estimated by a 
cost. The principle is trivial: the cost of the verification 
means shall be somehow commensurate or related to 
the direct and indirect costs of the error. The cost of 
the error is roughly estimated by its criticality, which 

depends on its probability of occurrence and the costs 
of its effects including the cost of detection means 
(technical and human) and the cost of error elimina-
tion (redesign and refactoring,…). 

Error propagation  

With respect to a classical FMECA, the approach dif-
fers because design errors propagate across design 
artefacts (space) and across design phases (time). In 
particular, an error in the dimensioning of a parameter 
in phase 𝑖 may impact the design choices done in 

phase 𝑖 + 1, and so on.  

Any verification approach is basically aimed at pre-
venting such propagation by (i) detecting design er-
rors as soon as possible in the design process and (ii) 
as soon as possible in the dependency chain that re-
late design artefacts.  

        

D D DD
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  : cost of detection / correction

 

Figure 1: FMECA overview 

This “approach” has been applied on some simple 
functions of our experimental setup. The correspond-
ing  use cases are described in section 4.b and 4.c.  

Back to the important question of the ROI of such 
multi-viewpoint, multi-level approach, the following 
questions shall be answered:   

- What is the cost of developing (all) those addi-
tional models? The answer obviously depends on 
their complexity. Hence, the development effort 
for a SystemC-TLM timed model of a simple timer 
is lower than one men×month, while a complex 
ISS can require more than twenty men×months.  

- If models are develop by some third party, how do 
we formalize the “contract” that binds the model 
provider to the model user? Stated differently, 
how can we specify the domain to obtain signifi-
cant results with the virtual platform model? 

- Finally, how does this additional cost compares to 
the gain due to the early validation? 

In the sequel of the paper, we propose to answer 
those questions by applying the virtual platform ap-
proach on a small example: an autonomous rover.  

4. The experimental setup 

In order to evaluate the proposed development pro-
cess and supporting tools, and estimate its actual 
benefits, we use it for the development of a small mo-
bile vehicule, or “rover”, named “TwIRTee”. 
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a. The TwIRTee demonstrator  

TwIRTee is a three-wheeled autonomous rover fitted 
with a camera and various other sensors (odometry, 
positioning,…). Its operational role is very simple: (i) 
move itself on some predefined tracks from a point A 
to a point B (a "mission") while avoiding other rovers. 

TwIRTee is developed within the INGEQUIP project 
at the Toulouse Institut de Recherche Technologique  
(IRT) Saint-Exupéry. IRTs are new research struc-
tures established under the auspices of the French 
Agence Nationale de la Recherche (ANR) aimed at 
favouring the transfer of innovation from laboratories 
to industries.  

TwIRTee is designed so as (i) to cover the major top-
ics addressed in the project namely: early validation, 
architecture exploration, performance prediction, and 
formal verification. Furthermore, it is aimed at cover-
ing issues, functional and architectural elements spe-
cific to three industrial domains: automotive, space, 
aeronautics. 

Accordingly, the missions, functions and the architec-
tural elements are determined so as to tackle or exer-
cise one or several issues: for instance, the “localiza-
tion” function relies partially on imaging so as to exer-
cise hardware / software space exploration and co-
design; the highly redundant architecture provides the 
experimental setup to perform early performance 
evaluations (including dependability). 

An overview of the TwIRTee plaftorm is given on Fig-
ure 2: the computing platform is composed of 2 
COM/MON channels that host the main “mission” 
functions and one channel dedicated to power supply 
generation and motor control. A clock synchronization 

protocol is implemented and distributed on each ECU 
communicating by the CAN network.  

The rover displacements is achieved by the motor 
control ECU controlling a two-wheeled powertrain 
composed of 2 CC motors, 2 reduction gearboxes, 2 
quadrature encoders, 2 wheels. The setpoint for mo-
tor regulation is selected from the 2 commands 
(COM) and monitoring (MON) channels. 

The methods introduced in Section 3 are applied on 
two simple functions: the clock synchronization (Fck) 
and the PWM motor control (FPWM). 

b. Clock synchronization 

The clock synchronization protocol is used to provide 
the rover’s computation units with a “common” time 
reference. The protocol has been proposed in [9]. It is 
built on top of the CAN network. 

Principles 

The common time reference – or virtual clock (𝑣 ) – 
satisfies the precision, rate and accuracy properties. 
The precision property states that no two synchro-
nized virtual clocks may differ by more than a given 
value. For instance, at any time 𝑡, any virtual clock 

shall show a time “less than 100𝜇s” from any other 
virtual clock. More formally, if nodes 𝑘 and 𝑙 partici-
pate to the protocole:  

∃𝛿𝑣: |𝑣 𝑘(𝑡) − 𝑣 𝑙(𝑡)| ≤  𝛿𝑣    (P1) 

In practice, the achievable precision depends on two 
main parameters Γtight and Γmax agree : 

𝛿𝑣 = 𝛿𝑣 + 2𝜌𝑇 (P2) 

𝛿𝑣 ≥ (1 + 𝜌)Γtight + 2𝜌Γmax agree (P3) 
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Figure 2: Overview of the TwIRTee equipment 
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where  

- 𝑇 is the resynchronization period, 𝜌 is the physical 
clock drift 

- Γtight is the network propagation delay (around 

10𝜇s), Γmax agree is the agreement delay which de-

pends in particular on the number of tolerated 
faults and on the background traffic of higher pri-
ority.  

First, let’s analyse the failure modes, their “probabili-
ties” of occurrence, and their effects. 

Failures 

- FF1M1: Erroneous Γmax𝑎𝑔𝑟𝑒𝑒  , underestimation  

- FF1M2: Erroneous Γmax𝑎𝑔𝑟𝑒𝑒, overestimation 

- FF2M1: Erroneous Γtight, underestimation 

- FF2M2: Erroneous Γtight, overestimation 

Probabilities of occurrence  

- OF1M1: VERY HIGH, because (i) many factors 
contribute to the communication times, and (ii) the 
dynamic behaviour of CAN is not trivial (see [10] 
and [12]). 

- OF1M2: LOW, because the mode for fault F1 is 
much likely F1M1.  

- OF2M1: VERY LOW because this parameter is part 
of the specification.  

- OF2M2: VERY LOW (same reason as F2M1). 

For space reason, we do not consider failure modes 
F2 any longer.  

Effects and cost impact 

- EF1M1: Actual accuracy lower than expected. Cost 
impact is MODERATE: (i) the system being re-
dundant (MASTER/SLAVE, COM/MON) many 
functions rely on the synchronization precision in 
particular via discrepancy margins, confirmation 
times are affected.  However, the risk for a large 
effect on the synchronization is low thanks to the 

𝜌1 factor in (P2). 
- EF1M2: Actual accuracy greater than expected. 

Cost impact is LOW: the network and CPU loads 
are higher than necessary but no rework is ex-
pected. (Note that, generally speaking, the impact 
could be very high because it could lead to select 
and oversized computing platform and / or net-
work. In our very case, there is no risk of such 
effect). 

In the absence of dedicated detection means, FF1M1 
and FF1M2 are likely to be detected only in operations.  

Probability of detection 

- DF1M1:  VERY LOW because Γmax is a worst-case 
situation that is difficult to observe in operation. 

- DF1M2:  VERY LOW because the effects are hardly 
visible.  

Cost of correction  

- CF1M1: VERY HIGH 
- CF1M2: VERY HIGH 

                                                           
1 𝜌 is in the range of 10-6 s/s 

From the combination of a MODERATE cost, a VERY 
LOW detection probability and a VERY HIGH detec-
tion / correction cost, we decided that it was worth 
adding a new detection means with a MODERATE 
cost and HIGH detection coverage.  

Consequently, we decided to test the clock synchro-
nization protocol on a bit-level virtual model of the 
CAN capable of simulating the actual effects of back-
ground traffic and error occurrences.  

(Note: we consider that the behaviour of the network 
in the presence of fault is simulated. However, in the 
particular case of CAN, analytical models of the CAN 
bus latency are already available (e.g., [10]), but sim-
ulation models allow to consider faults models of ar-
bitrary complexity. 

c. PWM motor control 

Power is delivered to the rover motors via a H-bridge 
(4 transistors, see Figure 3) controlled by a PWM sig-
nal. The PWM duty cycle is computed by the motor 
regulator from the speed set point provided by the 
rover guidance controller and the actual speed meas-
ured using the wheels’ optical encoders. The wheels’ 
optical encoders generates quadrature signals ac-
quired as frequencial input and then integrated for 
speed determination. 

VCC

M

THF

TLB

THB

TLF

f

b

 

Figure 3: Motor H-Bridge control  

The PWM controller was assessed under two per-
spectives: PWM timing and PWM design constraints 
both having effect on real time properties.  

PWM control generation 

The PWM generation device hold the following func-
tional requirements (P4 - non exhaustive list) 

- Frequency and resolution step of PWM control:  
10kHz  frequency with a 0.1 µs step) 

- Latency for application of new PWM value (next 
cycle) 

- Immediate desactivation of active state of the 
PWM (lower than 1 ms) 

Compliance to the previous requirements may be 
achieved in many different ways, including:  

- Pure software implementation toggling an output 
port (resolution will be certainly an issue) 
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- Pure hardware specific implementation with sin-
gle register interface and fixed frequency (too 
specific solution) 

- Mix mode with a simple timer, control by software 
interrupt and latch of an output (resource will be 
an issue) 

- Hardware dominant solution with multiple register 
interface but “reasonable” or limited resource 
(most realistic in this basic example) 

Attached to selected scenario we have also a list of 
design constrainst (C4) stemming from domain expe-
rience, available resources, etc.  For instance : 

- Register shall be 32-bit wide. At most 4 registers 
must be necessary (duty cycle value, frequency 
value, cycle counter and register control) 

- The timer frequency range shall be in 
[100Hz,100KHz] (10kHz for motor control) 

- The effect of the frequency and duty cycle change 
shall only occur at the next PWM cycle 

For the evaluation of the motor controller   we will con-
sider the failure mode “wrong design” (F2M1). 

The interaction between the PWM and the H-bridge 
(the device that physically controls the power signal) 
raises another possible failure mode. As the H-bridge 
provides no overcurrent protection, care shall be 
taken not to switch transistors located on the same 
side of the bridge on “at the same time” in order to 
avoid shortcuts. This situation can be prevented by 
introducing a silence time between the commutations 
of opposite transistors. The duration shall in particular 
take into account the transistor switching time. The 
respective failure mode are noted F1Mx.     

The following property shall hold: 

∀ 𝑡𝑏 , 𝑡𝑓𝑗 ∶  |𝑡𝑏 − 𝑡𝑓𝑗| ≥ Δ𝑡𝑑𝑧 (P5) 

Where 𝑡𝑏  (resp. 𝑡𝑓 ) be a time at which signal “back-
ward” (resp “forward”) is active, and Δ𝑡𝑑𝑧 is the dura-
tion of the “silent zone” where no transistor is active. 

Failures modes 

- FF1M1: Erroneous Δ𝑡𝑑𝑧, underestimation 

- FF1M2: Erroneous Δ𝑡𝑑𝑧, overerestimation 
- FF2M1 : Wrong design  

Probability of occurrence  

- OF1M1: LOW  
- OF1M2: LOW 
- OF2M1: MEDIUM (component are selected to fulfill 

all forecoming applications)  

Effects 

- EF1M1: During a rotation sense change, the oppo-
site MOSFETs of the H-bridge transistors are on 
at “the same time”. Cost impact is VERY HIGH: 
this configuration is basically a shortcut. Depend-
ing on the duration of the shortcut, the dissipated 
energy may leads to the destruction of the two 
transistors and the power supply. No other func-
tion is affected by the error. 

- EF1M2: During a rotation sense change, the PWM 
signal is delivered slightly later to the H-bridge. 
Cost impact is NEGLIGIBLE: the rotation of the 
wheel is slightly delayed which has no further im-
pact on the rover’s capabilities. 

- EF2M1: In case of wrong design with non capable 
component the function performance must be 
downgraded. In the worst case, a complete rede-
sign may become necessary. Cost impact is 
HIGH because the problem will be detected dur-
ing verification but it will have an impact on overall 
product planning. 

In the absence of dedicated detection means, FF1M1 
and FF1M2 are likely to be detected only in operations.  
FF2M1 will be detected lately during product verifica-
tion meaning high effort for redesign. 

Probability of detection 

- DF1M1: LOW. Depending on the duration of the 
“short-circuit”, the number of forward/backward 
commutations, the error may stay undetected for 
a long time. However, it may eventually reduce 
drastically the lifetime of the transistor / power 
supply. 

- DF1M2: VERY LOW.  
- DF2M1: HIGH (as processus for verification are 

mature) 

Cost of correction  

- CF1M1: LOW. The correction is basically a modifi-
cation of a constant in the PWM management 
code.  

- CF1M2: LOW (same as CF1M1) 
- CF2M1: HIGH to VERY HIGH 

For the “silence time underestimation” fault model, the 
combination of a VERY HIGH cost, a LOW detection 
probability and a LOW correction cost leads the intro-
duction of a  new detection means. This means shall 
have a MODERATE cost and HIGH detection cover-
age.   

In practice, we created a virtual platform to host the 
PWM driver software and implemented a system-C 
observer to check (P5).The virtual platform shall pro-
vide a representation of time “compatible” with the 
property at stake. Here, we used a SystemC AT 
model of the PWM hardware driver. 

For the “wrong design” fault model, the combination 
of HIGH cost, HIGH detection and HIGH (to VERY 
HIGH) correction cost leads to the introduction of a 
new detection means aimed at securing later devel-
opment phases. As the functional requirement (P4) 
and design constrainst (C4) are expressed in terms of 
hardware and software interactions, the virtual plat-
form shall at least provide a LT abstraction. 

To facilitate the verification of the functional properties 
(P4) a functional model is developed (initiating also 
the test bench environment). From this level, require-
ments and associated properties are  refined and al-
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located. During the decomposition process, some re-
quirements may become “contracts” binding the dif-
ferent components of the motor control chain.  

Figure 4 depicts some of these contracts: 

- The PWM controller shall ensure a silence-period 
greater than Δ𝑡𝑑𝑧  and the H-bridge transistors 

shall switch is less than (e.g.,)  Δ𝑡𝑑𝑧/100 (P5).  
- The power dissipated by the electrical motor shall 

be less than 15W. Therefore, the PWM duty cycle 
shall never be greater a given ratio for a given 
time. This contract propagated from motor power 
dissipation constrainst is not considered in the ar-
ticle. 

Driver H-bridge Motor

no short-cut
Dissipated power < Pmax

Application

High / low ratio of PWM signal over Δ𝑇 < MRmax

mean speed over Δ𝑇 < MSmax

Contract is propagated

Contract is propagated again

Contract is undertaken

  

Figure 4: Motor drivers contracts 

Another contract defined during the PWM controller 
design binds the hardware and software. It concerns 
the static and dynamic definition of the interface (see 
property C4). This contract is verified at the LT and 
AT modelling levels.  

Section 5.b describes the use of the contract verifica-
tion on the PWM controller. 

d. The virtual platform 

VLAB™2 is used to develop the models and build  vir-
tual platforms. It provides a programmable and inter-
active environment for the assembly, configuration, 
programming and operation of electronic system level 
simulations, such as virtual system prototypes and 
virtual platforms, as well as other applications (see 
Figure 5) . A virtual platform integrates together sim-
ulation models and other simulation objects, scripts, 
tools, test and infrastructure software, and target soft-
ware. 

 

Figure 5: Tool organization 

                                                           
2 VLABTM is a product of ASTC 

The development of models does require a solid ex-
pertise understanding SystemC concept and lan-
guage (object oriented). Moreover, the iterative re-
finements  of models may be achieved by different 
persons with different coding skills. 

The tool framework facilitates the creation of models 
thanks to a Genesis library compliant with SystemC 
and IP-XACT standards. It allows to capture model 
structure and connectivity and to automatically create 
C++ skeleton for the implementation of the behavioral 
part of the model. This library is also available in Py-
thon meaning models can be developed and de-
bugged in a much faster and simpler way than in C++. 

 

Figure 6: Genesis Framework 

Finally, the tool provides an integrated and  interactive 
execution platform  leveraging again Python capabili-
ties. It provides a simple yet efficient user experience 
for assembling virtual platform, debugging virtual plat-
form (setting HW & SW breakpoints) and  scripting 
test scenario (including fault injections in a non intru-
isive way) . 

Modelling and assembling a virtual platform in Python 
are the key functionality used to support the imple-
mentation of the case study. 

5. Implementation approach 

a. Clock synchronization 

We used ASTC VLABTM “CAN toolbox” to create a 
model of our computation and communication infra-
structure (5 nodes) and to inject faults during the ex-
ecution of the clock synchronization protocol. A CAN 
node comes with two models, at token and bit levels. 
The toolbox provides an API for the configuration and 
control of nodes, including activation, frame transmis-
sion and frame reception. Python scripting allows to 
access directly to API, to send CAN frame and control 
the bit engine in order to introduce error in the CAN 
frame. These features have been used to exercice the 
clock synchronization protocol in situations where bit-
level errors lead to multiple retransmissions of the 
same message. Such situations would have been dif-
ficult to obtain using the actual hardware. 
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b. The Motor control 

The PWM controller scenario, as elaborated in sec-
tion 4.c, is realized using VLABTM. Some parts of the 
complete model were developped using SystemC 
and Python modeling capabilities while some other 
parts were directly taken from the hardware library (for 
TLM transactor or MPC5674F AT models). The mod-
elling scope for contract verification of the PWM con-
troller is enlarged to the overall motor controller fea-
ture. For the sake of the demonstration, we consider 
that the C code of the motor controller was generated 
from the same Simulink® model used to design and 
validate the controller. 

The development phase of the motor controller corre-
sponds to the three predefined modelling style U, LT 
and AT.  

Untimed model 

The Untimed model is a functional model. It describes 
how the PWM signal is generated from the rotation 
speed setpoint and the actual speed measured from 
the optical encoders (see Figure 7 below). The Hard-
ware Abstraction Layer API (HAL) is defined at this 
level. It allows to implement a static interface between 
application layer and driver abstraction using physical 
data interface with the motor regulation algorithm (% 
for PWM and speed in km/h for integration of quadra-
ture signal).  

Motor Control

Python Comp.

Driver 

Abstraction

Freq. In

PWM

Motor
Regulation  

H

A

L

API

System C C 

PWM backward
signal 

Quadrature 
signals
from 

optical 
encoders 

Setpoint

Init. driver

PWM forward
signal 

C 

 
Figure 7: Functional model of Motor Control 

The PWM controller is integrated in the driver abstrac-
tion SystemC module by implementing  two specific 
C++ methods for the definition of the API 
(init_mc_driver() and put_mc_pwm(int32 value)).  
The SystemC module integrates the driver abstrac-
tion with the PWM controller and the motor regulation. 
It declares two public methods init_mc() and put_set-
point(value) to allow access to PWM controller and to 
write into the setpoint data.  
It includes one thread (or method) activated every 10 
ms calling c_mc_ctrl() for regulation control activation.  
Using the toolset, the SystemC motor control model 
is first wrapped up into a python module which is then 
imported into the tool environment as a new compo-
nent of the virtual platform. To use this newly defined 
component, the user first instantiates and initializes it. 
Then, he/she sets the setpoint value using to the py-
thon API (driver_obj=vlab.get_instance("MC").obj,   
driver_obj.init_mcr(), driver_obj.put_setpoint(value)) .  

This first level of modelling is a necessary step to build 
the subsequent models. We take benefit of it to per-
form a first verification of the design with respect to 
properties P4 and P5.  

To do so, a test environment (or testbench) is built as 
shown on Figure 8.  In particular, property P5 (dead 
zone) is checked using a dedicated SystemC/python 
component (P5 checker on the Figure 8) that is con-
nected to PWM output signals via a monitor compo-
nent). The test driver generates a scenario where 
wheels are moved forward and backward.  

To close the control loop, a very simple model of the 
motor / encoder devices is developed and integrated 
in the platform. In this model, the frequency of the 
quadrature signals is considered directly proportional 
to the value of the PWM duty cycle (this is a good ap-
proximation as far as the frequency of the PWM signal 
is sufficiently high). This model is used to get a first 
insight on the performances of the regulation (re-
sponse time, stability). In the future we will investigate 
co-simulation with Simulink® dynamic of motor itself. 

VLABTM

System Under Test

Motor ControlSetpoint

Init. 

Motor
(Environment)

PWM 

signals 
Quadrature 

signals 

Test Bench

Driver

Monitor

P5 Checker
(config.)

Python Script

Python Comp.

Python Comp.

Python Comp. Python Comp.

Python Comp(s).

 

Figure 8: Test bench environment 

To observe the results of the P5 verification, a trace 
is placed on the P5 checker diagnosis output port us-
ing tool tracing capabilities. See the trace of the sce-
nario result in Figure 11. 

Loosely Timed model 

The Loosely Timed Model is a structural and behav-
ioral refinement of the Functional Model.  

It introduces several hardware and software compo-
nents: 
- The timer IP abstraction generates the clocks 

used to generate the PWM signal. This IP is mod-
elled in systemC. It integrates all design con-
straint defined in C4 property (register size, fre-
quency range).  

- The driver abstraction provides the interface to 
the timer IP. This software component is defined 
in C. It is interfaced with the timer abstraction IP 
via a Hardware Software Interface (HSI). It inte-
grates the C4 HSI contract (static and sequence 
interface). 

- A SystemC bus driver interface allows to access 
to the timer IP peripheral. The C to SystemC in-
terface complies with the TLM2 loosely timed 
standard. It is available in the tool  component li-
brary.  
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This structural and behavioural refinement preserves 
the properties demonstrated on the functional model. 
It is used to express the Hardware Software Interface 
(HSI) contract (C4).  

The HSI is implemented using five 32 bits registers:  

- CNT running counter register (range of 24 bits) 
with 10ns resolution (range from 6Hz to 100 MHz, 
capable for 10KHz with 0.1%  of precision) 

- A and B compare registers for PWM control 
(range of 24 bits) 

- CCR control register with enable bit (UCPREN bit 
6), polarity bit (EDPOL bit 24) and fixed buffered 
mode (OPWFMB matching eMIOS definition bit 
25-31) 

- CSR status register with overrun bit (FLAG bit 31) 
- Sequence transfer for buffered register A,B at the 

end of the PWM cycle and guarantee of B always 
greater than A. 

The objective is not to implement the complexity of an  
hardware IP like the eMIOS, but build a simplified IP 
fulfilling the fonctionnality with respect of a reduced 
HSI accessed via TLM2 access (untimed). 
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Figure 9: LT model of the Motor Control 

The motor control is now split in two python compo-
nents as depicted in Figure 9. This split allows the ob-
servability using VCD. The python components are 
then instanciated with the test bench architecture as 
in Figure 8. For the testbench, the interface for the 
motor control is identical as the functional model. The 
P5 checker can also be reused to demonstrate the 
dead zone contract. See Figure 11 for trace of the re-
sults.  

The HSI interface contract can be demonstrated 
thanks to respect of the API resolved during virtual 
platform building and sequence demonstrated by in-
strumentation capability to  trace TLM transaction 
(register access and value transported). 

Approximated Timed model 

The last model integrates approximated timing on bus 
communication and on hardware IP resource compo-
nent access (internal definition and average pro-
cessing time in hardware IP). Model can also com-
plete the register interface when extra control regis-
ters are necessary for pre-implementation constraint, 
such as merging several LT models into a more com-
plex  and configurable hardware component. In any 

case the predefined HSI contracts shall be preserved: 
at least the same registers are used to interact with 
the component, according to the same sequence 
(protocol).   

A use case more relevant than timer IP could be an 
image processing hardware accelerator merging LT 
models with modeling of internal timing interconnec-
tion.  

In our experiment, the LT timer IP is  mapped to the 
MPC5674F eMIOS AT model. The Timer IP is con-
nected to a bridge and to the memory bus of the Pow-
erPC core via the peripheral bus (see Figure 10). The 
target software is the binary software, including final 
drivers, application software compiled for the µC tar-
get. 

Motor Control
Binary SW

Python Comp. Python Comp.

Timer IP

(eMIOS)

(AT model) 

Drivers

Freq. In

PWM

R
E
G
I
S
T
E
R
S

Motor
Regulation  

M
. 

B
u

s

System C System C 

Appli Init.

TLM-AT
System C 

H

A
L

API

P
. 

B
u

s

Bridge

PPC ISS (e200z7)
(AT model)

Memory not displayed (model of µC MP5674F)

uADL- System C 

PWM backward
signal 

Quadrature 
signals 

memory

Setpoint

PWM forward
signal 

Embedded C 

(dummy)

Init. driver

  

Figure 10: AT Model of the Motor Control 

The test bench is only slightly adapted with respect to 
the one used at the more abstract levels. A python 
transactor component is inserted and connected to 
the same test bench driver. It integrates one method 
for target memory introspection using debugging API 
feature of the tool environment (write_memory()) and  
a second one to dummy the motor control initialization 
as  it is now performed by the µC start-up code. The 
simulation scenario generator and the property 
checker component do not change. The P5 checker 
can be reused for the validation of the contract de-
fined in the FMECA process. The functional property 
P4 of the PWM control is verified. The C4 contract on 
the HSI register access and sequence is also verified. 

The simulation trace typical of every refinement level 
is depicted below in the Figure 11. 

Increasing forward speed
(PWM F duty cycle 
from 30% to 70%)

Constant reverse speed 
(PWM R duty cycle 

at 70%)

zero speed 

Full forward 
speed

Full  reverse speed Half forward speed

P5 not satisfied 

P5 satisfied

zero speed 

P5 : Δ   fixed to 200 ns

Figure 11: Trace of dead zone validation 
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6. Conclusions and future work 

In current SystemC ecosystem, the adequacy of 
model representativity for verification objective and 
the quality of the simulation models curbs the large 
deployement of virtual platform. Our approach pro-
vides a first level of guidance and formalization of the 
modeling process.  

The “FMECA-like” approach introduces – to some lim-
ited extend, however – objective criteria to determine 
whether a refined model is necessary or not. It allows 
to start the modelling phase at  the adequate abstrac-
tion level for the verification of the selected property. 
The formalization of  the development and the test of 
an architecture compliant with SystemC modelling 
standard allows a sound design covering hardware 
software codesign process. We demonstrated that 
test elements can be reused all over the model refine-
ment. Moreover, the contract approach provides 
backbone for decomposition and guarantee on the 
coverage of the requirements. 

The tool automation features simplify the platform 
models generation for component interfaces descrip-
tion and component bindings. However, for the crea-
tion of a new component model, the remaining man-
ual operations (code implementation, platform inte-
gration and test campaign) still represent around 90% 
of the development costs. In actual practice the  elab-
oration of simulation models follows a typical top- 
down approach based on successive abstractions. 
Such refinement has been formalized through the 
control motor modelling experiment. More important, 
the models have been continuously verified. In our 
case, the development and testing of two additional 
abstracted models is only estimated at 10 to 20% of 
the overall effort. 

Balanced to the model development effort, the pro-
posed methodology with virtual platform provides 
strong benefits on the overall product development. 
The contract and the model based communication fa-
cilitate inter domain communication and improve the 
design quality of the product. It helps to reduce signif-
icantly the re-work iterations. The effort gained can be 
estimated at 10 to 20%. This was demonstrated in our 
experimentation and also on porting the OS Trampo-
line [15] on MPC5674F microncontroller for twIRtee. 
The early hardware software integration by simulation 
reduces operational set up and validation.  

The approach proposed in this paper will be experi-
mented for the development of other parts of the 
INGEQUIP project demonstrator. In particular, the 
camera-based line tracking function will be developed 
according to the same approach. This function re-
quires a lot of computing power, focus will be placed 
on the issue of hardware/software design space ex-
ploration.  
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Abstract

As industrial demands grows for modeling, simulation and exploration tools during SoC design, there is a need for simulated CPU
models that work with the other tools in the space design. There have been many attempts to build libraries of CPU design models,
most notably the Open Virtual Platform project [1]. This work focuses on defining a complete open source SystemC compliant
approach with a QEMU based model, which supports almost all current and past CPUs. QEMU [2] has many advantages not least
a very large and dynamic open source community with hundreds of developers active all over the world. Our work makes QEMU
available in a standard SystemC [3] (IEEE 1666) based tool environment. This article addresses the current state and upcoming
features of two different integration techniques that allow the QEMU virtualizer and emulator to be used in a SystemC simulation
context : QEMU-SC [4] and QBox (QEMU in a Box). This article also examines how these current implementation work. The
limitations they have with respect to SystemC are also given. It will go on to look at recent developments both within QEMU itself
and in the integration between QEMU and a SystemC that are aimed at improving simulation performance and usability of these
solutions.

I. INTRODUCTION

The current embedded market is increasingly taking advantage of standard Components Off The Shelf (COTS), while adding
value in software and complex Systems on Chip (SoC) IP. Within that context, driven by cost reductions and time to market,
virtual platforms are essentials (to enable software teams) to become productive earlier in the design cycle. It also provides a
common link environment between hardware, integration, verification and software development. In essence, virtual platforms
reproduce system behavior, execution of target software, debug and development in the absence of “real” hardware platform.
The virtual platforms can and should be used as a means for exploration between hardware and software engineers during
development cycles.

The SystemC language allows hardware descriptions to be constructed in a C++ based language. However, as the complexity
of the IPs increases, the SystemC simulation environment is not necessarily suitable to provide suitably fast models. It is
theoretically possible to simulate complex IP’s such as CPU’s within SystemC simulation kernel. But as we can see in SoCLib[5],
performance can be an issue, especially when the processor is modelled at RTL level that is computationally intensive. A better
solution for complex IPs like CPUs is to model it in a virtualizer or emulator and then to integrate the model into a SystemC
simulation environment. Moreover, the TLM-2.0 (Transaction-Level Modeling) standard, which is an extension of SystemC,
improves interoperability between memory mapped bus models. It also includes the notion of time quantum which was explicitly
intended to assist with this sort of integration.

One such external virtualizer is named QEMU (Quick EMUlator). It is a generic and open source machine emulator and
virtualizer which allows engineers and developers to execute their software binaries (operating systems and applications) made
for one machine (processor and its peripherals) on another one. For example, the execution of ARM or PowerPC binaries on a
x86 processor based computer. QEMU enables simulation of multiple kinds of processor cores and is based on a JIT (Just In
Time compiler) code generation technology. JIT technology enables code recompilation / translation at run time. It can achieve
emulation of the simulated processor core at near real time speed.

To interface QEMU (the CPU virtualizer or emulator) with a SystemC simulation environment containing SystemC models,
multiple solutions have been proposed such as QEMU-SC, an open source solution. QEMU-SC aims to embed SystemC models
in QEMU through a wrapper (as detailed in Section II-A). However, this purposed solution has drawbacks. The authors in [6]
implement a solution to interface QEMU and SystemC simulation environments by separating SystemC and QEMU on two
threads. The communication is made through a shared memory and a FIFO mechanism. However, the document doesn’t detail
time synchronization aspects between QEMU and SystemC simulation kernel based time. The solution in [7] integrates SystemC
with both QEMU and OVP using a SystemC bridge. The QEMU/OVP simulations run on a own thread and the bridge is a
set of C functions included in a library which is statically linked to the SystemC runtime library. The time synchronization
between QEMU/OVP and SystemC is performed on a call to a SystemC model. It enables the update of SystemC time to be
synchronized with the QEMU time. This solution breaks dynamic quantum (See Section III-A). A similar implementation [8]
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to QEMU-SC adds the capability to estimate the performance of a target system from system perspective. It is also able to
trace all the information that are necessary for the estimation. In [9], BSD sockets enable communication between two virtual
CPUs (two instances of QEMU) and SystemC models. A thread controller manages transactions from different cores to SystemC
models. To synchronize the time, the authors send the simulation time in their transactions. However, there are no details about
the algorithm used to synchronize all bases of time.

In all cases, SystemC is used to simulate complex SoCs including digital peripherals and one or multiple processor cores.
The rest of the article is organized as follows. Section II briefly introduces and compares QEMU-SC and QBox solutions by
presenting typical use cases. Then, detailed features, advantages and limitations of QBox for industrial virtual platforms are
discussed. Finally, different solutions have been benchmarked and compared from virtual platforms to real hardware.

II. QEMU-SC SIMULATOR AND QBOX CPU VIRTUALIZER/EMULATOR

A. QEMU-SC simulator

Combining QEMU’s ability to efficiency simulate processors with the flexibility of SystemC meets the needs of much of
the embedded software industry, to provide a model environment based on standards with high performance. This environment
captures the power of QEMUs CPU simulation environment along with the standard approach for writing models. QEMU-SC
[10], based on works of the authors in [11], provides a solution to connect SystemC simulation environment with QEMU.
QEMU-SC is an open source hardware and software emulation solution for SoC development, specifically targeted development
of add-on cards or peripherals that have to be connected to an existing (off the shelf) platform.

In this context, QEMU is the “master” during simulation execution. It contains the off the shelf platform. It instantiates and
controls the SystemC part. This approach enables models written in SystemC to be used from within QEMU. Models can be
integrated using specific memory mapped addresses such that QEMU communicates through MMIO (Memory-Mapped I/O) or
PCI interfaces. In this context, SystemC is used as peripheral models to a QEMU based software platform.

As show in Figure 1, QEMU-SC provides a QEMU hardware model named sc_wrapper to communicate between QEMU
and a SystemC model. This wrapper handles reads and writes to the memory map by building TLM transactions and redirecting
them to the SystemC side. Transactions are cached, but nonetheless, this incurs a pointer and several integer copies. While in
general performance is an issue for TLM systems, this overhead is minimal as these devices are not typically accessed frequently.
QEMU-SC also provides a wrapper for interrupts in both directions. sc_platform registers SystemC models within QEMU
and binds them to TLM router and IRQ vector. Depending on the simulation requirements, two different implementations are
available:

• MMIO which is a generic implementation in TLM-2.0 standard,

• PCI which is a PCIExpress bus implementation in TLM-2.0 standard.

The current implementation of QEMU-SC has some limitations in that IRQs are not handled as cleanly as they could be. It
means that SystemC models need to have a ’handle’ to the QEMU model, and pass that back to QEMU when they are sending
an IRQ. This breaks the TLM standard and means that some alterations are required to a SystemC model to be used with
QEMU-SC.

B. QBox CPU virtualizer/emulator

QBox is an integration of QEMU virtualizer and emulator in a SystemC model. Contrary to the QEMU-SC solution, QBox or
QEMU in a (SystemC) Box, treats QEMU as a standard SystemC module within a larger SystemC simulation context. SystemC
simulation kernel remains the “master” of the simulation, while QEMU has to fulfill the SystemC API requirements. This solution
is an open source QEMU implementation wrapped in a set of SystemC TLM-2.0 interfaces. QBox allows the powerful JIT based
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CPU simulations to be totally exploited within a TLM-2.0 context. QBox is provided as shared libraries that contain QEMU
based CPUs as shown in Figure 2. Each QBox library contains a specific CPU core and exports a set of TLM-2.0 like ’C’
interfaces. A QBox library is instanced in a SystemC simulation context through the SystemC wrapper called TLM2C. TLM2C
library provides the C++ TLM-2.0 standard interfaces. It exports TLM-2.0 ’C’ like interface to the standard TLM-2.0 C++
interface.

This solution integrates well into a virtual platform to facilitate the co-design of hardware models but also to validate the
software which runs onto the platform. QBox is sufficiently flexible to support some basic system components from the QEMU
library that have been included within the QBox component. So, only the models of interest can be specified in SystemC language.
It means that QBox is a flexible platform simulation environment. Thus, novel components can be added and device drivers can
be designed. QBox can be used within the context of a much wider system as mealy one of many components.

Figure 2 provides an overview of an existing virtual platform using the SoC ARM926EJ-S. It is the SoC used in the ARM
Versatile PB board. Depending of the host machine, QBox emulates or virtualizes the core part of the SoC (an ARM9E-S) and
connects its AMBA bus as a SystemC TLM socket, thanks to the TLM-2.0 standard generic protocol. As QEMU is written in C
(as opposed to SystemC which is standard C++ class library), a wrapper called TLM2C is required to connect them. Each of the
remaining Versatile PB models are modelled in SystemC language and connected to the bus using TLM-2.0 standard. To specify
the bus routing, GreenRouter has been used. It is a part of the open source library GreenLib [12]. GreenRouter makes use of
optional extensions in the TLM-2.0 protocol that are provided by GreenSocket. It allows routable addresses to be allocated in
devices, rather than in the router. This is merely a convenience and ease the system description.

The platform described in the Figure 2 boots with a Linux kernel. It is possible to interact with Linux through the UART
(PL011 model) and also view the output of the graphical interface PL110, which is part of the SoC. All parts of the Figure 2
are available and open source[13].

C. Use cases

QBox and QEMU-SC both have their uses. QEMU-SC is useful in cases where cards or a small number of components
are under development. It is also useful when components have to be added to existing off the shelf platforms. QBox is more
suitable when the CPU element is considered to be one component of a wider system. The main difference between QBox and
QEMU-SC is that:

• For QBox CPU virtualizer/emulator, SystemC simulation kernel is the “master” of the simulation, ie QBox, which
embeds QEMU, acts as a slave, a SystemC model. SystemC simulation kernel controls the QEMU execution. SystemC
models can be interfaced without modifications.

• For QEMU-SC simulator, QEMU is the “master”, ie QEMU pause and resume SystemC simulation kernel if necessary,
SystemC models are slave. SystemC models have to be adapted to the QEMU interface.

The Figure 3 illustrates differences.

Critically, both QBox and QEMU-SC solutions enable execution of software binaries (operating systems and application
stacks) without any modification to real target code. In both cases, QEMU directly executes the code from memory. For QEMU-
SC, the memory is held within QEMU. For QBox CPU virtualizer/emulator, the memory is held within SystemC and accessible
via a TLM-2.0 interface. QBox makes use of the TLM-2.0 Direct Memory Interface (DMI) to access memory. Thus, the execution
speed of a binary in QBox, which doesn’t use excessive IO (as an access to a register through the memory map), is typically
indistinguishable from native QEMU. QBox’s performance is typically extremely fast:
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• for non natives guests (e.g. ARM on x86 processor), it can be within an order of the host machine. It is typically “real
time” for most embedded processors,

• for native guests (e.g. x86 on x86 processor) the KVM (Kernel Virtual Machine) can be used. This provides simulation
speed close to host performance.

However, there exists run-time penalties when the software running in QEMU accesses IO. Currently, the time to perform
an IO as a simple write to a register from Linux is about 40ms (host time) on an host machine with an Intel Xeon E3-1271. For
example, Linux kernel executed in QEMU performs a write to a register modelled in a SystemC model like one of the registers
in PL011 peripheral). Looping on IO constantly suffers from these penalties. However, this is typically not the behaviour of
most systems. Actually, most systems do exhibit this behaviour, typically they are spinning waiting on IO, so the delay isn’t
important either. Nonetheless, this is an area where we intend to do further research. We expect to decrease this number to few
nanoseconds if the IO is thread safe. This issue is addressed in more details below (See Section III-B).

QBox is designed to fulfill today’s requirements for virtual platforms. As QBox provides a TLM-2.0 component instance, it is
ideally suited to support the increasing demand for platforms that integrate multiple homogeneous and heterogeneous processors.
As QBox is a TLM-2.0 component, it is clearly possible to mix heterogeneous CPUs within a platform to achieve, for example,
Asymetric Multi-Processing (AMP). This is a feature that is missing in QEMU (and QEMU-SC). These sorts of AMP systems are
extremely typical in everything such as smartphones, Internet of Things (IOT) or smart devices. A typical system would contain
an ’off the shelf’ virtualized with QBox and one or more ASIPs. All of this executes within SystemC simulation. However
QEMU does support homogeneous cores working in a Symmetric Multiprocessing (SMP) manner. This is also possible within
QBox. Hence both homogeneous (SMP) and heterogeneous (AMP) systems can be modeled and simulated by QBox.

Currently, QBox has one limitation for multi cores support. All cores of an SMP CPU need to run in the same instance
of QBox. QBox doesn’t export into SystemC the inter-CPU communication system necessary to enable SMP to be simulated
within SystemC. This would be an interesting arraignment if more complex interconnect structures have to be investigated. For
instance, when some of the CPUs have access to certain peripherals. This is probably a minority of use cases right now. But
nonetheless we would like to enable it.

1) Example with a triple-core platform: QBox has been used with success in the definition of a virtual platform containing
an ARM Cortex-M3 with two ASIP models for a future IOT chip. This virtual platform is composed of standard Cortex-M
devices modelled with SystemC like AHB UART but also some custom IP models as described in Figure 4. The communication
channel between the two subsystems (ASIP and Cortex-M3) in this design is typical of many such designs revolving around the
use of interrupts and shared memory and this aspect has been modelled. However, care must be taken in a quantum based system
that both sides are reactive enough to those interrupts to enable the smoothly communication. As it is typically the case with
quantum based TLM-2.0 models, some degrees of quantum ’tuning’ are required to balance performance and communication
accuracy.

This virtual platform use multiple threads to speed up simulation execution. It makes a better usage of resources available
on the simulation host. The ARM Cortex-M3 is embedded in a QBox instance. QBox runs in 2 threads (one for IO and one
for CPU, as QEMU). Another thread is used by SystemC itself. We recall that SystemC is the master of the simulation. As the
ASIP model is provided by a third party it is outside our control.

This virtual platform has been developed in parallel with the real SoC. The platform has already shown benefit in terms of
hardware and software teams that agree on their (complex) interface between the ARM and ASIP systems. They are now able to
develop their softwares ahead of the hardware tape-out. This is a classic example of the Electronic System level (ESL) working,
with a direct return on investment for a small device, based exclusively on open source infrastructure.

It should also be noted that, there is no agreement on how signals outside the memory mapped bus are handled. The third
party devices in this case used a typical implementation of interrupt signals. Unfortunately, it does not play especially nicely in
a quantum based TLM-2.0 simulation context. Of course, this only required wrapping of those interfaces. But nonetheless this
is annoyance and confusion that nobody needs. We hope to address this issue in a future work.

III. FEATURES OF QBOX

A. Time synchronization

QBox works within a SystemC simulation. QEMU’s notion of time is typically based on the guest clock, also called
vm_clock in QEMU. On the other hand, SystemC is purely event driven and its clock moves as fast as events can be processed.
Due to different time domains, it is necessary to ensure time synchronization. To further complicate matters, QBox and SystemC
run in a separate threads to improve efficiency and simulation speed. QBox takes advantage of the quantum mechanism built
into TLM-2.0. This enables a model to be at most one quantum ahead of SystemC’s current time. QBox’s time increases in
parallel to SystemC simulation time in a different host thread. Quantum level synchronization is maintained between threads by
ensuring that Equation (1) is always respected.

|time(QBox)− time(SystemC)| ≤ Quantum (1)
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Time synchronization is one of the bottlenecks of a virtual platform. Indeed, due to the static length of a quantum, it is
necessary to add checkpoint quantums even if there are no events pending in SystemC. In some systems, to handle tightly coupled
IO, the quantum has to be reduced. But, this has a negative impact on performance because it increases simulation time. It can
also be wasteful if IO is not always used. To ensure this, when QBox or SystemC executions are at a quantum boundary, they
use a thread wait to synchronize. It enables to wait for the other parties to finish their quantum.

Currently, QBox only supports static quantums. However, in order to avoid redundant and unnecessary checkpoints, we
speculate that a dynamic quantum mechanism may be beneficial. At this point, this is left as a future work. A straight forward
dynamic quantum approach, in which a ’synchronization’ - or quantum - would be placed into both SystemC and QEMU. At
each point, their potential interaction (but no un-necessary points) would likely have a positive effect on a single CPU system.
Our concern is that on a multi-core system, IO events on one core would cause un-necessary synchronization points on other
cores. Therefore, our conclusion is that a ’simplistic’ approach is not going to have universally positive results. Therefore we
conclude that this is a subject for much more detailed research.

B. Performing IO

QBox accesses memory by using standard TLM-2.0 transactions. When the guest software running in QBox wants to perform
an IO to a SystemC model, it stops its execution. Then, one of the following two cases will occur:

• If SystemC is running, a thread safe event is posted to the SystemC simulation kernel. Then the simulation scheduler
has to run the TLM-2.0 IO request

• If SystemC is sleeping (as it has already finished its quantum), SystemC will be woken up. The same thread safe event
is posted.

Once the processing of the SystemC event is completed, QBox is notified. Then it continues its execution with the completed
transaction. The Figure 5 illustrates both cases. Transactions from SystemC to QBox are used for interruptions generated from
devices (SystemC models). QEMU is able to receive these interrupts in a thread safe way. Hence, no special care has to be taken
when they are generated by devices and sent by using standard TLM-2.0 based sockets.

When QBox wants to access an IO managed by a SystemC model, it does so by issuing a thread safe event which is
executed by the SystemC simulator, within the SystemC thread. This guarantees that only the SystemC thread is used to execute
SystemC code. This solution also maintains the single threaded nature of SystemC. However, this adds complexity and decreases
performance of simulation when different simulators have to be synchronized. It may be possible to use some of the constructs
in work on parallel SystemC [14]. But this falls outside of the existing SystemC standard.

QBox
thread

SystemC
thread

Real time

Real time

SystemC running IOSleepingRunning QBox IO

SystemC reaches 
quantum

Fig. 5: QBox synchronization illustration

In general, it is possible to write thread safe SystemC models. The models own data structures that can be protected in the
normal way. As the SystemC language is not guaranteed to be thread safe, models that require accesses to the kernel need to
use an asynchronous notification. If we could guarantee that the models connected to QBox were thread safe, it is not necessary
to switch threads. In this case, QBox would be able to directly access IO without the synchronization mechanisms. To add this
feature we would like to add a new way to inform QBox that this part of SystemC simulation is thread safe. It means that it can
be directly accessed without interruption. We do this while complying with the TLM-2.0 standard. This will speed up simulation
and improve usage of parallel threads.

C. From mono-thread to multithread

Currently, QBox (and QEMU) run within two threads : one exclusively for IO operations and another one for CPU execution.
The CPU thread runs the TCG (Tiny Code Generator) which performs the translation from CPU guest code to CPU host code.
This is the JIT engine (or dynamic binary translator), which is the core of QEMU. Initially, QEMU was proposed to emulate
one CPU on a host with a single CPU. When multiple CPUs are emulated, a “round robin” approach is used within the single
CPU thread. However, with the proliferation of cores in both the PC hosts and the platforms being modelled, this approach is
not optimal.
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Previous works like [15] forked QEMU to run each virtual CPU on its own thread. To do that, it was necessary to parallelize
the TCG [16] part of QEMU. The TCG performs two steps. On one hand, it transforms any supported guest CPU target
instructions to TCG operations. On the other hand, it transforms TCG operations into CPU host instructions. This intermediate
step between guest and host translation decreases CPU dependencies by adding a new level of indirection. It makes the TCG
flexible and maintainable across a large number of hosts and guests. Unfortunately, parallelization is difficult to implement. The
authors limited themselves to only one small case. Therefore, this approach is not safe for all cases.

In all cases, there are a number of issues that have to be addressed. One of the most obvious is the issue of ’atomic
instructions’. For a single threaded model, the model can assume an ordered memory model. It can implement atomic (compare
and exchange, load/store exclusive etc - used to synchronize multiple cores) with no special restrictions. However, this is not the
case for multi-threaded models.

The authors of COREMU[17] emulate multiple cores by creating multiple instances of existing sequential emulators. A thin
library layer is used to handle the inter-core, the device communication and the synchronization. The objective is to maintain
a consistent view of system resources. However, they did no more than adding a mutex around the load and store exclusive
instructions for ARM. Unfortunately, this is not sufficient. Indeed, it does not fulfill the ARM requirements, and fails to support
anything but the smallest of guest code sequences. The authors of HQEMU[17] combines LLVM with TCG to speed up translation.
This solution not only speed up single threaded applications that runs in the guest but also multi-threaded applications.

D. MTTCG project

The MTTCG project (a QEMU project) aims to allocate one host thread to each simulated CPU to significantly improve
performance. It also enables the power of the host machine within the heart of QEMU itself. This project also aims to upstream
changes so that the techniques are re-donated to the community such that others can build upon it. For this first iteration, MTTCG
focused on the ARM architecture. But it can also be extended to all targets within QEMU. The initial limitation is only due to
a single patch serie that addresses atomic instructions within the ARM architecture. Other architectures are being addressed in
parallel.

1) Global TCG State: In the current implementation of QEMU, there is no protection against two threads attempting to
generate code at the same time, placing the results into the translation buffer (a part of TCG). In a multi-threaded system, it
leads to corrupted code generation from time to time. In order to better handle the translation cache, the key question is whether
the translated code cache should be per-guest-CPU (per-thread) or global (shared between multiple guest CPUs). Per-guest-CPU
means less possibility of locking contention. But it means more overhead generating code. Every time the guest reschedules a
process to another guest CPU, we’ll have to translate all its code all over again for the new CPU. A strictly global cache is not
a great idea either. Indeed, it won’t work if we eventually moved to supporting heterogeneous systems (for example, one ARM
CPU and one SH4). One possibility is a hybrid system. Each guest CPU have a pointer to its TCG cache (which could then be
shared between several other CPUs).

Sharing a cache would allow us to take advantage of code that is translated by one core and then used by another. On the
other hand with one cache per core, updates on the caches with a lot less locking can be performed. Each CPU could generate
translations simultaneously for its individual cache. However, invalidates can be done across all the caches if any core writes
to program memory. This would be expensive as all CPU caches would have to evict TBs, rather than a single ’central’ entry
being evicted.

Interestingly, the structures existing in QEMU are similar to a tiered cache system in hardware. While each CPU holds a
local list of pointers to translated code, there is also a wider ’level 2 cache’ shared by all CPUs. The local ’caches’ are simple
indirections to the main cache, so ’evictions’ can happen centrally. This provides the benefits of tiered caching. It permits to
implement a highly optimal solution. In its current form, only one CPU can generate a TB entry. Then, it is posted both locally
and to the global TCG cache. This already provides a highly powerful solution. It would be possible to enable more than one
CPU to generate different TB entries concurrently.

2) Dirty tracking: Currently, QEMU handles guest writes to memory by using a set of bitmaps for tracking dirty memory of
various kinds setting the internal QEMU TLB entries up to force subsequent reads (e.g. for code execution) to consult the real
memory (this is termed the slow-path).

This is a fairly long sequence of operations (guest write; read bitmaps; update TB cache structures; update bitmaps) which
is currently effectively atomic because of the single thread being used. In order to enable multiple threads, this chain has to
be dealt with carefully. Specifically, when a CPU marks an area as ’dirty’ in the bitmaps, all CPU’s need to see this message.
QEMU works by assuring that the effect of the JIT TB cache can not be seen. Therefore, dirty information has to be transmitted
and acted upon ’immediately’. In order to achieve this, a new service was necessary to be added to QEMU to allow a core to
request that all CPU’s stop. For instance, a TB entry was flushed atomically from the point of view of all simulated cores. This
new mechanism is introduced in our work.

3) Memory consistency: Host and guests might implement different memory consistency models. For instance, the ARM
memory model does not guarantee that other cores will necessarily see writes in order (or at all), until a memory barrier is
executed. An x86 based machine has a stronger memory model. It normally guarantee that all threads see all writes. While
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supporting a weak ordering model (eg. ARM) on a strong ordering backend (e.g. x86) isn’t a problem. For now, the only realistic
solution is to place memory barriers after writes. The performance impact of this very much varies in terms of exact architecture
and implementation. We do not present benchmarks here. Indeed, they are being worked on by other members of the QEMU
community. As our work initially focused on ARM running on x86, we were able to ignore this issue for the moment.

4) Instruction atomicity: Atomic instructions allow guest code to run on several guest CPU’s for the synchronization. They
are the critical means by which e.g. SMP is achieved. They rely on a few basic instructions being ’atomic’ from the perspective
of all guest cores. One example is a store exclusive instruction in ARM where the store should succeed if no other thread is
active (either read or written) to a memory location since a preceding load exclusive operation. One obvious implementation of
these instructions is to check that the value remains the same between the load and store exclusive operations. Unfortunately,
it is not architecturally correct, since the architecture specifies that no load or store should have occurred. Potentially a non
exclusive load or store could have occurred. It may not effect the value in the memory. A subsequent store exclusive would then
erroneously succeed.

Experimentally, we have replaced the store exclusive code that was written in this manner by host atomic instructions (e.g.
using the cmpxchg primitive). We have shown it seems to be stable across many boots and application cycles. However,
theoretically even using host atomic instructions is not necessarily architecturally correct in all cases. A more ’complete’ solution
would be to mark memory locations in the dirty bitmaps and force access to them to be taken through the safe-work mechanism
described above. While this is conceptually much cleaner, it may have performance impacts on simulation speed. At this time,
other ones in the QEMU community are building such an implementation based on our mechanisms to test out the potential
speed reduction impact. Thus, host atomic instructions has not caused any issues in terms of atomic locks not working correctly.
Test cases to show how locks could be broken have been attempted, but we have yet to produce the effect. Nonetheless, it makes
sense to model the architecture more accurately if the performance penalty is acceptable.

E. Scientific contributions

Our approach is to provide usable virtual platforms for multi-core systems. Such systems have to to be simulated across a
number of host threads. We remain at the ”CPU block” level by mapping virtual cores onto physical host cores. This is the
major difference with other approaches that focus on SystemC threads. It is driven by synchronizing the number of CPU cores.

During the investigations, we have identified and provided solutions for 2 JIT engines. Specifically a new approach proposed
coordinate cache-coherency work within a JIT, between cores. We term this the safe-work mechanism. It allows cores to request
work to be done locally, on specific remote cores, or globally. The mechanism itself is robust. We have identified when and how
it should be deployed within the JIT for specific cache operations. One good finding is that the safe work mechanism, and the
points during simulation when it should be deployed can be implemented in a architectural neutral way.

To solve the issue of the shared instruction cache, we discovered that the way in which the JIT cache structure operates
actually mimics the effects of a real hardware cache. Because of this, we strongly favoured the approach of sharing a sort of
level 2 cache between CPUs (much as is common in real hardware). Implementing this yields extremely impressive numbers
(see Section IV).

Finally for atomic instruction handling, we re-used the hosts ability to perform atomic instructions, effectively translating
guest instructions directly to host atomics. In our case, we restricted ourselves to the compare and swap (cmpxchg) atomics.
This is clearly guest dependent. For our case, we focused on ARM on X86. However, we concluded that this solution has the
drawback that some guest instruction semantics are not exactly implemented. Our solution is stable for ARM on X86, but is
unlikely to solve all guests. Indeed even for ARM we were able to hypothesize a test case that would fail, though we have not
been able to produce the true effect in reality. Nonetheless, we consider this as a negative result.

Overall, the result is that the speed improvement we get for multithread TCG is impressive. Our implementation is stable
over Linux boot and all loads that have so far been run. We have not been able to show any issues from the atomic instruction
implementation. For more details, see Section IV.

To sum up MTTCG and QBox, we have researched both approaches to multithreading simulation. Our conclusions so far
are that multithreading QEMU itself is ideally suited to homogeneous (SMP) cores, while multiple instances of QEMU (QBox)
are suitable for heterogeneous (AMP) cores.

F. Limitations

The SystemC scheduler is not preemptive, ie all processes run in cooperative mode. Each process handing control back the
the kernel, under its own control. The SystemC scheduler will never interrupt a running process. It is necessary to introduce
synchronization points to pass control back to the kernel. When there are no more processes to execute, then SystemC exits.
In addition, the SystemC kernel is not thread safe. Since the scheduler is not preemptive, it is not really a requirement. This
means that models written in SystemC do not have to consider thread safety issues. It simplifies the model and speeds up the
development process. However from our point of view, this is problematic as we run several different threads for different CPUs.
However, a thread safe mechanism has been added to SystemC to enable interaction between SystemC and other OS threads
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and processes. It is a specific thread safe event. It is the mechanism applied when QBox wants to post an event to SystemC
simulation kernel.

If QBox wants to access an IO within a SystemC model, it can use a thread safe event which will then be executed by
SystemC. It guarantees that the single SystemC thread is used to execute SystemC code. This solution also maintains the single
threaded nature of SystemC. It adds complexity due to lock system between threads and decreases performance of simulation.
In general, it is possible to write thread safe SystemC models. If the models connected to QBox were thread safe, it is not
necessary to switch threads. In this case, QBox would be able to directly access IO without the synchronization mechanisms.
To add this feature, we would like to add a new way to inform QBox that this part of SystemC simulation is thread safe and
can be directly accessed without interruption. It has to be compliant with the TLM-2.0 standard. This will speed up simulation
and improve usage of parallel threads.

G. Open source license and business potential

QBox, as a fork of QEMU, is a free and open source project released under GPLv2 license (see QEMU header files). QBox
and the QBox libraries are also released under the GPLv2 license. TLM2C is our wrapper that can take any ’C model’ based
on structures like TLM-2.0 standard. It converts it into SystemC (C++) code. This is released on the GPLv2 with the additional
right to use the code with SystemC. TLM2C is mealy a library that enables the construction of a SystemC model from a C
based library, which could be QEMU or any other C based model.

Model constructors in an industrial setting can choose to use any TLM-2.0 standard compliant CPU models that suits their
needs. We believe that QBox is an exceptionally good choice because of its quality, speed, license and features. When industrial
model constructors ship their models to third parties, they do not have generally the rights to ship CPU models coming from
other vendors. This is equally the case with our models. The customers must be able to select whichever CPU model suits their
needs. This was the key motivating driver behind the TLM-2.0 standard. Again, whatever CPU was chosen during the initial
construction of the platform, we believe that QBox is a good choice as a CPU TLM-2.0 model.

In addition to the quality and speed of a QEMU based solution, the open source license also guarantees the longevity of the
solution. Indeed, as users are able to keep, modify and re-use the solution for as long as required. In the safety critical industry,
this is a key advantage of open source as solutions need to be re-usable for decades into the future. Indeed, users can develop
themselves of have any competent developer maintain and develop models based on this solution. This can encourage services
based businesses, geographically placed in regions specializing in specific domains.

IV. EXPERIMENTAL RESULTS

A. Introduction

Experimentations are done with QBox, QEMU-SC, and ARM Versatile Express board containing a CoreTile Express A9
daughter board in addition to the motherboard. The daughter board contains four A9 cores. It is a good candidate to compare
results for a multi-core SMP platform. QEMU officially supports this board.

All benchmarks (see Section IV-B) have been executed on real hardware in addition to QEMU, QEMU with MTTCG,
QEMU-SC and QBox on a computer running an Intel Xeon E3-1271 (at 3.6 GHz) and 32Gb of memory. We have modified the
DTB (Device Binary Tree) to use only those devices that are available to all virtual and physical platforms. They are: the 4 x
Cortex A9, System Controller, Generic Interrupt Controller (GIC), SP804 (Dual Timer) and PL011 (UART).

The objective of QEMU-SC is to model the majority of the platform inside QEMU by adding externally only a few elements.
Specifically QEMU-SC expects that the memory will be held inside QEMU. In contract, the philosophy behind QBox is that the
memory map is handled in SystemC. To keep the comparison as fair as possible, we set up the two environments as follows:
QEMU-SC will run all Cortex A9 cores, System Controller, the full memory map and ARM GIC within QEMU. Both the SP804
and PL011 will be in the SystemC. QBox will run an A9 multi-core node with all 4 Cortex A9 processors, and the tightly
coupled ARM GIC. The current version of QBox (1.3.0) is based on QEMU 2.3.0. ARM GIC is shared by the multi-core A9’s
on a private bus. The full memory map, the SP804 and PL011 will be specified in SystemC. After some experimentations, as
we explain below, we have decided to fix a quantum value of 1ms for QBox and QEMU-SC.

B. Benchmarks

In order to provide a measure of performance focused on raw processing power, we have chose to use Dhrystone[18]. Indeed,
it is readily available on all platforms. Dhrystone is an open source synthetic computing benchmark program used to measure the
integer performance of processors. We used Dhrystone 2.1 that is built with the Buildroot toolchain. The program has been added
to root file system to be run in the guest OS (Linux). 107 Dhrystone computations were benchmarked. As the time reported by
a virtual machine may not be accurate, an external timer was used to measure execution time, averaging over 5 runs.

One of Dhrystone deficiencies in terms of benchmarking is a total absence of IO. In order to compare a more ’real world’
scenario, we have also compared Linux boot performance which does use a mixture of IO’s and processing. We built Linux
kernel and a light root file system for our platform by using Buildroot 2015-08.01 with Linux kernel v4.1.4. We only enabled
the required devices to boot the platform and run the benchmarks.
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C. Dhrystone

As we can see on Figure 6, we benchmarked 4 Dhrystone’s that are executed at the same time with different numbers of
CPUs using real hardware, QEMU and the new QEMU-MTTCG. We suitably modified the DTB to limit the number of CPU’s
being used. The current QEMU does not take advantage of increasing the number of CPUs. Indeed, the time to compute the
four Dhrystone is approximately the same for all configurations. However both QEMU-MTTCG and the real hardware are both
capable of dividing the load over multiple CPUs. For of a single CPU, QEMU-MTTCG is slightly slower than standard QEMU.
This is the overhead of ensuing thread safety in QEMU, measured as about 14%. For the case of a 4 cores CPU, QEMU-MTTCG
is over 3 times faster than the existing QEMU. Overall, MultiThreaded TCG (MTTCG) has now been demonstrated with an
impressive near linear speed improvement. We plan to implement MTTCG in QBox in a future work to speed up SMP CPUs
simulations. Finally, we can see that QEMU emulator is around 3 to 4 times slower than real board on our host machine. Real
board cores run at 1.3GHz so the host machine executes one virtual CPU instruction all around 10 host instructions.

On the Figure 6b, we can see that overall QEMU is only 3-4 times slower than a board running at 1.3GHz. This is clearly
highly dependent upon the host and guest. However, this falls well within the often assumed ’one order of magnitude’, even for
quite complex cores such as the A9. The various SystemC solutions (QEMU-SC and QBox) are both substantially similar to
QEMU in terms of CPU computation performance. QEMU-SC runs very slightly faster than QEMU in this test, this is due to the
version of QEMU used in QEMU-SC. The older version of QEMU used in QEMU-SC (close to version 1.4.50) runs Dhrystone
about 20% faster than the version of QEMU used in QBox (and for the other QEMU tests), which is version 2.3.0. Applying
a ratio between QEMU 2.3.0 and QEMU 1.4.50, we estimate that QEMU-SC overall has a performance cost of around 3%
compared to the QEMU being used. QBox is slightly slower than QEMU-SC, specifically for IO accesses as discussed above.
QBox has a performance cost of 8% compared to the QEMU being used.
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D. Linux

During boot step, Linux performs a few thousands IO. As shown in Figure 7, we can see that boot time of all the solutions
are very close to the time set by QEMU itself. QEMU-SC and QBox are a little bit slower than the original QEMU. Even
though Linux boot performs significant amounts of IO, the boot times of all three options are substantially similar. We do not
see a marked slow-down in any of the solutions. Clearly the way in which Linux boots, and how it times IO activity during the
boot has a significant impact on these numbers. However, we argue that far from being atypical, Linux boot is one of the typical
things that the users of virtual platforms will run, time and time again (especially if they are in the process of developing low
level software, the very target of virtual platforms of this type). Hence the fact that all three solutions have a Linux boot time
which is substantially similar is highly relevant.

E. Quantum

As shown in Figure 8, we can see the impact of the quantum duration on Linux boot by using the QBox virtual platform. We
get the smallest boot time with a quantum around 1ms. For smaller quantum durations, QBox will process IO more frequently.
It increases execution time and decreases simulation speed. However, as quantum durations increase, Linux will see fewer and
fewer timer interrupts, which it uses to synchronize and schedule processes. As a result, processes which are spinning waiting
for others, or waiting for a timer interrupt will potentially spin for longer, slowing the overall simulation to the point at the far
right hand side of the graph where Linux is no longer capable of running. As the selection of an appropriate quantum is hard,
it takes experimentation, and is system dependent. Typically, a ’bath’ shaped graph can be expected, users may choose a lower
quantum if higher timing fidelity is required.

V. CONCLUSION

This article provides a review of the existing solutions to interfacing QEMU and SystemC. We go on to look more closely
at two solutions: QEMU-SC and QBox. Both solutions has been compared to get an objective point of view on the best
solution. Some use cases have been studied. They show that QBox is more in line with current and future requirements by
supporting homogeneous and heterogeneous simulations. Different approaches are proposed to simulate performance in SystemC
and specifically multi-core simulations. Multiple solutions in the article are proposed for SMP and AMP platforms. For SMP, a
new multithread solution is presented for QEMU called MTTCG. MTTCG results are good. Indeed, a linear speedup is achieved.
All the works detailed here are available as open source on the GreenSocs.com web site. We actively seek feedback for our
research activity.
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Abstract: 
As the development of ship software systems has followed the growth curve of digital technologies, Marine & 

Offshore assessors, like Bureau Veritas, are lacking dedicated software safety assessment standards and tools 

compared to other industrial sectors like railways or aeronautics. Indeed, in this field of Marine & Offshore, 

software systems are seen as black-boxes, i.e. only assessed through system testing without specific requirements 

for the software development. Given the impacts of software failures on human, strategic, economic, or 

environmental aspects, this approach is not sufficient. From this statement and because usual safety standards are 

very demanding in terms of development processes, Bureau Veritas has decided to issue pragmatic guidelines for 

the development and the assessment of industrial software. They are focusing on development processes and the 

use of efficient tools to verify software through a white-box approach. In this context Bureau Veritas has partnered 

with CEA-List which is a major actor in applied formal verification techniques. This paper is illustrated by a use 

case with Sirehna for the implementation of those guidelines on a critical ship software system. 

  

Keywords: 
Industrial software, Safety, Marine & Offshore, Software standards, Static analysis, Formal methods, White-box 
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1. Context of the Partnership 

Digital technologies have overwhelmed industrial markets, and software systems are underlying almost all 

technical products. Simple or complex, the behavior of any electronic equipment is directly controlled by a piece 

of software, whose failure can lead to severe human, strategic, economic, or environmental consequences. It is 

now well known and understood that software testing, because of its intricate logical nature, cannot detect all 

defects that might have been inserted in the software design and implementation phases. What’s more, the more 

complex the software system is, the more costly it is to perform verification activities, and the later undetected 

defects may remain. Finally, once put into service, modifications are often applied to software components to 

provide new functionalities or correct detected errors. Such changes also bring in complexity and are potential 

sources of flaws within the software system. For all these reasons verification activities, providing assurance that 

the software system will function correctly as intended during all its life – from commissioning to 

decommissioning of its host equipment – have to be carried out throughout software development activities, in a 

fashion that is mindful of cost-effectiveness and  maintainability. 

1.1. Software verification in BUREAU VERITAS Marine certification schemes 

In industrial sectors such as aviation, nuclear energy, and railway, where life- and safety-criticality have 

historically represented the main concern, advanced functional safety standards have become conditions to access 

the market. As safety is their prime concern, these standards are very demanding for the organizations that have to 

conform to their objectives. For the industrial sectors where safety aspects are less prevalent, best practices of 

software development are widespread without being gathered in a single document. This is the case within the 

marine & offshore industry, which constitutes the historical core business of BUREAU VERITAS, where the 

International Association of Classification Societies IACS is responsible for the establishment of standards to 

verify and assess ship safety. BUREAU VERITAS is one of the 12 member companies of this association, and 

was entrusted with its chairmanship from July 2014 to July 2015. 

 

So far, the standard requirements related to the assessment of ship software components were generic and limited. 

Unified Requirements (IACS, 2010) had been dealing with high-level requirements for software assessment, 

typically test completion at system level. Yet experience gathered from the aforementioned best practices for 

critical systems has shown that a system-level testing approach is too limited – either in terms of coverage, or 

conversely in terms of cost-efficiency – when verifying software that implements rich functionalities and dealing 

with multiple inputs / outputs. Intrinsic complexity of the software system has to be taken into account and 

processes of development have to be adapted accordingly. 
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In this context, BUREAU VERITAS Marine wants to improve its software assessment scheme (based on a white-

box approach) to get more confidence in software systems used in the marine & offshore industry. 

1.2.  CEA LIST expertise in source code verification tools  

Prompted by criticality concerns, various approaches to software assessment have been investigated by the 

verification community. In particular Software Assessment tools focus on detailed program analysis techniques, 

i.e. tools and methods that provide software developers and auditors with strong and demonstrable confidence in 

their artefacts. Overall, these techniques allow the safety experts to verify that programs and their functionalities 

behave according to their specification. These techniques can be further divided into two classes: 

1. The analysis of programs in a non-runtime state, called static analysis, proceeds across the source code 

just like a compiler would, looking for patterns indicative of unexpected behaviors.  

2. The analysis of programs in a runtime state, called dynamic analysis, runs the compiled source code on 

sets of predefined input values to detect unexpected behaviors.  

 

Different types of static analysis techniques can be applied to perform code assessment, some of them based on 

formal methods. Two main trends have emerged, both using abstractions of the code in order to formally verify 

particular classes of properties.  

1. A first approach, symbolic execution (which broadly speaking encompasses deductive verification and 

model checking), uses logic solvers that relate code blocks to their expected behaviors, as expressed by 

specific logical assertions in the source code. 

2. A second approach, called abstract interpretation, computes for each variable of the program an 

abstraction of the values it can take during any program execution, warning when it encounters 

unexpected behaviors.  

 

Over the past decade, these types of program analyzers have been successfully applied to demonstrate the safety 

of life-critical systems. Program verification is used in this field to achieve demonstrably equivalent levels of 

safety as those attained with traditional methods for critical systems, but at a lower cost (Randimbivololona, 

Souyris, Baudin, Pacalet, Raguideau, & Schoen, 1999). These practices have been successfully used in the context 

of various domain-specific certification standards (DO-178B/C, CENELEC EN 50128, IEC 60880, IEC 61508, 

ISO 62304, ISO 26262, etc.). 

 

Frama-C is a source code analysis platform for C99 ISO C programs, developed by CEA LIST and its partners. It 

implements both static and dynamic source code analyzers as modular plugins (see section 3.2). Frama-C differs 

from other static analyzers as it provides a diverse set of formal tools that cooperate through code annotations 

emitted in the ACSL language (Baudin, Filliâtre, Marché, Monate, Moy, & Prevosto, 2015). 

1.3. Shared Objectives of the partnership 

Both BUREAU VERITAS and CEA LIST deal everyday with some of most of the critical industrial sectors and 

associated standards for software development, and have a strong knowledge of the best practices in these 

different environments. As said in section 1.1, there currently exists little guidance when it comes to software 

verification in marine & offshore applications, buts plenty of experience on lifecycle certification. Furthermore, as 

presented in section 1.2, recent software analysis techniques have demonstrated their relevance in software 

verification for product assessment schemes. 

 

It is with this dual assessment methodology in mind – process oriented verification and source code analysis – that 

BUREAU VERITAS and CEA LIST partnership has been working on SOFTWARE DEVELOPMENT & 

ASSESSMENT GUIDELINES. This document, whose salient features are presented in section 2, provides 

minimum objectives that should be met by any software system that needs to demonstrate its ability to achieve an 

expected performance level, thus satisfying common safety concerns.  

 

This document was designed to be usable in all the domains that deal with the quality and safety of software 

systems. On the one hand, it had to be seen as guidelines of development and did not aim to supersede existing 

safety standards that are regulatory in some specific industries like railway or aeronautics. On the other hand, 

those guidelines had to be fit to constitute the reference standard used by BUREAU VERITAS when assessing 

software systems in marine & offshore in order to establish confidence in terms of safety. The guidelines were 

designed to be relevant whatever the programming language used for the software system development. No 

programming language was favored as long as their dangerous or complex instructions are identified and 

controlled. Even if the guidelines recognized the use of tools, no specific solutions are identified: each project 

would choose dedicated tools depending on its constraints and objectives. 
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The continuing partnership between BUREAU VERITAS and CEA LIST has allowed the team to successfully 

share knowledge and expertise, in particular on safety systems assessment and certification, and software 

verification. 

2. Originality of the software assessment methodology 

2.1. Guidelines rationale 

Simplicity was a major objective during the writing of the SOFTWARE DEVELOPMENT & ASSESSMENT 

GUIDELINES. The authors strived to define a practical methodology that minimizes both efforts of software 

development and software assessment. The small size of the document (with a goal fixed at a maximum of 50 

pages from the beginning of the development of these guidelines) is designed to ease its use and circulation. 

 

Even though it does not attempt at a thorough comparison between the main software safety-related standards that 

are enumerated in section 1, such as the work of (Ledinot, et al., 2014), the document follows the same philosophy 

and structure as these various standards. The main idea in software development is to keep in mind that quality 

and safety are properties progressively achieved by construction, following a process to avoid introduction of 

errors, to be tolerant with errors and to eliminate errors in the software system. 

 

In terms of philosophy, the document is grounded on the assumption that software developments are framed by 

well-defined and verified processes which are structured following a standard V-lifecycle. In terms of structure, 

the software development methodology is composed of four main parts. The first step of the methodology consists 

in a risk analysis to identify the criticality level related to the computer-based system that hosts the software 

system. This criticality level allows the categorization of the software system in the same manner as its targeted 

performance level. The second part focuses on the choice and qualification of COTS and software support tools as 

it is an important topic which is too often underestimated in many industrial sectors. The third part deals with 

classic quality insurance aspects like project, configuration, change & documentation management. The fourth 

part relates to the development activities, from specification to installation, and their associated acceptance criteria 

and verification milestones. In addition to these four main parts, annexes describe the link between the risk 

classification approaches of other main safety-related standards and the criticality scale of the guidelines. They 

also propose an application of the guidelines objectives to model-based developments.  

 

In order to assist software development and assessment teams, the document contains tagged key objectives along 

with their applicability for the targeted software performance level. The development and assessment processes of 

a given software system can be tailored to comply with a limited subset of objectives of the guidelines, depending 

on the performance level of the software system. Here is an example of one of these guidelines objectives: 

 
OBJ_TOOLS_010 

Each SOFTWARE SUPPORT TOOL used at any step of the SOFTWARE SYSTEM development shall 

be identified. 

[I, II, III, IV] 

 

Here, the objective is required when developing SOFTWARE SYSTEM of performance level 1, 2, 3 or 4 (i.e. all 

the potential performance levels defined in the guidelines). Finally, in order to ease the software assessment work, 

the document offers an assessment checklist that lists in a table each guidelines objective with its applicability, 

and provides a “justification” field to state if it has been fulfilled or not by the development team. 

 

Nevertheless, the main added value of the SOFTWARE DEVELOPMENT & ASSESSMENT GUIDELINES 

stands in the innovative positioning of code analysis. Formal techniques are proposed here as solutions for 

functional and non-functional verifications, including computation accuracy, parameter integrity, and behavioral 

conformance. While dynamic testing evaluates if the software system behaves as intended in particular in 

interaction with hardware and environment, static analysis assesses whether the software system is built correctly 

or not, thus levelling the confidence in its ability to behave correctly. Therefore, without minimizing the necessity 

to conduct verification activities to improve the confidence in the ability of the software development process to 

produce the right software system, the SOFTWARE DEVELOPMENT & ASSESSMENT GUIDELINES stress 

the part played by static analysis techniques at the software testing stage to enhance the demonstration of the 

behavioral correctness of the software system. This proposal can be linked to recent approaches that advocate 

moving from process-based towards more assurance-based certification process, especially in the aeronautics 

domain (Rushby, 2009) (Holloway, 2013). 

 

The following two objectives taken from the guidelines illustrate this approach: 
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OBJ_DEV_185 

Dead code and run-time errors shall be detected. Recursivity is accepted only if 

controlled by a maximum number of iterations.  

[II, III, IV] 

 

NOTE1: Depending of the programming languages, typical run-time errors are: 

 Buffer overflows (underflow); 

 Out of bound accesses (arrays, pointers, …) and null pointer dereferences; 

 Invalid arithmetic operations (division by zero, square root of negative 

numbers, ); 

 Non initialized variables access; 

 Dangerous type conversions;  

 Shift in bitwise operations with a negative value or a value greater or equal 

than the size of the underlying type (C/C++); etc… 

These kinds of errors are occurring during the execution of the SOFTWARE SYSTEM; even 

if they are syntactically correct.  
 

OBJ_DEV_205 

Code analysis tools shall be used to check dead code and run-time errors. 

[III, IV] 

2.2. Comparison with other standards 

 

The guidelines are built following common functional safety standards, defining a rigorous development lifecycle 

and focusing on the use of tools to automate some tasks and improve some verification activities. Four key issues 

can be identified to compare the guidelines with the well-known IEC 61508 (61508, 2010): criticality-dependent 

rigor, verification coverage, organization and verification of verification. 

 

The first key issue addresses the efforts to produce during software development that depend on its severity or 

criticality. This is a common point with the IEC 61508 dealing with SIL as the guidelines keep the idea of a scale 

of development efforts relating to the expected performance level from 1 to 4, 4 being the highest. This 

performance level is an input when developing a software system, it has to be determined during the system 

analysis where all risks are analyzed. 

 

Concerning the verification coverage, some differences exist between the two documents. When checking the 

detailed design, IEC 61508 defines specific structural coverages like MC/DC, path coverage, etc. whereas the 

guidelines only focus on functional coverage. This is offset by the strong verification efforts asked on the source 

code by code analysis tools. This choice has been made because structural coverage can prove to be genuinely 

time-consuming, even if necessary, so the focus has been placed on functional and source code analysis. 

Moreover, the classical “software module testing” of the IEC 61508 has been called “checking of the software 

units” and it explicitly includes either the dynamic testing activity or the use of source code static analysis. 

 

Regarding the development team organization, and especially the independence required to carry some activities, 

the guidelines ask for independence between the left and the right sides of the V-cycle and also for all verification 

activities. Nevertheless, these independence objectives do not freeze any team configuration (they can be achieved 

by peer-review in a same development team). This allows more flexibility for small development teams. The IEC 

61508 is not really precise either on this specific topic; the only clear requirement is about the independence of 

assessors. 

 

While the generic functional safety standard for electronic devices IEC 61508 requires tool qualification, the 

guidelines moreover recommend a usefulness analysis. It has to be done at the beginning of the software 

development, and it aims to evaluate pros and cons of performing manual or automated activities.  

 

Last point concerns the verification of verification, like in IEC 61508 all activities have to be verified and 

eventually assessed. In case of third part assessment, a certificate of compliance may be issued regarding the 

guidelines. 
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3. Application of the methodology on a use case  

3.1. SIREHNA problematic 

SIREHNA is a subsidiary of DCNS Group, and a part of the technological research center DCNS Research. 

SIREHNA features different fields of expertise such as hydrodynamics and control of mobile maritime units. 

 

Those skills are directly applied to maritime embedded systems such as Dynamic Positioning Systems; Frigates 

Rudder Roll stabilization systems, Unmanned surface Vehicles or critical tailored systems such as the French 

aircraft carrier flight deck tranquilization system. Those embedded systems include software components which 

perform many functions such as real-time computation of navigation data, multi-degree of freedom control 

algorithms, actuators orders and supervision of the system by human operators. These systems embedded on 

military ships, submarines, and offshore vessels operating near oil platforms, are safety critical and their 

complexity requires a rigorous development, verification and validation process. 

 

Today, IACS does not impose code-level standards in the naval environment for the development of critical 

software applications. For example, the generic safety standard IEC 61508 is not specialized to the maritime 

domain. 

 

BUREAU VERITAS and CEA LIST aim to provide a formal framework defining verification objectives and 

milestones during software development. SIREHNA supports this project by providing its industrial vision both in 

terms of system features and operation, as well as process and industrial constraints for their development. The 

goal is to implement and apply the tools proposed through BUREAU VERITAS & CEA LIST initiative to ensure 

that they are relevant to industrial constraints and assess their performance in a concrete development context. 

 

In this context the work done with BUREAU VERITAS and CEA LIST enables SIREHNA to anticipate new 

standards dedicated to the naval field. 

3.2.  Overview of Frama-C and Fluctuat 

Two main tools have been used during this proof of concept: Frama-C (Kirchner, Kosmatov, Prevosto, Signoles, 

& Yakobowski, 2015) and Fluctuat (Delmas, Goubault, Putot, Souyris, Tekkal, & Védrine, 2009), which are both 

mainly developed at CEA LIST. 

 

Frama-C is an Open-Source (LGPL-licensed) framework dedicated to the analysis of C programs. It is built 

around a kernel tasked with the parsing and type-checking of C code and accompanying ACSL annotations if any, 

as well as maintaining the state of the current analysis project. This includes in particular registering the status 

(valid or invalid) of all ACSL annotations, either user-defined or generated, emitted by the various analyzers. 

Analyses themselves are performed by various plugins, that can validate (or invalidate) annotations, but also emit 

hypotheses that may eventually be discharged by another plugin. This mechanism allows some form of 

collaboration between the various analyzers. Many plugins exist, but in the remainder of this section we focus 

only on the ones that have been used during the case study on the application of the proposed guidelines over 

Sirehna’s code. 

 

While Frama-C’s kernel is meant to operate on C programs, the case study has fueled the development of a plugin 

for analyzing C++ code. This plugin, named frama-clang, whose prototype has been elaborated during the 

European FP7 project STANCE
1
 uses the clang compiler as a front-end for type-checking C++ code and converts 

clang’s abstract syntax tree (AST) into Frama-C’s own AST, producing C code equivalent to the original C++ 

program. In addition, frama-clang extends clang with ACSL++ annotations that are converted into ACSL 

annotation together with the translation of the code. 

 

Two important analysis plugins are Value Analysis and WP. Value analysis is based on abstract interpretation, 

and computes an over-approximation of the values that each memory location can take at each program point. 

When evaluating an expression, Value Analysis will then checks whether the abstraction obtained for the operand 

represents any value that would lead to a runtime error. For instance, when dereferencing a pointer, the 

corresponding abstract set of location should not include NULL. If this is the case, Value Analysis will emit an 

alarm, and attempt to reduce the abstract value. In our example, it will thus remove NULL. The analysis is correct, 

in the sense that if no alarm is emitted, no runtime error can occur in a concrete execution. It is however 

                                                 
1
 http://stance-project.eu/ and http://llvm.org/devmtg/2014-04/PDFs/Posters/FramaC.pdf 
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incomplete, in the sense that some alarms might be due to the over-approximations that have been done and might 

not correspond to any concrete execution. Various settings can be done to choose the appropriate trade-off 

between the precision and the cost of the analysis. While the most immediate use for Value Analysis is to check 

for the absence of runtime error, it will also attempt to evaluate any ACSL annotation it encounters during an 

abstract run. Such verification is however inherently limited to properties that fit within the abstract values 

manipulated by Value Analysis. Mainly, it is possible to check for bounds of variables at particular program 

points. 

 

WP is a deductive verification-based plugin. Unlike Value Analysis, which performs a complete abstract 

execution from the given entry point, WP operates function by function, on a more modular basis. However, this 

requires that all functions of interest as well as their callees be given an appropriate ACSL contract. Similarly, all 

loops must have corresponding loop invariants. When this annotation work has been completed, WP can take a 

function contract and the corresponding implementation to generate a set of proof obligations, logic formulas 

whose validity entails the correction of the implementation with respect to the contract. WP then simplifies these 

formulas, and sends them to external automated theorem provers or interactive proof assistants to complete the 

verification. WP’s main task is thus to verify functional properties of programs, once they have been expressed as 

ACSL annotations. It is however also possible to use it to check that the pre-conditions written for a given 

function f imply that no runtime error can occur during the execution of f. 

 

Two other plugins mentioned in the rest of the paper are not analyzers per se, but can help the main analysis 

plugins in performing some verification task on complex code. First, the Slicing plugin performs program 

transformations. More precisely, given a slicing criterion, e.g. the values of some variables at a given program 

point, Slicing will remove all instructions of the original program that do not contribute to this criterion. The result 

is a simpler program, which is equivalent to the original one with respect to the criterion. Slicing can thus be used 

as a front-end to other, more specific, analysis when focusing on a given property of interest. Second, the EACSL 

plugin transforms ACSL annotations into C code with assert in order to allow for dynamic runtime checks. It 

can for instance be used in complement of Value Analysis to evaluate during the execution of unit tests whether 

an alarm emitted by Value Analysis might occur in practice. Similarly, if a given ACSL annotation cannot be 

discharged by WP, it is still possible to check whether it holds during concrete executions thanks to EACSL. Note 

however that EACSL only supports a subset of ACSL, and that the instrumentation it performs might have an 

impact on the execution time of the program. 

 

Finally, Fluctuat (which is not a Frama-C plugin but benefits from the Frama-C toolchain) focuses on the accuracy 

of floating-point computations. It is based on abstract interpretation and computes an over-approximation of the 

magnitude of the error due to rounding when performing a sequence of floating-point operations. Given a 

mathematical specification of what the operations are supposed to compute, it can also indicate the magnitude of 

the error due to the method used (e.g. Newton algorithm for extracting a square root). The contribution of each 

individual floating operation to the overall rounding error can also be traced, in order to help designing more 

robust algorithms if needed.  

 

3.3. Sirehna’s code analysis by Frama-C 

From a methodological point of view, the aim of this code analysis activity is to prepare the certification. Formal 

proof on the code gives confidence in the library and ensures that the expressed properties are under control. The 

application of the development guide extends the current development process followed by SIREHNA to develop 

its applicative software. This process is based on the development of internal libraries that are likely to be shared, 

customized and then embedded in the applicative software. Current libraries come with unit tests with single 

input, validation unit tests with multiple inputs, non-regression tests. Current applicative software also comes with 

integration tests and non-regression tests. All these tests are good starting points for defining the verification 

scenarios that will drive the abstract interpretation based analyses. The first step just consists in replacing the input 

values of the tests by some ranges of values. 

 

For the verification process of the numerical libraries, SIREHNA, CEA LIST and BUREAU VERITAS have 

decided to experiment a bottom-up verification approach. It benefits from the formal analysis tools WP and 

Fluctuat that are initially designed for the unitary verification of single components. At component level, some 

short verification cycles like annotation/analysis/result examination aim to deliver proved annotations in the 

source code. The annotations carry information about the domains, the loop invariants and the accuracy of the 

computations. The assembly of components in the library come with an assembly of the annotations guided by the 

user. The objective is for high level annotations to meet the properties exported by the functions of the library, as 

verified through whole program analysis. 
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Unitary analysis 

Unitary testing, although an important step in the validation of critical systems, offers only statistical verification 

aligned with the coverage rate of tests: indeed, it is very difficult to cover the entire range of variation of the 

inputs of a function, even adopting heavily codified development processes such as DO178. Therefore, the 

advantage of the static analysis tools proposed by CEA LIST is to prove, for instance, the absence of certain 

classes of errors, or some functional properties expressed as ACSL annotations and to complement unit and 

functional tests. This provides an increased level of robustness and greater efficiency in error detection. 

 

The teams of the CEA LIST performed a code analysis of various “core” functions developed by SIREHNA in 

C++, using thus frama-clang as front-end. An initial analysis was carried out on the source code of the ship 

trajectory generation functions. In a first case study, Frama-C’s Value Analysis plugin was used to demonstrate its 

intervals values verification capabilities on floating point numbers. More precisely, the entry point for the analysis 

stemmed from an existing unitary test that was meant to check that the functions for converting Cartesian 

coordinates to polar ones and vice-versa were indeed inverse to each other (modulo rounding). For the analysis 

with Frama-C, we replaced floating-point inputs with small intervals around the original input, in order to check 

whether the function under test was robust to numerical imprecision. The entry point for Value Analysis was thus 

along the following lines: 
void test(void) { 

    double x = Frama_C_interval(x_0 - eps, x_0 + eps); 

    double y = Frama_C_interval(y_0 - eps, y_0 + eps); 

    double z = Frama_C_interval(z_0 - eps, z_0 + eps); 

    double x_conv, y_conv, z_conv; 

    double lon, lat, height; 

    cartesian2polar(x,y,z,&lon,&lat,&height); 

    polar2cartesian(lon,lat,height,&x_conv,&y_conv,&z_conv); 

} 
 

Frama_C_interval is a built-in function of Value Analysis that returns any number between the bounds 

given as argument, while x_0, y_0, and z_0 represent the original test input and eps the (small) interval 

of variation we want to examine. Value Analysis was complemented in this task by Fluctuat. 

 

A second analysis focused on source code developed in C language intended to be incorporated on board 

submarines for the weight balancing check function. This time, Frama-C’s Slicing plugin was used as a front-end 

to let the Fluctuat tool concentrate on the analysis of the major contributors to numerical errors without undue 

interference with unrelated computations. Other plugins of interest for Fluctuat are frama-clang (C++ to C 

translator) and the constant propagation plugin (especially on the values of pointers). Finally, some preliminary 

experiments have been done to use WP for verifying accuracy of floating point computations. This work follows 

the methodology devised in an earlier collaboration with NASA (Goodloe, Muñoz, Kirchner, & Correnson, 2013). 

Integration analysis 

Value Analysis run at system level will then benefit from some invariants and some assertions put by the user and 

verified at component level. At the certification/system level the objective of Value is to prove the absence of run-

time errors (dangling pointers, divisions by zero and arguments of functions like asin outside the interval [-

1,1]). 

 

Let us consider the following piece of code as a short example:, 
/* basic low level function of the library ; LIBRARY-level */ 

double distance(double x, double y) 

  { return sqrt(x*x + y*y); } 

 

/* intermediate function of the library ; LIBRARY-level */ 

double angle(double x, double y) 

  { double dist = distance(x,y); 

    if (dist > MINIMAL_DIST) { 

      double result; 

      if (y > dist*EPSILON || y < -dist*EPSILON) 

        result = atan(x/y); 

      else 

        result = asin(y/dist); 

      if (x < 0) 

        { if (y < 0) result -= PI; else result += PI; } 

      return result; 

    }; 
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    return 0.0; 

  } 

 

/* elaborated high level function of the library ; LIBRARY-level */ 

void cartesian2polar(double x, double y, double* rho, double* theta) { 

  *rho = distance(x, y); 

  *theta = angle(x, y); 

} 

 

/* applicative software ; SYSTEM-level */ 

int main() { 

  double x, y, rho, theta; 

  ... 

  while (...) { 

    /* domain information for the applicative software */ 

    x = Frama_C_interval(-10.0, +10.0); 

    y = Frama_C_interval(-10.0, +10.0); 

    cartesian2polar(x, y, &rho, &theta); 

  } 

  ... 

} 

 

One problem faced by the certification process on such kind of library/system decomposition is that it may be 

non-conclusive. On the one hand, WP/Fluctuat cannot prove some properties like the result accuracy at the library 

level since it depends on the domains only provided at system level. On the other hand, Value cannot prove at 

system level that y/dist as the asin argument is in the interval [-1, 1] due to its internal logic targeted to 

be efficient on Run-Time Errors but not precise enough to know that abs(y) <= sqrt(x*x+y*y) without 

any domain information. Thus, a collaboration between the various tools is needed to achieve a complete 

verification. More precisely, the following verification cycle can be proposed. 

1. Annotate the library with ACSL contracts and use deductive verification – WP tool, with the Gappa (de 

Dinechin, Quirin Lauter, & Melquiond, 2011) theorem prover that has a built-in understanding of 

floating-point operations. 

2. Define unitary scenarios (possibly based on the existing unit tests). 

3. Use Abstract Interpretation at component level with the Fluctuat tool. 

4. Adjust coefficients in annotation formulas following the results of the unitary analysis. 

5. Assemble the various components 

6. Use Abstract Interpretation at system level with the Value Analysis plugin of Frama-C and checks that 

the functions of the libraries are called with arguments in the appropriate bounds.  

7. If needed, use the EACSL plugin with validation unit tests and/or with integration tests for the remaining 

alarms in order to classify them as true or maybe false alarms. 

Case studies results 

Following the CEA LIST presentations, SIREHNA evaluated the following Frama-C key functions: 

 Visualization of the impact of floating point operations on numerical precision, which can identify the 

calculations that contribute the most to the numerical error. 

 The generation of ACSL specification from an existing code, giving a synthetic vision of functions and 

allowing to apprehend unexpected side effects and trace dependencies between variables. 

 Runtime error detection such as NaN, buffer overflow or uninitialized tables. 

 

SIREHNA foresees strong added value in the following Frama-C features: 

 Fully formalize the contract of simple functions directly on the source code when possible 

 For more complex functions, formalize the limitations of application (preconditions) 

These two features will improve the source code documentation (a step toward literate programming). As these 

assertions can be formally verified, this will have the following impacts on design process: 

 Eliminate unit test and runtime assertions when the correctness of the implementation with respect to the 

contract can be proven  

 Put the focus on potential safety issues that cannot be formally verified, and which will require more efforts 

(unit tests and/or runtime assertions) 

For the application specific functions, it will be possible to specify the range of various quantities (like ship 

altitude, latitude and longitude). This is often a pre-requisite for Value Analysis and Fluctuat. 
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The outcome of this work demonstrates significant interest in productivity and securing the development process. 

SIREHNA has started a reflection aimed at integrating Frama-C in the development processes of its system’s 

critical functions. Besides the extension of Frama-C to C++ is followed with great interest. 

3.4. Review and application of the guidelines  

SIREHNA conducted a review of the development guide "SOFTWARE DEVELOPMENT & ASSESSMENT 

GUIDELINES." 

 

This document is characterized by its pragmatic approach:  

1. Recommendations are concise and written in the form of objectives. 

2. A global approach is described and addresses the complete development cycle, project management, use 

of COTS, development tools. 

3. The definition of software categories in relation to their criticality is declined to different processes 

within one single document.  

 

In addition, the document recalls the various existing standards on the classification of risks and software. This 

approach by category is directly transposable in SIREHNA processes for software development with different 

levels of criticality. 

 

BUREAU VERITAS, CEA LIST and SIREHNA worked on an actual project to link the recommendations 

contained in the guide with the development process followed on this project (the product line of Dynamic 

Positioning systems). The analysis generated feedback on the application of the software development guidelines 

and confirmed the applicability in real life development process. 

This analysis has been done during the year 2015. SIREHNA has delivered the whole documentation of a 

Dynamic positioning system to BUREAU VERITAS. Considering that SIREHNA has been developing software 

for a long time, their process of development is matured enough to assess it. BUREAU VERITAS worked as a 

third party assessor filling the objectives matrix based on the SIREHNA documentation. 

  

The first activity consisted in selecting the Software Category (performance level or SIL) of the software. In the 

IACS requirements, the systems whose failures could immediately lead to dangerous situations are Category 3 

(highest category). In the annex of the guidelines, a correspondence is given between IACS Categories & 

Guidelines Software Categories. Thus, the Dynamic Positioning system has been rated Software Category 3 

(Software Category 4 being the highest class in the guidelines). All the objectives of the guidelines have been 

browsed knowing that the software system needs to reach Software Category 3. 

The main conclusion of this assessment is that the SIREHNA development process is compliant with the 

guidelines. 

Nevertheless the guidelines objectives recommend to qualify more formally tools & COTS. The functional 

coverage of the Software System is achieved by a strong set of validation test cases (including nominal & 

robustness cases). Some tests cases were partially modified to check the behaviour of the software out of his 

bounds, especially because the DP operates depending on numerical computations with a certain accuracy 

acceptance.  

 

This analysis generated feedback on the application of the software development guidelines (some objectives have 

been re-worded or added) and confirmed its applicability in real life development process. 

The analysis will be carried on during 2016 to assess a new version of the DP. This will permit to deliver a 

certificate of compliance on the DP software. 

4.  Conclusion and Perspectives 

In this paper we present three new results: the elaboration of a set of guidelines for software development and 

assessment, guided by marine and naval considerations; the relationship between these guidelines and existing, 

state-of-the-art source code analysis tools; and the application of both guidelines and tools to an industrial use 

case. These results are leading the current trend toward software validation in the marine and offshore industry to 

deal with possible accidents and optimize operational uptime. The approach they advocate has shown potential 

benefits to manufacturers and end-users of the domain, and upcoming experiments will further investigate the 

impact of this approach on the overall software development process. Finally, while they were developed with a 

specific application field in mind, the guidelines presented here are generic enough that they could be applied to 

numerous other industrial fields where safety is a quickly emerging concern. The guidelines are freely available 

on the web site of BUREAU VERITAS (http://www.bureauveritas.com/home/about-us/our-business/industry-

offer/software). 
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Abstract

The use of Unmanned Aerial Systems (UAS) can be leveraged in many application domains
ranging from agriculture to industry, opening up a wealth of new possibilities. However, UAS
obviously raise important safety concerns and the use of the techniques, processes and standards
developed for the aeronautic industry is not a feasible solution for most UAS. There is a need to bring
in novel and pragmatic solutions to develop provably safe UAS in a time and cost-affordable manner.
This paper reports on the development of a smart parachute which provides a safe-crash (termination)
solution for UAS, one of the core safety requirements which can be complemented by other safety
components in an incremental manner. The requirements elicitation phase, the design and partial
verification of the termination system has been carried out using CPAL, a lightweight model-based
design environment for embedded systems. The study illustrates on a specific requirement of the
system how simulation and fault-injection on models can be used to provide evidence that the
parachute system meets its design objectives.

1 Introduction

1.1 Context of the study

Drones or Unmanned Aerial Vehicles (UAV) or Systems (UAS) have been increasingly spotted on the
civilian radars. Everywhere on the news, they can be seen as business opportunities in many fields
from agriculture to industry, as pure entertainment devices (coming from the RC world) or as ethical
and sociological subjects of interest or concerns (automated aircrafts or vehicles can be used to carry
weapons, or as privacy invading tools). Having hundreds or thousands of mostly autonomous UAVs
flying in rural but also urban airspaces raises important safety concerns (see [13]). One the one hand,
applying or enforcing the exact same techniques and guidelines used in the aeronautic industry for the
certification of small to middle size (and weight) UAVs is not a reasonable solution as of today. But on
the other hand, if an RPAS (Remotely Piloted Aircraft System) / UAV industry emerges where such
vehicles become ubiquitous as forecast, safety becomes a main concern for the provider of hardware and
software, the operator of the system, the insurance companies or the regulation bodies. Indeed, the
actual cost of certification, if applied to every part, every modification for every UAV, cannot deliver
solutions even for professional systems that cost only a few thousands of euros, and could potentially
be rapidly modified and updated in their uses and configurations. At least this is what is targeted for
general public and professional use.

We believe that this is an opportunity to bring novel and pragmatic solutions by incrementally adding
safety to the system. Beginning with a smaller set of safety functions (termination for example), and
targeted subsystems the industry and legislator could increasingly extend the safety requirement to all
functions and parts of the entire UAS. ALERION is promoting a design framework to build adaptive and
tailor-made UAS by the integration of (secure and) provably safe Cyber Physical components. Building
on the experience of the participation to the final of the UAV Outback “Search and Rescue” challenge
(see http://uavchallenge.org/search-and-rescue/), which implied the fulfillment of a set of safety
requirements, ALERION is developing in partnership with RTaW a Smart Hybrid Parachute system.
This system is an all in one (i.e., hardware and software) add-on termination system for any UAV. It
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works independently of the UAV’s normal operation and can be triggered either by the operator through a
safe, secure and dedicated communication channel or upon the detection of specific error conditions (e.g.,
hardware or software failures, system out of the authorized flight envelope, communication problems).

1.2 Contribution of this study

The main goal of this study is to demonstrate that such safety components can be developed according
to a safety process in a time and cost-affordable manner, and that they would add the minimum level of
safety requirements to allow a safe-crash (termination) solution for UAS. We describe design decisions
and return of experience throughout the development process, with a focus on requirements and design
phases.

The requirements elicitation phase, the design, simulation, and verification of the termination system
has been carried out using CPAL [9], a lightweight model-based design environment for embedded systems
jointly developed by RTaW and the University of Luxembourg. The complete set of requirements, the
CPAL development environment (see http://www.designcps.com) and the CPAL models are made
freely available for all uses. Though the verification stage is by no means complete, the first tests carried
out using simulation and fault-injection on models suggest that the parachute system can meet its design
requirements and provide a cost-effective solution to increase the safety of UAVs.

Finally, we would like to emphasize that if all the classical requirements from aeronautics should be
considered, UAVs offer an opportunity to streamline the process of verification without giving away too
many of the good practices of today’s aeronautical industry.

2 Smart Parachute System : Remote Safety for Autonomous
Vehicle Application

Very promising novel applications and markets are foreseen with UAS. But as far as micro drones are
concerned, it is not possible today to enforce the same quality and safety mechanism as in private or
commercial aviation1. Paying even a few tens of thousands euros to certify an autopilot, each and every
time a new version is rolled out, can hardly work for devices that cost between a hundred and a few
thousands euros. These systems are however already able to carry significant loads and represent a
physical danger to the population or the institutional and industrial infrastructures.

Fully autonomous systems are not allowed so far and a human must remain in control during the
operations. For now, the regulation tends to focus on the responsibility of the drone sector actors with
a good part on the operator or pilot, backed by its employer. This is why in Europe it is mainly referred
as RPAS (Remotely Piloted Aircraft Systems). But the systems are a lot closer to improved RC systems
than to downsized aircrafts. The recreational use is now also under scrutiny. The RC world used to be a
microcosm of very dedicated fans, while the ”drone” is more of a mainstream activity. Very importantly,
it is not clear who will be responsible in case of an accident: many non-certified hardware and software
failures could potentially be invoked and it would be difficult to pinpoint the exact cause of the problem.
Eventually, more autonomous UAS will require achieving and demonstrating higher safety levels.

2.1 Minimal safety for general public UAVs with our safe termination system

When dealing with autonomous systems, be they robots or autonomous vehicle, it is most often required
to add some ”emergency shutdown” mechanism, typically called the ”red button”. In case of UAS, we
propose to have a safe-crash vision of safety: being able to terminate a flight when some errors conditions
are observed (control loss, immediate danger etc.). This has been well stated for example in the rules of
the UAV challenge ”Outback Joe” [3]. The simplest of the requirements is therefore to have a termination
procedure enforced on the UAV which can be triggered by the operator. Another general requirement is
to have the termination procedure engaged when for example the radio contact is lost with the operator
/ pilot. This is a way to ensure no ”out of sight” flight.

1The currently ongoing CAP 2018 FUI French collaborative project aims at developing the first autopilot for autonomous
drones that can be certified according to DO178-C, see [14]. To the best of our knowledge, there is at the time of writing
no publicly available outcome of the project.
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Figure 1: From simulation to field test (”red
button” prototype on the right).

Generally with modern autopilots for UAVs you
can program that type of behavior and have some
switches on your remote that actually triggers the
termination or at least the return to base procedure.
Most of the autopilots are however either black boxes
or open source software that are constantly evolving
with new features but are rarely checked as far as soft-
ware correctness is concerned. Therefore, there is a
high probability that native safety ”mechanisms” will
not be available in software in case of errors at run-
time. This is the reason why ALERION has decided
to develop a Smart Parachute System that works as
an add-on to any already existing system. This Smart
Parachute constitutes the core safety mechanism of
the UAV and it has to be developed with strong safety
requirements to ensure safe-crash.

At ALERION, we have been using several ways
of providing a certain level of quality with our development tool-chain. We are using modeling en-
vironment, simulation, hardware-in-the-loop and software-in-the-loop to develop, taking into account
safety concerns and accurate physical models [1,2]. We combine ROS (Robot Operating System), with
MAVLink (protocol) ready devices and are using open-source autopilots. Even though the underlying OS
may be ”real-time” (e.g., NuttX RTOS for Pixhawk), from our experience in real flights, and analysis of
parts of the code, the actual autopilot function cannot always be fully trusted. Our view is that the focus
of the current developments in the UAV community is more on functionalities and ease of development
rather than safety of the solutions.

2.2 Smart parachute requirements: methodology and tool support

The design of critical embedded systems is usually carried out by large OEMs using well-established
processes. It is also known that the certification process costs a significant fraction of the overall design
costs. Yet, we believe that these processes can be scaled down, made faster, and adapted to the design of
systems that are smaller and cheaper than aircrafts, satellites or power plants. One way to achieve this
is through the development of the appropriate standards, such as the ISO 29110 [5] meant for entities
and services with less than 25 people, inspired by the bigger ISO/IEC/IEEE 15288. The designer needs
also to be provided with the tools that will guide him along the process, and help him learn and master
the state-of-the-art practices.

2.2.1 Support for requirements elicitation

The successful design of a system starts from a good specification. Yet writing a complete and coherent
specification is hard, and systems engineering skills require time and experience. To help designers
with requirements elicitation, RTaW provides ReqLab [5], an online requirements editor conceived to
be as easy to use as a spreadsheet, for instance to edit and organize requirements, but also offering the
possibility of more advanced mandatory features like requirements traceability.

If, ideally, one should be able to share a model of the system as a specification, typically a SysML
model, model-based specification only is not always feasible. ReqLab provides thus features to automat-
ically generate documents from the underlying requirements by extracting text or creating diagrams.

Finally, ReqLab tries to guide the user. On purpose, in comparison to other requirements editors,
ReqLab comes with less features and a reduced degree of control. For instance, the number of links for
traceability is limited to refinement. Another illustration is the usage of tags to separate between what
is a ”real” requirement and what is a goal (as in KAOS/GORE [6]). As a result, the user has only a few
concepts to understand to start using the software.
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Figure 2: Generated synthesis document in KAOS/GORE notation.

The user is encouraged to start by the mission of the system and refines it with everything that is
mandatory to achieve it. Obviously those are not yet requirements per se. Hence they are tagged as
”Goal”. The user can write a document that extracts some of those requirements for a more understand-
able presentation. In the case of the Smart Parachute, the list of requirements includes:

� G1 Reduce goods damage.

� G2 Remote safety procedure shall deploy a parachute.

� G3 When communication link loss is detected, the remote safety procedure shall be engaged.

� E1 The pilot shall engage the remote safety procedure every time a hardware failure occurs, or
when an emergency is going to happen.

� [R1] Every time the pilot shall be able to manually start the remote safety process.

� [R2] The remote system shall engage the remote safety process if it has received no message for 1s.

� [R3] The safety process shall turn the propellers off before deploying the parachute.

� [R4] Once the safety process engaged, the parachute shall be deployed in less that 1.43s.

� [R5] The ground control system shall send a message to the remote system every 100ms.

The value 1.43 second in requirement R4 has to be derived from a set of parameters such as the
ground speed target, the minimum acceptable flight altitude, the weight of the UAS and the charac-
teristics of the parachute (opening time, lift, etc). The maximum speed with with the UAS may hit the
ground may be specified by local regulation documents (see [12] for France). A more complete list of re-
quirements for the smart parachute is available at https://www.requirements.fr/api/v1/docfrags/

ertss2016-parachute~specification.

2.2.2 Executable requirements

The designer can then refine deeper his list of requirements down to a specification, i.e. a list of
requirements that are SMART (Specific, Measurable, Assignable, Relevant/Realistic and Testable/Time-
bound). The fulfillment of SMART requirements can be verified in a dedicated CPAL task. CPAL
natively support finite state machines, more precisely mode-automata [8], to describe the logic of the
tasks. Along with CPAL simulation capability (faster than real-time), we can easily write tasks that
check that a property holds during the simulation of a certain scenario of execution, or during the
execution of the real system. In addition, knowing that we will execute requirements force to write
SMART requirements. For instance, requirement R4 for the smart parachute could be verified with the
code shown in Figure 3. It is a classical implementation of an observer automaton for temporal logic
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properties. The designer can write tasks to stimulate the core design along with their observers to check
the fulfillment of the requirements. Both design and validation of the software will be further explained
in the following sections.

Figure 3: Formalisation of requirement R4: code on the right and visual representation on the left.

To counteract the natural tendency of focusing on functional aspects only, CPAL provides means to
define precisely the timing behaviour of the system. For instance, CPAL language enforce the organisation
in tasks with well-defined activation properties (e.g., periodic tasks with offsets). Moreover the CPAL
editor show the Gantt chart of the task activations. This helps the designer verify that the timing behavior
does not jeopardize the functional correctness of the system (e.g: excessive jitters, deadline misses, data
are produced after being used, etc). This possibilities can be leveraged to verify requirements involving
timing properties.

3 Software design and implementation

The system is really made up of two parts. One is called the transmitter, the other the receiver as seen
in Fig. 1. The transmitter will is to be used by the pilot in case of emergency. The receiver will be
embedded in the drone, and inserted between the RC receiver and the autopilot, so has to be able to
turn the motor off and release the parachute. The CPAL code of the smart parachute system is available
at http://www.designcps.com/wp-content/uploads/ertss2016.zip.

3.1 Functional architecture on sender and receiver side

The software architecture on the sender and receiver sides are quite similar as shown in Fig. 4 and 5.
Both have in common 3 tasks (rounded rectangles):

� a task to manage the current global mode (tm modeTask and rcp modeTask),

� another to manage the user interface, i.e. LEDs in this implementation (tm uiTask and rcp uiTask),

� and a task dedicated to the wireless communication (Xbee in the prototype) (tm xbeeTask and
rcp xbeeTask).
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Figure 4: Software architecture of the transmitter: three tasks (rounded rectangles) tm modeTask,
tm uiTask, and tm xbeeTask, and their mean of communication (Rectangle and cds shape). uplink

and downlink are channels of communication between transmitter and receiver, while the rectangles are
global variables (screenshot from the CPAL editor).

Figure 5: Software architecture of the receiver: Same architecture as the transmitter except one specific
task rcp hwTask to handle specifically the servo and electronic switches.

All rectangles in the Figures 4 and 5 are kinds of global variables used to share state information
between tasks, referred to as processes in CPAL. The two others, uplink and downlink, are FIFO
queues. In simulation, they are abstract Xbee messages while in the prototype implementation they are
queues of characters as both Xbee modules are configured in transparent mode (i.e., they implement a
serial connection over-the-air, just like a wire would do). In the final prototype, they should be configured
as Xbee frames so as to benefit from services of the Xbee protocol (e.g., “keep-alive” messages).
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The receiving module executes another process, named rcp hawTask, to control the ESCs (Electronic
Speed Control), that reduces the motor’s speed through a PWM signal command, and to trigger the
opening parachute. Indeed requirement R3 requires to cut-off the motor before releasing the parachute.
To do so, one need to by-pass the autopilot PWM commands with the rcp ic electronic switch, send
a zero command to the ESC via the rcp powerSwitch, and finally release the parachute by setting the
PWM rcp servo.

3.2 Parachute deployment sequence

Figure 6: Logical sequence before parachute deployment.

The parachute deployment sequence, or any sequence with states and transitions between states, is
easily described in CPAL. The CPAL editor also automatically displays the corresponding automaton
graphically as shown on Figure 6. As seen on the figure, we let the motors brakes for 1s in order to delay
the parachute deployment so that its strings do not get entangled in the moving propellers.

CPAL is not only a language but an execution platform. Indeed, with the same source code, one
can interact physically with the GPIOs of a Raspberry Pi or a Freescale FRDM-K64F board, or with
device drivers on an embedded Linux. Programming a GPIO, a PWM command, an analog-to-digital
converter, etc, is simplified for the programmer since the low-level interactions with the hardware are
performed by the interpreter. At run-time, the CPAL model is interpreted by an execution engine which
relies on principles of similar systems deployed in interlocking systems, for instance at SNCF [7], where
the hardware interpreter guarantees the semantics of the execution.

In terms of scheduling, the processes in charge of the user interface (tm uiTask and rcp uiTask) can
be run at slower rate since they are meant to inform the user, for which a period of 200ms is sufficient.
The communication tasks have a larger execution times than the other tasks because they are interacting
with the Xbee module on the serial bus. It is crucial nonetheless that these communication tasks are
able to react quickly, they are thus assigned an execution period of 50ms. The mode management task
are on both data-flow, and, for this reason, is given a period of 50ms too.

7



Figure 7: Gantt chart of the tasks activations on the receiver, from top to bottom: rcp modeTask,
rcp uiTask, rcp hwTask and rcp xbeeTask. The color of a bar indicates the current state the task is
in and the width of a bar indicates the task execution time.

The CPAL editor provides a timing diagram of the activation of all tasks, as shown on Figure 7 for
the receiver. Design decisions can be taken by analyzing the timing behavior of the tasks on this Gantt
diagram. For instance, in order to make the Xbee task really periodic, i.e. without any jitter, we have
set an initial offset of 5ms for this task which will then not be delayed anymore by the other tasks. On
the other hand, one observes that the rcp hwTask is regularly slightly delayed by the rcp modeTask and
rcp uiTask.

4 Verification of system correctness

4.1 Verification in nominal mode

The same CPAL source code can be run in real-time mode, where the execution of the code follows the
timing specifications, typically tasks’ periods, and it can also be run as fast as possible, in simulation
mode. This latter mode enables to explore more trajectories of the system. Obviously such a verification
by simulation will not be exhaustive, yet it is powerful in our experience (see [11]) and enforces good
practices like formalizing requirements. For instance, we have included to the code on the receiving side
the specification of requirement R4 and have checked by simulation of the model that the requirement
holds.

Figure 8: Execution time annotations of tasks. The execution time attribute of a task is used in
simulation. Changing true to false in the code would simulate an execution time obeying a uniform
distribution in the interval 2/3 of the WCET to the WCET, instead of always simulating the WCET.

CPAL offers support to express timing properties, which are often equally important as the functional
behavior in real-time systems. For instance, it is possible to add timing annotations to a program, as an
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example is shown in Figure 8. With such annotations, typically obtained by on-target measurements, it
is possible to simulate the effects of timing behaviors, typically the execution times of the tasks, or to
perform a worst-case schedulability analysis (see [10] for the schedulability analysis of CPAL tasks).

In our context, different timing behaviors can change the worst-case delay until the complete de-
ployment of the parachute, i.e. the delay between when the user pushes the red button and when the
parachute is fully deployed. This delay does not only depend on the opening sequence, but also schedul-
ing of the tasks, and the time needed to transmit the message. All this can be simulated in CPAL on
the basis of the same functional model.

4.2 Model-based fault-injection

It is needed during the design of many systems with dependability constraints to study their resilience
to errors and faults that can happen at run-time. A powerful technique for this purpose is fault-injection
which can be done on models or on the actual system. Here, we are interested in studying the impact
of message losses, which are likely to happen with wireless communication and thus pose a threat to
the correct functioning of the smart parachute. We can for instance introduce between the receiver
and transmitter tasks a CPAL process simulating a faulty network, or simulate the fact that the first
emergency message is loss. What we have done here, is simulate the random loss of up-link messages
depending on a network quality ratio, and analyze the effect on the fulfillment of requirement R4 about
the latency in deploying of the parachute.

We conducted simulations with a network quality ratio varying from 50% to 100% by step of 10% (5000
simulations per step). A network quality ratio of 50% means here that on average 50% of the messages
are successfully transmitted. For each simulation, we have counted the number of times requirement R4
is satisfied. We have also recorded the minimum, average, and maximum time needed by the parachute
to be deployed. All these data are presented in Figure 9.

Figure 9: Time for the parachute to deploy (in seconds) and satisfaction of requirement R4 versus
network quality ratio.

What we observe for instance, is that even with a 60% up-link network quality, R4 is satisfied 90% of
the time. But the maximum deployment time can be then nearly half-more. It means that the parachute
will have less time to decrease the speed of the UAV, and that the UAV will fall with greater energy on the
ground. Obviously, the minimum time is constant and correspond to the critical path of the data-flow.
The average time is not that different because once the emergency has been required, the transmitter kept
sending an emergency command until it receives the acknowledgment that the sequence of deployment
has been be triggered. Yet, without simulation, it would be difficult to derive the worst-case situation.
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5 Conclusion

The paper reports on the development of a safe termination add-on component for UAS. Such a safety
component improves the safety in the usual situation where the autopilot cannot be fully trusted. The
component is developed in the CPAL language which has been designed to provide the right language
abstractions to develop such embedded systems with dependability constraints. The use of model-
interpretation makes it easier to verify the correctness of the system since the logic of the application is
decoupled from the run-time services and written in a high-level language. The ability to easily express
requirements in CPAL and verify them in simulation mode or real-time execution mode is also a powerful
technique in our opinion.

The list of requirements of the termination system can be further refined, and the models extended
accordingly. This ongoing work is being conducted on the basis of the experience gained on a prototype
we are developing. The verification of the system correctness requires further work too, a question that
needs to be investigated is whether the use of simulation alone can provide the verification coverage
needed by such systems.
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12. “Arrêté du 11 avril 2012 relatif à la conception des aéronefs civils”, Annexe2-2.2.6, 2012. Available
at http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000025834953&dateTexte=
20151022

13. Clothiera R.,Williams B., Fulton N., “Structuring the safety case for unmanned aircraft system
operations in non-segregated airspace”, Safety Science, vol.79, pages 213–228, November 2015.

14. “Sogilis, le projet CAP 2018 retenu au FUI20”, http://www.aerospace-cluster.fr/news-entreprises/
sogilis-le-projet-cap-2018-retenur-au-fui20/, Retrieved November 13, 2015.

10



 1 

Towards Resilient Computing on ROS  
for Embedded Applications 

 
Jean-Charles Fabre1, Michal Lauer2, Matthieu Roy 

CNRS-LAAS, Ave du Colonel Roche,  
F-31400 Toulouse, France 

1Univ de Toulouse, INP, LAAS, F-31400 Toulouse, France 
 

Matthieu Amy1, William Excoffon1, Miruna Stoicescu3 
CNRS-LAAS, Ave du Colonel Roche, F-31400  

Toulouse, France 
2Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France 

3 Presently with ESOC/ESA, Darmstadt, Germany, on behalf of GMV 
 

 
Abstract—Systems are expected to evolve during their service 

life in order to cope with changes of various natures, ranging 
from fluctuations in available resources to additional features 
requested by users. For dependable embedded systems, the 
challenge is even greater, as evolution must not impair 
dependability attributes. Resilient computing implies 
maintaining dependability properties when facing changes. 
Resilience encompasses several aspects, among which 
evolvability, i.e., the capacity of a system to evolve during its 
service life. In this paper, we discuss the evolution of systems with 
respect to their dependability mechanisms, and show how such 
mechanisms can evolve accordingly. From a component-based 
approach that enables to clarify the concepts, the process and the 
techniques to be used to address resilient computing, in 
particular regarding the adaptation of fault tolerance (or safety) 
mechanisms, we show how Adaptive Fault Tolerance (AFT) can 
be implemented with ROS. Beyond some implementation details 
given in the paper, we draw the lessons learned from this work 
and discus the limits of this runtime support to implement such 
resilient computing features in embedded systems. 

I. INTRODUCTION 
Evolution during service life is inevitable in many systems 

today. A system that remains dependable when facing changes 
(new threats, change in failures modes, updates of applications) 
is called resilient. The persistence of dependability when facing 
changes is called resilience [1]. Resilient computing 
encompasses several aspects, among which evolvability, i.e., 
the capacity of a system to evolve during its service life. On the 
other hand, dependability relies on fault-tolerant computing at 
runtime, enabled by Fault Tolerance Mechanisms (FTMs) 
attached to the application. As such, one of the key challenges 
of resilient computing is the capacity to adapt the FTMs 
attached to an application during its operational life. 

One important aspect of a dependable system design is the 
definition of the fault model. This fault model considers both 
hardware and software faults may lead to failure modes that 
impair the correct behavior of the system. In critical systems, 
such failure modes may violate safety properties. The role of 
the safety analysis (e.g. using the FMECA method, FMECA 
stands for Failure Modes, Effects and Criticality Analysis) is to 
identify the failure mode and then define the safety 
mechanisms to prevent the violation of safety properties. Such 
safety mechanisms rely on basic error detection and recovery 
mechanisms, namely fault tolerance techniques following 
Laprie's terminology. Such safety mechanisms are based on 
Fault Tolerance Design Patterns that can be combined 

together. The safety analysis is often done a priori according to 
the fault model that had been defined.  

During the operational life of the system, several situation 
may occur. New threats may lead to revise the fault model 
(electromagnetic perturbations, obsolescence of HW 
components, Software aging, etc.). A revision of the fault 
model has consequences on the fault tolerance mechanisms to 
be used. In other words, the validity of the fault tolerance 
mechanisms of safety mechanisms (whatever you want to call 
them) depends on the representativeness of the fault model. In 
a certain sense, a bad choice of the fault model may lead to pay 
for useless mechanisms in both normal operation and erroneous 
situations. This has an obvious side effect on the performance 
and on the dependability measures (reliability, dependability) 
respectively. This means that a change in the definition of the 
fault model implies a change in the fault tolerance mechanisms. 

Beyond the fault model, there are other sources of changes.  

Resources changes may also impair some safety 
mechanisms that rely on hardware resources. A typical 
example is the lost of processing units, but simply a loss in 
networks bandwidth may invalidate some fault tolerance 
mechanisms from a timing viewpoint. 

Application changes are more and more frequent during the 
operational lifetime. This is obvious for many conventional 
applications (e.g. mobile phones) but it is becoming also 
needed for more critical embedded systems. This is the case for 
long living systems like space or avionics systems, but also in 
the automotive domain, not only for maintenance purposes but 
also of commercial reasons. The evolution of the specification 
during the lifetime of a system is a fact, it follows the evolution 
of the user requirements or needs. The notion of versioning 
(updates) or the loading of additional features (upgrades) may 
lead to change the assumptions on top of which the 
implementation of FT mechanisms rely. Such change implies 
revisiting the FMECA spreadsheets but also the 
implementation of the FT mechanisms. Some FT mechanisms 
rely on strong assumptions regarding the behavior of the 
application, and everybody knows in the dependability 
community the importance of the coverage of such 
assumptions [16]. 

As a conclusion, the safety mechanism must remain 
compliant with all assumptions in terms of fault model, 
resources and application characteristics during the whole 
lifetime of the system. Their efficiency relies on this statement. 
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In this paper, we first motivate the issue and then report on 
an approach taking advantage of Component Based Software 
Engineering technologies for tackling this crucial aspect of 
resilient computing, namely the adaptation of fault tolerance 
mechanisms. We defined a minimal runtime support for 
implementing adaptive fault tolerance. The second part of this 
paper shows how this minimal runtime support can be 
implemented on ROS (Robot Operating System), presently 
used in many applications (robotics applications, automotive 
applications like ADAS – Advanced Driver Assistance 
Systems, or military applications). We illustrate the mapping of 
ideal components to ROS components and give 
implementation details of a fault tolerance design pattern that is 
adaptive at runtime. We finally draw the lessons learnt from 
our first experiments, discuss the limits of the exercise, and 
identify some promising directions. 

In Section II we present the problem statement, and then 
summarize our Component-Based Software Engineering 
(CBSE) approach for adaptive fault tolerance in Section III. A 
full account of this approach can be found in [13]. The 
mapping of this approach to ROS is described in Section IV. 
The lessons learnt are given in Section V before concluding. 

II. PROBLEM STATEMENT 
The need for Adaptive Fault Tolerance (AFT) rising from 

the dynamically changing fault tolerance requirements and 
from the inefficiency of allocating a fixed amount of resources 
to FTMs throughout the service life of a system was stated in 
[2]. AFT is gaining more importance with the increasing 
concern for lowering the amount of energy consumed by 
cyber-physical systems and the amount of heat they generate 
[3]. For Dependable systems that cannot be stopped for 
performing off-line adaptation, on-line adaptation of Fault 
Tolerance Mechanisms (FTMs) has attracted research efforts 
for some time now. However, most of the solutions [4], [5], [6] 
tackle adaptation in a preprogrammed manner: all FTMs 
necessary during the service life of the system must be known 
and deployed from the beginning and adaptation consists in 
choosing the appropriate execution branch or tuning some 
parameters, e.g., the number of replicas or the interval between 
state checkpoints. Nevertheless, predicting all events and 
threats that a system may encounter throughout its service life 
and making provisions for them is impossible. The use of 
FTMs in real operational conditions may lead to slight updates 
or unanticipated upgrades, e.g., compositions of FTMs that can 
tolerate a more complex fault model than initially expected. 

In both aeronautical and automotive systems, the ability to 
perform remote changes for different purposes is essential: 
maintenance but also updates and upgrades of embedded 
applications. The remote changes should be partial as it is 
unrealistic to reload completely an processing unit from small 
updates. This idea is recently promoted by some car 
manufacturers like Renault, BMW but also TESLA Motors in 
the USA stating in its website "Model S regularly receives 
over-the-air software updates that add new features and 
functionality". It is important to mention that performing 
remote changes will become very important for economic 
reasons, for instance selling options a posteriori since most of 
the evolution in the next future will rely on software for the 

same hardware configuration (sensors and actuators). In 
addition to this, the X-to-X applications (X being cars, planes 
or any smart critical objet) will imply rapid adaptation of 
onboard software to remain consistent with the network of X.  

We propose an alternative to preprogrammed adaptation 
that we denote agile adaptation of FTMs. The term “agile” is 
inspired from agile software development [7] that emphasizes 
the importance of accommodating change during the lifecycle 
of an application at a reasonable cost, rather than striving to 
anticipate an exhaustive set of requirements. Agile adaptation 
of FTMs enables systematic evolution: according to runtime 
observations of the system and of its environment, new FTMs 
can be designed off-line and integrated on-line in a flexible 
manner, with limited impact on the existing software 
architecture. 

Evolvability has long been a prerogative of the application 
business logic. A rich body of research exists in the field of 
software engineering consisting of concepts, tools, 
methodologies and best practices for designing and developing 
adaptive software [8]. Consequently, our approach for the agile 
adaptation of FTMs leverages advancements in this field such 
as Component-Based Software Engineering [9], Service 
Component Architecture [10] and Aspect-Oriented 
Programming [11].  

The basic idea is the following. Fault Tolerance or Safety 
Mechanisms are developed as a composition of elementary 
mechanisms, e.g. basic design patterns for fault tolerance 
computing. 

Using such concepts and technologies, we design FTMs as 
“Lego”-like brick-based assemblies that can be methodically 
modified at runtime through fine-grained changes affecting a 
limited number of bricks. This is the basic idea of our approach 
that maximizes reuse and flexibility, contrary to monolithic 
replacements of FTMs found in related work, e.g., [4], [5], [6]. 

However, most of software runtime supports used in 
embedded systems today do not rely on dynamic CBSE 
concepts. AUTOSAR, for instance, relies on very static system 
engineering concepts and does not provide today much 
flexibility [12]. A new approach enabling remote updates to be 
carried out, including for safety mechanisms, is required.  

ROS seems an appealing candidate for the dynamic 
composition of safety mechanisms. ROS is described as1: ROS 
is an open-source, meta- operating system for your robot. It 
provides the services you would expect from an operating 
system, including hardware abstraction, low-level device 
control, implementation of commonly-used functionality, 
message-passing between processes, and package management. 
It also provides tools and libraries for obtaining, building, 
writing, and running code across multiple computers. ROS can 
be viewed as a middleware running on top of a Unix-based 
operating system (typically Linux). ROS is used in robotics 
applications (e.g. Robonaut 2 from NASA within the ISS) but 
also in other industry sectors, the automotive industry for 
instance. This middleware provides a weak component 

                                                             
1 ttp://wiki.ros.org/ROS/Introduction 
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approach and means to dynamically manipulate system 
configuration. It is open-source, its user community is very 
large and it is used for critical application e.g. at NREC (The 
National Robotics Engineering Center in Pittsburgh) for 
unmanned military vehicles (e.g. the Crusher).  

III. ADAPTIVE FAULT TOLERANCE  

A. Basic concepts for AFT 
Some basic concepts must be discussed to address the 

problem of Adaptive Fault Tolerant computing. Three essential 
concepts must be discussed beforehand: 

• Separation of concerns: this concepts is now well known, it 
implies a clear separation between the functional code, i.e. 
the application, and the non-functional code, i.e. the fault 
tolerance mechanisms in our case. The connection between 
the application code and the FTM must be clearly defined 
as specific connections. This means that the FTMs can be 
disconnected and replaced by a new one provide the 
connectors remains the same. 

• Componentization: this concepts means that any software 
components can be decomposed into smaller components. 
Each component exhibit interfaces (services provided) and 
receptacles (services required). This means that any FTMs 
can be decomposed into smaller pieces, and conversely that 
an FTM is the aggregation of smaller. The ability to 
manipulate the binding between components (off-line but 
also on-line) is of high interest for AFT. 

• Design for adaptation: the adaptation of software systems 
imply that (i) the software itself has been analyzed with 
adaptation in mind for later evolution using 
componentization (although all situations cannot be 
anticipated) and (ii) designed to simplify their adaptation 
including from a programming viewpoint (e.g. using 
object-oriented, aspect-oriented programming concepts). 

Such basic concepts have been established and validated 
through various steps of analysis of fault tolerance design 
patterns and after several design and implementation loops, as 
discussed in [17]. 

The main benefits of AFT with respect to pre-programmed 
adaptation is clear, it provides means to define and update 
dependability mechanisms later during the lifetime of the 
system. Pre-program adaptation implies that all possible 
undesirable situations are defined at design time, which is 
difficult to anticipate regarding new threats (attacks), new 
failure modes (obsolescence of components), or simply adverse 
situations that have been ignored or forgotten during the safety 
analysis. In short, fine grain adaptation of FTMs improves 
maintainability of the system from a non-functional viewpoint. 

B. Change Model 
The choice of an appropriate fault tolerance mechanism 

(FTM) for a given application depends on the values of sev- 
eral parameters. We consider three classes of parameters: 1) 
fault tolerance requirements (FT); 2) application characteristics 
(A); 3) available resources (R). We denote (FT,A,R) as change 
model. At any point in time, the FTM(s) attached to an 

application component must be consistent with the current 
values of (FT, A, R). 

The three classes of parameters enable to discriminate 
FTMs. Among fault tolerance requirements FT, we focus, for 
the time being, on the fault model that must be tolerated. Our 
fault model classification is based on well-known types [14], 
e.g., crash faults, value faults, development faults. In this work, 
we focus on hardware faults but the approach is perfectly 
reproducible for FTMs that target development faults. 

The application characteristics A that we identified as 
having an impact on the choice of an FTM is: application 
statefulness, state accessibility and determinism. We con- sider 
the FTMs are attached to a black-box application. This means 
there is no possibility to interfere with its internals, for tackling 
non-determinism, for instance, in case an FTM only works for 
deterministic applications. Resources R play an important part 
and represent the last step in the selection process. FTMs 
require resources such as bandwidth, CPU, battery life/energy. 
In case more than one solution exists, given the values of the 
parameters FT and A, the resource criterion can invalidate 
some of the solutions. A cost function can be associated to each 
solution, based on R. 

Any parameter variation during the service life of the 
system may invalidate the initial FTM, thus requiring a 
transition towards a new one. Transitions may be triggered by 
new threats, resource loss or the introduction of a new 
application version that changes the initial application 
characteristics. A particularly interesting adaptation trigger is 
the fault model change. Incomplete or misunderstood initial 
fault tolerance requirements, environmental threats such as 
electromagnetic interferences or hardware aging may change 
the initial model to a more complex one.  

C. FT Design Patterns and Assumptions 
To illustrate our approach, we consider some fault tolerance 

design patterns (design patterns of FTMs) and discuss their 
underlying assumptions and resource needs. Any change that 
invalidates an assumption or implies an unacceptable resource 
change calls for an update of the FTMs. 

Duplex protocols tolerate crash faults using passive (e.g. 
Primary-Backup Replication denoted PBR), or active 
replication strategies (e.g. Leader-Follower Replication 
denoted LFR). In this case, each replica is considered as a self-
checking component, the error detection coverage is perfect. 
The fault model includes hardware faults or random operating 
system faults (no common mode faults). At least 2 independent 
processing units are necessary to run this FTM. 

 Two design patterns tolerating transient value faults are 
briefly discussed here. Time Redundancy (TR) tolerates 
transient physical faults or random runtime support faults using 
repetition of the computation and voting. This is way to 
improve the self-checking nature of a replica, but it introduces 
a timing overhead. Assertion&Duplex (A&D) tolerates both 
transient and permanent faults. It's a combination of a duplex 
strategy with the verification using assertions of safety 
properties that could be violated by a value fault or by a 
random runtime support error. 
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Assumptions / FTM PBR LFR TR A&D 
Fault Model 

(FT) 
crash     

transient     
Application 

behaviour (A) 
Deterministic    () 
State access    () 

Resources (R) 
 

Bandwidth high low nil (TDB) 
# CPU  2 2 1 2 

Fig. 1. Assumptions and fault tolerance design patterns charateristics 

The underlying characteristics of the considered FTMs, in 
terms of (FT,A,R), are shown in Fig. 1. For instance, PBR and 
LFR tolerate the same fault model, but have different A and R. 
PBR allows non-determinism of applications because only the 
Primary computes client requests while LFR only works for 
deterministic applications as both replicas compute all requests. 
LFR could tackle non-determinism if the application was not 
considered a black-box, as in our approach. PBR requires state 
access for checkpoints and higher network bandwidth (in 
general), while LFR does not require state access but generally 
incurs higher CPU costs (and, consequently, higher energy 
consumption) as both replicas perform all computations. 

During the service life of the system, the values of the 
parameters enumerated in Fig. 1 can change. An application 
can become non-deterministic because a new version is 
installed. The fault model can become more complex, e.g., 
from crash-only it can become crash and value fault due to 
hardware aging or physical perturbations. Available resources 
can also vary, e.g., bandwidth drop or constraints in energy 
consumption. For instance, the PBR→LFR transition is 
triggered by a change in application characteristics (e.g. 
inability to access application state) or in resources (bandwidth 
drop), while the PBR→A&D transition is triggered by a 
change in the considered fault model (e.g. safety property 
verification). Transitions can occur in both directions, 
according to parameter variation.  

The priority is the fault model, the selection of the solution 
(i.e. the composition of several FTMs) depending on the 
application characteristics and the available resources. The 
final objective is always to comply with the dependability 
properties during the service lifetime. 

D. Design for adaptation of FTMs 
Our “design for adaptation” aims at producing reusable 

elementary components that can be combined to implement a 
given fault tolerance or safety mechanism. Any FTM follows 
the generic Before-Proceed-After metamodel. Many FTMs can 
be mapped and combined using this model, as shown in Fig. 2. 

FTM Before Proceed After 
PBR (primary) 
PBR(backup) 

 Compute Checkpointing 
  State update 

LFR (leader) 
LFR (follower) 

Forward request Compute Notify 
Handle request Compute Handle notification 

TR Save/restore state   Compute Compare 
A&D  Compute Assert 

Fig. 2. Generic execution scheme for FT design patterns 

Composition implies nesting the Before-Proceed-After 
metamodel. This approach improves flexibility, reusability, 
composability and reduces development time. Updates are 
minimized since just few components have to be changed. 

E. Runtime support 
The software runtime support must provide key features to 

manipulation the component graph. Any application or an FTM 
is perceived as a graph of components. From previous 
experiments reported in [17], the following primitive are 
required. 

• Dynamic creation, deletion of components; 

• Suspension, activation of components; 

• Control over interactions between components for the 
creation and the removal of connections (bindings); 

Our first implementation was done on a reflective 
component-based middleware, FRASCATI [14] providing a 
scripting language to manipulate the component graph, FScript 
[15]. The proposed approach is reproducible on any other 
support that provides these features.  

IV. ADAPTIVE FAULT TOLERANCE ON ROS 
The main goal of ROS is to allow the design of modular 

applications: a ROS application is a collection of programs, 
called nodes, interacting only through message passing. 
Developing an application involve the assembly of nodes, 
which is akin to component-based approaches. Such an 
assembly is referred to as the computation graph of the 
application. 

A. Component model and reconfiguration 
Two communication models are available in ROS: a pub- 

lisher/subscriber model and a client/server one. The pub- 
lisher/subscriber model defines one-way, many-to-many, asyn- 
chronous communications through the concept of topic. When 
a node publishes a message on a topic, it is delivered to every 
nodes subscribing to this topic. Note that a publisher is not 
aware of the subscriber to its topic nor the other publishers. 
The client/server model defines bidirectional transaction (one 
request/one reply) synchronous communications through the 
concept of service. A node providing a service is not aware of 
the client nodes that may use its service. These high-level 
communication models allows to add, replace or delete nodes 
in a transparent manner, either offline or online. 

To provide this level of abstraction, each ROS application 
includes a special node called the ROS Master. It provides 
registration and lookup services to the other nodes. All nodes 
register services and topics to the ROS master. It is the only 
node that has a comprehensive view of the computation graph. 
When a node issues a service call, it queries the master for the 
address of the node providing the service and then it sends its 
request to this address. 

In order to be able to add fault-tolerance mechanisms to an 
existing ROS application in the most transparent manner, we 
need to implement interceptors. An interceptor provides a 
means to insert functionality, such as safety or monitoring 
nodes, into the invocation path between two ROS nodes. To 
this end, a relevant ROS feature is its remapping capability. At 
launch time, it is possible to reconfigure the name of any 
services or topics used by a node. Thus, requests and replies 
between nodes can be rerouted to interceptor nodes. 
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B. Implementing a componentized FT design pattern 
A full implementation on ROS of a duplex FT design 

pattern, a Primary Backup Replication (PBR) combined with a 
Time-Redundancy (TR) design pattern is developed here.  

1) Generic Computation Graph 
We have identified a generic pattern for the computation 

graph of a FTM. Figure 3 shows its application in the context 
of ROS. Node Client uses a service provided by Server. The 
FTM computation graph is inserted between the two thanks to 
the ROS remapping feature. Since Client and Server must be 
re-launched for the remapping to take effect, the insertion is 
done offline. The FTM nodes, topics, and services are generic 
for every FTM discussed in section II. Implementing a FTM 
consist in specializing the before, proceed, and after nodes with 
its corresponding behavior (see Fig. 3). 

 
Fig. 3. Generic computation graph for FTM 

We illustrate the approach, through a Primary-Backup 
Replication (PBR) mechanism added to the Client/Server 
application in order to tolerate a crash fault of the Server. Fig. 4 
presents the associated architecture. Three machines are 
involved: the Client, which is also hosting the ROS, master, the 
MASTER site hosting the primary replica and the SLAVE site 
hosting the backup replica. For the sake of clarity, the 
symmetric topics and services between MASTER and SLAVE are 
not represented. Elements of the slave are suffixed with “_S”. 

2) Implementing PBR 
We present the behavior of each node, the topics/services 

used through a request/reply exchange between a node Client 
and node Server (see Fig. 4). 
• Client sends a request to Proxy (service clt2pxy); 

• Proxy adds an identifier to the request and transfers it to 
Protocol (topics pxy2pro); 

• Protocol checks whether it is a duplicate request: if so, it 
sends directly the stored reply to Proxy (topics pro2pxy). 
Otherwise, it sends the request to Before (service pro2bfr); 

• Before transfers the request for processing to Proceed 
(topics bfr2prd); no action is associated in the PBR case, 
but for other duplex protocol, Before may synchronize with 
the other replicas; 

• Proceed calls the actual service provided by Server (service 
prd2srv) and forwards the result to After (topics prd2aft); 

• After gets the last result from Proceed, captures Server state 
by calling the state management service provided by the 

server (service aft2srv), and builds a checkpoint based on 
this information which it sends to node After_S of the other 
replica (topics aft2aft_S); 

• Protocol gets the result (topics aft2pro) and sends it to 
Proxy (topics pro2pxy); 

• On the backup replica, After_S transfers the last result to its 
protocol node Proto_S (topics aft2pr_S) and sets the state 
of its server to match the primary. 
In parallel with request processing, the node crash detector 

on the MASTER (noted CD) periodically gives a proof of life to 
the crash detector (CD_S) on the SLAVE to assert its liveliness 
(topics CD2CD_S). If a crash is detected, then the crash 
detector of the slave notifies the recovery node (topics 
CD_S2rcy). This node has two purposes: (i) in order to enforce 
the fail-silent assumption, it must ensure that every node of the 
MASTER are removed; (ii) it switches the binding between the 
Client proxy and the MASTER protocol to the SLAVE protocol. 
Thus, the SLAVE will receive the Client’s requests and will act 
as the Primary, changing its operating mode. 

 
Fig. 4. Computation graph of a PBR mechanism 

ROS does not provide APIs to dynamically change 
bindings between nodes. The node developer must implement 
the transition logics. The SLAVE protocol spins waiting for a 
notification from recovery (topics rcy2pro_S). This is done 
using the ROS API: background threads, within a node, check 
for messages independently of the node’s main functionality. 
Upon reception of this topic, protocol subscribes to topic 
pxy2pro and publishes to topic pro2pxy. After this transition, 
the proxy forwards the Client’s requests to the Slave protocol. 

3) Impact on the existing application 
 From the designer viewpoint, there are two changes 

required to integrate a FTM computation graph to its 
application. First, Client will have to be remapped offline to 
call the proxy node’s service instead of directly the Server. 
Second, state management services, to get and set the state of 
the node, must be integrated to the Server. Form an object-
oriented viewpoint any server inherits from an abstract class 
stateManager providing two virtual methods, getState and 
setState, overridden during the server development. 
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I. ADAPTATIVE FAULT TOLERANCE ON ROS

A. Introduction to ROS

ROS can be viewed as a middleware running on top of
a Unix-based operating system (typically Linux). The main
goal of ROS is to allow the design of modular applications :
a ROS application is a collection of programs, called nodes,
interacting only through message passing. Developing an ap-
plication involve the assembly of nodes, which is akin to
component-based approaches. Such an assembly is referred to
as the computation graph of the application.

B. Component model and reconfiguration

Two communication models are available in ROS: a pub-
lisher/subscriber model and a client/server one. The pub-
lisher/subscriber model defines one-way, many-to-many, asyn-
chronous communications through the concept of topic. When
a node publishes a message on a topic, it is delivered to every
nodes subscribing to this topic. Note that a publisher is not
aware of the subscriber to its topic nor the other publishers.
The client/server model defines bidirectional transaction (one
request/one reply) synchronous communications through the
concept of service. A node providing a service is not aware
of the client nodes that may use its service. These high-level
communication models allows to add, replace or delete nodes
in a transparent manner, either offline or online.

To provide this level of abstraction, each ROS application
includes a special node called the ROS Master. It provides
registration and lookup services to the other nodes. All nodes
register there services and topics to the ROS master. It is the
only node which has a comprehensive view of the computation
graph. When a node issues a service call, it queries the master
for the address of the node providing the service and then it
sends its request to this address.

In order to be able to add fault-tolerance mechanisms to
an existing ROS application in the most transparent manner,
we need to implement interceptors. An interceptor provides
a means to insert functionality, such as safety or monitoring
nodes, into the invocation path between two ROS nodes. To
this end, a relevant ROS feature is its remapping capability.
At launch time, it is possible to reconfigure the name of any
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Fig. 1. Generic computation graph for FTM

services or topics used by a node. Thus, requests and replies
between nodes can be rerouted easily to interceptor nodes.

C. Implementing a componentized FT design pattern

1) Generic Computation Graph: We identified a generic
pattern for the computation graph of a FTM. Figure 1 shows
its application in the context of ROS. Node Client uses a
service provided by Server. The FTM computation graph is
inserted between the two thanks to the ROS remapping feature.
The FTM nodes, topics, and services are generic for every
FTM discussed in section II. Implementing a FTM consist
in specializing the before, proceed, and after nodes with its
corresponding behavior (see table X).

We illustrate the approach, through a Primary-Backup
Replication (PBR) mechanism added to the Client/Server
application in order to tolerate a crash fault of the Server.
Figure 2 shows the architecture. Three machines are involved
: the CLIENT which is also hosting the ROS master, the
MASTER hosting the primary replica and the SLAVE hosting
the backup replica. For the sake of clarity, the symmetric
topics and services between MASTER and SLAVE are not
represented. Elements of the slave are suffixed with ” S”

We present the behavior of each nodes, the topics/services
used through a request/reply exchange between a node Client
and node Server.

• Client sends a request to Proxy (service clt2pxy);
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Fig. 5. Composition principle of FT mechanisms (PBR+TR). 

C. Composition of FT mechanisms 
The generic computation graph for FTM is designed for 
composability. In this section, the composition scenario is 
two-fold. We first illustrate the composition of two FTMs, 
PBR for crash faults and TR for transient value faults. Initially 
the application was installed with PBR. From an operational 
standpoint, at a given point in time, transient faults impacting 
numerical calculations appeared due to hardware components 
aging or sudden increase of environmental radiations. In a 
second step, later on, we consider that the communication 
channel between client and server can be the target for 
intrusions. Cryptographic protocols, based for instance on a 
simple Public Key Infrastructure (PKI), can be used to cipher 
communications and add cryptographic signatures.  
 

 
Fig. 6. Composition principle of FT mechanisms. 

1) Composition of PBR and TR on ROS 
With respect to request processing, a Protocol node and a 

Proceed node present the same interfaces: a request as input, a 
reply as output. Hence, a way to compose mechanisms is to 
replace the Proceed node of a mechanism by a Protocol and its 
associated Before/Proceed/After nodes, as shown in Fig. 6.  

Our approach enables developing a new mechanism on the 
foundation of several existing ones. This improves the 
development time and the assurance in the overall system, 

since all mechanisms have been validated off-line by test and 
fault injection techniques.  

The architecture of the composite FTM made of PBR and 
TR is given in Fig. 5. This figure is an extension of Fig. 4 
where the Proceed node of the PBR has been replaced with the 
Protocol node of the TR implementation. 

2) Composing FTM with Cryptographic protocols 
The generic computation graph presented in Fig. 3 enables 

cryptographic protocols to be seamlessly added to an 
application, already equipped with accidental fault tolerance 
mechanisms, PBR and TR in our example. The cryptographic 
mechanism (called SEC for security) is located at both the 
client (SEC_C) and the server side (SEC_S) as shown in Fig. 
7). On the server side, SEC operates before PBR and TR. 

 
Fig. 7. Composition principle of SEC with other FT mechanisms. 

In this example, we only deal with possible intrusions 
between the client and the server. 

We assume that a node implements the Certification 
Authority (CA). Three topics are used to communicate with the 
CA, namely Cli2CA for the Client, Master2CA for the Master 
and Slave2CA for the Slave. The topic Cli2CA enables the 
Before node of the Client to collect the certificate of the Server. 
Similarly, the topic Master2CA and Slave2CA enable Before of 
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Fig. 2. Computation graph of a PBR mechanism

• Proxy adds an identifier to the request and transfer it
to Protocol (topic pxy2pro);

• Protocol checks whether it is a duplicate request: if
so, it sends directly the stored reply to Proxy (topic
pro2pxy), otherwise, it sends the request to Before
(service pro2bfr);

• Before transfer the request for processing to Proceed
(topic bfr2prd); no action in the PBR case, for other
duplex protocol, Before may synchronize with the
other replica;

• Proceed calls the actual service provided by Server
(service prd2srv) and forwards the result to After
(topic prd2aft);

• After gets the last result form Proceed and captures
Server state by calling the state management service
provided by the server (service aft2srv) and builds a
checkpoint based on this information which it sends
to node After S of the other replica (topic aft2aft S);

• Protocol gets the result (topic aft2pro) and sends it to
Proxy (topic pro2pxy);

• on the other replica, After S transfers the last result
to its protocol node proto S (topic aft2pro S) and set
the state of its server to match the primary.

In parallel with request processing, the node crash detector
on the MASTER (noted CD) periodically gives a proof of
life to the crash detector (CD S) on the SLAVE to assert its
liveliness (topic CD2CD S). If a crash is detected, then the
slave crash detector notifies the crash to the recovery node
(topic CD S2rcy). This node has two purposes : (1) in order
to enforce the fail-silent assumption, it must ensure that every
node of the Master are removed; (2) it switches the binding
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Fig. 3. Composition of FTM mechanisms

between the Client proxy and the Master protocol to the Slave
protocol. Thus, the Slave will receive the Client’s requests and
will act as the Primary, changing its operating mode.

Note that ROS does not provide APIs to dynamically
change bindings between nodes. The transition logic must be
implemented by the developper in the nodes. For instance, the
Slave protocol spins waiting for a notification from recovery
(topic rcy2pro S). This is carried out by background threads
within a node independently of its main functionality. We use
some ROS API for this. Upon reception of this topic, protocol
advertise that it is providing service 2 (as defined in figure X).
Further request from the Client will now be forwarded by the
proxy to the Slave protocol becoming now primary.

2) Impact on the existing application: Form the application
designer point of view, there are two main changes required
to integrate a FTM computation graph to its application. First,
Client will have to be remapped to call the proxy nodes
service instead of directly the service of Server. Second, state
management services, to get and set the state of the node, must
be integrated to the Server. Form an Object Oriented viewpoint
any server inherit from an abstract class stateManager provid-
ing two virtual methods, getState and setState. Both methods
are overridden during the server development.

D. Composition of mechanisms

The generic computation graph for FTM is designed for
composability. With respect to request processing a Protocol
node and a Proceed node present the same interfaces: a
request as input, a reply as output. Hence, a way to compose
mechanisms is to replace the proceed node of a mechanism
by a protocol and its associated before/proceed/after nodes.
Figure 3

E. Dynamic Adaptation of FTM

A set of minimal API required for dynamic adaptation of
FTMs have been established in previous research [Miruna]:

• control over components life cycle at runtime (add,
remove, start, stop);

• control over interactions between components at run-
time, for creating or removing bindings.

Furthermore, to ensure consistency before, during and after
reconfiguration, several issues must be carefully considered:

• components must be stopped in a quiescent state, i.e.
when all internal processing has finished;
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the Master, respectively the Slave, to collect the certificate of 
the Client. We assume that all parties know CA's public key. 
We assume that, for each participant, Client or Server, Before 
and After of the SEC mechanism share the pair of private and 
public keys they received when initialized. 

Before of the Client can then ciphers the request with !!"#! , 
the Server's public key, and adds a signature, using !!"#$!  the 
Client's private key; 

Using the generic scheme given in Fig. 6, a message is sent 
by the client to the server side through a new topic (called 
Client_2_Server) connecting Before of SEC_C to Protocol of 
SEC_S. 

Before of the Master deciphers the request with !!"#$! , the 
Server's private key, and checks the signature, using !!"#! , the 
Client's public key; 

The Server can then proceed with a valid deciphered 
request through PBR and TR. 

Conversely, After of the Master ciphers the reply and 
computes a signature. After of the Client deciphers the reply, 
checks the signature, and finally delivers the reply to the 
Client. 

The communication between Master and Slave can also be 
secured using a similar security protocol. 

V. DYNAMIC COMPOSITION: TO WHAT EXTENT WITH ROS 

A. Dynamic Adaptation of FTM 
Dynamic adaptation of FTM is required to provide continuity 
of service in resilient systems. The question is then: is it 
possible to safely adapt a FTM at runtime in the context of 
ROS? A set of minimal API required to guarantee the 
consistency of the transition between two different FTMs has 
been established in previous work [14]: 
• Control over components life cycle at runtime (add, 

remove, start, stop). 

• Control over interactions between components at runtime, 
for creating or removing bindings.   

Furthermore, ensuring consistency before, during and after 
reconfiguration, requires that no requests or replies are lost: 
• Components are stopped in a quiescent state, i.e. when all 

internal processing has finished 

• Incoming requests on stopped components must be 
buffered 

With the exception of add and remove, ROS does not 
provide these APIs. However, these APIs can be emulated with 
dedicated logics in some nodes. For instance, we are using 
some binding control in the Primary to Backup switch 
described in our example. Controlling node lifecycle is more 
complex but can be done in the same manner and these 
principles can be applied in the context of dynamic adaptation, 
i.e. add new nodes at runtime and binding them in the 
computation graph. 

The protocol node plays a central part to provide proper 
consistency during a transition. Indeed, our design pattern for 
FTM is such that only stateless nodes, namely before, proceed 
and after, need to change in order to switch from one FTM to 
the next. Thus, protocol does not need to be changed during a 
transition and it can be used to buffer messages and detect 
when the changing nodes are in quiescent state. To do this, 
protocol is extended to deal with three new messages. The first 
one is used to signal protocol that a transition is about to 
happen and it has to start storing incoming requests. The 
second one is published by protocol and confirms that the FTM 
is in a safe state and transition can be safely executed. In 
particular, the safe state is reached when protocol has received 
the replies of all pending requests. The third message is used to 
signal protocol that the transition has been executed and it can 
resume normal operation and release the requests stored during 
the transition.  

Note that the described transition technique requires that an 
FTM is already in place in the system, meaning that the Client 
and the Server are already configured to use our proxy nodes. 
Installing an FTM in an application without interruption is not 
possible with ROS since control over binding at runtime is only 
possible with dedicated code within the nodes.  

B. Implementing Dynamic Binding on ROS   
Dynamic binding is not a core feature of ROS. As far as 

AFT is concerned, this is a major concept for runtime 
adaptation. However, ROS does not contain any API to control 
bindings online. In ROS, connections between nodes are based 
on pre-defined Topics and messages are sent/received through 
ports. 

A Topic is defined by:  

• A name: ports are connected through a named Topic. 

• A sending port: Publisher or Client sends messages. 

• A receiving port: Subscriber or Server receives messages. 

• A data type: a Topic is assigned a data type for messages.  

Several Publishers and Subscribers can communicate on 
the same Topic according to a unique message format, a given 
data type. The connection of a new node to the system implies 
creating a new Topic with its own data type. Suppose that  
Node A and B are connected to a Node C. When the data type 
from A to C and B to C is different, then two Topics are 
needed. If the same data type is used, then just one Topic is 
needed. 

We defined two types of dynamic bindings: a) dynamic 
binding on Pre-Defined Topics (PDT); b) dynamic binding on 
UnAnticipated Topics (UAT). 

Some topics can be pre-defined, for instance two topics, 
one between the Client and the primary, one between the Client 
and the backup in a PBR replication strategy. Others topics are 
unanticipated: some new topics are needed when a new node is 
created with a new data type for messages. This might be 
needed for the on-line composition of FTM later during the 
lifetime of the system. 
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Dynamic binding on PDT: This is the simpler case since 
Topics preexist in the ROS configuration. For example, in the 
PBR replication strategy, the two Protocols nodes (in the two 
replicas) are bound to the same topic, but the Slave’s port is 
deactivated. The Proxy sends the request but only one 
Protocol node receives it. 

A third Node, in our implementation the Recovery node, is 
used to activate the Slave’s port when the Master crashes. A 
dedicated topic is defined and used to this aim. After recovery, 
the former Slave, i.e. new Master, can now listen to the Proxy 
and receive messages. It is the simplest way to dynamically 
bind Nodes since the same data type is used in this case. 

Dynamic binding on UAT: In the case of unanticipated topics, 
the binding is a bit more difficult to achieve. Instead of 
reactivating a port, two communication ports must be created. 
Suppose that two nodes A and B must be connected at a given 
point in time through a new topic. The solution is based on: 

• two methods added to both A and B to create ports, one for 
the publisher, one for the subscriber; 

• a third node used to trigger and control the creation of the 
channel (activation of the methods). 

The Topic defined offline corresponds to one data type that 
is handled by the methods. The third Node is part of the 
implementation of AFT, in fact part of the implementation of 
an adaptation engine responsible for the manipulation the FTM 
configuration. 

VI. LESSONS LEARNT AND CONCLUSION 
Installing an FTM within a ROS application or adapting an 

existing FTM does not incur technical difficulties as long as the 
system’s nodes (application + FTM) can be stopped and re-
launched. Indeed, using the remapping capability of ROS 
implies rewriting some configuration files, which are taken into 
account only during the initialization of the nodes. For system 
where interruption of service is not an option, adaptation has to 
be done at runtime. In the context of ROS, this requires some 
additional software development.  

Regarding the features of ROS for implementing AFT, we 
can say that they are not fully satisfactory. The main troubles 
relate to the dynamic binding on unanticipated topics and on 
the weak API to control components at runtime. However, 
ROS provides separation of concerns, since component can be 
mapped to nodes (Unix processes) that have their own address 
space. Dynamic binding is possible on pre-defined topics. For 
unanticipated topics, a customized solution was proposed in 
this work. Control over components relies on the underlying 
operating system to suspend and activate nodes, i.e. processes 
and threads, and to store input messages. However, ROS is an 
acceptable candidate for AFT, in other words, resilient 
computing using AFT can be implemented on ROS. 

Regarding safety issues, the design of AFT and its 
validation is always carried out off-line. Any composition of 
mechanisms due to a change in the various axis of the change 
model denoted (FT, A, R) follows a design and validation 
process off-line that can be conformant to standards like 
DO178C or ISO26262, to comply with certification if needed. 

Some performance measurements have been obtained. The 
overhead of the FTM (composition of PBR+TR) is less than 
10 ms (on a PC, Intel I7 Quad Core, 8 Go RAM). Actually, the 
real overhead is very dependent of the complexity of the 
application, in particular the handling of the application state, 
and the network performance. As a conclusion, the 
implementation of AFT on ROS is independent from the 
application and the network. 

REFERENCES 
[1] J.-C. Laprie, “From Dependability to Resilience,” in 38th IEEE/IFIP 

International Conference on Dependable Systems and Networks (DSN), 
2008. 

[2] K. H. K. Kim and T. F. Lawrence, “Adaptive Fault Tolerance: Issues 
and Approaches,” in Proceedings of the Second IEEE Workshop on 
Future Trends of Distributed Computing Systems. IEEE, 1990, pp. 38–
46. 

[3] C. Krishna and I. Koren, “Adaptive Fault-Tolerance for Cyber- Physical 
Systems,” in IEEE International Conference on Computing, Networking 
and Communications (ICNC), 2013, pp. 310–314.  

[4] J. Fraga, F. Siqueira, and F. Favarim, “An Adaptive Fault- Tolerant 
Component Model,” in 9th Workshop on Object- Oriented Real-Time 
Dependable Systems. IEEE, 2003, pp. 179–186.  

[5] L. C. Lung, F. Favarim, G. T. Santos, and M. Correia, “An Infrastructure 
for Adaptive Fault Tolerance on FT-CORBA,” in 9th International 
Symposium on Object and Component- Oriented Real-Time Distributed 
Computing. IEEE, 2006.  

[6] O. Marin, P. Sens, J.-P. Briot, and Z. Guessoum, “Towards Adaptive 
Fault-Tolerance for Distributed Multi-Agent Sys- tems,” in 4th 
European Research Seminar on Advances in Distributed Systems, 2001, 
pp. 195–201.  

[7] J.HighsmithandA.Cockburn,“AgileSoftwareDevelopment: The Business 
of Innovation,” Computer, vol. 34, no. 9, pp. 120–127, 2001.  

[8] P. McKinley, S. Sadjadi, E. Kasten, and B. H. C. Cheng, “Composing 
Adaptive Software,” Computer, vol. 37, no. 7, pp. 56–64, 2004.  

[9] [11]  C. Szyperski, Component Software: Beyond Object-Oriented 
Programming, 2nd ed. Boston, MA, USA: Addison-Wesley Longman 
Publishing Co., Inc., 2002.  

[10] [12]  J. Marino and M. Rowley, Understanding SCA (Service Com- 
ponent Architecture). Addison-Wesley Professional, 2009.  

[11] [13]  G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. 
Loingtier, and J. Irwin, “Aspect-oriented program- ming,” 
ECOOP’97Object-Oriented Programming, pp. 220– 242, 1997.  

[12] H. Martorell, J.-C. Fabre, M. Lauer, M. Roy and R. Valentin. Partial 
Updates of AUTOSAR Embedded Applications — To What Extent?, in 
European Dependable Computing Conference (EDCC), 2015, Paris, 
France. 

[13] M.Stoicescu, J.-C. Fabre, M. Roy, From Design for Adaptation to 
Component-Based Resilient Computing. PRDC 2012: 1-10 

[14] L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schi- avoni, and J.-B. 
Stefani, “A Component-Based Middleware Platform for Reconfigurable 
Service-Oriented Architectures,” Software: Practice and Experience, 
2011. 

[15] M. Leger, T. Ledoux, and T. Coupaye, “Reliable Dynamic 
Reconfigurations in a Reflective Component Model,” 13th International 
Conference on Component-Based Software En- gineering, 2010. 

[16] D. Powell, "Failure Mode Assumption and Assumpion Coverage", in 
Proc. of the IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-22), 
Boston (USA), 1992, pp.386-395. (revised in the book Predictably 
Dependable Computing Systems, ISBN 3-540-59334, 1995.) 

[17] M.Stoicescu, "Architecting Resilient Computing Systems: A 
Component-based Approach", PhD thesis, National Polytechnic Institute 
of Toulouse (INP), 2013. ww.theses.fr/en/2013INPT0120. 



Session 13

Code Generation

Thursday 28th, 11:45 – Auditorium St Exupery

354



RTE Generation and BSW Configuration
Tool-Extension for Embedded Automotive Systems

Georg Macher∗‖,Rene Obendrauf‖, Eric Armengaud‖, Eugen Brenner∗ and Christian Kreiner∗

∗Institute for Technical Informatics, Graz University of Technology, AUSTRIA
Email: {georg.macher, brenner, christian.kreiner}@tugraz.at

‖AVL List GmbH, Graz, AUSTRIA
Email: {georg.macher, rene.obendrauf, eric.armengaud}@avl.com

Abstract—Automotive embedded systems have become very
complex, are strongly integrated and the safety-criticality and
real-time constraints of these systems are raising new challenges.
Distributed system development, short time-to-market intervals,
and automotive safety standards (such as ISO 26262 [8]) re-
quire efficient and consistent product development along the
entire development lifecycle. The challenge, however, is to ensure
consistency of the concept constraints and configurations along
the entire product life cycle. So far, existing solutions are still
frequently insufficient when transforming system models with a
higher level of abstraction to more concrete engineering models
(such as software engineering models).

The aim of this work is to present a model-driven system-
engineering framework addon, which enables the configurations
of basic software components and the generation of a runtime
environment layer (RTE; interface between application and
basic software) for embedded automotive system, consistent with
preexisting constraints and system descriptions. With this aim in
mind a tool bridge to seamlessly transfer artifacts from system
development level to software development level is described. This
enables the seamless description of automotive software and soft-
ware module configurations, from system level requirements to
software implementation and therefore ensures both consistency
and correctness for the configuration.

Keywords—automotive, embedded systems, Model-based devel-
opment, basic software configuration, traceability, model-based
software engineering.

I. INTRODUCTION

Embedded systems are already integrated into our everyday
lives and play a central role in all domains including automo-
tive, aerospace, healthcare, manufacturing industry, energy, or
consumer electronics. Current premium cars implement more
than 90 electronic control units (ECU) per car with close to 1
Gigabyte software code [4], these are responsible for 25% of
vehicle costs and bring an added value between 40% to 75%
[18]. This trend of making use of modern embedded systems,
which implement increasingly complex software functions
instead of traditional mechanical systems is unbroken in the
automotive domain. Similarly, the need is growing for more
sophisticated software tools, which support these system and
software development processes in a holistic manner. As a con-
sequence, the handling of upcoming issues with modern real-
time systems, also in relation to ISO 26262 [8], model-based
development (MBD) would appear to be the best approach

for supporting the description of the system under develop-
ment in a more structured manner. Model-based development
approaches enable different views for different stakeholders,
different levels of abstraction, and provide a central storage of
information. This improves the consistency, correctness, and
completeness of the system specification. Nevertheless, such
seamless integrations of model-based development are still the
exception rather than the rule and frequently MBD approaches
fall short due to the lack of integration of conceptual and
tooling levels [3].

The aim of this paper is to present a tool approach which
enables a seamless description of safety-critical software, from
requirements at the system level down to software component
implementation in a bidirectional way. With the presented
tool available hardware- software interfacing (HSI) information
can be used to generate basic software (BSW) component
configurations, as well as, automatic generation of the run-
time environment layer (RTE; interface between application
software (ASW) and basic software).

The tool consists of a basic software configuration
generator and a software interface generator producing .c
and .h files for linking ASW and BSW. To ensure more
versatility of the tool the required HSI information can either
be imported from a HSI spreadsheet template or the system
model representation. The goal is, on one hand, to support
a consistent and traceable refinement from the early concept
phase to software implementation, and on the other hand,
to combine the versatility and intuitiveness of spreadsheet
tools (such as Excel) and the properties of MDB tools
(e.g., different views, levels of abstraction, central source of
information, and information reuse) bidirectionally to support
semi-automatic generation of BSW configuration and the
SW-SW interface layer (in AUTOSAR notation known as
runtime environment - RTE).

The document is organized as follows:
Section II presents an overview of related works as well as the
fundamental model-based development tool chain on which
the approach is based. In Section III a description of the
proposed tool and a detailed depiction of the contribution parts
is provided. An application and evaluation of the approach is
presented in Section IV. Finally, this work is concluded in
Section V with an overview of the presented approach.
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II. RELATED WORK

Development of automotive embedded software as well as
the configuration of the underlying basic software and em-
bedded systems are engineering domains and research topics
aimed at moving the development process to an automated
work-flow for improving the consistency and tackling the com-
plexity of the software development process across expertise
and domain boundaries. Recent publications are mainly based
on AUTOSAR [1] methodology.

Due to the ever increasing software complexity of the
last few years more and more efforts are becoming necessary
to manage the development process of automotive embedded
software. To handle this complexity the AUTOSAR consor-
tium was founded and the AUTOSAR methodology provides
standardized and clearly defined interfaces between different
software components. The AUTOSAR approach features three
different classes of implementation (ICC - implementation
conformance class). The main benefit of the AUTOSAR ICC1
approach clearly relies on the time-saving in terms of no

additional familiarization with usually very complex and time-
consuming AUTOSAR tools compared to the full AUTOSAR
approach (ICC3). The ICC1 approach does not take advantage
of the AUTOSAR benefits from the full AUTOSAR tool-chain
supporting tools for RTE configuration and communication
interfaces, but standardized component interfaces for exchange
of data between the ASW and BSW and therefore features the
separation of application specific and hardware specific soft-
ware parts (like native non-AUTOSAR development). ICC1
mainly focuses on SW engineering and more specifically on
the integration of ASW into a given SW architecture. However,
the aspects related to control systems engineering (including
HW/SW co-design) are not integrated and aspects such as
HW/SW interface definition must be performed manually, as
indicated in Figure 1. The tool approach introduced in this
work enhances this aspect by providing a framework for the
visualization of both ASW and BSW interface configuration
and automated generation of these interfacing .c and .h files
(see Figure 2). Furthermore, the available hardware- software
interfacing (HSI) information can be used to generate basic
software (BSW) components configurations and the HSI infor-
mation import functionality can also handle HSI spreadsheet
templates to ensure more versatility of the tool.

An approach for an AUTOSAR migration of existing
automotive software is described in the work of Kum et.
al [10]. The authors highlight the benefits of separating the
application software and the basic software and present an
approach to configuration of basic software modules instead of
time consuming and error-prone manual coding of embedded
software. The automatic generation of automotive embedded
software and the resultant configuration of the embedded
systems thus improves quality as well as re-usability.

In [11], the authors describe a framework for a seamless
configuration process for the development of automotive em-



bedded software. The framework is also based on AUTOSAR
which defines the architecture, methodology, and application
interfaces. The configuration process is established via system
configuration and ECU configuration. All the configurations
and descriptions used are stored in separate XML (Extensible
Markup Language) files, containing described and classified
parameters and the associated information. The authors addi-
tionally specify a meta-model for the AUTOSAR exchange
formats that describe the ECU configuration parameter defini-
tion and the ECU configuration description.

Jo et al. [9] describe an approach for the design of a ve-
hicular code generator for distributed automotive systems. The
increasing complexity during development of an automotive
embedded software and systems and the manual generation
of software have the effect of leading to more and more
software defects and problems. The authors thus integrated
a RTE module into their earlier development phase tool to
design and evolve an automated embedded code generator with
a predefined generation process. The presented approach saves
time through automated generation of software code, compared
to manual code generation, it reduces error-prone and time-
consuming tasks and is also based on an AUTOSAR aligned
approach. The output of the code generator tool is limited
to the RTE source code and the application programming
interface (API) of the input information. As in our approach,
the configuration of software modules, is not focused.

Piao et al. [15] illustrate a design and implementation
approach of a RTE generator for automotive embedded soft-
ware. The RTE layer is located in the middle-ware layer of
the AUTOSAR software architecture and combines the top
layer mentioned as application software with the underlying
hardware and basic software. Automated code generation aims
at moving the development steps closer together and thus im-
proving the consistency of the software development process.
The output of the automated RTE generator are communication
API functions for AUTOSAR SW components of the ASW.

Focusing on software complexity, Jo et al. [7] presents
a design for a RTE template structure to manage and de-
velop software modules in automotive industry. The authors
focus on the design of a RTE structure also based on the
AUTOSAR methodology. Within this design they describe the
Virtual Functional BUS (VFB) which establishes independence
between the Application Software (ASW) and the underlying
basic software (BSW) and hardware.

In [14], an approach for realizing location-transparent inter-
action between software components is shown. The proposed
work illustrates the relationship between the RTE and the VFB
and shows which artifacts of the VFB are necessary for the
generation of the RTE.

A work depicting the influence of the AUTOSAR method-
ology on software development tool-chains is presented by
Voget [19]. The tool framework presented, named ARTOP
(AUTOSAR Tool Platform), is an infrastructure platform that
provides features for the development of tools used for the
configuration of AUTOSAR systems. The implemented fea-
tures are base functionalities required for different AUTOSAR
tool implementations. The work does not, however, focus on
a specific tool integration.

To summarize, none of the approaches described above

supports (1) the generation of source code and (2) configura-
tion of the basic software from information available at system
level and from system models. The approach we present
by contrast, supports not only the automatic generation of
the RTE source code, but also the automated generation of
basic software configuration of embedded systems from system
models.

III. BASIC SOFTWARE INTERFACE AND CONFIGURATION
GENERATION APPROACH

The underlying concept of the approach is to have a consis-
tent information repository as a central source of information,
to store all information of all engineering disciplines involved
in embedded automotive system development in a structured
manner [13]. The concept focuses on allowing different engi-
neers to do their job in their own specific way, but providing
traces and dependency analysis of features concerning the
overall system, e.g. safety, security, or dependability. The
approach stirs out of common AUTOSAR based approaches
and additionally supports a non-AUTOSAR or AUTOSAR
ICC1 approach, which are frequently hampered due to a
lack of supporting tools. The decision of not fostering a full
AUTOSAR approach is based on the one hand on focusing not
only AUTOSAR based automotive software development and
on the other hand, experiences we have made with our previous
approach [12] confirm the problem mentioned by Rodriguez
et al. [16]. Not all development tools fully support the entire
AUTOSAR standard, because of its complexity, which leads to
several mutual incompatibilities and interoperability problems.

Figure 2 shows an overview of the approach and highlights
the main contributions. For a more detailed overview of the
orchestration for the overall development tool-chain see [13].

The tool approach introduced in this work provides a
framework for the visualization of ASW and BSW interface
configuration and automated generation of these interfacing
.c and .h files (see Figure 2). Furthermore, the available
hardware- software interfacing (HSI) information can be used
to generate basic software (BSW) component configurations
and the HSI information import functionality can also handle
HSI spreadsheet templates to ensure more versatility of the
tool. More specifically, the contribution proposed in this work
consists of the following parts:

• AUTOSAR aligned UML modeling framework:
Enhancement of an UML profile for the definition of
AUTOSAR specific artifacts, more precisely, for the
definition of the components interfaces (based on the
virtual function bus abstraction layer), see Figure 2 –
HW and SW Modeling Framework.

• BSW and HW module modeling framework:
Enhancement of an UML profile to describe BSW
components and HW components. To ensure consis-
tency of the specification and implementation for the
entire control system, see Figure 2 – HW and SW
Modeling Framework.

• RTE generator:
Enables the generation of interface files (.c and .h) be-
tween application-specific and hardware-specific soft-
ware functions, see Figure 2 – ASW/BSW Interface
Generator .



Fig. 3. Screenshot of the SW Architecture Representation within the System Development Tool and Representation of the Interface Information

• Basic software configuration generator:
Generates BSW configurations according to the spec-
ifications within the HSI definition, see Figure 2 –
BSW Configurator.

• Spreadsheet information importer:
Enables the import of HSI definition information done
in spreadsheet format, see Figure 2 – Spreadsheet
Information Importer.

This proposed approach closes the gap between system-
level development of abstract UML-like representations and
software-level development, also mentioned by Giese et al. [5],
Holtmann et al. [6], and Sandmann and Seibt [17] by support-
ing consistent information transfer between system engineering
tools and software engineering tools. Furthermore the approach
minimizes redundant manual information exchange between
tools and contributes to simplifying seamless safety argumen-
tation according to ISO 26262 for the developed system. The
benefits of this development approach are highly noticeable in
terms of re-engineering cycles, tool changes, and reworking
of development artifacts with alternating dependencies, as
mentioned by Broy et al. [3].

The contribution proposed in this work is part of the frame-
work presented in [13] aiming towards software development
in the automotive context. The implementation of the approach
is based on versatile C# class libraries (dll) and API command
implementations to ensure tool and tool version in-dependence
of the general-purpose UML modeling tool (such as Enterprise
Architect or Artisan Studio) and other involved tools (such as
spreadsheet tool and software development framework). The

following sections describe those parts of the approach that
make key contributions in more details.

A. AUTOSAR aligned UML modeling framework

The first part of the approach is a specific UML model-
ing framework enabling software architecture design in AU-
TOSAR like representation within a state-of-the-art system
development tool (in this case Enterprise Architect). A specific
UML profile to limit the UML possibilities to the needs of
software architecture development of safety-critical systems
and enable software architecture design in AUTOSAR like
representation within the system development tool (Enterprise
Architect). In addition to the AUTOSAR VFB abstraction layer
[2], the profile enables an explicit definition of components,
component interfaces, and connections between interfaces.
This provides the possibility to define software architecture
and ensures proper definition of the communication between
the architecture artifacts, including interface specifications
(e.g. upper limits, initial values, formulas). Hence the SW
architecture representation within EA can be linked to system
development artifacts and traces to requirements can be easily
established. This brings further benefits in terms of constraints
checking, traceability of development decisions (e.g. for safety
case generation), reuse and ensures the versatility to also
enable AUTOSAR aligned development as proposed in [12].
Figure 3 shows an example of software architecture artifacts
and interface information represented in Enterprise Architect.
As can be seen in the depiction, all artifacts required to model
the SW architecture are represented and inherit the required
information as tagged values.



Fig. 4. Screenshot of the BSW and HW Pin Representation within the System
Development Tool

B. BSW and HW Module Modeling Framework

The AUTOSAR architectural approach ensures hardware-
independent development of application software modules
until a very late development phase and therefore enables
application software developers and basic software developers
to work in parallel. The hardware profile of the approach
allows a graphical representation of hardware resources (such
as ADC, CAN), calculation engines (core), and connected
peripherals which interact with the software. Special basic
software (BSW) and hardware module representations are
assigned to establish links to the underlying basic software
and hardware layers. This enables an intuitive graphical means
of establishing software and hardware dependencies and a
hardware-software interface (HSI), as required by ISO 26262.
Software signals of BSW modules can be linked to HW port
pins via dedicated mappings. On the one hand this enables
the modeling and mapping of HW specifics and SW signals,
see Figure 4 and on the other hand this mapping establishes
traceable links to port pin configurations. A third point is that
this HW dependencies can be used to interlink scheduling and
task allocation analysis tools for analysis and optimization of
resource utilization.

C. Runtime Environment Generator

The third part of presented approach is the SW/SW in-
terface generator. This dll- based tool generates .c and .h
files defining SW/SW interfaces between application software
signals and basic software signals based on modeled HSI
artifacts. In addition, this generation eliminates the need for
manual SW/SW interface generation without adequate syntax
and semantic support and ensures the reproducibility and
traceability of these configurations.

Figure 5 shows the conceptual overview of generated
files. The .c and .h files on application software level are
generated via a model-based software engineering tool, such
as Matlab/Simulink. The files on the basic software level
are usually provided by the hardware vendor. While the files
referred to in the SW/SW interface layer are generated by our
approach.

The generated files are designed in a two-step approach.
The first step of the interfacing approach (interface.c and
interface.h) establishes the interface between ASW and
BSW based on AUTOSAR RTE calls. The second step
(AV LIL BSWa.c and AV LIL BSWa.h) maps these AU-
TOSAR RTE based calls to the HW specific implementation
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Fig. 5. Overview of Architecture Level Files Generated by the Interface
Generator

of basic SW drivers. This ensures independence from imple-
mentation of the BSW drivers and also features an AUTOSAR
ICC1 approach if needed.

D. Basic Software Configuration Generator

The basic software configuration generator is also part
of the dll- based tool, which generates BSW driver specific
∗ cfg.c files. These files configure the vendor specific low-
level driver (basic software driver) of the HW device according
to the HSI specifications. The mapping of HSI specifications to
low-level driver configuration is hardware and low-level driver
implementation specific and needs to be done once per HW
device and supported low-level driver package.

E. HSI Spreadsheet Information Importer

The HSI definition requires mutual domain knowledge of
hardware and software and is to be a work product of a
collective workshop of hardware, software, and system experts
and will act as the linkage between different levels of devel-
opment. Consistency and evidence of correct implementation
of HSI can be challenging in case of concurrent HW and SW
development and cross-dependencies of asynchronous update
intervals. Therefore, this approach enables a practicable and
intuitive way of engineering HSI definitions in a spreadsheet
tool (Excel) and transforms them to a reusable and version-
able representation in the MDB tool (Enterprise Architect).
The spreadsheet template defines the structure of the data
representation in a project-specific customizable way. On the
one hand this enables a practicable and intuitive means of
engineering HSI definitions with spreadsheet tools, while their
machine- and human-readable notation ensures a cost- and
time-saving alternative to the usually complex special-purpose
tools, while on the other hand it enables the generation of
SW/SW interface files and BSW configurations without the
need for a model-based development toolchain in place. Figure
6 depicts the project-independent template structure for HSI
definition data preparation.

IV. APPLICATION OF THE PROPOSED APPROACH

This section demonstrates the benefits of the introduced
approach for development of automotive embedded systems.



Fig. 6. Example of a project-independent spreadsheet template structure for
HSI definition

TABLE I. OVERVIEW OF THE EVALUATION USE-CASE SW
ARCHITECTURE

Object type Element-
count

Configurable
Attributes
per Element

ASW Modules 10 3
BSW Modules 7 3
ASW Module Inputs 54 10
ASW Module Outputs 32 10
ASW/ASW Interfaces 48 -
ASW/BSW Interfaces 19 -
HW/SW Interfaces 19 13

We used an automotive battery management system (BMS)
as the use-case for the evaluation of the approach. This use-
case is an illustrative material, reduced for internal training
purposes and is not intended to be either exhaustive in scope
or to represent leading-edge technology.

The definition of the software architecture is usually done
by a software system architect within the software development
tool (Matlab/Simulink). With our approach this work package
is included in the system development tool (as shown in
Figure 3). This does not hamper the work of the software
architect but enables the possibility to also link existing HSI
mapping information to the SW architecture (as shown in
Figure 4).

The use-case consists of 10 ASW modules and 7 BSW
modules with 19 interface definitions between ASW and BSW
and makes use of the 3 fundamental low-level HW functions
(digital input/output, analog input/outputs, and PWM outputs).
A more complete overview of use-case is given in Table I.

The definition of the 19 HW/SW interfaces with 10 pa-
rameters for each SW signal and 13 parameters for each HW
pin sums up to 437 parameter configurations within the HSI
spreadsheet template or in the MDB tool, which can be used
to generate ASW/BSW interfaces and BSW configurations.

This results in the file architecture depicted in Figure 7.
With the use of the approach 8 additional interfacing files with
481 lines of code (LoC) source and 288 LoC configuration
have been generated.

In terms of getting started with AUTOSAR aligned devel-
opment or supporting non-AUTOSAR SW development our
approach features a smooth first step approach of the ICC1 AU-
TOSAR and generates an interface layer (similar to AUTOSAR
RTE) without relying on full AUTOSAR tooling support. In
terms of safety-critical development the approach presented
supports traceability links between BSW configurations to HSI
information and eliminates the need of manual interface source
code rework, which further surmounts the main drawbacks of
the ICC1 AUTOSAR approach.

V. CONCLUSION

An important challenge for the development of embedded
automotive systems is to ensure consistency of the design
decisions, SW implementations, and driver configurations,
especially in the context of safety-related development. This
work presents an approach which seamlessly describes safety-
critical software, from requirements at the system level down
to software component implementation in a traceable manner.
The available hardware- software interfacing (HSI) information
can thus be used to generate basic software (BSW) component
configurations, as well as automatic software interface layer
generation (interface between application software and basic
software). With this aim in mind a framework consisting
of a basic software configuration generator and a software
interface generator producing .c and .h files for linking ASW
and BSW has been presented, which can also be used in
combination with a spreadsheet based HSI definition. The
main benefits of this enhancement are: improved consistency
and traceability from the initial design at the system level
down to the single CPU driver configuration, together with a
reduction of cumbersome and error-prone manual work along
the system development path. Further improvements of the
approach include the progress in terms of reproducibility and
traceability of configurations for software development (such
as driver configurations and SW-SW interfaces).

The application of the presented approach has been demon-
strated utilizing an automotive BMS use-case, which is in-
tended to be used for training purposes for students and
engineers and does not represent either an exhaustive or a
commercial sensitive project. While the authors do not claim
completeness of the analysis (due to confidentiality issues), the
benefits of the approach are already evident.
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Abstract: This paper addresses the classical problem of system to software engineering following a 

Model Driven Engineering (MDE) approach. Even if this approach is now widely used in the 
industry, some issues remain: Long term availability of the tools (for projects with duration of 
several decades), use of standards and Commercial Of The Shelf  (COTS) tools versus 
Domain Specific Language (DSL), different modelling tools for the system and the software, 
quality and mastering of automatically generated code. This paper shows how it is possible to 
take simultaneous benefit of COTS (low price), DSL (adapted to specific needs) and in-house 
tools (which can be maintained for very long periods of time) to develop complex critical 
systems. 

1. Introduction 
Since several years, Model based System Engineering (MBSE) has been shown efficient to improve the 
capture of system requirements. Airbus Defence and Space – Space Systems has for instance successfully 
deployed SysML modelling to support the functional definition of the avionics sub-system of a launcher such 
as Ariane 5 Mid-life Evolution ([4]) or of a spacecraft such as the European Service Module (ESM) of the 
Multi-Purpose Crew Vehicle (MPCV, [11]). The functional part of the system definition is formalised by a 
SysML ([18]) model developed in co-engineering by the system experts and the modelling experts. Several 
documents are thus partially automatically generated from this single model: The system Definition Files, the 
digital Interface Control Documents (ICD) and the software Technical Specification. MBSE improves the 
communication between the teams and improves the generated documentation quality. 

This paper shows how Airbus Defence and Space – Space Systems has defined a process and a set of tools 
to extend this approach to the software development (Model Driven Engineering or MDE). The objective of 
this work is to generate from a single model shared between the system and the software the three previously 
mentioned documents and a part of the software code. 

After this introduction, the section 2 will quickly present the system functional modelling today deployed for the 
development of space launchers. The section 3 will summarize previous studies on software modelling and 
explain why these approaches have finally not been selected for the development of future space launchers. 
The section 4 will describe the specific multithreading design used for space launchers and how it has been 
decided to model it. Finally, the section 5 will show how an important part of the flight software can be 
automatically generated from these models. The section 6 will compare the proposed solution with the ones 
presented in section 3 and the section 7 will present the conclusion. 

2. System functional modelling 
The avionics subsystem of a space launcher is mainly responsible for (1) the flight control (navigation, 
guidance and control) and (2) the mission management (ground / board protocol, ignition and stop of engines, 
release of stages…). It is made up of a centralised on-board computer hosting the flight software (or 
potentially several computers working in a redundant mode to ensure the fault tolerance) and a set of avionics 
sensors (gyroscopes, accelerometers…) and actuators (valves, pyrotechnic commands, electro-mechanical 
actuators…) linked by a communication network. 

The system is then cyclically executed: Measurement 
acquisition, flight control algorithm, execution of commands 
by actuators, and so on. The needs of the flight control 
toward the launcher system is translated into a set of blocks 
(hardware or algorithmic) communicating through data-flows. 
This functional architecture is modelled by SysML Internal 
Block Diagrams (IBD). The content of the algorithm blocks is 
textually specified or modelled in Matlab and then coded in 
Ada.  

Sensor Navigation

Guidance

Control Thruster

Figure 1: Functional data-flow architecture 
modelled in SysML IBD 
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Ground Motor ignition Lift-off

Emergency stop

 
Figure 2: Part of a launcher mission described 

by a finite state machine in SysML 

The mission management describes the acyclic behaviour of 
the system. The phases of the launcher mission (ground 
phase, motor ignition and then lift-off or emergency stop in 
case of failure) are thus modelled by finite state machines in 
SysML and by a textual DSL (Domain Specific Language) 
adapted to the description of a space launcher mission. 

The use of a COTS modelling tool (e.g. Rhapsody [14]) allows decreasing the costs: COTS tools are generally 
very mature and require only light customization. However, one of the main drawbacks of COTS is the 
difficulty of maintenance for a very long period of time. The use of a widely used standard ensures that editors 
will always be available in the future. 

SysML has thus been selected because it is a standard widely used in the industry and in the academic world 
and because it provides the two kinds of diagrams needed to describe the functional architecture and the flight 
software of space launchers: Internal Block Diagrams and Finite State Machines. 

The semantics of the modelling (SysML + DSL) is the one of Synchronous Languages such as Lustre ([8]) or 
Signal ([17]): 
• The system is cyclically activated at a constant frequency. 
• The inputs of the system are supposed to be available at the beginning of each cycle of execution. 
• The outputs computed by the system are provided at the end of the cycle. 

This approach is well known to ensure a full determinism of the system and allow simple compositions of 
elements with a predictable memory usage.  

Here is an example of the DSL describing the execution in parallel of two commands and inspired by the 
notion of On Board Control Procedure (OBCP, [12], also called “functional sequences”): 

 
sequence Lift-off is 
 fork Cmd_Pyro; 
 wait 5 ms; 
 Valve_Cmd; 
 wait end of Cmd_Pyro; 
 Start_Control; 
end; 

Figure 3: DSL describing a functional sequence 

This example is valid with respect to the synchronous semantics only if the duration “5 ms” is a multiple of the 
basic cycle of the system. 

The communication network (related to the avionics system design) and the middleware and the threads 
(related to the software real-time design) are abstracted in this phase of development. 

3. Previous studies on software design modelling 
In parallel to the deployment of SysML modelling to capture the system functional definition, several modelling 
approaches have been assessed in order to capture the software design and to potentially generate 
automatically part of the flight software: 
• SCADE Suite ([16]) was a promising track thanks to its certified code generator ensuring a high 

quality of the generated code. It has however several limitations 
o The SCADE modelling is partially redundant with the SysML modelling (especially for what 

concerns the finite state machine and the functional architecture). The development cost of 
these two models removes the benefits of the approach 
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o SCADE does not model today the 
multithreading architecture. 
Developing multithreading software 
with SCADE requires thus the 
independent modelling of each 
thread in SCADE and then the 
manual development of a real-time 
sequencer responsible for the 
activation of each thread. 

Thread 1

Thread 2

…

Real time 
sequencer

activation

 
Figure 4: Multithreading modelling in SCADE 

The SCADE model becomes then a design model distinct from the functional model. This 
decreases greatly the advantages of the modelling 

o The code generated from SCADE has not been designed to be manually maintained. This 
implies the need to maintain the SCADE modelling tool and the code generator during the 
complete life of the project (up to 30 years for a space launcher). The cost of this 
maintenance removes on the long term the saving of automatic code generation 

• AADL ([1]) allows modelling the avionics and the software multithreading architecture. As for 
SCADE, this modelling is partially redundant with the SysML modelling selected for the system 
functional description. Moreover, AADL is able to capture any kind of software multithreading 
architecture, even the more complex. The flight software of a space launcher being critical, its 
multithreading architecture is very simple and based on the Rate Monotonic Scheduling (RMS [15], 
see section 4). AADL is thus too complex for the needs. 

• MARTE ([9]) has the advantage of being close from SysML and UML. However, it has the same 
drawbacks than AADL. 

• UML ([19]) is a modelling language especially well-suited for object oriented software design. As the 
flight software of future launchers will be partially developed in an object oriented manner (with the 
Ada 2012 [3] programming language), UML seems a good choice. However, the object oriented 
approaches of UML and Ada 2012 are not fully compatible (see [2]). For instance: 

o The UML notion of “class” is replaced in Ada by the notions of “package” (to define the 
naming space) and of “tagged type” (to define the inheritance) 

o Ada has a restricted set of “visibility” compared to UML 
o … 

Moreover, as for SCADE, the UML modelling is partially redundant with the SysML modelling. It has 
thus been decided that UML models will be developed to describe the principle of design, but not for 
the detailed design (except for some specific parts) and will not be used for automatic code 
generation. 

As a conclusion of these studies, it appears that all the studied software modelling languages have two 
drawbacks: The redundancy with SysML (selected for the system functional description) and the cost to 
maintain the toolsets during a long period of time. Airbus Defence and Space has thus decided to rely mainly 
on SysML completed by a DSL (Domain Specific Language) to model the design of launcher’s flight software 
(the same DSL being used for the system functional behaviour (see section 2) and the software design). 

4. Software design modelling 
Defining a DSL requires an accurate definition of the objectives of the modelling. This section describes the 
flight software design used today on space launchers and which has been the basis to define the DSL. 

The software design is composed of the static design (definition of the hierarchical architecture of the 
software, definition of classes and of objects, definition of the interfaces of components) and of the real-time 
design (definition of threads, of their scheduling, of the communication between the threads and of the 
communication between the software and the communication network). The main drivers of the flight software 
design are: 
• The functional and real-time determinism ensuring the representativeness and the reproducibility of 

the qualification tests 
• The decrease of the development and validation costs 

The determinism of the multithreading design is ensured by using an extension of a Rate Monotonic 
Scheduling: 
• The software is composed of cyclic threads (no acyclic threads) 
• Each thread has a period multiple of the period of the thread just faster (harmonic threads) 
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• The scheduling is pre-emptive with constant priority (a thread with a shorter period has the priority 
over a thread with a longer period) 

• The communications between the threads are performed during time triggered rendezvous 

The Figure 5 provides the example of two communicating threads (a slow one in blue and a quick one in 
yellow). 

Slow thread

Fast thread
 

Figure 5: Time triggered communication between threads 

The period of the slow thread is a multiple of the one of the quick thread. The quick thread has the highest 
priority. It can pre-empt the execution of the slow thread. The communications between the two threads are 
performed at the end of the period of the slow thread (in a protected section): even if the execution of the slow 
thread is quicker than expected, the communication will be performed at the same date. Thus, provided that 
each thread respects it worst case execution time, this design ensures the strict determinism of the software 
behaviour. 

The decrease of the development costs is achieved by mapping the functional architecture and the software 
static design. This result is obtained by a co-engineering work between the system team (responsible for the 
functional architecture, see section 2) and the software team. The functional architecture shown Figure 1, 
which defines a set of functions and their communications, is thus directly used to generate the code (see 
section 5). 

The work remaining at software design level is thus: 
• To define the set of threads and their periods 
• To map each function on a thread. Depending of the reactivity needs, a function at 10Hz can for 

instance be executed either at each cycle on a thread at 10Hz or at one cycle among two on a 
thread at 20Hz. 

A simple DSL has been defined to describe this software design choices. 

 
thread T1 is 
 period (100 ms); 
 functions (F1; F2); 
end; 

thread T2 is 
 period (50 ms); 
 functions ( 
  when 0 => (F3; F4); 
  when 1 => (F3)); 
end; 

Figure 6: Multithreading architecture described by a DSL 

On the example of Figure 6: 
• A major frame of 100 ms has been defined 
• F1 and F2 are executed at 10 Hz (on the thread T1) 
• F3 is executed at 20 Hz (on the thread T2) 
• F4 is executed at 10 Hz (one cycle among two on the thread T2) 

This real-time design is an extension of the synchronous language approach (on which the functional 
modelling described section 2 is based). The DSL describing the functional view (section 2) and the one 
describing the real-time design (section 5) rely thus on the same paradigm and are thus naturally compatible. 

5. Automatic code generation 
The multithreading design of the software (the definition of threads and the mapping of functions on the 
threads) remains today a manual activity which is formalised by a dedicated model using the DSL. All the 
remaining coding activities related to this multithreading design have been automated in an in-house tool 
generating Ada 2012 code from the SysML model and the DSL. 

This automatic generation of code relies on a generic reusable library implementing: 
• A scheduler of threads and of applicative software elementary blocks, 
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• An interpreter of a mission management (described by finite state machines and the DSL shown 
Figure 3). 

 

 

Considering this generic reusable library, the 
following artefacts are automatically generated 
by the in-house tool: 

• Configuration tables in Ada 2012 for 
the generic reusable library from the 
SysML finite state machine and the 
DSL describing the functional 
sequences (Figure 3) and for the 
definition of threads (Figure 6). 

• Ada 2012 code for the skeleton of the 
functions (Figure 1) and the 
scheduling of these functions (Figure 
6). 

thread T1 is
period (40 ms);
functions (F1; F2);

end;

thread T2 is
period (10 ms);
functions (

when 0 | 2 => (F3; F4);
when 1 | 3 => (F3));

end;

Data
flows

Finite state
machines

sequence Lift-off is
fork Cmd_Pyro;
wait 5 ms;
Valve_Cmd ();
wait end of Cmd_Pyro;
Start_Control;

end;

DSL

DSL

Functional

Design

Configuration Table
CodeAutomatic

code generation

Coding

 
Figure 7: Code and configuration table automatic generation 

 

There is no certification for space launchers similar to certification for civil aircraft. However, the quality of 
generated code remains a major issue: a failure of the flight software implies generally the loss of the launcher 
and of its payload (the satellites to be put in orbit) and in the worst possible case the destruction of the launch 
pad. The ECSS-E-ST-40C ([7]), the standard applicable to the development of space software in Europe, 
requires the classical reviews (of specification, of design, of code…) and test activities. The in-house code 
generator being not qualified according to this standard, reaching the same level of quality than for a manual 
code forbids suppressing any of these V&V activities. Reviews of code are for instance performed on the 
generated code. 

The obligation of performing such reviews is often considered as a reason for not using automatic code 
generation because (1) the generated code is not enough readable to perform such review and (2) even a 
light modification in the source model may imply huge modifications in the generated code which makes 
mandatory a complete review of the generated code for each evolution. These two aspects were major 
requirements for the development of the in-house code generator: (1) the generated code is strictly equivalent 
of a manually written code and (2) the impact of a local model modification has a local modification on the 
generated code (allowing performing efficient comparisons between two versions of generated code and thus 
simplifying the code review). 

The long term availability of the specific SysML modelling tool remains also an issue which has been solved in 
two ways: First, the notions of data-flows diagrams and of finite state machines have been also defined in the 
textual DSL; second, the code generator has been designed in order that the generated code is equivalent to 
a manual code, meaning that it can be easily manually maintained. During the development phase of a 
project, the SysML modelling tool will thus be used to decrease the development cost. After some years (5 to 
10 years), i.e. during the maintenance phase, this tool will be potentially not any more maintained by the tool 
provider; the code will then be automatically generated from the textual DSL generated from the SysML 
model. If it is decided to not maintain any more the in-house code generator, it will still be possible to maintain 
manually the generated code. 

The Figure 8 shows this three phases of maintenance: 

1. The SysML model and the DSL are both maintained. The code is automatically generated. A DSL 
corresponding to the SysML model is generated for backup. 

2. The SysML model is not maintained any more. The initial DSL and the DSL previously generated from 
SysML are maintained. The code is automatically generated. 

3. The code generator is not maintained any more. The software code is manually maintained. 
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Figure 8: The three phases of maintenance 
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6. Synthesis 
The following table summarizes the advantages and drawbacks of different modelling approach.  

 

Approach 
Functional view 

Multithreading 
view Safety Long term 

maintenance Finite State 
Machine Data flow Functional sequences 

SCADE Yes Yes 
At a low level of 
abstraction with finite 
state machine 

No Certified code 
generator 

Rely on a 
proprietary tool 

AADL Yes but textual More service oriented No 

Yes, but too 
complex for an 
extended RMS 
approach 

No certified code 
generator Standard 

MARTE See UML See UML See UML 

Yes, but too 
complex for an 
extended RMS 
approach 

No certified code 
generator Standard 

SysML (alone) Yes but 
asynchronous Yes (IBD) Yes, but not formal 

enough No No certified code 
generator Standard 

UML Yes, but 
asynchronous No Yes, but not formal 

enough See MARTE No certified code 
generator Standard 

SysML + DSL 

Yes in SysML, with 
an adapted 
synchronous 
semantics 

Yes in SysML (IBD) 
with an adapted 
synchronous and 
multithreading 
semantics 

Yes in the DSL with the 
required synchronous 
semantics 

Yes in the DSL, 
with an 
extended RMS 
approach 

No certified code 
generator, but the 
automatically 
generated code is 
strictly equivalent 
to a manually 
written code 

Standard SysML 

In-house tool 

The generated 
code can be 
manually 
maintained 
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7. Conclusion 
Refining a system model to a software model and then to code remains an issue for critical system with a long 
duration: the tools are not maintained for the whole duration of the project and have generally a too large 
scope to generate code which can be manually maintained. 

This paper has presented a solution taking benefit of the available modelling tools during the development, 
able to go smoothly from system functional definition to the code. This approach relies on the use of COTS 
(Commercial Of The Shelf) associated to DSL (Domain Specific Language) and in-house tools: 

• The COTS tools are used to take benefit from mature and already widely deployed technologies 
• DSL and in-house tools are used to take into account the specificities of the field 

The quality and the long term maintenance issues are tackled by a specific effort on the code generator: the 
generated code is strictly equivalent to a manual code, can be reviewed and manually maintained. 

The next step of improvement will be the harmonization of toolsets between the functional analysis (for 
instance with the use of the MEGA tool [10]), the system functional definition and the software (for instance 
with the Rhapsody tool [14]) and the physical architecture (for instance with Capella ([6]). 
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Abstract—The Space industry, as several other real-time in-
dustries, is assessing the use of multicore processors as their
main computing platform. While multicore processors bring the
potential of integrating several software (mixed-criticality) func-
tions, their use also brings some challenges. In particular, tasks
running in multicores may experience high contention delays
when accessing multicores’ shared resources. This makes that the
load that a task puts on shared resources impacts the Execution
Time Bounds1 (ETBs) derived for other corunning tasks. In this
paper we focus on the Cobham Gaisler NGMP – acknowledged
as one of the multicore processors currently assessed by the
European Space Agency for its future missions – for which we
propose a measurement-based approach to bound contention
interference. Given a task τ , instead of providing ETBs for
the highest contention that any set of corunners can generate
– already shown to be potentially high – our approach provides
bounds that factor in the number of requests contenders generate
regardless of how they align with τ ’s requests. This provides a
good balance between ETBs accuracy and independence from
the corunners, since our approach only requires controlling the
number of requests each task makes to the shared resources.

Index Terms—WCET, multicore, COTS, real-time

I. INTRODUCTION

Real-Time Embedded systems are facing an increase in
their performance demands across several domains, such as
space, avionics and automotive, as a way to provide more
value-added functionality. In the space domain, computing
power requirements and the amount of data to be handled by
on-board software is rising [30] due to the fact that space
missions are becoming more autonomous. In this context,
multicore processors can provide the performance required,
while enabling the consolidation of applications2 subject to
different criticality levels, resulting in an overall reduction
in power, space and weight. In the space domain the Next
Generation Microprocessor (NGMP) architecture [5], whose
latest implementation is the GR740 [6], is an architecture

1We use Execution Time Bound (ETB) instead of Worst-Case Execution
Time (WCET) estimate to refer to the upper-limits derived for tasks execution
time in multicore. The reason is that WCET estimates, as they are commonly
understood, establish a single value that upperbounds program’s execution
time under any circumstance. While this can be asserted for single-core simple
architectures, this is not the case for multicores using more complex pipelines.

2In this paper we use the terms application and task interchangeably.

considered by the European Space Agency (ESA) for its future
missions.

Multicores also bring their specific issues to the real-time
domain among which contention in the access to hardware
shared resources is one of the most prominent [2]. Uncon-
trolled contention makes that the execution time and Execution
Time Bounds (ETB) derived for a task depend on the load
its corunner tasks put on hardware shared resources, thus
affecting time composability [21], which states that the ETB
derived for a task in isolation should not be affected by the
rest of the tasks running on the system. Time composability
is a premise in many real-time designs since it enables (in
the timing domain) incremental development and verification
in integrated systems such as Integrated Modular Avionics,
IMA [26] in avionics. During system development, time
composability enables incrementally integrating applications
without the need of regression tests to validate the timing prop-
erties of already-integrated applications, which heavily reduces
integration costs. During operation, time composability en-
ables updating functions and their associated software without
the need for re-analyzing and re-qualifying the system. This
is specially beneficial in domains like space where systems
may operate during dozens of years and whose functionality
is usually updated after deployment.

In a time-anomaly [24] free system, time composability
can be achieved by modeling at analysis time a scenario in
which each access that the task under analysis (τ ) makes
to a hardware shared resource suffers the highest contention
possible. For instance, in the case of a round-robin bus
accessed by Nc cores this is equivalent to assuming that
each request suffers maximum contention from each of the
remaining Nc− 1 cores. That is, the single-access maximum
(contention) delay, or samd, corresponds to:

samd = (Nc − 1)× Lbus (1)

where Lbus is the maximum bus latency for a single request.
The resulting ETB estimate in this scenario is fully time
composable since it accounts for the maximum load that
corunner tasks of τ can put (at operation time) on the target
resource. This, though, comes at the cost of inflated ETB



estimates (e.g. up to more than 5x times in a 4-core processor
as reported in [12]). Tighter ETB estimates can be obtained by
adjusting the bounds to the actual load that corunner tasks put
on the target resource, which can be abstracted with an arrival
curve [27]. However, time-composability is lost since the ETB
for a task becomes dependent on its particular corunners. This
confronts industry with the choice of time-composable inflated
estimates or tighter non time-composable estimates.

In this paper we use measurement-based timing analysis,
which a large fraction of safety-related systems resort on [31]
– including the space industry. We propose a contention-
prediction model that captures the effect of contention in
the NGMP shared resources. For a given task, τ , our model
enables deriving both fully time-composable bounds to the
contention delay suffered by τ or partially time-composable
bounds [11] which depend on the number of requests gen-
erated by τ ’s corunner tasks, Nreq, but not on how they
align with τ ’s requests. Derived bounds are valid for different
corunner tasks as long as they generate at most Nreq requests.

Our approach is motivated by the fact that, while the number
of requests that a task generates can be bound with existing
tools like Rapita System’s Verification Suite (RVS) [23], how
τ ’s and its corunners’ requests interleave is hard, if at all
possible, to measure and control. Hence, instead of predicting
request interleaving, our approach derives contention delays
for the worst-possible time-alignment of requests. The main
contributions of this paper are as follows:

1) We make an in-depth analysis of the hardware shared
resources in the NGMP, the way in which requests interact
and the delay they may suffer on those resources.

2) We present a prediction model for the contention delay in
the bus and the memory controller in the NGMP. Our model,
which depends on the time requests take to access shared
resources, deals with the case when there are several types
of accesses to a resource and each type causes and suffers
a different delay depending on the contending accesses. For
instance, in the processor AMBA AHB bus, loads missing in
the L2 take shorter than loads hitting in L2. We show how our
model handles this case.

3) We evaluate our proposal in a solid setup comprising the
GR740 implemented in a FPGA. Our proposal provides tighter
ETBs than the fully time-composable proposal in [12], since
it adapts to the contenders’ load on shared resources in a still
partially time-composable and friendly way.

The rest of this paper is organized as follows: Section II
presents the related work. Section III provides information
on the GR740. Section IV details our prediction model. Sec-
tion V assesses the accuracy of our model. Finally, Section VI
presents the main conclusions of this paper.

II. RELATED WORK

Contention on the access to hardware shared resources has
been thoroughly studied in the state of the art. A taxonomic
summary of the relevant works can be found in [8]. Several
techniques propose means to upper-bound, during the analysis

phase of the system, the samd that a task may suffer on the bus
or in memory. In that line, hardware support has been proposed
(though not yet implemented in any architecture we are aware
of) to artificially delay each request a given τ does by samd
cycles [18][13][28]. Other approaches derive samd by using
a software-only approach: τ is run against a set of resource
stressing kernels that put high load on the resource [12][9]
making τ ’s requests suffer high contention delays.

Other techniques like those in [25] for buses rely on
detailed information about resource access latencies and ar-
bitration policies to derive samd. Other works, due to lack
of information in the processor documentation derive samd
from measurements and feed it into static timing analysis. In
particular [17] applies this approach to analyze the impact of
contention in the P4080. samd can also be derived for memory
with [19][1] or without [15] hardware support.

In this paper we follow the theoretical approach in [10] that
proposes a methodology to obtain the resource access ‘profile’
of a given task that defines the use of resources that the task
makes on a target shared resource. That profile is used to
derive the contention tasks suffer and generate when accessing
that resource. In this work, which is a collaboration of end-
users in the Space domain (Airbus Defence and Space and
ESA), hardware technology providers (Cobham Gaisler) and
a research institution (Barcelona Supercomputing Center) we
assess the benefits of such an approach on a real platform, the
GR740 addressing issues related to NGMP specific arbitration
policies and access types to the different resources.

Finally, is it worth mentioning that with few excep-
tions [29][3], cache partitioning is the common solution in
the context of CRTES due to the complexity of estimating
ETB accurately on top of shared caches. In the case of the
GR740, hardware support exists for way-partitioning the L2
cache. We enable this hardware feature in our experiments.

III. NGMP

The NGMP is being assessed as the processing platform
by the ESA in its future missions. The NGMP is a quad-
core processor system-on-chip based on the LEON4 SPARC
V8 architecture [5] connected by a shared on-chip AHB
processor bus to a shared L2 cache and memory, see Figure 1.
The NGMP comprises 16 Performance Monitoring Counters
(PMC) that can be configured with different events, providing
support to measure access counts such in a way that it
facilitates the implementation of our prediction model, more
details are provided in Section IV-C. This section provides
details on some aspects related to the contention in the access
to NGMP’s shared resources.

A. AHB Processor Bus

The AMBA AHB bus connects cores to the L2 cache and
the I/O bridges3. The first consideration to make in the case
of the bus is that there are different types of requests that can
generate different inter-task contention: bus reads (loads) that

3In this work, we do not consider I/O related activities, which we assume
managed at software level, so that only accesses to L2 interfere each other.



Fig. 1: Block diagram of the main elements of the NGMP

either hit (l2h) or miss (l2m) on the L2 cache and bus writes
(stores) that either hit (s2h) or miss (s2m) on the L2 cache.
These accesses behave differently because hits hold the bus
while they are served. Instead, misses wait on a miss queue and
are split, i.e. the L2 cache releases the bus while processing
the miss, so that other cores can use the bus. In the NGMP,
the AMBA AHB bus implements round-robin arbitration.

B. L2 Cache

In our experiments we use the master-index feature of
the NGMP that partitions the L2 assigning one L2 cache
way to each core. Hence, a given core suffers no contention
interference in the L2 due to other cores’ evictions.

Each of the request types identified before (l2h, l2m, s2h and
s2m) has its own L2 access latency. Interestingly, the latency
of requests of the same type can be variable. That is, for each
request type access there is a Best-Case (BC) and a Worst-Case
(WC) latency. This jitter is caused by the type of previous
requests, despite they belong to a different task and hence
go to a different cache partition. Our model takes this effect
into account by assuming that all latencies suffered on the
experiments have the BC and when computing the contention
bounds, we add a correcting value that adds for each L2 access
the corresponding difference between the WC and the BC.
This adds pessimism but its advantage is two-fold: it is a safe
upperbound and it removes the need to track the sequence of
accesses to determine their exact latency.

The WC and BC latencies are obtained from table 40 in [7]
and are 8, 13, 6 and 7 for l2h, l2m, s2h and s2m respectively
in WC and 5, 6, 0 and 0 for BC.

C. Memory Controller

The memory controller acts as an interface between the
processor and the DRAM memory. We differentiate two types
of request in the memory: read and write. According to the
DRAM protocol, each request has a latency to be responded
depending on whether it is a read or write request respectively.
The latency it takes the memory to go back into idle state,
once a request starts being processed, is fixed regardless of

whether the request is read or write and corresponds to the
time till a new request can be processed. For this paper,
we assume that the memory controller behaves as a FIFO
queue. This is a simplification that helps upper bounding
the memory controller latency though it introduces some
pessimism. Providing a more accurate model of the memory
is part of our future work.

IV. PREDICTION MODELS

Our prediction models use measurement-based timing anal-
ysis techniques to derive a multicore ETB (ETBmc) for a
task τi, given its ETB in isolation (ETBisol). To that end,
the models predict the total effect of contention in the access
to the multicore hardware shared resources, called Contention
Delay Bound (CDB), and add it to the ETB in isolation:

ETBmc = ETBisol + CDB (2)

In order to derive CDB, we add the contribution of each
hardware shared resource r, CDBr:

CDB =
∑

r∈R
CDBr (3)

To derive CDBr, we upper-bound the maximum latency
that every access from τi to r, nri , may suffer from requests
generated by τi’s corunner tasks, referred to as c(τi).
CDBr for τi assumes that each τj ∈ c(τi) performs at most

a given number of accesses (nrj ) to resource r. Therefore,
ETBmc estimate for τi is composable with any other task
τ ′j ∈ c′(τi) as long as it performs fewer accesses (n′rj ) to the
shared resource than τj ∈ c(τi):

n′rj ≤ nrj (4)

A. Bus Prediction Model

The NGMP comprises three main shared resources in its
data path: the bus, the L2 cache and memory. Since the L2 can
be partitioned we do not consider contention of the different
tasks in the L2. We start by predicting CDBbus for the bus
and later apply the same approach for memory.

We explain three different ways of upper-bounding
CDBbus, which present represent different trade-offs between
information required, such as the number of accesses of each
corunner task, and tightness of the produced bound.

A.1. Theoretical Upper-Bound Delay (UBD)
In this reference model, based on [18], we assume that

every single τi request is delayed by a request from each of
the Nc − 1 contenders and that contending requests cause the
highest delay, Lbus. This is the maximum contention scenario
in round-robin arbitration, where the upper-bound delay a
request can suffer is given by:

samd = (Nc − 1)× Lbus (5)



Hence, for τi with bi accesses to the bus, CDBbus is
presented in Equation 6, where Lbus is the maximum delay any
interfered request can suffer from a single interfering request.

CDBbus = bi × samd = bi × (Nc − 1)× Lbus (6)

Since we have four different types of requests with different
latencies: ll2h, ll2m, ls2h and ls2m:

Lbus = max (ll2h, ll2m, ls2h, ls2m) (7)

This model is time-composable by definition because it
assumes that all bi are interfered by i) the highest impact
request from ii) all corunners. These two assumptions are
sources of pessimism that enable full time-composability.

Interestingly in this model, the worst alignment among the
requests of τi and the requests of its corunners is assumed.
In reality, it can be the case that some τi requests become
ready to be sent to the bus when its contenders requests have
been partially processed so that each τi request suffers a delay
smaller than Lbus. However, predicting how this alignment
of requests can happen at operation time is hard (if at all
possible). Any small shift in the execution of tasks can change
it. Hence, this and the following models, provision time in
CDBbus for the worst-case alignment of requests.

A.2. Single-type Model
Analogously to the previous model, the one presented in

this section assumes that every corunners’ request causes a
delay of Lbus on τi. Unlike the previous model, this one takes
into account that not all τi requests might be interfered by
one request of its corunner tasks. This usually happens when
corunner tasks have fewer accesses than τi.

Let bj be the number of accesses to the bus that each
contender task τj ∈ c(τi) performs. Given that tasks have
different number of accesses, not all of them can interfere
each other. In particular, for a given interfering task τj running
in core j, in the worst-case only the minimum between the
number of accesses of τi, bi, and the number of accesses of
the interfering task, bj , suffer a contention delay of Lbus. That
is, no more than bi accesses can be interfered and no more
than bj can interfere. In order to compute the contention on
the bus for task τi, we add the contribution of each interfering
task τj :

CDBbus =
∑

τj∈c(τi)
min (bi, bj)× Lbus (8)

A.3. Multiple-type Model
The previous model assumes that each interfering request,

i.e. those generated by c(τi), belongs to the worst-interfering
type, hence generating Lbus delay on τi. However, corunner
tasks generate requests of different types, each of which
incurs a different interference on τi. This model takes this
into account and breaks down the number of requests of the
corunners between l2h, l2m, s2h and s2m:

bj = bl2hj + bl2mj + bs2hj + bs2mj (9)

The order of these requests, from most interfering to less
interfering is, l2h, l2m, s2h and s2m (see Section IV-C).

To compute the CDBbus, we pair each interfered request
(those coming from τi) with the worst eligible interfering
request available from each contending core. We start pairing
the accesses with the most interfering type (l2h) until this inter-
fering type is consumed. The remaining b′i = max(0, bi−bl2hj )
requests from τi are paired with the next interfering type (l2m).
The remaining b′′i = max(0, b′i − bl2mj ) with s2h and finally
the remaining b′′′i = max(0, b′′i − bs2hj ) with s2m. With this
CDBbus is computed as follows:

CDBbus =
∑
τj∈c(τi)[ min

(
bi, b

l2h
j

)
× ll2h +

min
(
b′i, b

l2m
j

)
× ll2m +

min
(
b′′i , b

s2h
j

)
× ls2h +

min
(
b′′′i , b

s2m
j

)
× ls2m] (10)

It is worth noting that the type of the requests generated by
τi are equally affected by each type of request of its corunner.
That is, the interference is determined by the type of the
request of the corunner task τj only.

B. Memory Prediction Model

To compute CDBmem we apply the same models as for the
bus. As explained in Section III, there are two different types
of request in the memory, read and write. We assume a task τi
with mi requests to the memory and contender tasks τj ∈ c(τi)
with mj = mread

j +mwrite
j accesses to the memory each and

m′i = max(0,mi −mread
j ). The highest delay in memory is

given by Lmem = max (lread, lwrite).
Under these constraints the theoretical Upper-Bound Delay

model is given by:

CDBmem = mi × samd = mi × (Nc − 1)× Lmem (11)

The model based on single request types is as follows:

CDBmem =
∑

τj∈c(τi)
min (mi,mj)× Lmem (12)

The model based on multiple request types is as follows:

CDBmem =
∑

τj∈c(τi)
min

(
mi,m

read
j

)
× lread +

min
(
m′i,m

write
j

)
× lwrite (13)

From previous discussions it follows that our model builds
on two pieces of information: the latency each request uses
each shared resource and the number of accesses performed
by each task to each shared resource. We describe both in the
following subsections.

C. Deriving Access Latencies

Bus. Our model uses as an input the time each request uses
each shared resource, which correspond to the bus and memory
in our reference architecture. For the bus, in the NGMP, our
model requires deriving the bus usage latency of l2h, l2m, s2h



and s2m4. Since documentation typically does not provide this
information, we derived it empirically.

To do so, first we executed a benchmark performing a
given type of bus operations as the Task Under Analysis
(tua), or interfered task; against a range of other benchmarks,
or corunner tasks, performing all of them the same type of
accesses (which may be a different type as for the tua). For
instance, in one experiment the tua performs l2h accesses and
the corunner tasks s2h accesses.

As a result of performing this process we reached the
following three observations:

1) The execution time of the tua depends on the type of
accesses performed by the corunner tasks. Thus, given a
tua, its execution time may not be the same if corunners
perform l2h, l2m, s2h or s2m accesses.

2) The impact of corunner tasks on the tua is linear with
the number of corunners. Therefore, if the execution
time of the tua in isolation (normalized) is 1, and it
grows to 1+K when running against one corunner, then
the execution time against C corunners can be upper
bounded as 1 + C × K (further considerations on this
matter can be found in [9]). In the particular case where
corunner tasks are run in all other cores, the execution
time of the tua is:

1 + (Nc − 1)×K (14)

3) The impact of interferences in the execution time of
the tua is independent of the particular access type
performed by the tua. Therefore, the execution time in
isolation grows by (Nc − 1) × K when all corunners
perform the same type of accesses (i.e. l2m), but K
depends solely on the type of accesses of the corunners,
not on the type of accesses of the tua. This can be
explained because the interference on the AMBA AHB
bus depends only on the arbitration time [14], which
in fact depends only on the time the higher priority
corunners use the bus and not on the interfered request
which is requesting the bus and has to wait the same
amount of time regardless its particular access type.

To infer the latencies we take as a reference the l2h
benchmark that constantly accesses the L2 cache and hence
the bus. Further since the benchmark always hits in L2,
each request on the bus has a short turn-around time. This
benchmark is executed as tua in a workload comprising 3
corunner benchmarks, which correspond to the 3 remaining
cores. The corunners perform accesses of the same type to
the bus continuously. Hence, there are 4 different workloads
depending on the type of access performed by the other three
corunners: l2h, l2m, s2h, s2m.

Figure 2 shows the measured execution time for all work-
loads. To infer the bus latencies, we divide the execution time
overhead of the tua with respect to the execution time in
isolation by the amount of contenders (3 in each case) and then

4Please note that these latencies are not the same as those obtained in
Section III-B for the L2 cache.

Fig. 2: Execution time and ETB of l2h benchmark in different
workloads

divide these cycles by the amount of bus accesses performed
by each contender. For instance, given an execution time of
Tisol for the tua in isolation and Tl2h for the tua against 3
l2h corunners, the interference of an l2h access is obtained as
follows where Nreq is the number of l2h requests performed
by each corunner:

ll2h =

⌈
Tl2h − Tisol

(Nc − 1)×Nreq

⌉
(15)

This way we obtain the number of interference cycles per
bus access type: 9, 7, 1 and 1 for ll2h, ll2m, ls2h and ls2m
respectively4. With these latencies we compute CDBbus with
Equation 6 and build the ETB prediction shown in Figure 2,
which is computed using Equation 2.

Techniques to improve the confidence on derived bus laten-
cies are proposed in [9]. Part of our future work consists of
integrating those methods on top of our model and compare
them against our method to derive latencies. Nevertheless, our
prediction models are compatible with any method to obtain
the access latencies.

Memory. The approach followed to obtain memory laten-
cies is analogous to that for bus latencies with some small dif-
ferences. First, instead of using benchmarks accessing the bus,
we use l2m as tua, which performs memory reads. As corunner
tasks we use first 3 copies of a l2m benchmark, that generates
memory reads. The latency of memory reads obtained in this
case is 18 cycles. In the second experiment we use 3 copies
of s2m as corunners. The latency of memory writes obtained
is again 18 cycles because there is no difference between read
and write operations in terms of memory interference since,
in both cases, the timing is defined by the time to open and
close the memory page or row, which is identical for both.

D. Deriving Access Counts

The NGMP provides 16 PMCs that can be configured with
different events and can be measured using the commercially
available tool GRMON2 [4]. Among other events, we are
interested in the per-core bus reads and writes (0x40 - 0x50
in [5]) and per-core L2 hits and misses (0x60 - 0x61).

Bus. The total number of L2 accesses (i.e. hits and misses)
corresponds to the number of bus accesses. However, there is
no way to break down L2 hits/misses into reads and writes,



i.e. it is not possible to determine exactly the number of l2h,
l2m, s2h and s2m accesses.

In this scenario our approach is to estimate those values in
the most pessimistic way: Given task τj , we can obtain the
number of L2 hits and misses, bhj and bmj , and the number
of bus read and writes, which is equivalent to the number of
L2 loads and stores, blj and bsj . Our goal is to distribute bhj ,
bmj , blj and bsj into bl2hj , bl2mj , bs2hj and bs2mj such that their
total impact is maximized. For the ll2h, ll2m, ls2h and ls2m
latencies in our reference architecture, the following equations
maximize the impact. First, we assume the maximum amount
of requests from the worst possible interfering request, i.e. l2h:

bl2hj = min(blj , b
h
j ) (16)

Then we subtract this value from blj and bhj , obtaining b′lj =
max(0, blj− bl2hj ) and b′hj = max(0, bhj − bl2hj ), and repeat the
algorithm with the next worst interferers, i.e. l2m, s2h and then
s2m, with b′sj = max(0, bsj − bs2hj ) and b′mj = max(0, bmj −
bl2mj ), to obtain bl2mj , bs2hj and bs2mj .

bl2mj = min(b′lj , b
m
j ) (17)

bs2hj = min(bsj , b
′h
j ) (18)

bs2mj = min(b′sj , b
′m
j ) (19)

Once we have all accesses properly classified as l2h, l2m,
s2h and s2h for each contending task τj , we can proceed with
the model described before.

Memory. Our current implementation does not provide
access counters for the memory controller. Hence, the exact
number of memory accesses cannot be obtained, even though
L2 cache misses are known, since there is no way of ac-
counting indirect memory accesses such as writes generated
by evictions of dirty L2 lines. The actual number of memory
accesses can either be estimated using the number of L2
misses, which is a lower bound of the memory accesses or
estimated with the number of L2 misses and the number of
bus writes, which is an upper bound.

E. Assumptions

Our model is based on the assumption that the number
of accesses of a task is not affected by the contenders.
This happens only if the L2 is partitioned, i.e. not shared.
Otherwise, the number of accesses to the bus or memory for a
task executed in isolation does not match those obtained when
running along with other tasks.

Also our model assumes that no timing anomalies [24]
are present. Timing anomalies is an open research field, and
is difficult to prove that a real processor is time anomaly
free [16]. Nevertheless, if timing anomalies can occur, they
cannot trigger a domino effect by construction, i.e. it is
a compositional architecture with constant-bounded effects
according to the classification in [32]. In those architectures,
which may experience timing anomalies but no domino effects,
the impact of timing anomalies can be accounted for easily by
counting how many times they can be triggered and padding
ETBs by the product of this count and the maximum impact

of one timing anomaly. This approach is fully in line with
our prediction model that accounts for contention in shared
resources. Further, note that our model has no impact on
timing anomalies, which occur (or not) regardless of our
model.

V. EXPERIMENTAL RESULTS

We evaluate our proposals on a real GR740 [6] FPGA
prototype on a Xilinx ML510 board. We used the commer-
cially available Cobham Gaisler GRMON2 [4] debug monitor
software to directly extract the PMC from the statistic unit of
the GR740, without affecting execution. The model is directly
constructed from the readings obtained in one execution of
each task, i.e. no further post processing is required.

A. Bus and memory prediction models

Our first experiments put the shared resources under high
pressure to test the tightness of the bounds obtained with the
prediction model. To that end we use as reference applications
a set of synthetic kernels [12] that inject constant high pressure
either on the shared bus or on the shared memory. The
Bus-Stressing Kernel, or bsk, comprises memory read and
write requests that always miss the L1 and hit the L2, thus
maximizing the traffic on the bus. This is done by having 5
memory accesses that access the same set of the L1 cache,
thus exceeding its 4 ways. The same approach is used for the
Memory-Stressing Kernel (msk) that comprises memory read
requests that always miss on the L1 and also miss on the L2.

In all experiments we use one reference task (tua) and three
tasks as corunners. In particular, as reference task on which
ETB is to be derived we use bsk-ld-40% in which 40% of its
instructions are loads that access the bus. As corunner tasks we
use bsk whose frequency of access is 40% and 5%, i.e. 40%
and 5% of the instructions are accesses to the bus. Those bsk
used as corunners access the bus with requests of a different
type across experiments: l2h, l2m, s2h, s2m and a mix, which
consist of a l2h, a l2m and a s2h bsk together.

Figure 3a and Figure 3b show the result for bsk-ld-40%
when the frequency of access of the contenders is 40% and
5% respectively. In both figures we show the ETB when using
the UBD approach [12] or our approach with a single-type and
four types of requests; and the observed execution time. In all
cases, the predicted ETB estimates are above the observed
execution time. The UBD model, since it assumes that every
access of the task under analysis suffers samd, leads to the
highest ETBs. Our model, that accounts only for the contention
the task under analysis suffers, tightens the ETB. As presented
in the previous sections, if the method is made aware of the
request types and their associated latency (4 types of request)
ETBs are further reduced.

In Figure 3b, the corunners make fewer accesses than in
Figure 3a. For the UBD approach this has no impact since
it only focuses on the number of requests of the task under
analysis that remains the same. Instead, our models reduce
ETBs since they effectively capture the fact that the corunners
make fewer accesses.



(a) contenders-40%

(b) contenders-5%

Fig. 3: ETB for each bus prediction model: UBD (fully time
composable requests); And our approach with 1 and 4 request
types.

We performed the same experiment for the memory model,
using msk-ld-40% as tua and corunners with 40% and 5% of
memory accesses. In this case, the single type of request or
multiple types of request models are equivalent, since read and
writes to memory have exactly the same impact. The results
are analogous to those obtained for the bus model. Therefore,
we omitted the figures since they provide no further insights.

B. EEMBCs

As final evaluation we apply the whole prediction model
with the EEMBC Autobench suite [20] as reference applica-
tions. We run each EEMBC benchmark under a relatively high
pressure scenario composed of two tasks, one continuously
accessing the bus (bsk) and the second accessing the memory
(msk). In this scenario, neither the bus nor the memory
controller suffer the highest pressure, since that requires all
remaining cores accessing simultaneously each resource [22].

No memory accesses. As presented in Section IV-D, there
is not a specific PMC to measure the number of accesses to
the memory. In order to cancel out the impact of this, in a first
experiment we focus on the case in which the tua is run twice
in a row and measurements are taken during the second run.
Due to the small footprint of EEMBC Autobench, this results
in almost zero misses in the second run.

Fig. 4: ETBs for EEMBC when assuming a no cache misses.

Under that assumption, we present the results of our model
and UBD in Figure 4. Recall that in each workload we run
one EEMBC benchmark executed and the two contenders
presented above. Results are normalized w.r.t. the execution
time of the EEMBC in the workload. We show the execution
time in isolation, the execution time in the workload and the
predicted ETB using the multiple type of requests prediction
model for the bus and memory, as well as the UBD. We can
clearly see that our prediction model reduces the pessimism
of the UBD model by 67% being only 79% higher than the
actual execution time. In Figure 3, the observed execution
time is much closer to the prediction when compared with
Figure 4. This is because the scenario in Figure 3 is designed to
experience severe contention, whereas the scenario described
here experiences much lower contention (far below the upper-
bounded contention).

General case. Our next step is to evaluate the natural case
in which programs perform memory accesses. According to
Section IV-D, we can estimate the access to the memory using
the number of L2 misses. The number of L2 misses does not
consider the dirty evictions that generate memory accesses. To
take into account the dirty evictions into the memory accesses
we can use either an optimistic lower bound based on the
number of L2 misses or a pessimistic upper bound based on
the number of L2 misses plus the bus writes. To that end, we
build three scenarios:
• Pessimistic scenario. We assume that every write opera-

tion results in a dirty eviction, i.e. an access to memory.
• Accurate scenario. In this case, from a simulation tool

we derive the exact number of memory accesses.
• Optimistic scenario. We disregard the dirty evictions and

take the number of L2 misses as memory accesses.
Figure 5 shows the results obtained with our model under

each of the previous scenarios and the observed execution time
in the workload and isolation. These results provide a good
estimate of the benefits of improving our reference design with
a PMC that explicitly measures memory accesses.



Fig. 5: ETBs for EEMBC under the optimistic, pessimistic and
accurate scenarios.

As expected the pessimistic scenario that considers all
writes as dirty evictions is overly pessimistic. In particular it
is 138% more pessimistic than the actual observed execution
time. The accurate scenario in which we assume that the PMC
for access count exists leads to very tight estimates, 64%
more pessimistic than the actual observed execution time and
less than 0.1% more pessimistic than the optimistic scenario.
This is due to the small memory footprint of the EEMBC
benchmark, that fit on the L2 cache. As a result, the number
of dirty evictions is close to zero in most scenarios.

VI. CONCLUSIONS

In this paper we present a prediction model of the shared
resource contention for the GR740 that takes into account the
number of accesses and their type for a given task and its
corunner tasks, which can be easily obtained with PMCs. The
model abstracts (i.e. makes worst-case provisions) for the way
in which requests interleave in time, which would challenge
time composability since such time interleaving could easily
change during operation.

Derived Execution Time Bounds (ETBs) are shown to be
accurate and tighter than fully-time composable ETBs. Those
derived estimates are valid for any workload in which the task
runs as long as the number of accesses (per type) is smaller
than those assumed at analysis. This provides a good balance
between tightness and time composability.
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Abstract—The use of many-core COTS processors in safety
critical embedded systems is a challenging research topic. The
predictable execution of several applications on those processors
is not possible without a precise analysis and mitigation of the
possible sources of interference. In this paper, we identify the
external DDR-SDRAM and the Network on Chip to be the
main bottlenecks for both average performance and predictability
in such platforms. As DDR-SDRAM memories are intrinsically
stateful, the naive calculation of the Worst-Case Execution Times
(WCETs) of tasks involves a significantly pessimistic upper-
bounding of the memory access latencies. Moreover, the worst-
case end-to-end delays of wormhole switched networks cannot
be bounded without strong assumptions on the system model
because of the possibility of deadlock. We provide an analysis of
each potential source of interference and we give recommenda-
tions in order to build viable execution models enabling efficient
composable computation of worst-case end-to-end memory access
latencies compared to the naive worst-case-everywhere approach.

Keywords—many-core processor, real-time, composition rules,
execution model, DDR-SDRAM, Network on Chip

I. INTRODUCTION

The increasing complexity of modern COTS processors
and especially the change of architectural paradigm coming
with the emergence of many-core processors involve new
challenges to bound the worst-case execution time of real-
time applications. Indeed, many-core processors aim at solving
the scalability issue of multi-core processors by changing
the inter-core communications methods from implicit shared-
memory mechanisms to explicit point-to-point communica-
tions through one or several Network on Chip (or NoC) and
by allocating private on-die memory areas to each core or
group of cores. In the frame of real-time systems, this new
architectural paradigm also brings new challenging research
topics.

The important multiplication of cores implies that the ex-
ternal memory will also be shared much more. Moreover,
a transaction with the external memory initiated by a core
will now have to go through a NoC, implying new potential
sources of interferences. Thus, the problem of bounding the
execution time of applications, and especially, the subsequent
problem of bounding the memory access latencies will become
increasingly hard. Moreover, the utilization of many-core
processors to execute several safety critical applications will
only be possible in the industry if the requirements related
to incremental certification can be met. Such requirements

include the need of composability to ensure decoupled cer-
tification processes of the applications.

In this paper, we propose to identify each shared resource
on the memory access path and to build a composition rule
describing its behaviour in the case of concurrent accesses. We
show that a worst-case-everywhere approach is not viable as
it implies a potentially large under-utilization of the resources
due to pessimism in the calculation. The latencies of the
NoC and the DDR-SDRAM appear to be particularly difficult
or even impossible to bound tightly without assumptions on
the potential competitors. So, we give recommendations for
building viable execution models (ie. a set of restricting rules
that must be met by the applications) in order to ease the tight
calculation of Worst-Case Execution Times (or WCETs) with
minimal assumptions on the behaviour of the applications.

The rest of the paper is organized as follows. Section II
provides the description of the many-core platform we will
consider. We identify in Section III each potential interference
source on the memory transactions paths and we define all
their composition rules. Section IV discusses the required
background knowledge on DRAM and classical memory arbi-
tration techniques. We evaluate the end-to-end latency a mem-
ory transaction in Section V and we provide recommendations
for execution model design in Section VI. Related work is
addressed in Section VII and Section VIII concludes the paper.

II. PLATFORM DESCRIPTION

Our platform model assumes a Commercial-Off-The-Shelf
(or COTS) many-core processor (as shown in figure 1) orga-
nized in tiles of two different categories:

• The Compute Tiles have for main purpose to execute user
code. They are composed of N c

c (usually ≥ 1) computing
cores, local memory (usually SRAM) shared by all cores
inside the tile and N c

dma (usually = 1 in Compute Tiles)
Direct Memory Access (or DMA) devices to enable inter-
tile communication through a Network-on-Chip.

• The I/O tiles are used for communication with out-of-
chip components such as DDR3-SDRAM. They include
N io

c (usually ≥ 1) computing cores, N io
dma (usually ≥ 1)

DMAs and N io
phy physical interfaces linked with out-of-

chip components.
The tiles communicate through a Network-on-Chip (or

NoC) based upon a packet-switching strategy (e.g. wormhole
switching or store and forward). This implies that large
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Fig. 1: Model of a many-core processor with memory accesses from computing tiles

communications over the NoC are split into packets composed
of several flow control digits (or flits). In the following sections
we will refer to a series of packets composing a single memory
transaction as a flow. In this architecture, Compute Tiles are
not able to issue commands directly to external RAM. The
only way for Compute Tiles to interact with the main memory
is to use the IO tiles as an interface to which every request
must be sent explicitely by software. We explain the processes
of reads and writes from/to the external memory with two
examples.

Example 1 (Write process): In this example, the Core 3 of
Tile B requires to write data in the bank 4 of the external
DDR3-SDRAM memory. We detail each step of this write
process as shown in figure 1 (the numbering is equivalent
to the one of the path of the write process in figure 1):

1) The requesting computing core (Core 3 of Tile B) writes
the data to be sent in the local memory of the computing
tile. As the banks of the local SRAM are shared among
many potential requestors, there may be an arbitration at
this level in the case of concurrent accesses to the bank.

2) The Core signals to the local DMA its itention to send
the data.

3) DMA reads the data (written by Core 3 at step 1) from
the local memory. Once again, any concurrent access to
the same bank will involve an arbitration.

4) DMA sends the data through the NoC. If the amount
of data to send is important, it will be split in several
packets constituing a flow. All the packets will cross the
NoC following the same path. If one or several parts
of this NoC path are shared with other NoC flows, the
arbitration between the flows will occur at packet level.

5) The sink DMA (DMA 2 of IO Tile) receives the packets
and initiates DDR3-SDRAM write transactions. If other
masters (IO Tile Cores, other IO Tile DMAs, . . . ) access
the external memory concurrently, an arbitration process
will occur. This phase assumes that the sink DMA has
been configured before reception to associate one of its
reception queues to a specific DDR3-SDRAM address (an
address in bank 4 of the DDR3-SDRAM here).

6) Once the sink DMA write(s) request(s) is/are elected
by the memory arbiter, data is written into the DDR3-
SDRAM array.

Example 2 (Read process): In this example, the Core 2 of
Tile A needs to read data from the bank 2 of the DDR-SDRAM
to store it in the bank 1 of its local memory. We detail each
step of this read process as shown in figure 1 (the numbering
is equivalent to the one of the path of the write process in
figure 1):

a) The DMA of the IO Tile initiates a DDR3-SDRAM read
transaction. Once again, any concurrent access to the
memory with any other master will involve arbitration.

b) Once the DMA command is elected, data is transfered
from DDR3-SDRAM to the DMA.

c) DMA sends packets through the NoC. Again, important
amounts of data are packetized and arbitrated with con-
current flows at packet level.

d) DMA of the Compute Tile receives the packets and
attempts to write them back into the local memory. Again,
we assume that this DMA has been pre-configured to
associate one of its reception queue to a specific memory
area of the local memory (the bank 1 in this example).
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We remark that a read process is fairly equivalent to a write
process. Indeed, a read by a computing core is equivalent to a
write from an IO Tile. The difference is that the destination of
the data is not the external memory but the internal memory
of a Compute Tile.

In this example, the phase a) of the read process is initiated
by the DMA of the IO Tile. We assume that the DMA was
notified by one of the IO Tile’s core that received a command
from one compute tile or that has been pre-configured.

This model is representative of a certain class of tiled many-
core processors such as the KALRAY MPPA R©-256 [1]. In the
next sections, we try to estimate the temporal bounds of any
individual access on the identified sources of interference with
no assumption on the behaviour of other potential requesters.

III. SOURCES OF INTERFERENCE

In this section, we will refer as a memory transaction to the
high-level application demands of memory. Each transaction
can be composed of several memory requests at external
memory controller level.

Definition 1 (Worst-Case-Everywhere Approach): We denote
as a Worst-Case-Everywhere Approach a method for bounding
the memory access time of an individual requester with no
assumptions on the competitors on each shared resource. In
this context, one must consider only the worst-case behaviour
of the competitors to provide a safe bound.

A. Local memory arbitration

For simplification purpose, the local memory of the Com-
pute Tiles is assumed to be Static Random Access Memory
(or SRAM) for which there is a simple access protocol and
no refresh is required. The local memory of each computing
tile is split into N c

bank banks. The memory frequency is f c
mem

and the data bus is wc
mem bytes large. There are N c

c + N c
dma

potential memory requesters in a compute tile. We assume
each requester to own a private access path to the memory.
Concurrent accesses to different banks have no impact on
bandwidth. Concurrent accesses to a single bank are arbitrated
with a Round-Robin policy. So, for a memory transaction of
strans bytes, the total duration is:

tSRAM (Nreq, strans) =

⌈
strans

wc
mem

⌉
× Nreq

f c
mem

(1)

In a worst-case-everywhere approach, one must always
consider Nreq = Nmax

req = N c
c + N c

dma. So, we can estimate
the worst case latency of a local memory transaction by
tmax
trans = tSRAM (Nmax

req , strans).

B. Network on Chip

In this section, we assume a NoC designed upon a wormhole
switching strategy. The access to the NoC is enforced by the
DMA. Communications upon the NoC are split into packets
having a maximum size of smax

pk flits of payload where the
size of one flit is sflit bytes. The number of non-payload
flits by packet is sheader. The maximum frequency at which
flits can transit on the NoC is fNoC . We show in figure 2 the

model of a NoC router. A router Ri is composed five interfaces
named East, West, North, South and Local. The Local interface
is not represented in figure 2 for clarity. The arbiter at each
interface implements a Round Robin policy at packet level.
The arbiters are work conserving, meaning they are never idle
when there is a packet to send. Consequently, they do not
introduce undesired gaps between packets.

West
East

South

North

Fig. 2: Model of a NoC router

In wormhole switched networks, one message can be hold-
ing one resource while requesting others, and thus, cause a
deadlock [2]. We show an example of deadlock in figure 3.
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Fig. 3: Deadlock on a wormhole routed NoC

In this example we can see the flits F (Rx) of 4 packets in
the FIFO queues of the interfaces of 4 routers. 3 out of 4 flits
F (R1) at destination of the router R1 went through the router
R3 and are stored in one queue of the router R4 waiting for
availability of the link to R1. Because of the back-pressure
mechanism, the fourth F (R1) flit is still queueing in R3 as
the queue of R4 is full. It is also maintaining occupied the
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link between R3 and R4 as all the flits of one packet must
be consecutive. At the same time, the flits F (R2) blocking
the flits F (R1) are waiting for the link between R1 and
R2 to become idle. Similarly, the flits F (R3) occupying this
link are waiting for the link between R2 and R3 to become
idle but this link is occupied by the F (R4) flits themselves
waiting for the R3 to R4 link that is occupied by the F (R1)
flits. We can see clearly here the occurrence of an unsolvable
cyclic dependency leading to a deadlock. Such a problem
can happen if no assumptions are made on the software
accessing the NoC. So, a worst-case everywhere approach is
not applicable. In the literature, the attempts to bound the end-
to-end delays of wormhole switched networks usually assume
specific routing algorithms [3] or acyclic Channel Dependency
Graphs [2] or regulation of traffic injection to ensure deadlock-
free executions. For example, in [4], the authors present
an approach ensuring no overflow of the KALRAY MPPA R©-
256’s NoC routers FIFOs using the hardware limiters properly
configured with Network Calculus [5]. Thanks to the design of
the NoC routers and the FIFO overflow avoidance, no deadlock
can happen. However, in this case, the effective latency of any
NoC packet depends on the contribution of other participant
and thus does not provide composability (even if the maximum
end-to-end latency can indeed be bounded). An other possible
approach that offers composability is to compute an off-line
TDMA scheduling of the NoC in order to provide periodic
time windows to each task during which they access the NoC
with no concurrents [6]. We argue anyway that static hardware-
based routing policy offers less flexibility than explicit routing
decided by software (at the cost of an overhead implied
by the route planning obviously). This flexibility enables to
choose complex routes that may help the system designers to
avoid route conflicts when trying to compute efficient TDMA
scheduling tables or to build acyclic Channel Dependency
Graphs.

C. Main memory access

We consider a DDR3-SDRAM memory as defined by the
JEDEC standard [7]. As shown in figure 1, we assume that
concurrent accesses to the memory are arbitrated before being
issued to the controller. So, the problem of bounding the
memory latencies can be divided into two subproblems:

1) what is the policy used by the controller to serialize
several parallel accesses ?

2) how does the memory react to a certain sequence of
requests ?

As the detailed explanation of both problems comes with
prerequisites, we discuss them in section IV-C after an intro-
duction on DRAM technology.

IV. DRAM BACKGROUND

We present the basics of DRAM in order to explain the
inherent timing constraints related to this technology and we
address the problem of concurrent memory accesses. More
detailed information about DRAM are available in [8].

A. DRAM technology

The Dynamic Random Access Memory (DRAM) is a
simple, cheap and compact type of memory widely used in
modern computers. A DRAM device is usually composed of
several DRAM banks. A bank is an independent array of
DRAM cells where each cell stores 1 bit of data. A cell is
composed of a capacitor and a transistor able to connect the
storage capacitor to the sense amplifiers of the bank. The sense
amplifiers are acting as an interface between the cells rows
and the memory controller. The sense amplifiers of one bank
can be connected to only one row at a time. We will refer to
the currently connected row as the active row or the opened
row. Any column access command (ie. read or write) must be
issued to the opened row. To issue requests on closed rows,
the opened row must be precharged (or closed) first so that
the according row can be activated.

B. Bank commands

We identify five main bank commands (ACT , PRE, RD,
WR, REF ). We detail each of them in the following sections.

1) Row activate: The purpose of a Row Activate command
(or ACT ) is to connect one row in the bank to the sense
amplifiers. The important timing parameters related to the
ACT command are:

• tRCD: Row to Column Delay. The time the memory
controller must wait after the ACT before it can issue
a Column Read or Write command.

• tRAS : Row Access Strobe. Minimum time a row must
remain opened before the next precharge.

• tRRD: Row activate to Row activate Delay. Minimum
time required between two ACT commands.

• tFAW : Four row Activation Window. Sliding window
during which no more than 4 ACT commands can be
issued.

2) Read: A Column Read command (or RD) is issued on
an opened row in order to transfer data from the DRAM array
to the memory controller. In modern DDR3-SDRAM, data is
moved in relatively small bursts. We note the size in bytes
of one burst sburst. The important timings related to the RD
command are:

• tCAS : Column Access Strobe. Duration required by the
memory to place on the data bus the requested data. This
parameter is also often noted tCL.

• tburst: The time (in cycles) required to transfer a complete
burst. If the memory data bus is wbus bytes large, a
complete burst will be transfered in sburst/wbus beats
of data. In DDR3-SDRAM systems, the double data rate
mechanism allows to transfer two beats of data by cycle.
So, tburst = sburst/(2 × wbus) cycles.

3) Write: A Column Write command (or WR) is issued on
an opened row in order to transfer data bursts from the memory
controller to the DRAM array. The important timings related
to the WR command are:

• tburst: Same as RD bursts.
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• tCWD: Column Write Delay. Delay between the WR
command and the placement of data on the bus.

• tWTR: Write To Read delay. Minimum time between a
WR and a RD command. This constraint is related to
the bus switching time. tWTR is not local to a bank but
a global device constraint.

• tWR: Write Recovery delay. Minimum amount of time to
wait after a column write command before a precharge
command can be issued.

4) Precharge: A precharge command (or PRE) has for
main purpose to disconnect the current row. The important
timings related to the PRE command are:

• tRP : Row Precharge delay. The time required to discon-
nect the opened row from the sense amplifiers.

• tRC : Row Cycle. tRC = tRAS +tRP is a commonly used
indicator for DDR3-SDRAM performance.

5) Refresh: Refresh commands must be issued periodically
to all the DRAM rows in order to avoid data corruption. We
assume that the memory controller uses a simple Auto-refresh
policy. In this case, a REF command operates in parallel in
all banks and refreshes one or several rows in each bank. The
important timings related to the REF command are:

• tREFI : Refresh interval. Time interval between two
REF commands issued by the controller.

• tRFC : Refresh Cycle. Duration of one refresh cycle.

To safely upper-bound the latency of a sequence of memory
access, the penalties related to the REF commands must be
taken into account. In [9], the authors provide a method to
take calculate these penalties with equation 2.

tref
seq = tseq +

⌈
taccess

tREFI − tRFC

⌉
× tRFC (2)

Where tseq is the latency of the sequence of memory
accesses calculated without taking into account refreshes.⌈

tseq
tREFI−tRFC

⌉
gives the maximum number of refreshes that

may occur during tseq . Therefore, the refresh cycle time tRFC

is added to tseq as many time as it is possible in the worst case.
As the refresh-related penalties can be calculated separately
from the calculation of tseq using equation 2, we do not take
them into account in the rest of the paper.

In order to give to the reader the order of magnitude of
each previously enumerated timing parameter, we provide in
table I the values extracted from the technical documentation
of a Micron DDR3L SDRAM module [10] composed of 8
banks of 512MiB each.

C. Concurrent accesses

In order to analyse the memory behaviour when accessed
by several competitors, we decompose the analysis in two
steps. At first, we examine the response of a memory bank
to a specific sequence of commands and then we identity the
arbitration mechanisms between the competitors.

Parameter Nanoseconds Cycles Data beats
tCK 1.25 1 2
tBURST 5 4 8
tCAS 13.75 11 22
tRP 13.75 11 22
tRCD 13.75 11 22
tWR 21.25 17 34
tWTR 7.5 6 12
tRAS 35 28 56
tRC 48.75 39 78
tFAW 30 24 48
tRRD 6.25 5 10
tCWD 10 8 16
tRFC 260 208 416
tREFI 3906 3125 6250

TABLE I: Timing parameters of Micron module [10]

Prev. cmd. Cur. cmd Timing parameter
RD RD tburst

RD WR tCWD + tburst

RD PRE tRC − tmax
read

WR RD tCAS + tburst + tWTR

WR WR tburst

WR PRE max(tWR, tRAS − tmax
write) + tRP

ACT RD tCAS + tburst

ACT WR tCWD + tburst

ACT PRE tRC

X ACT tRCD

TABLE II: Visible timings of commands at bank level

1) Bank level: At bank level, we can see as input a series
of low level commands (ACT , PRE, RD, WR) on one
bank and as output the resulting time required to complete
the whole sequence of commands. We detail in table II the
visible timing of each command depending on the previous
command issued to the same bank. So, the time needed by
one command sequence can be calculated by summing the
parameters of table II corresponding to each command.

Example 3 (Calculation of the duration of 4 commands
sequence on one bank): As shown in figure 4, we consider
a sequence of four commands (one ACT followed by 3 RD).
The three first commands are issued back to back and the last
one is issued after a gap of 3 cycles. With the parameters of
table I and the expressions of table II we calculate the time
required to complete the whole sequence tseq = 37 cycles
with:

tseq = tRCD︸ ︷︷ ︸
ACT

+ tCAS + tBURST︸ ︷︷ ︸
1st RD

+ tBURST︸ ︷︷ ︸
2nd RD

+ tBURST︸ ︷︷ ︸
3rd RD

+tGAP

2) Controller level: The arbitration strategy implemented
in order to serialize several concurrent memory transactions
varies from one controller to another. One of the most widely
used arbitration policy in COTS controllers is the First-
Ready First-Come First-Serve (or FR-FCFS). With FR-FCFS,
requests on already opened DRAM rows are issued first, and
once no pending request targets an opened row, the oldest
request goes first. Bounding the memory access time of a FR-
FCFS-based controller can be challenging since an aggressive
implementation of this arbitration policy can imply starvation
as new requests are likely to be issued before older ones.
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tseq

ACT RD RD RD
tGAP

tRCD

tCAS tBST

tCAS tBST

tCAS tBST

tGAP

Fig. 4: Sequence issued to a bank with tBST = tBURST

The real implementation of the FR-FCFS policy often
slightly differ from one COTS controller to another. For
instance, the differences can be related to RD and WR
grouping, to starvation avoidance (some controllers have a
cap [11] for example) or to the impact of DRAM refreshes
on priorities. For this reason, the accurate modeling of the
arbitration policy of COTS controllers is target dependent. In
the following section, we propose an example of modeling
with the KALRAY MPPA R©-256’s arbiter in order to quantify
its worst-case memory access time. Based on this, we will
provide recommendations (that can still reasonably be applied
on different COTS controllers since they do not require target-
specific configurations) to reduce the pessimism implied by the
worst-case-everywhere approach at the controller level.

Master 1

Master 2

Master 3

Master 4

M
PF

E

Reorder Core

C
on

tr
ol

le
r

Arbiter

Fig. 5: KALRAY MPPA R©-256’s arbiter

3) KALRAY MPPA R©-256’s arbitration policy: As shown
in figure 5, the KALRAY MPPA R©-256’s memory arbiter is
composed of two elements. The Multi port front end (or
MPFE) has several ports, each of which is connected to
one master (DMAs Rx, DMAs Tx, IO cores, . . . ), and one
connection to the Reorder Core (or RC). The purpose of the
MPFE is to forward the requests pending on its ports to the
RC one after the other. To do so, each port is assigned a
priority and the highest is forwarded first. When several ports
have the same priority, they are arbitrated in Round-Robin.
The starvation on low-priority ports can be avoided thanks to
a starvation counter (or SC). When a request arrives on a port,
its SC starts decounting from a predefined value. When the SC
reaches 0, the port gets the highest priority.

In order to simplify the modelling, in the rest of the paper,
we will assume equal priorities on all ports and a disabled SC
mechanism so that the MPFE forwards the requests in a pure
Round-Robin fashion. This configuration is realistic since it
can be applied on the real hardware.

The Reorder Core receives the requests forwarded by the
MPFE and issue them efficiently to the controller. The RC
has a queue of 8 elements that is arbitrated as follows:

1) High priority requests (same priority as for the MPFE)
goes first;

2) Requests on active banks goes first;
3) Requests targeting a recently opened pages wait tRC

before being issued;
4) RD request goes before a WR if the previous request

was a RD (same thing for WR).
Every time a request is issued to the controller, the RC accepts
a new entering request from the MPFE and the 4 rules are re-
evaluated.

Example 4 (Reorder Core): The following requests are
present in the reordering pool:
R1: RD of priority 7 to a new page in bank 0;
R2: WR of priority 4 to an opened page in bank 1;
R3: RD of priority 4 to a new page in bank 0;
R4: RD of priority 4 to a new page in bank 1;
R5: WR of priority 7 to an opened page in bank 2;
R6: WR of priority 7 to a new page in bank 1;
R7: WR of priority 4 to an opened page in bank 3;
The requests will be served in the following order by the RC:

1) R5: wins rule 1) with R1 and R6 and wins rule 2)
2) R6: wins rule 1) with R1 and wins rule 4)
3) R1: wins rule 1)
4) R7: wins rule 2) (page of R2 has been closed by R6)
5) R3: wins rule 3) (bank 0 is the least recently opened)
6) R4: wins rule 4)
7) R2: last request

D. Bounding the duration of a DDR3-SDRAM transaction

In this section, we try to bound the duration of a reference
memory transaction denoted τ and composed of Nτ

req requests
initiated by one master and we consider a total number of
Ntrans competitors (all masters with pending memory requests
including the one issuing τ ). If all the possible masters are
issuing memory requests simultaneously, Ntrans = Nmax

trans.
With the previous assumptions,in the worst case, the number
of arbitration round required for all Nτ

req requests to cross the
MPFE is bounded by:

Nmax
round = Nτ

req × Nmax
trans (3)

In the worst case, a request stays in the reorder queue at
most while 2n − 1 (n is the number of element in the queue,
8 for the MPPA R©-256) other requests are issued before. So, if
Nmax

trans ≤ (2n−1), several requests of τ can be located in the
reordering pool simultaneously and can be issued fastly to the
controller as they certainly target the same page. Otherwise,
each request of τ is ensured to get out of the reordering pool
before the arrival of any other request of τ . In both cases,
the duration of τ is mostly dictated by equation 3. So, the
maximum duration of τ can be bounded by:

tmax
τ ≤ (Nmax

round + 2n − 1) × tmax
req (4)
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with tmax
req the worst case request time (a read following a write

with row conflict).
In the following sections, we provide numerical examples

of all the previously enumerated composition rules for each
identified potential source of interference and we put in evi-
dence the part of pessimism that can be avoided by restricting
the execution of the applications with a number rules.

V. COST OF COMPOSABILITY

In this section, we explain the methodology enabling to
bound the end-to-end latency of the write process of Exam-
ple 1 of Section II as shown in figure 6. At first, we provide
the analytical study of this example and we then provide some
numerical applications in order to emphasize the pessimism
implied by the worst-case-everywhere approach.

A. End-to-end latency

1) Local memory: During the phase 1, the time required
by Core 3 to write the data to be sent into the Bank 1 of the
Tile’s local memory can be calculated with equation 1:

t1(Nreq, strans) =

⌈
strans

wc
mem

⌉
× Nreq

f c
mem

with Nreq being the number of requesters accessing the same
bank of the Computing Tile’s local memory. We assume that
during the phase 2, the time required by Core 3 to signal its
intention to send data to the DMA is one clock cycle t2 = 1.

2) Network on Chip: The phases 3, 4, 5 and 6 must be
considered simultaneously as they are all impacted by the NoC
management. As explained in section III-B, it is impossible to
bound the NoC crossing time of a packet in complete isolation
without strong assumptions on the concurrent NoC users or
on the execution model orchestrating the applications. To deal
with this problem, we assume that inter-application NoC traffic
isolation is ensured with a pre-computed TDMA scheduling
table. The respect of the TDMA requirements are ensured by
trusted software granting or delaying the NoC access to the
applications. Such model enables us to consider that packets
may be temporary restrained at emission but those travelling
in the NoC are never blocked by any concurrent at router level.
So a transaction of strans bytes will require a flow φk of Nφk

pk

packets to be completely sent:

Nφk

pk (strans) =

⌈
strans

smax
pk × sflit

⌉

We consider that φk has been allocated a path of Nφk

R routers
during a time window of Lφk

NoC cycles every Tφk
cycles.

We assume that the length of Lφk
is long enough for the

emission of at least one packet of maximum size. As shown
in figure 6, we note ∆ the time between the end of the phase
1 and the emission of the first flit of the first packet. Because
of the TDMA allocation of the NoC, the maximum ∆ occurs
when the phase 1 ends exactly at the end of one Lφk

. In this
case ∆max = Tφk

− Lφk
.

Lφk
Lφk

Tφk

Local Memory
NoC

Fig. 7: Impact of Nreq on NoC utilization

a) Consecutive packets: At first, we consider no inter-
ference at local memory level when the DMA reads the data
to be injected in the NoC as shown in figure 6. In this case,
the flits of all the packets are sent consecutively. We note λφk

the time (in cycles) needed by one flit to cross the complete
path:

λφk
= Nφk

R × (δR + 1)

where δR is the latency of one router. We also assume each
NoC link can be crossed by one flit each cycle. Thus the time
(in cycles) needed by Nflits to cross the NoC is:

tNoC(Nflits) = λφk
+ Nflits

And, the maximum number of flits N
Lφk

flits that can be sent in
one Lφk

is :
N

Lφk

flits = Lφk
− λφk

So, the maximum number of packets that can be sent in one
Lφk

is:

NNoC
pk =

 N
Lφk

flits

smax
pk + sheader

 (5)

b) Non consecutive packets: As shown in figure 7, due to
interference at local memory level, the DMA may not be able
to read data fast enough to effectively send NNoC

pk packets.
Indeed, during a time window of Lφk

cycles, depending on
the number of local memory requesters accessing the same
SRAM bank Nreq , the maximum amount of data that can be
read from the local memory can be derived from equation 1:

sLφk
(Nreq) =

⌊
Lφk

fNoC
× f c

mem

Nreq

⌋
× wc

mem

And so, the number of packets that can be read from local
memory NSRAM

pk is:

NSRAM
pk (Nreq) =

⌊
sLφk

(Nreq)

smax
pk × sflit

⌋
(6)

c) Combination: Thanks to equations 5 and 6, we can
calculate the actual number of packets crossing the NoC during
a time window Lφk

with:

N
Lφk

pk (Nreq) = min(NNoC
pk , NSRAM

pk (Nreq))

Hence, the number of Lφk
windows needed to send every

packets of φk is:

Nφk

Lφk
(strans, Nreq) =




Nφk

pk (strans)

N
Lφk

pk (Nreq)




And the end-to-end latency tφk
of φk is:

tφk
(strans, Nreq) = Nφk

Lφk
(strans, Nreq) × Tφk
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Local memory

Network on Chip

DDR3-SDRAM

ttotal

Tφk
Tφk

t1 ∆ Lφk
tSRAM
pk Lφk

tDDR
Lφk

tNoC
pk

tDDR
Lφk

Fig. 6: End-to-end latency of a memory transaction

Lφk
Lφk

Tφk

NoC
DDR3-SDRAM

Fig. 8: Data received is not written quickly to DDR3-SDRAM

3) DDR3-SDRAM: With the bound on Tmax
τ of equation 4

and the number of request per packet Npk
req , we calculate a

bound on the time required to write the N
Lφk

pk packets into
memory with:

tDDR
Lφk

≤







N
Lφk

pk

Npk
req




× Nmax
trans + 2n − 1


 × tmax

req (7)

In the rest of the paper, we denote the right part of equa-
tion 7 as bDDR

Lφk
. Obviously, this bound seems pessimistic as

it considers tmax
req for any request issued to the controller.

However, it is a safe bound since no assumptions are made
on the competitors and therefore the considered worst-case
can happen. Especially, one may note that no assumptions are
made on the following parameters:

• the number of competitors;
• their type (read or write);
• their locality (which row of which bank are they access-

ing);
4) End-to-end latency calculation: There are two cases to

consider in order to calculate the maximum duration of the
memory transaction:

• bDDR
Lφk

< Tφk
: The data received during one Lφk

are
completely written into memory before the start of the
next Lφk

. So, the DDR3-SDRAM latency is somehow
masked by the TDMA allocation of the NoC as shown
in figure 6. In this case, the total end-to-end maximum
duration of the memory transaction is bounded by:

b1
trans = t1 + tφk

− Lφk
+ tNoC

pk + bDDR
Lφk

• bDDR
Lφk

> Tφk
: The data received from the NoC are not

written into the memory fast enough and thus, are stored
in a queue, waiting to be treated as shown in figure 8.
We assume here that the queues are large enough to not
overflow. In this case, the DDR latency is dominating the

calculation of the total end to end maximum duration of
the memory transaction. Its bound is:

b2
trans = t1 +∆max + tSRAM

pk + tNoC
pk +(Nφk

Lφk
× bDDR

Lφk
)

So, we can upper-bound the worst case duration of the memory
transaction ttotal

trans with:

ttotal
trans ≤ max(b1

trans, b
2
trans)

B. Numerical applications

We illustrate the previous analyses with an example using
the indicative hardware parameters of table III. We assume a
transaction of strans = 4 KiB of data with a corresponding
flow φk crossing a path of Nφk

R = 4 routers during Lφk
= 512

cycles every Tφk
= 1024 cycles.

Compute Tiles Network on Chip IO Tiles
Nc

c 10 sflit 4 Bytes N io
c 4

Nc
dma 1 smax

pk 64 flits N io
dma 4

Nc
bank 8 sheader 2 flits External Memory

fc
mem 600 MHz fNoC 600 MHz Npk

req 2
wc

mem 8 Bytes δR 5 cycles Datasheet [10]

TABLE III: Indicative hardware parameters

1) Local memory: We show on table IV the impact of
the number of local memory competitors Nreq on t1 and the
number of Lφk

required to send all the data. We can see t1 is
growing linearly with Nreq . We also note that NLφk

is strongly
impacted by the concurrency at local memory level. The large
values of Nreq obviously imply a large under-utilization of the
NoC.

Nreq 1 3 5 7 9 11
t1 (in cycles) 512 1536 2560 3584 4608 5632
NLφk

3 4 6 8 16 16

TABLE IV: Impact of Nreq

2) DDR3-SDRAM: We assume tmax
req happens in the case of

a row-conflicting read request following a write. Thus, using
the expressions of table II, we have:

tmax
req = tWR + tRP + tRCD + tCAS + tBURST = 67.5 ns

This is required since no assumptions on the type, locality
and number of concurrent transactions are made. However,
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the restriction of the memory access patterns thanks to
an appropriate execution model could significantly decrease
bDDR
Lφk

. Indeed, by avoiding the overlapping of row conflicting
transactions, tmax

req could be replaced by:

t1req = tCAS + tBURST = 18.75 ns

and the cost of precharging and activating pages should be
payed only once per transaction. This would reduce bDDR

Lφk

up to (67.5 − 18.75)/67.5 = 72%. Grouping RD and WR
would also allow to avoid the tWTR penalty and improve both
the performance and the tightness of the worst-case bound.
Finally, reducing the maximum number of competitors Nmax

trans

will reduce Nmax
round and thus bDDR

Lφk
significantly.

VI. RECOMMENDATIONS

A. Local memory

We have seen that the local memory of the Compute
Tiles can be shared fairly amongst many requesters. However,
always considering the maximum number of competitors can
lead to introduce a large pessimism in the calculation of the
memory accesses latencies, especially when the number of
banks of the memory is close to the number of potential
requesters. In this case, static bank allocation seems to be
a reasonable method to bound the number of potential re-
questers to a bank, and thus, to reduce the implied pessimism
accordingly. Moreover, we showed that the NoC utilization is
strongly dependent on the local memory bandwidth allocated
to the Tile’s DMA. Thus, managing the maximum concurrency
with the DMA seems to be a key element to ensure good
performances.

B. Network on Chip

The essential three parameters for the Network on Chip
management are: 1) the path allocated to each flow; 2)the
width of the time window Lφ and 3) its corresponding period
Tφ. The flows paths and periods must be chosen carefully.
Indeed, in such strictly periodic systems, two flows with
prime periods will not be able to share a NoC link [12].
So, as explained in section III-B, we recommend to use
processors where the routing policy is not hardware-based but
can be chosen explicitly by software to gain in flexibility.
Moreover, the choice of the flows periods should not be
completely unrestricted in order to avoid prime periods and to
increase the number of scheduling possibilities. A reasonable
approach could be to define a set of acceptable periods (that
should ideally have large greatest common divisors) that any
application could use. We can coarsely estimate the bandwidth
allocated to one flow φ with Bφ = sflit × fNoC × Lφ

Tφ
.

Hence, we can estimate a value of Lφ to fulfill the bandwidth
requirement Bapp of the application by Lφ =

Bapp×Tφ

sflit×fNoC
.

The exact calculation of Lφ will remain application dependent
anyway.

C. DDR SDRAM

We have seen that mainly three parameters have an im-
portant impact on the DDR SDRAM performance and our
ability to tightly bound it. Firstly, the locality of the concurrent
transactions is a major parameter. We showed that private
bank allocation provides good performance isolation between
the competitors but obviously, when we consider a many-
core processor with possibly hundreds or thousands of cores,
the number of memory-requesting applications can be largely
greater than the number of banks. To deal with this problem
we assume each application has an allocated bank (several
applications may be allocated to the same bank anyway) and
we see two solutions: 1) the access to each bank is protected
by a binary semaphore; 2) applications communications are
activated by a pre-computed static scheduling table ensuring
by construction that potential concurrent transactions do not
share banks. The first solution seems to be the simplest to
implement but may not provide a predictable behaviour, and
so, we recommend the second one. Anyway, in both cases, in
order to simplify the bank allocation, the memory controller
should be configured in a non-interleaved addressing scheme
so that contiguous memory addresses represent contiguous
memory locations in the banks.

The maximum number of concurrent transactions is the
second important parameter. We argue that decreasing the
number of potential competitors can be highly beneficial.
Indeed, each requester will be elected more often to place
a memory request in the reordering pool, and thus, be less
sensitive on the configuration of other transactions. This will
improve both performance and predictability. To achieve this,
the access to the external memory may be banned for some
of the potential requesters (the IO Tile’s cores for example).
Moreover, the maximum number of requesters could be also
reduced by computing a static scheduling table ensuring that
the number of potential competitors is below a pre-defined
trigger at any time.

Finally, the types of the concurrent transactions is the
last important parameter. We explained that COTS memory
controllers can largely differ in term of type management,
and thus, provide fairly different performances. By considering
the worst-case approach, a safe upper-bound of the memory
access latency can be found. However, this bound may be large
for two reasons: 1) the memory controller poorly reorders
the requests and has according performances. In this case,
the pessimism of the estimation is low. 2) The reordering
is efficient and the estimated bound is largely superior to
the actual latency. In this case, this approach introduces an
important pessimism. So, the algorithm used to compute the
scheduling tables should include an optimization criteria to
concatenate accesses of the same type. This will both increase
performance and make the memory access latency estimation
insensitive to the type management policy of the controller.

VII. RELATED WORK

Many contributions in the literature propose specific mem-
ory controllers enabling predictable performance. PREDA-
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TOR [13] uses a closed-page policy with static priority
assigned to requests in order to provide bounded latency.
The Analyzable Memory Controller (or AMC) [14] is rather
similar to PREDATOR. The main difference between AMC
and PREDATOR is the arbitration as AMC implements a
Round-Robin arbiter. PRET [15] partitions the memory in four
groups of banks (two groups by rank) and cycles through
groups in a time triggered fashion in order to provide four
independent resources. ROC [16] uses bank privatization to
limit the impacts of row-conflicts and uses rank-switching to
hide the write-to-read latencies.

However, the utilization of COTS is an important trend
in industry in order to reduce both design costs and time-to
market. Several contributions [17]–[20] have been proposed in
the literature in order to bound the memory access latencies
of multi-core processors by analyzing the DRAM access
protocol and all its related timing parameters. In [17] and
[18], the concurrent transactions are assumed to be reordered
using a simple First-Come First-Serve (or FCFS) policy which
implies a starvation-free behaviour but is not representative of
real COTS memory controllers. The authors of [19] assume
a First-Ready First-Come First-Serve (or FR-FCFS) policy
that is largely implemented within classical COTS memory
controllers but they make strong assumptions about the system
model and especially the task set (each task is assumed to have
enough cache space to store one row of each bank assigned
to it and tasks do not share memory). In [21], the authors
propose a memory bandwidth reservation system implemented
as a Linux Kernel and aiming at providing guaranteed and/or
best-effort memory bandwidth to the applications on COTS
processors. Although the proposed approach seems to provide
good performance isolation between the tasks, the bandwidth
budget allocated to each core may not be respected because
of a mis-prediction of the reclaim algorithm that is thus not
applicable within safety critical hard real time systems.

The authors of [22] propose a global static scheduling
approach to map real-time applications onto many-core proces-
sors but do not take into account the interference of potential
competitors at the local memory and NoC levels. Moreover,
they do not consider external resources such as the DDR-
SDRAM.

VIII. CONCLUSION

In this paper, we proposed a realistic analysis of the
sources of interference between applications on their memory
access path. We defined the composition rules at the local
SRAM, NoC and the DDRx-SDRAM levels in order to bound
the end-to-end duration of any memory access. Hence, we
quantified the potential pessimism implied by a worst-case-
everywhere calculation and we proposed recommendations to
choose COTS processors with specific properties and to build
efficient execution models enabling a much less pessimistic
estimation.

For the future, we plan to implement on real targets the
proposed execution models in order to provide a formal and
experimental analysis.
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Abstract—The constantly ever-growing interest for large-scale
distributed systems like the Internet of Things imposes many
challenges for developers and researchers from many areas. The
development of distributed software applications is by no means
trivial, and their inherent complexity becomes apparent during
testing. Indeed, testing the operation of single isolated nodes
does not suffice, because it may be affected by the distribution
and inter-communication between nodes. Re-writing a test case
to consider distribution is neither efficient nor simple, because
concurrency is never easy to implement. In this paper we
present an approach that automatically interleaves execution of
test cases to simulate concurrency inherent in distribution. We
focus on independent test cases that might exhibit a correlation
due to distributed interaction. The approach is applied in the
context of standard modeling and testing languages, and enables
identification of interaction points during test case execution that
depend on distribution. The re-execution of the test case is then
interleaved at the identified points to account for distribution.

Index Terms—Distributed systems, testing, modeling, simula-
tion, TTCN-3, SDL

I. INTRODUCTION

The development of distributed systems has gained much
attention from industry and researchers with a variety of
applications, a trend that is sure to continue in the immediate
future due to the ever-growing interest for the Internet of
Things [1]. However, the development of software applications
for large-scale distributed systems is not a trivial task. This is
especially true for testing, an activity which is quite challeng-
ing even for simple non-distributed systems. The operation
of nodes in a distributed system is not isolated, and as such
it requires for test cases to account for the distribution and
interaction between nodes. The implication here is that existing
test cases and their execution have to be adapted to consider
distribution. This adaptation consists of (a) introducing concur-
rency handling into test cases, and (b) controlled concurrent
execution that deals with all relevant interleavings. For the
former the tests cases have to be modified, and considering that
concurrency handling is never easy to implement, the effort
that is required should not be overlooked. The later implies
the existence of a scheduler that is able to handle all relevant
interleavings.

In this paper we present an approach for automating the
interleaved execution of test cases. We apply the approach in
the context of standard modeling and testing languages. The
system under test is described in SDL [2], TTCN-3 [3] is used
for testing, and SDL-RT deployment diagrams [4] describe the
distribution of system components. Test cases are executed
against the system in a simulated environment extended with
an interleaving algorithm.

In Section II we give an overview of related work and
position our approach in respect to existing state of the art.
We introduce the relevant technologies in Section III and our
approach in Section IV. An example is given in Section V
to illustrate the use of the presented solution. Finally, we
conclude in Section VI with a discussion around the approach,
its current status, and future work.

II. RELATED WORK

Testing of distributed communication systems has been
approached from different angles. We identify two major
groups, i.e., distributed testing and interleaved execution.

Hartman et al. in [5] discuss the execution of abstract tests
for distributed software. They underline the importance and
benefits of interleaving test case sequences for discovering de-
fects in the system. The approach can be applied to a single test
case, it uses either concurrent or sequential synchronization of
execution sequences, and there is no automation involved in
establishing the synchronization points.

Schieferdecker and Vassiliou-Gioles in [6] discuss the distri-
bution of TTCN-3 test setups. The focus is on the underlying
concepts of the language and how they support management
and execution of distributed test cases. This approach implies
test execution on the target. This is obviously an advantage,
however, it also needs a complex synchronization mechanism
for controlling execution of each of the distributed test cases.

Bloom et al. in [7] emphasize the fact that, prior to testing
in a target environment, the software is usually tested in the
host environment. They propose a simulation-based approach
and focus on the semantics of time. However, it is not clear
how the execution of several test instances is interleaved to
account for the inherent concurrency.

Testing of concurrent software is discussed in [8] and [9].
The authors focus on multi-threaded software and propose a
solution that interleaves execution in a controlled way. The
approach uses neither a standard language (like TTCN-3) nor
any kind of abstract notations, instead, it is based on general
purpose programming languages.

We adopt the idea of controlled interleaved execution in
the context of distributed systems. To do so, we consider
distributed communication between instances of the system
to be similar to thread interleavings, and can potentially
impact the behavior induced by the execution of test cases.
Furthermore, the approach is based on standard and formal
languages with precise semantics. This allows simulation in a
controlled environment and, what is of great interest, automatic
generation and execution of all relevant interleavings.



III. TECHNOLOGY

A. SDL

The Specification and Description Language (SDL) is a
specification language defined by the International Telecom-
munication Union (ITU-T) in the Z.100 series [2]. SDL is
targeted at the unambiguous specification and description of
the behavior of reactive and distributed systems.

1) Structure, Behavior, and Communication: In SDL the
overall design is called the system, and everything outside of
it is defined as the environment. The system can be composed
of agents and communication constructs. There are two kinds
of agents: blocks and processes. Blocks can be composed of
other agents and communication constructs. When the system
is decomposed down to the simplest block, the way the block
fulfills its functionality is described with processes. A process
provides this functionality via extended finite state machines.
It has an implicit queue for signals. A signal has a name and
parameters; they go through channels that connect agents and
end up in the processes implicit queues. Fig. 1 illustrates these
concepts in a simple client-server application example.

Fig. 1. Excerpt of the SDL model of a client-server application.

The client is started with mStart signal which takes as
parameter the number of request the client should send to
the server. The client will try to connect to the server, and in
case of success it will start sending requests and waiting for
replies. When done (or in case of error) it will report back
(to the environment) the number of replies received from the
server via the mDone signal.

2) Deployment: SDL descriptions are platform indepen-
dent, i.e., they do not capture any information concerning
the implementation details. For example, Fig. 1 speaks of
a bClient and bServer, however it does not specify whether
these agents are distributed or not. Deployment diagrams
as defined in [4] can supplement the models with missing

information about distribution. This approach has been used
for simulating distributed applications as described in [10] and
[11]. We adopt the idea and simplify it by focusing only on
components, nodes, and connections as shown in Fig. 2.1 The
semantics are straightforward, i.e., if components (representing
SDL agents) are attached to different nodes, then they are
considered distributed, otherwise local execution is implied.

Fig. 2. Deployment model of the client-server application.

B. TTCN-3

The Testing and Test Control Notation Version 3 (TTCN-
3) is a standardized testing technology developed and main-
tained by the European Telecommunication Standards Institute
(ETSI). The ETSI TTCN-3 standards [3] have also been
adopted by the ITU-T in the Z.160 series [12].

The abstract definition of test cases makes it possible to
specify a non-proprietary test systems which are independent
of both platform and operating system. The abstract definitions
can be either compiled or interpreted for execution.

Fig. 3 shows a TTCN-3 module definition with a single test
case that triggers the sending of 10 requests (line 15 and 19)
from the client and expects 10 replies (line 16 and 21).

1: module TestClientServer {
2: // Types for messages
3: type record mStart { integer reqCount };
4: type record mDone { integer repCount };
5: // Port type for the interface with the SUT
6: type port port_cExtern message {
7: out mStart;
8: in mDone;
9: };

10: // Component type for the MTC and system inteface
11: type component sClientServer {
12: port port_cExtern cExtern;
13: };
14: // Templates for messages
15: template mStart startMessage := { reqCount := 10 };
16: template mDone doneMessage := { repCount := 10 };
17: // Testcase
18: testcase tc_start_done() runs on sClientServer {
19: cExtern.send(startMessage);
20: alt {
21: [] cExtern.receive(doneMessage) {
22: setverdict(pass);
23: }
24: [] cExtern.receive {
25: setverdict(fail);
26: }
27: }
28: }
29: }

Fig. 3. TTCN-3 module with a test case for the client-server application.

1The number of values in the id attribute is the number distributed nodes,
e.g., the figure implies two clients and one server.



IV. APPROACH

A. Problem Statement

We are interested in the effects (if any) induced by dis-
tributed execution of test cases. To better understand the
problem let us revisit the client-server example, and suppose
that the result of the test case presented in Fig. 3 is pass,
i.e., the system behaves as expected. What will happen if the
number of clients is increased; will the system behave the
same? There is one effective way to answer this question:
test the system with multiple clients. This can be tackled by
(a) rewriting the test case so that it accounts for multiple
clients, or (b) execute multiple instances of the test case (one
for each client) in parallel. The later needs an underlying
synchronization mechanism that allows controlled execution
of parallel (distributed) test cases, which is never trivial and
requires additional expertise (not TTCN-3). That is why the
former is more sound from a tester’s perspective, because it is
confined at the abstract level of testing provided by TTCN-3.
However, rewriting the test case to take into account only the
number of clients is not enough. Indeed, the difficult part is not
in the number of clients but in their parallel (concurrent) exe-
cution due to distribution. To model concurrency all possible
interleavings between test cases should be considered, which
implies execution of all permutations of TTCN-3 instructions
of different clients. For example, if startMessage is sent first
to client 1 and then to client 2, it is important to consider also
the case where it is first sent to client 2 and then to client 1.

B. Problem Analysis

Supposing concurrent execution of K test cases, with each
test case consisting of ni instructions for i = 1, 2, . . . ,K, the
number of all interleavings is given by:

I =
(
∑K

i=1 ni)!∏K
i=1(ni!)

(1)

If we consider concurrent execution of K instances of the
same test case, then ni = N ∀i, where N is the number of
instructions in the test case, and (1) can be re-written as:

I =
(KN)!

(N !)K
(2)

This is a typical case of the state-explosion problem which
makes execution of all interleavings unpractical even in a
controlled and automated environment. However, not all inter-
leavings are relevant and their number (in most cases) can be
drastically reduced. Indeed, the behavior induced by a test case
can be affected by distribution only if there is an interaction
between nodes. This means that, if the execution of a test
case does not involve any distributed communication, then
distribution will not have any impact. For example, if there
isn’t any communication between the client and the server,
then interleaving is pointless because there is no distributed
behavior in the first place. That is why it makes sense to
interleave execution at critical points, i.e., instructions that

trigger interaction between nodes by means of distributed
communication.

C. Interleaving Algorithm

We start by grouping the instructions and then interleaving
the execution of the groups. The condition is that each group
must include at most one instruction which triggers distributed
communication. Let mj

i be an instruction in the test case,
where i = 1, 2, . . . , N is the index (relative order) of the in-
struction, and j = 0, 1 describes whether the given instruction
triggers any interaction (interleaving point). A group consists
of all subsequent mj

i for which
∑

j ≤ 1. The following shows
an example sequence and corresponding grouping:

m0
1,m

1
2,m

0
3︸ ︷︷ ︸

g1

, m1
4︸︷︷︸

g2

,m1
5,m

0
6︸ ︷︷ ︸

g3

,m1
7,m

0
8,m

0
9︸ ︷︷ ︸

g4

, m1
10︸︷︷︸

g5

(3)

For two test cases with the above sequence, the algorithm can
generate > 700 times less interleavings.2

Interleaved execution can be automated using the following
algorithm:
{K is the number of instances}
{N is the number of groups}
{I is the next interleaving}
for i := 0 to K − 1 do

for j := 0 to N − 1 do
I[i ∗N + j] := i

end for
end for
loop

handleInterleave(I)
i := I.length− 1
while i > 0 and I[i− 1] ≥ I[i] do
i := i− 1

end while
if i = 0 then

return
end if
j := I.length− 1
while I[j] ≤ I[i− 1] do
j := j − 1

end while
temp := I[i− 1]
I[i− 1] := I[j]
I[j] := temp
j := I.length− 1
while i < j do
temp := I[i]
I[i] := I[j]
I[j] := temp
i := i+ 1
j := j − 1

end while
end loop

2The result can be obtained by replacing in (2): K = 2 and N = 10 prior
to grouping, and K = 2 and N = 5 after grouping.



Each group of instructions is represented by a simple integer
for ease of calculation. The handleInterleave procedure maps
the integer to its corresponding sequence of TTCN-3 instruc-
tions (permutation) that is to be executed next.

D. Tool Support

PragmaDev Studio3 is a set of tools that helps specifiers, de-
velopers, and testers to manage complexity in the development
of today’s systems. The tools use the recognized international
standards of SDL, TTCN-3, SDL-RT, and UML [13].

A key functionality of the tool-set is provided by the
PragmaDev (Co-) Simulator as shown in Fig. 4.

Fig. 4. Architecture of the PragmaDev (Co-) Simulator.

The co-simulator allows execution of TTCN-3 test cases
against an SDL system. SDL and TTCN-3 descriptions are
translated into an internal representation (byte code) to be in-
terpreted by the executor, which in turn forwards the schedul-
ing of events to the scheduler. We extend the functionality of
the scheduler with the interleaving algorithm.

In the first phase the test case is executed against the
system using the scheduler in normal mode (no interleaving
involved). All TTCN-3 instructions (send statements) that
trigger distributed communication between agents of the SDL
system are marked during execution. Every communication
between agents is checked against a deployment diagram, and
if the sender and receiver of a message are attached to different
nodes in the diagram, then the last TTCN-3 instruction that
triggered such behavior is indeed the one to be marked.

In the second phase the test case is executed against the
system in interleaving mode. The scheduler automatically
creates K instances4 of the test case and enters the interleaving
algorithm. On each iteration the algorithm creates an inter-
leaved sequence of TTCN-3 instructions based on marking
done in the first phase and the number of instances. The
sequence is then executed like a normal TTCN-3 test case
by the scheduler, and at the end the SDL system is reset to
its initial state for the next iteration.

The whole process is completely automated and transparent
to the tester. There is no need to rewrite the tests, but just
execute them with the interleaving scheduler.

3http://www.pragmadev.com
4The number of instances is deduced from the deployment diagram.

V. EXAMPLE

We have used the presented approach in testing an access-
control system. The system is composed of several terminals
and a central unit. Each terminal has a slot for entering a
card and a keypad for entering the key. This information is
sent to the central unit which checks whether access should
be granted to a user and notifies the terminal from where the
request was issued. The user can be either an administrator
or a normal one. The administrator can add or delete normal
users and is identified by a special card key.

A. Structure and Behavior

Fig. 5 shows an excerpt of the SDL model of the access-
control system. The system is composed of two blocks, namely
bLocal for terminals and bCentral for the central unit. Each
block has a single process within which implements the
behavior of the system.

Fig. 5. Excerpt of the SDL model of the access-control system.

The user enters the card and the key which are sent to the
central unit via the checkCardAndCode. If the card and key
are those of the administrator, then the central unit enters in



administration state, in which normal users can be added or
deleted. On the other hand, if the credentials are not those of
the administrator, the list of registered normal users is scanned
for matching credentials. The employee signal is sent back in
case of a match, otherwise an intruder is signaled.

B. Deployment

A simple deployment scenario for the access-control system
is shown in Fig. 6. The figure speaks of two bLocal (terminals)
connected to a single bCentral (central unit). We will use
this scenario to automatically generate and execute all relevant
interleavings.

Fig. 6. Deployment model of the access-control system.

C. Test Case

To show the applicability of automatic interleaving we start
with the most basic test case for the system, i.e., try to get in
and out of (without doing anything else) administrator mode
as shown in Fig. 7.

1: module TestAccessControl {
2: type record card { integer param1 };
3: type record key { integer param1 };
4: type record displayMessage { charstring param1 };
5: type record openDoor { charstring param1 };
6: type record closeDoor { charstring param1 };
7: type port cEnv_type message {
8: out card;
9: out key;

10: in displayMessage;
11: in closeDoor;
12: in openDoor;
13: };
14: type component AccessControl {
15: port cEnv_type cEnv;
16: };
17:
18: template displayMessage EnterCardMessage := {param1 := "Enter card"};
19: template displayMessage EnterCodeMessage := {param1 := "Enter code"};
20: template displayMessage AddOrDeleteMessage := {param1 := "* add; # delete"};
21: template displayMessage OneStar := {param1 := "*"};
22: template displayMessage TwoStar := {param1 := "**"};
23: template displayMessage CancelledMessage := {param1 := "Cancelled"};
24: template card UserCard(integer userID) := { param1 := userID };
25: template key EnterKey(integer keyValue) := { param1 := keyValue };
26:
27: altstep failOnWrongReceive() runs on AccessControl {
28: [] cEnv.receive { setverdict(fail); };
29: }
30:
31: testcase tc_correctAdministratorAccess() runs on AccessControl {
32: activate(failOnWrongReceive());
33: // Enter card
34: cEnv.receive(EnterCardMessage);
35: cEnv.send(EnterCard(0));
36: // Enter administrator code
37: cEnv.receive(EnterCodeMessage);
38: cEnv.send(EnterKey(0));
39: cEnv.receive(OneStar);
40: cEnv.send(EnterKey(0));
41: cEnv.receive(TwoStar);
42: cEnv.send(EnterKey(7));
43: // Administrator mode
44: cEnv.receive(AddOrDeleteMessage);
45: // Get out of administrator mode
46: cEnv.send(EnterKey(0));
47: cEnv.receive(CancelledMessage);
48: // Done
49: setverdict(pass);
50: }
51: }

Fig. 7. Test case for administrator access on the access-control system.

The user enters the card = 0 (administrator) and then the
code = 007. At this point the information (card + code) is sent
to the central unit. Because these are the right credentials, the
user is allowed to enter in administrator mode, where he/she
can add or delete users. However, none of this actions is
taken, and the user just exits from the administrator mode. The
request to exit is also processed by the central unit. Executing
this scenario against the system using the scheduler in normal
mode (no interleaving, one terminal and one central unit) will
indeed result in a pass for the test case.

When execution in normal mode is finished all the required
information will be available for entering the interleaving
mode. Based on the description above there should have been
identified two interleaving points by now: (1) after entering
the last digit of the code and (2) after the request to leave
the administrator mode. Indeed, these are the points during
execution where a communication between the terminal bLo-
cal and the central unit bCentral is triggered. This translates
into two groups of TTCN-3 statements whose execution shall
be interleaved: the first group consists of lines 34-44 and
the second of lines 46-47 in Fig. 7. Based on the number
of terminals bLocal in Fig. 6 and that of groups (K = 2,
N = 2), the total number of interleavings to be executed is 6.
It is important to note that, if the grouping algorithm is not
applied, the number of interleavings will be 252.5

What we found during execution in interleaving mode was
in fact quite surprising. We didn’t expect to find any problems
from such a simple test case, considering that it induces a
very basic behavior to the system. The system was modeled
so that only one terminal at a time can get administrator access,
meaning that an attempt from a second terminal will fail.
Indeed, this is the behavior we observed during the interleaved
execution, however, what we did not expect is for the second
terminal to block indefinitely waiting for a reply from the
central unit (i.e., test case execution did block on line 44 in
Fig. 6). We were able to immediately jump to the point in the
model (using the PragmaDev Studio user interface) causing
the problem. The central unit, after granting access to the
first terminal, entered the administration state so that it could
process any requests coming from the terminal for adding or
deleting users. However, in this state it was discarding (not
handling) all log-in requests, which in turn caused the second
terminal to wait indefinitely for a reply. The solution was
straightforward: add a new transition in the SDL state machine
of the central unit to handle such requests.

We were able to identify 4 similar problems in our model of
the access-control system by using the interleaving scheduler
on a set of more complex test cases. The set was composed
of (a) previously hand written test cases depicting typical
usage scenarios and (b) a set of automatically generated test
cases using the model-based approach described in [14]. It is
important to note that we were able to identify these problems
without writing a single line of TTCN-3 code.

5In this case the number of groups is equal to that of the TTCN-3 send
statements (N = 5).



VI. CONCLUSION

Testing of software applications for large-scale distributed
systems is not a trivial task, because the test cases and their
execution need to be adapted in order to account for the
distribution and interaction between nodes.

In this paper we presented an approach for automating the
interleaved execution of test cases to mitigate the complexity
of concurrent behavior due to distribution. We applied the
approach in the context of standard modeling and testing
languages where the system under test was described in
SDL, the distribution of system components in deployment
diagrams, and the test cases in TTCN-3. Test cases were
executed against the system in a simulated and controlled
environment with an interleaving scheduler.

The presented algorithm allowed us to significantly reduce
the number of interleavings without deviating from our target,
that is the thorough testing of the system. Instead of using
each single instruction of the test case as interleaving point,
we focused only on those relevant, i.e., instructions that induce
distributed behavior to the system.

Automatic interleaving was used for testing the distributed
behavior of an access-control system. Even with a basic test
case we were able to identify a problem in the system, a trend
that continued also with more complex test cases. Further-
more, we achieved these results by reducing the number of
interleavings by a factor of 42 (in the simplest case).

There are however three issues that need further discus-
sion. First, the proposed algorithm may not always produce
significantly less interleavings. This depends on the degree
of distribution in the behavior, i.e., the number of interleav-
ings grows if more inter-communication between distributed
nodes takes place. This can degrade simulation performance
especially with the increasing complexity of test cases. How-
ever, we believe this type of scenario to be more of an
exception than the rule. Indeed, energy consumption is one
of the major challenges of distributed systems composed of
potentially millions of battery powered devices (e.g., Internet
of Things), and reducing inter-communication between devices
to an acceptable minimum is always an engineering goal.
Second, although we reported a successful application of the
approach with a simple example, we strongly believe that
its benefits are emphasized when used for testing complex
systems, which is still work in progress as the time of writing
this paper. Last, the proposed approach is based on simulation
and at present cannot be applied for test cases executing on
target. The reason is simple: simulation allows fine-grained
control over the execution, does not require any complex
synchronization mechanism for interleaving, and can exploit
the benefits of the proposed algorithm. The last point is
very important because, without any means of reducing the
number of interleavings, testing every possible combination
is unpractical due to the state-explosion problem. In the end,
in addition to a mechanism for controlling the interleaving,
execution on target would require means to track distributed
communication triggered during testing.

REFERENCES

[1] Gartner Inc., “Gartner says the Internet of Things installed base will
grow to 26 billion units by 2020,” http://www.gartner.com/newsroom/
id/2636073, 2013.

[2] ITU-T, “Specification and Description Language – Overview of SDL-
2010,” International Telecommunication Union – Telecommunication
Standardization Sector, ITU-T Recommendation Z.100, 2011, http://
handle.itu.int/11.1002/1000/11387.

[3] ETSI, “Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language,”
European Telecommunications Standards Institute, ETSI Standard ES
201 873-1, 2014, http://www.ttcn-3.org/index.php/downloads/standards.

[4] SDL-RT Consortium, “Specification and Description Language – Real
Time,” SDL-RT Consortium, SDL-RT Standard V2.3, 2013, http://www.
sdl-rt.org/standard/V2.3/html/index.htm.

[5] A. Hartman, A. Kirshin, and K. Nagin, “A Test Execution Environment
Running Abstract Tests for Distributed Software,” in Proceedings of
Software Engineering and Applications, ser. SEA ’02. Acta Press,
2002.

[6] I. Schieferdecker and T. Vassiliou-Gioles, “Realizing Distributed TTCN-
3 Test Systems with TCI,” in Testing of Communicating Systems, ser.
Lecture Notes in Computer Science, D. Hogrefe and A. Wiles, Eds.
Springer Berlin Heidelberg, 2003, vol. 2644, pp. 95–109.

[7] S. Blom, T. Deiß, N. Ioustinova, A. Kontio, J. van de Pol, A. Rennoch,
and N. Sidorova, “TTCN-3 for Distributed Testing Embedded Software,”
in Perspectives of Systems Informatics, ser. Lecture Notes in Computer
Science, I. Virbitskaite and A. Voronkov, Eds. Springer Berlin
Heidelberg, 2007, vol. 4378, pp. 98–111.

[8] M. Musuvathi and S. Qadeer, “CHESS: Systematic Stress Testing of
Concurrent Software,” in Logic-Based Program Synthesis and Trans-
formation, ser. Lecture Notes in Computer Science, G. Puebla, Ed.
Springer Berlin Heidelberg, 2007, vol. 4407, pp. 15–16.

[9] ——, “Iterative Context Bounding for Systematic Testing of Multi-
threaded Programs,” in Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, J. Ferrante and
K. S. McKinley, Eds. ACM, 2007, pp. 446–455.

[10] M. Brumbulli and J. Fischer, “Simulation Configuration Modeling of
Distributed Communication Systems,” in System Analysis and Modeling:
Theory and Practice, ser. Lecture Notes in Computer Science, Ø. Hau-
gen, R. Reed, and R. Gotzhein, Eds. Springer Berlin Heidelberg, 2013,
vol. 7744, pp. 198–211.

[11] M. Brumbulli, “Model-Driven Development and Simulation of Dis-
tributed Communication Systems,” Ph.D. dissertation, Humboldt Uni-
versität zu Berlin, 2015.

[12] ITU-T, “Testing and Test Control Notation version 3: TTCN-3 core
language,” International Telecommunication Union – Telecommuni-
cation Standardization Sector, ITU-T Recommendation Z.160, 2014,
http://handle.itu.int/11.1002/1000/12346.

[13] OMG, “OMG Unified Modeling Language (OMG UML). Version 2.5,”
Object Management Group, OMG Standard, 2015.

[14] J. Deltour, A. Faivre, E. Gaudin, and A. Lapitre, “Model-Based Testing:
An Approach with SDL/RTDS and DIVERSITY,” in System Analysis
and Modeling: Models and Reusability, ser. Lecture Notes in Computer
Science, D. Amyot, P. Fonseca i Casas, and G. Mussbacher, Eds.
Springer International Publishing, 2014, vol. 8769, pp. 198–206.



Facing ADAS validation complexity with usage oriented testing 

Authors:  Laurent Raffaëlli and Frédérique Vallée, All4tec ; Guy Fayolle, Inria-Armines ; Philippe De 

Souza, ESI ; Xavier Rouah, Intempora ; Matthieu Pfeiffer, Magillem ; Stéphane Géronimi, 

PSA ; Frédéric Pétrot, TIMA ; Samia Ahiad, Valeo 

Keywords: Model-Based-Testing (MBT), Test Optimization, Advanced Driver Assistance Systems 

(ADAS), safety, ISO 26262 

1 Scope 

Validating Advanced Driver Assistance Systems (ADAS) is a strategic issue, since such systems are 

becoming increasingly widespread in the automotive field. ADAS bring extra comfort to drivers, and 

this has become a selling point. But these functions, while useful, must not affect the general safety of 

the vehicle which is the manufacturer’s responsibility.  

A significant number of current ADAS are based on vision systems, and applications such as obstacle 

detection and detection of pedestrians have become essential components of functions such as 

automatic emergency braking. These systems that preserve and protect road users take on even more 

importance with the arrival of the new Euro NCAP protocols. 

Therefore the robustness and reliability of ADAS functions cannot be neglected and car manufacturers 

need to have tools to ensure that the ADAS functions running on their vehicles operate with the utmost 

safety. 

Furthermore, the complexity of these systems in conjunction with the nearly infinite number of 

parameter combinations related to the usage profile of functions based on image sensors push us to 

think about testing optimization methods and tool standards to support the design and validation 

phases of ADAS systems. The resources required for the validation using current methods make them 

actually less and less adapted to new active safety features, which induce very strong dependability 

requirements. 

Today, to test the camera-based ADAS, test vehicles are equipped with these systems and are 

performing long hours of driving that can last for years. These tests are used to validate the use of the 

function and to verify its response to the requirements described in the specifications without 

considering the functional safety standard ISO26262. 

Therefore there is also a need to improve the way of validating the ADAS functions. 

2 The COVADEC project 

The French research & development project COVADEC(*), started in the mid-2013 aims to provide 

methods and techniques for automotive OEMs and suppliers who face these problems.  

(*) COVADEC stands for « Conception et Validation des Systèmes Embarqués d’Aide à la Conduite » 

which means « Design and Validation of ADAS » in French. 

COVADEC main objectives are: 

 Optimize test scenarios and reduce the hundreds of thousands of kilometres of driving 

required for the validation of ADAS functions integrated in vehicles. 

 Optimize time consumption and human effort during the validation phases of ADAS. 

 Meet the needs of ADAS in terms of compliance with standards such as ISO26262 or 

compliance with targets of occurrence of dangerous events. 

 Take into account the dependability requirements upstream of the development of image 

processing algorithms. 

 Standardize methods and tools required for the validation of functional requirements and 

operational safety. 

 Enhance the development of ADAS functions by anticipating and implementing in priority 

critical situations that can default driver assistance systems. 

 Ensure interoperability between test platforms, simulation platforms (PRO-SIVIC) and other 

development platforms (RTMaps, ADTF). 



The ADAS domain is currently not properly covered by the ISO 26262 safety standard requirements, 

so one of the goals of the project is to propose new solutions that can fit into the validation process 

established for any automotive system in order to complement the ISO 26262 gaps on the subject. 

 

COVADEC is decomposed into 5 work packages: 

 WP0: Project Management 

 WP1: Specification of COVADEC requirements 

The main objectives of WP1 are: 

(i) collect and synthesize the needs of stakeholders in the automotive industry in terms of 

certification and validation, especially for driving assistance systems based on the 

perception of the vehicle environment 

(ii) identify common practices of validation management and express the expectations of 

the industry for process improvement 

(iii) specify the architecture of the solutions proposed in response to these expectations 

 WP2: Random test generation : 

WP2 aims at developing a methodology and the associated tools to generate statistical tests 

meeting the requirements of COVADEC project. 

 

 WP3: Validation Platform : 

WP3 will develop and implement software tools for the execution of test cases and the 

generation of test reports as generated by WP2 tools. 

 

 WP4: ADAS Use Cases : 

Two use cases have been chosen in order to demonstrate the validity of COVADEC method 

and platform: 

- A Lane Departure Warning (LDW) function which informs the driver from unwanted lane 

departure. 

- An Automatic Emergency Braking (AEB) function which prevents from front collisions. 

 

 WP5: Process definition and tool valorisation : 

WP5 objectives are to extend the results of the case studies examined in COVADEC to all 

ADAS applications; to make available to the ADAS community the COVADEC results and to 

explain how these results will be reused and valued by COVADEC partners. 
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3 Positioning with regards to the state of the art and to ISO 26262 

The stakes of functional safety, in order to guarantee safety of people and goods, is to evaluate 

intrinsic risks of the system and thus provide solutions to reduce the probability of hazards occurrence. 

The subject has been extensively covered and different standards have emerged including the ISO 

26262 standard in 2011 in the automotive field, standard that can be applied to ADAS programmable 

electronics for automotive systems.  

Regarding ADAS, the main safety risks concern an erroneous analysis of a driving situation, which 

may provide incorrect information to the driver or, even worse, trigger an automatic and inappropriate 

response of the vehicle. For instance, for the Lane Departure functions, if the ADAS is coupled to the 

steering control of the vehicle (Lane Keeping Assist), the system may cause the vehicle to steer 

unwillingly or, in the case of the Automatic Emergency Braking System, brake unwillingly. 

Actually the current version of the norm ISO 26262-2011 explicitly excludes dangers that are inherent 

to the nominal behaviour of systems i.e. when potential hazards are caused by intrinsic limitations of 

sensors performances (because of their probabilistic responses), and are not a result of system 

failures.  

After further analysis, the erroneous decisions taken by the ADAS are considered as nominal 

behaviour of these systems and consequently not covered by this norm. Hence, the most critical cases 

are not Hardware or Software failures, which are already covered by existing norms i.e. ISO 26262, 

but the cases in which the behaviour is diverging from the nominal behaviour. In this case, the 

treatment and analysis chain doesn’t contain any malfunction, but produces an erroneous decision. 

Such a wrongful decision implies two kinds of feared events: 

 the system does not detect a dangerous situation that should have been detected as such. 

 the system detects a dangerous situation when this is not the case in reality 

For Automatic Emergency Braking Function, the first case is less critical in terms of functional safety, 

as the driver may always take the good decision and control the vehicle, while the ADAS does not 

trigger any action. In this case, the quality of service of the function is diminished, but there is no 

additional danger involved by the use of the system. On the other hand, the second case is critical, as 

the ADAS generates wrong information or triggers a wrong action for the vehicle. In this case, using 

the vehicle with the ADAS may be more dangerous than without it. 

In order to carry out the validation of ADAS and their robustness against feared events, different 

methodologies of the state-of-the-art were investigated. Regarding verification and validation 

techniques of critical software, we can consider different approaches: 

 The first approach, based on formal proof, has been proved to be unsuitable in the case of 

very complex systems (explosion of proof algorithms) or the formal expression of which is 

inappropriate (lower layers for example). 

 The second approach based on simulation is limited by the amount of test cases that have to 

be generated in order to cover all possible cases. 

 The third approach consists in testing of the system in real conditions. However, reaching the 

validation objectives in terms of testing (hundreds of millions of kilometres) is tedious or even 

infeasible considering the lifecycles of these systems. Furthermore, the definition and 

realization of test drives campaigns is proving difficult to be representative and 

comprehensive. 

There are currently attempts to resolve these problems, for example by trying to create tool chains 

based on bricks such as Matlab / Simulink and / or Statemate and / or SCADE + DesignVerifier and / 

or Prover and / or MaTeLo and / or Teststand ... But there is today no integrated solution that 

addresses all of the issues raised by COVADEC (i. e. including incorporating a detailed analysis of 

scenarios and detection component). 

The new approaches developed by COVADEC project, will give the opportunities to propose different 

ways to assess ADAS function and to establish safety objectives compatible with camera based 

systems. 



In a previous paper [UCAAT 2014], we focused primarily on the COVADEC tool chain. In this paper, 

the main subject is to describe the process developed in order to create an efficient test database from 

a test model.  

4 Methodology and technological locks 

Today, there is no standard method taking into account the constraints related to the use of ADAS 

based on ADAS sensors such as cameras. 

4.1 Using a statistical approach 

Statistical tests as currently proposed by MaTeLo should be immersed in the ADAS context. They 

must be mixed with the potential of test benches and simulators environment and adapted to the 

analysis of the automotive dependability. 

To carry out the design and validation stages for object detection systems based on cameras, 

numerous driving hours are required to be processed. Some cases that can be defined as critical may 

rarely appear or never appear during this driving campaign. We will use simulation to cover such 

cases. The simulation must produce synthetic image data as close as possible to reality so that the 

evaluated algorithms have a behaviour identical to in similar real driving conditions. 

The statistical approach will also allow to address the sensitivity of the system behaviour in case of 

small changes of the vehicle environment. It has to be underlined, though, that many parameters 

defining the vehicle environment are non-independent. As a direct consequence, the values of various 

parameters that are exploited for the generation of tests on a statistical basis cannot be drawn 

completely independently. For example, the number of other vehicles (traffic density) and driver 

behaviours are not independent of the type of road. If the parameters are not independent, random 

selection may lead to generate situations that do not exist in reality, and also misrepresent the 

likelihood of certain situations. 

The statistical approach to test generation should be supplemented with two difficulties: 

 The first difficulty is a practical one: we must exhaustively know the parameters incompatibility 

matrix. If a driving situation can be characterized by dozens or even hundreds of parameters, 

knowing this matrix is not trivial. 

 The second one is theoretical: the Monte Carlo method assumes that the parameters are 

independent, and the desired probability distribution specifically corresponds to this case. It 

will therefore be necessary to consider how to correct the Monte Carlo method to account for 

the dependence of the parameters before selecting the relevant test cases. 

4.2 Running the test cases in the ad hoc environment 

Once test cases have been identified and generated, it is necessary to be able to run them in an 

automated way to manage a large number of test cases. It is also necessary to reduce the time 

required for their implementation through the use of high-performance parallelized computing. Today 

there are such tools, in particular for the management of test benches, HIL (Hardware In the Loop) 

systems, but no one incorporating the tools dedicated to ADAS architectures. 

 

The challenge is to provide a tool that is both easily accessible in terms of user interface and 

configuration (import test cases, accessibility of execution reports), modular (able to accommodate 

execution targets like RTMaps and Pro-SiVIC but extendable thereafter to other environments, such 

as Simulink) and high performance (execution distributed on multiple machines, no duplication of 

software resources to handle such as sensor data or 3D records that are particularly large). 

4.3 Being able to evaluate the test results with an oracle 

Another issue is to build a usable oracle, automatic and that takes into account the wide variability of 

situations. A secondary challenge is to determine the best location for the implementation of this 

oracle in the I-DEEP platform. 



4.4 Traceability of requirements 

In COVADEC the test methodology targets the verification and validation of the considered ADAS in 

terms of availability, reliability and functional safety. These main requirements are expressed in a 

restricted set of requirements, prescribing the targeted objectives of the system as rates of availability 

over time or reliability on detections. Hence the fulfilment of this kind of requirements can only be 

evaluated by taking into account the integral test campaign and the traceability of these requirements 

to the test sequences has no vocation to be managed in a refined manner. 

On the other hand, some requirements express some behavioural rules of the ADAS when confronted 

to identifiable environment perturbations (e.g. inhibition rules). Then the traceability of this kind of 

requirements to the corresponding test sequences shall be exploited in order to provide additional 

information and coverage metrics for global test campaign analysis. 

5 Test cases automatic generation 

5.1 Problematic 

ADAS validation is a complex issue, particularly for camera based systems, because these functions 

maybe facing a very high number of situations that can be considered as infinite. But some situations 

will have more influence than others on the response of the ADAS function and some will occur more 

frequently. So, although all situations cannot be covered by test, it is possible to reduce the space to 

be tested in an area that can be small enough to make test possible by choosing to test the most 

representative and the most influential situations that an ADAS can encounter. 

Whatever the nature of data used for validation, real or simulated, the Model-Based Testing (MBT) 

approach can be used to automatically build a complete test database which meets these objectives 

of limited size while covering most of the situations that most influence the ADAS function under test.  

5.2 Model Based Testing (MBT) 

The tool used for MBT is MaTeLo (Markov Test Logic). MaTeLo is an MBT tool, which makes it 

possible to build a model of the expected behaviour of the system under test (SUT) and then to 

generate, from this model, a set of test cases suitable for particular needs (for instance, testing only 

the most frequently used functions of the system, or having 100% coverage of system requirements). 

MaTeLo is based on Markov chains. For non-deterministic generation of test cases, MaTeLo uses the 

Monte Carlo methods, associated with generation strategies adapted to user needs. To cope with the 

combinatorial explosion, we couple the graph generated by MaTeLo to an ad hoc random scan Gibbs 

sampler (RSGS), which converges at geometric speed to the target distribution as explained later in 

the paper. Thanks to these test acceleration techniques, MaTeLo also makes it possible to obtain a 

maximal coverage of system validation by using a minimum number of test cases. As a consequence, 

the number of driving kilometres needed to validate an ADAS is reduced. 

5.3 Summary of the test cases generation 

The following figure gives a summary of the test cases generation: 

 



 Further details are given in the following parts. 

5.4 Global strategy 

Test case generation as proposed in the MaTeLo tool faces the question of inherent combinatorial 

explosion. Typically, the problem is to produce samples of large random vectors, the components of 

which are possibly dependent and take a finite number of values with some given probabilities. One 

important constraint is to generate almost all situations in the most economical way. In general this 

task can be considered from two points of view: deterministic (via binary search trees) or stochastic, 

via Markov chain Monte Carlo (MCMC) sampling. In the COVADEC project, we choose the 

probabilistic approach, which will rely on the implementation of a Gibbs sampler, briefly described 

below. 

- In a first step, starting from the simulation graph generated by MaTeLo, the idea is to construct 

a Markov random field (see section 6.4). When the parameters are locally dependent, this can 

be achieved by means of Bayes’ formulas. 

- Then test cases will be obtained by implementing Gibbs samplers. In particular, we shall strive 

to optimize the convergence rate toward equilibrium, since it is known from the theory that the 

speed of convergence is exponentially fast.  

5.5 Gibbs samplers and random fields 

In order to simulate systems with large state-space and given multi-dimensional distributions, such as 

those encountered in statistical physics to study equilibrium properties, powerful methods have been 

proposed as soon as in the 1950’s. In particular, the Metropolis-Hastings’s algorithms [MET], [HAST]. 

In the context of image processing, where digitized images can be viewed as the realization of some 

random field, one must quote the seminal Gibbs sampler work [GEM]. 

5.5.1 Markov Random Fields (MRF) 

For an introduction to the properties of the mathematical objects presented below, the reader is 

referred to e.g. [GRI], [BRE]. 

Let V denote the number of significant parameters in the system. We want to simulate the random 

vector 𝑋 = (𝑋1, 𝑋2 , . . . 𝑋𝑉), where each component Xi takes its values in a finite space 𝛬𝑖, usually called 

the phase space, with |𝛬𝑖| = 𝐶𝑖. Typically 0 < 𝐶𝑖 ≈ 10, and 𝑉 ≈ 102. The variables 𝑋𝑖 are in general 

dependent. Thus a configuration 𝑥 = (𝑥1, 𝑥2 . . . 𝑥𝑉) written with lowercase letters belongs to the space 

𝛬 = ∏𝑖=1
𝑖=𝑉𝛬𝑖.  

Of special interest will be MRF satisfying local interaction properties. This classical notion relies mainly 

on conditional expectation, after having defined a convenient topology on the set of indices 𝑆 =

{1,2, … 𝑉} of the components of 𝑋, which from now on will be rather called the set of sites. Then one 

can define a neighbourhood system on S (i.e. a topology), which is a family 𝐹 = {𝑁𝑠∈𝑆} such that, 

∀𝑠 ∈ 𝑆,  

 𝑠 ∉ 𝑁𝑠  and  𝑡 ∈ 𝑁𝑠 ⇒ 𝑠 ∈ 𝑁𝑡 . 

The subset 𝒩s is the neighbourhood of the site s. In a more general graph framework, 𝑆 is the set of 

vertices and 𝐹 defines the edges: 𝑠 and 𝑡 are linked by an edge if and only if they are neighbours, i.e. 

𝑡 ∈ 𝑁𝑠. 

Definition 1.  The random field 𝑋 is called a Markov random field with respect to the neighbourhood 

system 𝐹 if for all sites 𝑠 ∈ 𝑆 the random variables 𝑋𝑠  and (𝑋𝑖 , 𝑖 ∉ 𝑁𝑠), are independent given the 

(Xi, i ∈ 𝒩s).  

Let 𝜋 (. ) denote the multivariate probability measure of the vector X, so that 𝜋(𝑥) ≝ 𝑃(𝑋 = 𝑥). Then 𝜋 

is a Gibbs distribution relative to the graph {𝑆, 𝐹} if it is of the form 

𝜋(𝑥) =
1

𝑍𝑇

𝑒−
𝑈(𝑥)

𝑇  , 

where 𝑇 > 0 is the temperature, 𝑈(𝑥) is the energy of the configuration 𝑥, which derives from some 

potential, and 𝑍𝑇 is the normalizing constant. Under the so-called positivity condition (Brook’s Lemma, 



which is in particular satisfied when 𝜋(𝑥) > 0, ∀𝑥 ∈ 𝛬), an important theorem due to Hammersley and 

Clifford shows the equivalence between Gibbs distributions and MRF, which in fact are essentially the 

same objects.  

5.5.2 Gibbs samplers (GS) 

Gibbs sampling has numerous applications and became one of the most popular routine amongst 

MCMC simulation methods. It applies to any multivariate distribution of the form   𝜋(𝑥1, 𝑥2 . . . 𝑥𝑉). There 

are two main families of GS: Random scan Gibbs samplers and Periodic Gibbs samplers. 

Random scan Gibbs sampler (RSGS) 

The principle is simple: at each step, one selects at random a site (coordinate) 𝑠 ∈ 𝑆, and then 

compute the new value ys of the corresponding site according to the conditional probability 

𝜋(𝑦𝑠| 𝑥𝑗 𝑗 ≠ 𝑠) = 𝜋(𝑦𝑠| 𝑥𝑗 , 𝑗 ∈ 𝑁𝑠). 

Let 𝛼𝑠 denote the probability of visiting the site s, with 0 < 𝛼𝑠 < 1 and ∑ 𝛼𝑠 = 1𝑉
1 . The algorithm does 

construct a Markov chain {𝑋(𝑡), 𝑡 = 0,1, … }, the evolution of which is as follows. 

(a) Select an initial vector X(0) and a probability vector (𝛼1, 𝛼2, … , 𝛼𝑉). 
(b) On the t-th iteration, 

 Choose an index s with probability 𝛼𝑠; 

 Generate 𝑋𝑠(𝑡) with probability 𝜋(𝑋𝑠 | 𝑋𝑗 (𝑡 − 1), 𝑗 ∈ 𝑁𝑠);   

(c) Repeat step (b) until reaching equilibrium. 

 

It can be shown that the Markov chain 𝑋(𝑡) is reversible, so that its invariant measure is precisely the 

distribution 𝜋 of the vector 𝑋.  

Periodic Gibbs sampler 

Here sites are not chosen at random, but in well-determined order fixed in advance, say (s1, s2, … , sV) 

which is a permutation of (1,2, … , V). The algorithm generates a Markov chain Z(t) as follows. One first 

draws Xs1
 conditoned on the current state of the other sites, then draw Xs2

 in the same way, etc., until 

XsV
.  After this sweep, one says that the Markov chain Z(t) has moved exactly one step and it is not 

difficult to show that π is its invariant measure. 

Speed of convergence 

As a consequence of standard results on Markov chains, the speed of convergence to the equilibrium 

of the Gibbs samplers is geometric. This means that we have (see for example [BRE]) : 

|𝑋(0)ℙ𝑛 − 𝜋| ≤
1

2
|𝑋(0) − 𝜋|𝛿(ℙ)𝑛 , 

where ℙ stands for the stochastic transition matrix of the Markov chain obtained from a Gibbs 

sampler, and 0 ≤ δ(ℙ) ≤ 1  is the Dobrushin’s ergodic coefficient of ℙ, with  

𝛿(ℙ) = 1 − 𝑖𝑛𝑓 𝑖,𝑗∈𝛬  ∑ 𝑝𝑖𝑘

𝑘∈𝛬

∧ 𝑝𝑘𝑗 , 

the 𝑝𝑖𝑘 ‘s being the elements of ℙ.  

Computing satisfactory explicit bounds for 𝛿( ℙ) is a difficult (mostly open) problem, which depends on 

the kind of GS considered. For some global theoretical results in this respect, one can see for instance 

[LIU] and [LEV].  

Indeed, the rate of convergence depends deeply on the structure of the underlying MRF describing the 

system. In the COVADEC project, we shall implement a RSGS. Then, by using the specific properties 

of the graph produced by MaTeLo, we shall analyse the speed of convergence as a function of the 

free probability vector (𝛼1, 𝛼2, … , 𝛼𝑉) introduced above. 



5.6 Parameters of the MaTeLo model 

In order to cover up all the situations that the ADAS systems may face, it is necessary to provide a 

model of the environment and driving context. The objective is to provide a meta-model of the test 

sequences, taking into account influential parameters that express the variability of situations the 

system may encounter. The construction of such a model involves taking into account parameters of 

heterogeneous nature, with very diverse impacts on the scene as perceived by the system. 

This model must gather information about the environment in which evolves the ADAS (landscape, 

road type, curvature, infrastructure, etc.), driving situations (behaviour of the equipped vehicle and 

surrounding vehicles), weather conditions (sun, rain, fog, etc.) and known troublemakers. 

The modelling of the environment needs to be as comprehensive as possible. Indeed, the model is 

supposed to represent any circumstances that the vehicle may encounter. Therefore, if an actually 

influencing parameter is forgotten, it will not be considered when creating test cases and thus the 

simulator may possibly never generate the situation corresponding to disturbing values for this 

parameter. However, these situations are potentially present in the actual video databases, even if the 

influential parameter in question is not explained. 

We have defined several categories of influential parameters, shown below. These categories include 

parameters according to their nature and permit any transposition to another function. 

5.6.1 Weather conditions 

Weather conditions have an impact on how the ADAS will perceive a scene. This includes not only the 

weather as such, but also disturbances induced by these conditions as well as the lighting conditions 

of the scene. 

5.6.2 Structure of the road and of the environment 

This category includes the intrinsic characteristics of the road, that is to say the parameters to 

accurately describe its structure (curvature, topology, number of lanes, etc.), as well as its appearance 

and overall look (surface, marking, etc.). 

5.6.3 Behaviour of the equipped vehicle 

This category is used to express the behaviour of the equipped vehicle in a test sequence, both in 

terms of speed or trajectory rate of change. In addition, this category includes the actions of the driver 

that may impact the function without implying a change in the trajectory or speed (e.g. wiper 

operation). 

5.6.4 Behaviour of surrounding vehicles 

The presence of other vehicles can influence the perception of the scene by the ADAS either as a 

target vehicle or as a barrier masking what the ADAS should detect. The behaviour of other vehicles is 

described by a set of parameters identical to those defined for the behaviour of the equipped vehicle 

for which we have added parameters relating to their positioning in the scene as well as changes of 

trajectories they can make. 

5.6.5 Pedestrians 

This category of parameters can express how pedestrians will evolve in the scene (number, trajectory, 

crossing the road, etc.). 

5.6.6 Obstacles and disturbances 

This category includes all the obstacles and other disturbances known to have an impact on how the 

ADAS will perceive a driving situation. We grouped the barriers in several sub-categories, namely: 

- Fixed Targets set on the way: this includes work pads, a stationary vehicle, a lost loading or 

any other object that may be on the way. 

- Barriers at the trajectory limit: this includes road signs, guard rails, or a stationary vehicle. 

- Pedestrians in particular situations 



5.6.7 Equivalence classes 

The range of possible values for each parameter is divided into several equivalence classes, for two 

main reasons: 

- To select sets of values having a real impact on the ADAS function. This corresponds to the 

notion of "range", all situations are assumed equal within the range (e.g. 130 km / h and 131 

km / h are considered equivalent in terms of ADAS, but 20 km / h belongs to a different 

equivalence class). 

- To manage the dependencies between parameters. Indeed, some values of an influential 

parameter X may not be possible or have a different probability if the parameter has a value Y 

(Y of X correlation - examples: "night" and "sunny" are incompatible; "speed> 130 km / h" and 

"urban environment" is an unlikely event). 

When building test campaigns, that is to say, sets of test cases which will be run for the ADAS 

function, if one test case has all its values in exactly the same equivalence classes another test case, 

it will be considered duplicate and eliminated from the campaign. 

5.7 Structure of the MaTeLo model 

The structure of the MaTeLo model to generate test cases is based on the influential parameters. In 

particular, the dependence between parameters is modelled as a series of dependent transitions in 

the MaTeLo model. 

Indeed, if the parameters were independent of each other, the most natural way to build a MaTeLo 

model would be to create a single chain as follows: 

 

This model in the case of dependent parameters is no longer acceptable, since such model generates 

test cases that cannot occur in reality, distorting the representativeness of generated test campaigns.  

The following graph is the graph of all possible cases of the above MaTeLo model. Let suppose that 

the case identified by red rectangles are impossible cases. 

 

 

It is therefore proposed to build the MaTeLo chains as illustrated by the following example: 



 

The modelled dependencies can be seen in two ways: 

- Either in terms of reachable equivalence classes, 

- Or in terms of probability of choosing an equivalence class knowing the equivalence class 

chosen for the previous parameter. 

A MaTeLo model is a directed graph, so there is a notion of order to draw parameters. As a result, the 

dependence between parameters constrains how to build the model, including the order in which they 

appear. 

When the level of dependencies between parameters is low (interdependencies for up to three 

parameters), the MaTeLo models can be simplified by creating macro-parameters, which can 

transform a chain of dependencies in independent chains. For instance, the moment of the day (day or 

night) is linked to the apparent brightness of the scene, since the brightness is darker during the night 

than during the day. But we could consider only the brightness, which become a macro-parameter, 

with a bigger range of value than considering separately either the brightness of the day or the 

brightness of the night. To do this, it is necessary to calculate the probabilities of the corresponding 

transitions, which can be obtained from the conditional probabilities that were on the initial model. 

Studies in the project have shown that the conditional probabilities linking the dependent parameters 

can be calculated from a MaTeLo model according to a simple algorithm, using Bayes formulas. 

In conclusion it can be said that solutions already obtained in the project will meet satisfactory 

(although partially for now) to the problem of parameters dependency. 

5.8 Parameters interpretation by the simulator 

Influential parameters do not necessarily have direct translation in the simulator. A collaboration 

between ALL4TEC and ESI is therefore necessary to ensure that the parameters provided by MaTeLo 

can be properly applied in the simulator. They can be expressed in different ways in the simulator: 

 thanks to existing simulation components (object models), 

 through static resources called by these components (files), 

 via the configuration of these components (script commands). 

For performance practical aspects (related to loading times and simple definition of scenarios in the 

simulator), it is preferable to minimize the number of components creations and resource loads. 

Therefore, it is possible to create some components masking components creation or resource 

loading, and giving a more direct correspondence between influential parameters and script 

commands sufficient to describe them. The disadvantage of this approach is the need for creating a 

numerous components very specific to some subsets of scenarios. 

6 Using both simulation and real data 

The innovation is to manage data collection, using a statistical model based on MaTeLo tool. Instead 

of driving millions of kilometres aiming to encounter all function life situations, we are exploring within 

this project, the solution of reducing the number of kilometres by targeting the most influent conditions 

on the system.  



A first work will be to collect sufficient real data to validate in depth the two COVADEC ADAS 

functions. However, in the case of some validation tests generated by MaTeLo, it is possible that the 

database does not cover these tests (taking into account all the various parameters / variables for this 

test / difficulty to test dangerous situations in real). A simulation tool must come to fill this gap in the 

database by synthesizing realistic sensor data for these test cases. Ideally it would be desirable that 

the simulation platform generates scenes, scenarios and sensor data just from the definition of the 

tests. In practice, certain steps must be performed in a preliminary phase before the execution of tests, 

in particular respective to the environment. The optimization of this process and the opportunities of 

generation for these items when running tests were examined in the project. 

7 Testing tool chain for simulation 

Once the test cases have been defined, it is necessary to inject them in a testing tool chain in order to 

execute them on the ADAS under validation. This tool chain is composed of: 

 A simulator of scenarios, environments and video camera sequences (Pro-SiVIC – ESI) 

 High performance ADAS data recorders (Intempora dataloggers) 

 A ground-truth extraction tool for recorded data (IBEO Evaluation Suite) (VALEO) 

 A framework for virtual-time or real-time execution of ADAS algorithms (RT-MAPS – 

Intempora) 

 An ADAS hardware architecture simulator (Rabbits – TIMA) 

 A test execution automation server (I-DEEP – Intempora) 

Pro-SiVIC is a simulation software environment specialized in the advanced rendering of ADAS 

sensors (cameras, lidars, radars, GPS, communication systems…). It offers complex sensor models 

as well as environments taking into account numerous physical and electronic characteristics (for a 

camera for instance, the point is to model distortion, noise, atmospheric and climatic conditions, 

lighting conditions…). The key aspect for the validation process is the ability to control the 

characteristics of the environmental conditions. Pro-SiVIC also allows to integrate vehicle dynamic 

models, to setup complex driving situations in complete environments, objects animation (such as 

pedestrians for example). Pro-SiVIC can operate in real time or virtual time which allows addressing 

tests and validation use cases of ADAS functions with or without human or ECU in the loop. 

RTMaps is a modular (component-based) software framework for rapid development and optimized 

execution of real-time applications having to manage, process and fuse numerous high-bandwidth, 

asynchronous and heterogeneous, 

sensors data streams such as cameras, 

lidars, radars, CAN bus, GPS, IMUs, 

V2V and V2I communications, etc.). 

RTMaps also offers data recording of 

any kind of ADAS sensors, then 

synchronized playback, in real-time or 

virtual time, in order to allow offline 

developments for perception, data 

fusion, communications, decision making 

and command-control (developments, 

tests, validation and benchmarking). 

RTMaps can also be connected to 

simulation and/or command control tools 

such as Pro-SIVIC. 

I-DEEP is a test execution automation server dedicated to validation of perception and decision 

making function for ADAS, particularly functions based on vision. 

 I-DEEP can store recorded sensors datasets 

and their associated ground-truth datasets 

and/or simulation scenarios resources, it can 

as well host image processing / signal 

processing / data fusion algorithms to be tested 

(as integrated into RTMaps plugins), and then 



allows to define and execute automatically the numerous test cases on cluster of calculators. 

 I-DEEP also offers a dual approach for validation of ADAS functions making use of simulation 

on the one hand and real datasets playback on the other hand. These two approaches are 

very complementary, simulation offering a comprehensive control of the scenario and its 

environmental conditions as well as the capability to test dangerous situations, whereas taking 

advantage of real data playback capabilities allow extension of the tests under maximum 

realism conditions. 

Rabbits is a fast hardware/software simulator capable of co-simulating multiprocessor systems on 

chip. It leverages on QEMU for processor modelling, and SystemC TLM for hardware IPs modelling. 

Rabbits supports many parameters, such as variable number of processors, memory size, cache 

availability, cache size, support of specific instructions, e.g. SIMD or floating point, etc. It also provides 

hardware IPs, such as memories, interrupt controller, uart, frame buffer, etc. Even though being fairly 

abstract, the simulation technology allows to get timing evaluation of the hardware/software system, 

though high level instruction execution time, instruction and data cache models, and interconnect 

models.  In this project, Rabbits is used as a simulator of the ADAS hardware architecture with the aim 

of doing design space exploration of both the hardware platform and the software implementation. We 

did two parallel implementations of a line departure warning algorithm in C. The first one uses coarse 

grain (i.e. thread level) parallelism, and is executed on platforms that embed from 1 to 8 Cortex A9, 

leading to a factor of acceleration of 3 on the 8 core platform as compared to the unicore platform. The 

second implementation uses the SIMD extensions of the NEON coprocessor to express instruction 

level parallelism. Thanks to its capability of performing highly parallel instructions, we gained a factor 

of two on the already accelerated coarse grain implementation. Rabbits has been inserted in the 

whole design flow as an RTMaps component when targeting the validation of an optimized 

implementation. RTMaps pre-processes the images generated by Pro-SiVIC and sends them, though 

an I-DEEP interface, to Rabbits. Rabbits is concurrently running the cross-compiled LDW software that 

reads the images through a fake camera device hooked on the I-DEEP interface, performs the 

computations on them, and reports to RTMaps, through a fake serial interface also hooked on an I-

DEEP interface, the status of the car on the road. RTMaps then feeds the rest of the processing chain 

with this information so that the appropriate decision can be taken by the system. 

8 Expected benefits and major results 

We expect benefits at many levels: 

- Enhance the global knowledge of ISO 26262 applicability to design and validation of ADAS 

sensors, and shed light on its limitations, in order to propose solutions. 

- Reduce the number of kilometres for validation of ADAS, by using a statistical model and by 

optimizing test plans using ‘equivalence classes’ principle. 

- Build an ADAS validation platform (model in the Loop and software in the loop) combining real 

and simulation environment data. 

At this stage of the project, the methodology has been entirely developed and tested on small samples 

of the problematic. Further developments currently in progress concern improvement of the simulator 

Pro-SIVIC (in order to manage a wide range of elements in the videos), of the test automation server I-

DEEP (in order to use the real data from driving campaigns for tests) and the implementation of Gibbs 

samplers algorithms in the test case generator (MaTeLo). 

Currently, a first series of tests has demonstrated a reduction in the required testing effort (considering 

the safety goals) by almost 90%, compared with the other available validation methods. This effort 

reduction target should be confirmed during the full-scale validation of the two ADAS functions 

expected to start from February 2016. 
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Abstract. Some recent incidents and analyses have indicated that possibly the vulnerability of IT systems in
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1 Introduction

Recently, reports on IT security incidents related to railways have increased as well as public awareness. For
example, it was reported that on December 1, 2011, “hackers, possibly from abroad, executed an attack on a
Northwest rail company's computers that disrupted railway signals for two days” [1]. Although the details of the
attack and also its consequences remain unclear, this episode clearly shows the threats to which railways are
exposed when they rely on modern commercial-off-the-shelf (COTS) communication and computing technolo-
gy. However, in most cases, the attacks are denial-of-service attacks leading to service interruptions, but so far
not to safety-critical incidents. Many other attacks that have been reported or have been claimed to be possible,
could fortunately be shown to be unfounded or were oriented towards public relation, e. g. a hack of Nurem-
berg’s automated metro was performed on an unprotected self-made system [2]. However, in 2014, the German
Federal Agency for IT Security (BSI) reported the first successful attack on critical industrial infrastructure. As a
consequence a blast furnace was damaged and had to be shut down [3].

What distinguishes railway systems from many critical infrastructures is their inherent distributed and net-
worked nature with tens of thousands of track-kilometers for major operators, or even more. Thus, it is not eco-
nomical to completely protect against physical access to this infrastructure and, as a consequence, railways are
very vulnerable to physical denial-of-service attacks leading to service interruptions.

Another distinguishing feature of railways from other systems is the long lifetime of their systems and com-
ponents.  Current  contracts  usually  demand support  for  at  least  25  years  and history  has  shown that  many sys-
tems, e.g. mechanical or relay interlockings, last much longer. IT security analyses have to take into account
such long lifespans. Some of the technical problems are not railway-specific, but are shared by a few other sec-
tors such as Air Traffic Management.

Publications and presentations related to IT security in the railway domain are increasing. Some are particu-
larly targeted at the use of public networks such as Ethernet or GSM for railway purposes, while others directly
pose the question “Could rail signals be hacked to cause crashes?”[4]. While in railway automation harmonized
functional safety standards were elaborated more than a decade ago, up to now no harmonized international IT
security requirements for railway automation exist.

This paper starts with a discussion of the normative background and then discusses the similarities and dis-
similarities of IT security and functional safety, in particular from the point of view of their integrity measure
Security Level (SL) and Safety Integrity Level (SIL), respectively. In particular the requirements for SL and SIL
are compared, e. g. which SL can be covered by SIL.

2 Normative background

In railway automation, an established standard for safety-related communication, EN 50159 [5] exists. The first
version of the standard was elaborated in 2001. It has proven quite successful and is also used in other applica-
tion areas, e.g. industrial automation. This standard defines threats and countermeasures to ensure safe commu-
nication in railway systems. The methods described in the standard are partially able to also protect railway sys-
tem from intentional attacks, but not completely. Until now, additional organizational and technical measures
have been implemented in railway systems, such as separated networks, etc., to achieve a sufficient level of pro-
tection.



The functional safety aspects of electronic hardware are covered by EN 50129 [6]. However, IT security is-
sues are taken into account by EN 50129 only as far as they affect safety issues, but, for example, denial-of-
service attacks often do not fall into this category. Questions such as intrusion protection are only covered by a
single requirement. However, EN 50129 provides a structure for a safety case which explicitly includes a subsec-
tion on protection against unauthorized access (both physical and informational), so it is already a “security-
informed safety case”. Other security objectives could also be described in that structure.

On the other hand, industrial standards on information security exist. ISO/IEC 15408 [7] provides evaluation
criteria for IT security, the so-called Common Criteria. This standard is solely centered on information systems
and has, of course, no direct relation to safety systems. IEC 62443 [8], also known as ISA 99, is a set of 12 stan-
dards currently elaborated by the Industrial Automation and Control System Security Committee of the Interna-
tional Society for Automation (ISA). This standard is not railway-specific and focuses on industrial control sys-
tems. It is dedicated to different hierarchical levels, starting from concepts and going down to components of
control systems.

How can the gap between information security standards for general systems and railways be bridged? The
bridge is provided by the European Commission Regulation on Common Safety Methods No. 402/2013 [9]. This
Commission Regulation mentions three different methods to demonstrate that a railway system is sufficiently
safe:

a) by following existing rules and standards (application of codes of practice),
b) by similarity analysis, i.e. showing that the given (railway) system is equivalent to an existing and

used one,
c) by explicit risk analysis, where risk is assessed explicitly and shown to be acceptable.

We assume that, from the process point of view, IT security can be treated just like functional safety, meaning
that threats would be treated as particular hazards. Using the approach specified under a) IT security standards
may be used in railway systems, but a particular tailoring would have to be performed due to different safety
requirements and application conditions. With this approach, a code of practice that is approved in other areas of
technology and provides a sufficient level of IT security can be adapted to railways. This ensures a sufficient
level of safety.

However, application of the general standards requires tailoring them to the specific needs of a railway sys-
tem. This is necessary to cover the specific threats associated with railway systems and possible accidents and to
take into account specific other risk-reducing measures already present in railway systems, such as the use of
specifically trained personnel.

As a basis of our work, the IEC 62443 [8] has been selected, as this standard series seemed to provide the best
fit. With this approach, a normative base has been developed by the German standardization committee DKE
[10], based on IEC 62443 tailored for railways, considering railway-specific threats and scenarios and yielding a
set of IT security requirements. Assessment and certification of such a system can be carried out by independent
expert organizations. Safety approval in Germany could then be achieved via the governmental organizations
Federal German Railways Office (Eisenbahn-Bundesamt, EBA) for railway aspects and Federal German Office
for Security in Information Technology (Bundesamt für Sicherheit in der Informationstechnik, BSI) for IT secu-
rity aspects.

3 Basic concepts of IEC 62443

A total of 12 standards or technical specifications is planned in the IEC 62443 series of standards that cover the
topic of IT security for automation and control systems for industrial installations entirely and independently.
This series of standards adds the topic of IT security to IEC 61508 which is the generic safety standard for pro-
grammable control systems. Up to now, though, IEC 61508 and IEC 62443 have only been loosely linked.

IEC 62443 addresses four different aspects or levels of IT security:
– general aspects such as concepts, terminology and metrics: IEC 62443-1-x
– IT security management: IEC 62443-2-x
– system level: IEC 62443-3-x
– component level: IEC 62443-4-x
Today, however, the parts of IEC 62443 are still at different draft stages. Only a small number of parts such as

IEC 62443-3-3 have already been issued as an International Standard (IS) or a Technical Specification (TS). Due
to the novelty of the IEC 62443 series in this section, the essential concepts of IEC 62443 will be explained
briefly so as to improve understanding of the adaptation and embedding of IT security in compliance with IEC
62443 into EN 50129.



3.1 IT security management

An IT security management system (ISMS) shall be established for operation of the system. The aim of an ISMS
is to continuously control, monitor, maintain and, wherever necessary, improve IT security. In the case of the
ISMS, IEC 62443 is based on the general stipulations of the ISO/IEC 17799 and ISO/IEC 27000 series. It details
these general standards by adding specific aspects for safety-related control systems. If an ISMS is already estab-
lished, it may remain in use. However, the essential principles of the ISMS according to IEC 62443 should be
introduced or integrated. In the event of integration into an existing ISMS, the special technical aspects of a
safety-related railway system shall be observed. Due to the specific framework, unreflected adoption of the
stipulations from IT security does not make sense and in most cases can only be implemented with difficulty.
The DKE standard [10] offers a comparison of IT security elements from common standards, and is intended to
assist integration.

One key task of ISMS is risk management. This includes the consideration of all functional components of the
system together with those that are specific to IT security.

3.2 System definition

The system and its architecture are divided into zones and conduits. The same IT security requirements apply
within each zone. Every object, e.g. hardware, software or operator (e.g. administrator) shall be assigned to pre-
cisely one zone and all connections of a zone shall be identified. A zone can be defined both logically and physi-
cally. This approach matches the previous approach for railway signalling systems very well, as has been used as
the basis in numerous applications [11]. Figure 1 shows a simple application of the concept, the connection of
two safety zones by a virtual private network (VPN) connection as the conduit.

The conduit would consist of the gateways at its borders and the connection in between whatever the actual
network would look like. Strictly speaking management would itself be a zone with conduits connecting it with
the gateways.

This example may serve as a blueprint for the connection of zones with similar IT security requirements. If
zones with different IT security requirements shall be connected, different types of conduits, e. g. one-way con-
nections or filters have to be applied.

Zone A Zone B

RST application RST applicationConduit

Network

User

Management

Gateway Gateway

Figure 1: Zone and conduit architecture example

3.3 IT security requirements

In IEC 62443, the IT security requirements are grouped into 7 fundamental requirements:

1. identification and authentication control (IAC)
2. use control (UC)
3. system integrity (SI)
4. data confidentiality (DC)
5. restricted data flow (RDF)
6. timely response to events (TRE)
7. resource availability (RA)



Normally, only the issues of integrity, availability and data confidentiality are considered in IT security. How-
ever, the fundamental requirements IAC, UC, SI and TRE can be mapped to integrity, RA to availability and DC
and RDF to confidentiality. Instead of defining a seven level Evaluation Assurance Level (EAL) as in the Com-
mon  Criteria,  which  is  to  be  applied  with  regard  to  the  IT  security  requirements,  a  four  stage  IT  security  re-
quirement level is defined. A possible explanation might be that also most safety standards define four levels.
But it would lead to quite demanding and sometimes unnecessary requirements if the level would be the same
for each of the foundational requirements. For example confidentiality often plays a minor role for safety sys-
tems and encryption of all data might lead to complications in testing or maintenance of safety systems. So dif-
ferent levels may be assigned for each of the seven foundational requirements. The SL values for all seven basic
areas are then combined in a vector, called the SL vector. Note that this leads theoretically to 16384 possible
different SL.

The SL are defined generically in relation to the attacker type against whom they are to offer protection:

SL 1  Protection against casual or coincidental violation
SL 2  Protection against intentional violation using simple means with few resources, generic skills and a

low degree of motivation
SL 3  Protection against intentional violation using sophisticated means with moderate resources, IACS-

specific skills and a moderate degree of motivation
SL 4  Protection against intentional violation using sophisticated means with extended resources, IACS-

specific skills and a high degree of motivation

Sometimes a SL 0 (No protection) is also defined, but as we argue below, at least for safety-related systems
this is not an option and so we do not discuss SL 0 further in this paper.

For one zone, for example, (4, 2, 3, 1, 2, 3, 2) could be defined as an SL vector. Once its vector is defined,
IEC 62443-3-3 calls for a complete catalogue of standardised IT security requirements for the object under con-
sideration, e.g. for a zone.

It is necessary to take into account the fact that IEC 62443 defines different types of SL vectors:

• The target SL (SL-T) is the SL vector that results as a requirement from the IT security risk analy-
sis.

• Achieved SL (SL-A) is the SL vector which is actually achieved in the implementation when all the
framework conditions in the specific system are taken into account.

• SL capability (SL-C) is the SL vector that the components or the system can reach if configured or
integrated correctly, independent of the framework conditions in the specific system.

4 Relationship of SL and SIL

First, we should recall that, like IEC 61508, EN 50129 defines only four different Safety Integrity Levels (SIL).
A SIL “indicates the required degree of confidence that a system will meet its specified safety functions with
respect to systematic failures”[6]. Other target measures are defined with regard to random failures, but for IT
security we are only concerned with systematic failure [12].

A first look at EN 50129 reveals that safety systems also have to deal with human errors and foreseeable mis-
use, which corresponds well to SL 1. For this reason SL 0 is not acceptable for safety-related systems. So we can
conclude that for any safety system, even if IT security threats can be effectively ruled out, the basic IT security
requirements SL 1=(1,1,1,1,1,1,1) should be fulfilled. So it is an interesting exercise to discuss the SL 1 require-
ments and evaluate whether these are normally fulfilled by safety systems developed according to EN 50129.

In a first step we take a more general look at the Foundational Requirements (FR). Due to functional safety
criteria, not all requirement groups of IEC 62443 in applications for railway signalling systems have the same
significance. Only the following requirement groups have direct relevance in the sense of functional safety:

1 unauthorised physical or logical access (IAC)
2 unauthorised use (UC)
3 manipulation of the system (SI)
6 response to events that is not timely (TRE)

For example, safety-related applications generally do not impose any requirements on the confidentiality of
operational data. Therefore, apart from exceptions such as key management, further requirements for confidenti-
ality can be discarded.



So in order to come up with a manageable number of SL vectors, we may as a first simplification and short
hand notation set SL 1 as the default for all FR that are not directly safety-related. And we might work under the
assumption that in a first approach all other FR may have the same importance. This would lead to four generic
SL profiles: (1,1,1,1,1,1,1), (2,2,2,1,1,2,1), (3,3,3,1,1,3,1) and (4,4,4,1,1,4,1). It is admitted that additional SL
profiles are necessary for particular zones or conduits. For example a zone containing a key management centre
will deserve more demanding confidentiality requirements leading to another profile. But the idea would be to be
able to cope with 5 to 10 profiles instead of 16384 possible combinations.

In a next step, we have discussed all 43 requirements from IEC 62443-3-3 in detail in order to find out, which
are covered by EN 50129. According to the analysis in the annex many IT security requirements for SL1 are
already adequately covered by railway safety standards or are not relevant to safety. These results are summa-
rised in Table 1. They no longer need to be verified in each individual case for railway signalling applications.

Reference Title Assessment

SR 1.6
Management of wireless access
processes

This requirement is not relevant for SL1.

SR 1.13
Access through untrustworthy
networks

This requirement is not relevant for SL1.

SR 2.2
Use control in the case of radio
connections

This requirement is not relevant for SL1.

SR 3.1
Communication integrity This requirement is fulfilled by application of EN 50159.

SR 3.3
Verification of IT security func-
tionality

This requirement is fulfilled by application of EN 50128.

SR 3.4
Software and information integ-
rity

This requirement is fulfilled by application of EN 50128.

SR 3.5
Input validation This requirement is fulfilled by application of EN 50129 and EN 50128.

SR 3.6
Deterministic output This requirement is fulfilled by application of EN 50129 and EN 50128.

SR 4.1
Confidentiality of information This requirement is not relevant for railway applications with SL1.

SR 4.3
Use encryption This requirement is not relevant for railway applications with SL1.

SR 5.1
Network segmentation This requirement is fulfilled by application of EN 50159.

SR 5.2
Protection of the zone boundary This requirement is not relevant for SL1.

SR 5.3
Restriction of general commu-
nication between persons

Generally, voice communication is not part of the safety system. However, this
requirement shall be exported to the operator.

SR 7.1
Protection against DoS attacks This requirement is normally not contained in safety standards because it cannot

be fulfilled by safety-related systems alone. The rule shall be exported to the
operator.

SR 7.2
Resource management This requirement is normally not contained in safety standards because it cannot

be fulfilled by safety-related systems alone. The rule shall be exported to the
operator.

SR 7.3
Backups of the automation sys-
tem

This requirement is normally not contained in safety standards because it cannot
be fulfilled by safety-related systems alone. The rule shall be exported.

SR 7.4
Restart and recovery of the
automation system

This requirement is fulfilled by application of EN 50129.

SR 7.5
Emergency power supply This requirement is normally not contained in safety standards because it cannot

be fulfilled by safety-related systems alone. The rule shall be exported to the
operator.

SR 7.6
Network and security settings This requirement is fulfilled by application of EN 50128 and EN 50129.

Table 1 – IT security requirements that are already covered or are irrelevant

This means that for new safety-related systems it would be an advantage to implement all SL1 requirements
from IEC 62443 (independent from the SIL) as most of them are already covered by safety standards (and some
might not be relevant).  In this case also an additional IT security certification for SL1 might be avoided as the
requirements could adequately be included in the safety certification.

However a more detailed analysis (see the appendix) shows that starting with SL2 requirements there is no
similar relationship with SIL anymore. The reason is that by definition the higher SL levels deal with intentional
attacks which have only partially be covered by safety standards such as EN 50159 for communication. So also
simple rules like “If you have a SIL x safety system then you must require at least SL x” cannot be justified as
the allocation of SL depends also on the overall security architecture, e. g. physical protection, and not on the
technical solution alone.



5 Summary

This paper has discussed the relation between SL from IEC 62443 and SIL from EN 50129 for safety systems.
The major new results are:

• SL and SIL are completely different concepts, e. g. SL is a seven dimensional vector in contrast to
the scalar SIL

• There is no simple relationship between SL and SIL
• SL 0 for safety-related systems is not acceptable. For safety systems, it is recommended to always

take the requirements of SL 1 into account
• A preliminary proposal for SL profiles has been made in order to master the complexity of potential-

ly 16384 SL vectors

Table 1 gives a summary of which requirements for SL 1 are already covered or not relevant from a safety per-
spective. The annex gives a more detailed discussion including a comparison with SL2 requirements.

The results should also hold for other related safety standards such as IEC 61508 as they build upon similar
general principles, however the details would have to be checked and might differ.
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7 Appendix: Relationship between SL 1 and Functional Safety

This annex reports in detail the result of a comparison between the SL 1 requirements (Security Requirements
(SR) in compliance with IEC 62443-3-3 and those of EN 50129, EN 50128 and EN 50159. As SL 1 is only in-
tended to offer protection against unintentional or random attacks, it may be presumed that safety-related sys-
tems that have to offer protection against foreseeable misuse and operating errors already fulfil a large propor-
tion of the requirements. For example, EN 50129 also already protects against random errors and unintentional
disruptions, similar to EN 50159 for Category 1 and Category 2 against corresponding transmission errors. Fur-
ther measures are only necessary where unauthorised access cannot be ruled out (Category 3).

At the same time, the difference between SL 1 and SL 2 should be pointed out. Additional requirements that
are added for SL2 are printed in italics.

This comparison does not mean that all requirements for SL 1 are already covered in EN 50129. At least the
requirements that are normally not fulfilled by safety systems should be adopted as requirements in future. Table
1 gives a list of the requirements which are either covered by the safety standards or are not relevant from a
safety point of view.



Ref. Title Requirement for SL 1 Fulfilment by safety standards
SR 1.1 Identification

and authenti-
cation of per-
sons

The automation system must have the ability to identify and authenti-
cate all human users (persons). The automation system with its corre-
sponding capabilities must assert the identification and authentication
at all interfaces of persons who want to achieve access to the automa-
tion system, that would allow them to separate obligations and restric-
tive assignment of authorisations, in accordance with the applicable IT
security guidelines and processes.
RE1 The automation system must have the ability to uniquely identify
and authenticate all human users.

This is required by EN 50129 B.4.6. This
standard in particular requires that protec-
tive  measures  have  to  be  taken  with  re-
gard to
– oversights by authorised personnel, and
– intentional changes by unauthorised
personnel.
NB The requirements need not necessar-
ily be technically implemented, but can
also be fulfilled by corresponding organ-
isational measures.

SR 1.2 Identification
and authenti-
cation of soft-
ware proc-
esses and
devices

The automation system must have the ability to identify and authenti-
cate all software processes and devices and function units. The auto-
mation system with its corresponding capabilities must assert the
identification and authentication at all interfaces of software proc-
esses and devices that want to achieve access to the automation sys-
tem, that would allow them to restrictively assign authorisations, in
accordance with the applicable IT security guidelines and processes.

Generally, access protection is understood
in a wide sense in EN 50129, just like in
EN 50159.

SR 1.3 User account
management

The automation system must have the ability to manage and adminis-
ter all user accounts of authorised users, which includes opening new
accounts and activating, modifying, blocking and deleting accounts.

This is not required explicitly, but is an
implicit conclusion from EN 50129 B.4.6.

SR 1.4 Identifier
management

The automation system must have the ability to manage identifiers and
IDs of different kinds and conditions according to users, groups, roles
or different interface types of the automation system.

This is not required explicitly, but is an
implicit conclusion from EN 50129 B.4.6.

SR 1.5 Authenticator
management

The automation system must possess the following capabilities and
must implement them:
a) initialising the authenticator's content, i.e. the means of confirming
a user's identity;
b) changing all default authenticators after installation of the automa-
tion system; c) changing or renewing all authenticators; and
d) protecting all authenticators from an unauthorised disclosure and
modification during storage or transmission.

This is not required explicitly, but is an
implicit conclusion from EN 50129 B.4.6.

SR 1.6 Management
of wireless
access proc-
esses

The automation system must have the ability to identify and authenti-
cate all users communicating by wireless means (persons, software
processes and devices).
RE 1 The automation system must have the ability to uniquely identify
and authenticate all users communicating by wireless means (persons,
software processes and devices).

For SL1, this requirement is contrary to
EN 50159 B.1.
A radio transmission system would gen-
erally be assigned to Category 3 and
would need cryptographic protection, i.e.
more than SL1. Therefore, this require-
ment is not relevant for SL1.

SR 1.7 Security of
authentication
by passwords

Automation systems that use passwords for authentication must have
the ability to enable configuration of password security by means of
password length (with a given minimum length) and diversity of char-
acters.

This is not required explicitly, but is an
implicit conclusion from EN 50129 B.4.6.

SR1.8 PKI certifi-
cates

If a public key infrastructure (PKI) is used, the automation system
must have the ability to operate such a public key infrastructure in
accordance with common conventions or it must be able to obtain
public key certificates from an existing public key infrastructure.

Covered in EN 50159 for Category 3 if
asymmetrical methods are used.

SR 1.9 Security of
asymmetrical
crypto systems

In automation systems that use asymmetrical crypto systems (public
key crypto systems) for authentication, the automation system must
have the following capabilities:
a) The ability to validate certificates by checking the validity of a
given certificate's signature
b) The ability to validate certificates by building up a certification
path to a recognised certification agency (CA) or, in the case of a self-
signed certificate, by issuing mutual confirmations to all hosts that
communicate with the key holder for whom the certificate was issued
c) Checking certificates to determine whether they are on a certificate
blacklist (or a revocation list)
d) Bringing about secure storage and monitoring of the associated
private key by the user (person, software process or device)
e) The ability to map the authenticated identity to a user (person, soft-
ware process or device)

Addresses in EN 50159 for Category 3 if
asymmetrical methods are used, but not in
relation to all details.

SR
1.10

Feedback
from the au-
thenticator

The automation system must have the ability to suppress (blacken)
feedback messages generated by the authenticator during the authenti-
cation process.

This is not explicitly required, but is easy
to realise.



SR
1.11

Failed login
attempts

The automation system must have the ability to assert a limit to the
number of failed successive login attempts (person, software process
or device) within a configurable time. The automation system must
have the ability to block physical or logical access for a specified time
or it must allow an administrator to lift this block again after this time
had been exceeded.
For system accounts on whose behalf critical services or servers are
operated, the automation system must provide for the ability to forbid
interactive logins.

This is not explicitly required, but is easy
to realise.

SR
1.12

Reference to
system use

The authentication system must have the ability to refer, even before
authentication, to the rights and obligations linked with use of the
system. A 'System Use Notification' is displayed for this purpose. It
must be possible for authorised personnel to configure this display.

This is not explicitly required, but is easy
to realise if wished by the operator.

SR
1.13

Access
through un-
trustworthy
networks

The automation system must have the ability to monitor and control all
kinds of access to the automation system through untrustworthy net-
works.
RE1 The automation system must have the ability to deny access
through unreliable networks, but the desire is approved by an instance
authorised to do this.

In SL1, only Category 1 and 2 networks
come into consideration. In 1 there are
only known users, i.e. the requirement is
unnecessary. In Category 2, although the
users are not all known, they are trustwor-
thy.

SR 2.1 Enforcing
authorisation

At all interfaces, the automation system must ensure enforcement of
the authorisations assigned to all human users; as a result, these per-
sons become authorised and are enabled to control the automation
system in such a way that separation of duties and restrictive authori-
sation assignment can also be asserted.
RE 1 At all interfaces, the automation system must ensure enforcement
of the authorisations assigned to all users (persons, software proc-
esses or devices); as a result, these users become authorised and are
enabled to control the automation system in such a way that separa-
tion of duties and restrictive authorisation assignment can also be
asserted.
RE 2 The automation system must possess the ability and must make it
possible for an authorised user or an authorised role to define and
modify mapping of the authorisations of all human users to roles.

This is derived from EN 50129 B.4.6.

SR 2.2 Use control
and monitor-
ing in the case
of radio con-
nections

In the case of radio (wireless) connections into the automation system,
the automation system must possess the ability to authorise, monitor
and also fulfil restricted use in accordance with the security conven-
tions that are generally common in industrial practice.

This requirement is contrary to EN 50159
B.1. A radio transmission system would
generally be assigned to Category 3 and
would need cryptographic protection, i.e.
more than SL1.

SR 2.3 Use control
and monitor-
ing in the case
of portable
and mobile
devices

The automation system must possess the ability to automatically im-
plement and execute configurable restrictions of use:
a) Preventing use of portable and mobile devices
b) Demanding a context-specific authorisation
c) Restricting transmission of data and code from and to portable and
mobile devices

In EN 50129, mobile devices are treated
just like other devices if they perform
fail-safe tasks. The specific requirements
must be derived from a hazard analysis,
however.

SR 2.4 Mobile code If mobile code techniques are used, the automation system must be
able to assert restricted use, taking into account the damage that can
possibly be caused in the automation system. These abilities include:
a) Preventing execution of mobile code
b) Demanding clean authentication and authorisation of the code
source
c) Limiting transfer of mobile code to and from the automation system
d) Monitoring the use of mobile code

Mobile code is not allowed in safety-
related systems because it is not covered
by validation and approval.

SR 2.5 Session block-
ing

The automation system must possess the ability to prevent further
access to the system by blocking the session after an adjustable inac-
tivity time or by manual intervention. The session must remain
blocked until the session owner or another authorised person restores
access by again initiating the identification and authentication process
intended for this purpose.

This is not explicitly required, but is easy
to realise.

SR 2.6 Ending a
remote session

The automation system must possess the ability to end a remote ses-
sion either automatically after an adjustable period of inactivity or it
must make it possible for the session to be ended manually by the user
who initiated it.

This is not explicitly required, but is easy
to realise.

SR 2.8 Verifiable
events and
their recording

The automation system must possess the ability to generate audit data
(data recorded during computer and network monitoring, information
technology measurements) concerning the IT security achieved in the
following categories and to record such data as audit records: access
control, flawed queries, incidents in the operating system, incidents in
the automation system, incidents during backup and recovery of data,
potential reconnaissance and incidents during audit report creation.
The individual audit reports must contain the following information:
Time of the incident, incident source (designation of the device,
equipment, software process or user account in which the incident is
taking place or has taken), category, type, incident number and result.

Although data logging is a common prac-
tice, it is not required normatively be-
cause such data is generally not consid-
ered to be relevant to safety.



SR 2.9 Storage capac-
ity for audit
records

The automation system must provide adequate storage capacity for
storing audit records in accordance with generally recognised recom-
mendations for log management (archiving of incident logs) and sys-
tem configuration. The automation system must ensure that not too
much storage capacity is maintained.

See above.

SR
2.10

Response to
failed audit
data process-
ing

If it should transpire that the audit data (data recorded during computer
and network monitoring, measured results regarding information tech-
nology  processes  in  IACS)  is  no  longer  processed  at  all  or  no  longer
correctly, the automation system must possess the ability to inform
operating personnel of this and it must prevent the loss of essential
services and functions. As a response to failed processing of audit
data, the automation system must possess the ability to initiate suitable
remedies in accordance with generally recognised industrial conven-
tions and to support them.

See above.

SR 2.11 Time stamp The automation system must assign a time stamp to the audit records
generated.

As detailed in EN 50159, time stamps can
be used, but are not required.

SR 3.1 Communica-
tion integrity

The automation system must possess the ability to preserve the integ-
rity of information transferred.

Protecting the integrity of the message
stream  is  a  basic  requirement  of  EN
50159.

SR 3.2 Protection
against harm-
ful code

The automation system must possess the ability to take precautions
against harmful code or unauthorised software; corresponding mecha-
nisms should detect and report such harmful code and should defuse
any negative impacts. These protective mechanisms must be updated.

RE 1 The automation system must possess the ability to use processes
for protection against harmful code at all entry and exit points.

In SL1, IEC 62443 assumes untargeted
attacks, the viruses, etc. are not specifi-
cally directed at the system.

EN 50128 15.4.6 requires protection of
software against unintentional or random
modification and this suffices for SL1.

SR 3.3 Verification of
IT security
functionality

The automation system must possess the ability to verify the intended
operation of the IT security functions and must report whenever
anomalies are detected during factory acceptance testing (FAT), dur-
ing site acceptance testing (SAT) and during a scheduled maintenance
operation. These security functions must comprise all functions that
are needed to fulfil the information technology security requirements
defined in this standard.

In  the  case  of  safety  systems,  this  re-
quirement is covered by validation in
compliance with EN 50128.

SR 3.4 Software and
information
integrity

The automation system must possess the ability to detect, record, re-
port and protect against unauthorised changes to software and stored
inactive or archived data.

EN 50128 13 requires protection of soft-
ware against unintentional or random
modification.

SR 3.5 Input valida-
tion

The automation system must validate the syntax and the contents of
indirect inputs into an industrial process control system and of direct
inputs with direct impacts on the automation system.

Plausibility  checks  are  required  by  EN
50129 E.5.1 and also by the principle of
defensive programming in EN 50128.

SR 3.6 Deterministic
output

The automation system must possess the ability set outputs to a prede-
termined status if no normal operation can be maintained any more as
a result of an attack.

In accordance with EN 50129 B3.4, a safe
status  must  be  assumed in  the  event  of  a
fault, including avoidance of unsafe out-
puts.

SR 3.7 Error handling The automation system must detect errors and must handle error states
in such a way that an effective remedy is possible. At the same time,
steps must be taken to ensure that no information is disclosed that can
be used by enemies to attack the IACS unless the disclosure of this
information is indispensable to remedy the problems in good time.

EN 50129 and EN 50159 do not contain
any specific requirements in this respect.

SR 3.8 Session integ-
rity

The automation system must possess the ability to preserve the integ-
rity of sessions. The automation system must reject use of invalid ses-
sion identifiers (IDs).

This is required in EN 50159.

SR 3.9 Protection of
audit informa-
tion

The automation system must protect verified and recorded incidents
(audit information) and audit tools (insofar as available) against un-
authorised access, modification and deletion.

EN 50129 and EN 50159 do not contain
any specific requirements in this respect.

SR 4.1 Confidential-
ity of informa-
tion

The automation system must possess the ability to preserve the confi-
dentiality of information for which a read authorisation is expressly
required, be it in transit or in the idle state.
RE 1 The automation system must possess the ability to preserve the
confidentiality of information or data that is in the idle state and pro-
tect data that is routed through an untrustworthy network during a
remote session.

Confidentiality is not normally required
for railway applications. Processes that
are not safety-related may also access
information.

SR 4.2 Information
constancy

The automation system must possess the ability to permanently delete
all information on data media for which a read authorisation was
expressly required and which are to be taken out of operation or shut
down.

EN 50129 and EN 50159 do not contain
any specific requirements in this respect.

SR 4.3 Using encryp-
tion

If encryption is required, the automation system must use crypto-
graphic algorithms for the size, the mechanisms of key creation and
management of keys in accordance with the security conventions and
recommendations generally recognised in information technology.

Generally not required in the case of
Category 1 or 2 in accordance with EN
50159 Annex C.



SR 5.1 Network seg-
mentation

The automation system must possess the ability to logically separate
automation systems from non-automation systems and to logically
separate critical automation systems from other automation systems.
RE 1: The automation system must possess the ability to physically
separate automation systems from non-automation systems and to
physically separate critical automation systems from other automation
systems.

This is a basic requirement of EN 50159
7.3.7.2 and is generally warranted by the
safety protocol.

SR 5.2 Protection of
the zone
boundary

The automation system must possess the ability to monitor communi-
cations at zone boundaries and to intervene, if necessary, to be able to
execute the departments defined in the risk-based zone and conduit
model.
RE 1 The automation system must possess the ability to always reject
network traffic and to permit it only in exceptional cases.

Only Category 1 and Category 2 networks
may be used for SL1. These form a single
zone with uniform IT security require-
ments and so no splitting is necessary and
this requirement does not make sense for
SL1.

SR 5.3 Restriction of
general com-
munication
between per-
sons

The automation system must possess the ability to prevent exchange of
messages between persons that are sent by users or systems outside the
control system and are received by persons inside the control system.

Generally, voice communication is not
part of the safety system. However, this
requirement should be exported to the
operator.

SR 5.4 Partitioning
applications

The automation system must possess the ability to partition data, ap-
plications and services depending on the complexity of the zone model
to be realised.

This is a requirement of EN 50129 E.2.1.

SR 6.1 Access to
audit logs

The automation system must possess the ability to grant read access to
stored audit logs to authorised persons and tools.

Although data logging is a common prac-
tice, it is not required normatively be-
cause such data is generally not consid-
ered to be relevant to safety.

SR 6.2 Continuous
monitoring

The automation system must possess the ability to continuously moni-
tor the performance and behaviour of all IT security mechanisms and,
to this end, to use the security conventions and recommendations that
are generally recognised in information technology, thus being able to
detect and report on any security violations early on.

This is explicitly required in EN 50159 if
the IT security functionality has not been
developed in accordance with EN 50129,
i.e. in particular in the case of commercial
components.

SR 7.1 Protection
against DoS
attacks

The automation system must possess the ability to continue working in
a restricted mode of operation during a DoS attack.
RE 1 The automation system must possess the ability to control the
traffic load (for example by limiting the data transfer rate) so that the
impact of a provoked inundation with data leading to triggering of a
reduced availability can be mitigated.

This requirement is normally not con-
tained in safety standards. In railway,
however, there is normally a fallback
level after failure of technology. In future,
IT security aspects may have to be con-
sidered in the design of the fallback level.

SR 7.2 Resource
management

The automation system must possess the ability to counteract exhaus-
tion of resources; to this end, security functions would possibly have
to be granted fewer resources.

This requirement is normally not con-
tained in safety standards.

SR 7.3 Backups of
the automa-
tion system

The automation system must be capable of storing and archiving
backup copies (backup) of critical files and data from the user and the
system levels (including information about system status) in a secure
location without detrimentally influencing ongoing operation of the
system.
RE 1 The automation system must possess the ability to check the
operability (reliability) of backup mechanisms.

This requirement is normally not con-
tained in safety standards.

SR 7.4 Restart and
recovery of
the automa-
tion system

The automation system must possess the ability to restart after an
interruption or a failure and to return to a known secure state.

This is required in EN 50129 B5.2.

SR 7.5 Emergency
power supply

The automation system must possess the ability to switch to an emer-
gency power source, or to return to a normal supply source from it,
without exerting any detrimental impact on the existing security state
or a documented restricted mode of the IACS.

This requirement is normally not con-
tained in safety standards.

SR 7.6 Network and
security set-
tings

The automation system must possess the ability to be configured as
provided for in the instructions included by the supplier of the automa-
tion system; this applies in particular to recommended network and
security settings. The automation system must provide an interface to
the current network and security settings.

EN 50129 or EN 50128 requires configu-
ration management as part of quality
management. The requirements for con-
figuration are part of the safety applica-
tion conditions.

SR 7.7 Restrictive
functionality
assignment

The automation system must possess the ability to specifically sup-
press the application and use of unnecessary functions, ports, protocols
or services or at least to restrict these applications.

EN 50128 requires complete tests. Rail-
way software may only contain (acti-
vated) functions that are required in ac-
cordance with the specification. EN
50128, Section 7.3.4.7 can be referenced
with regard to pre-existing software.
Nevertheless, the result in certain circum-
stances for COTS components such as a
switch is that certain functions are deacti-
vated.

SR 7.8 List of the
automation
system's com-
ponents

The automation system must possess the ability to issue a list of all
currently installed components of the automation system with the rele-
vant characteristics and features.

This requirement is normally not con-
tained in safety standards.
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Applying MILS principles to design connected embedded devices 
supporting the cloud, multi-tenancy and App Stores 
 

Embedded, connected devices are nothing new. Developers have been establishing Machine to 
Machine communications for 20 or 30 years, long before the Internet of Things was ever conceived.  
 
But until quite recently, embedded applications have tended to be static, fixed function, device specific 
implementations. In the current environment of ever quickening technological change, morphism and 
evolution are the order of the day. Now we see manufacturers and service providers all seeking to 
monitor, upgrade, enhance and supplement software implementation on a continuous basis. 
 
In the enterprise world, cloud computing and “X”-as-a-service (PaaS, IaaS, SaaS) architectures have 
dramatically changed the economics of IT such that the infrastructure is now a utility or service rather 
than a capital investment. This has enabled significant innovations in service, including App Stores - 
libraries of products and services that are supported by the infrastructure and provide single instances 
of cloud-based software for the benefit of multiple “tenants”.  
 
In the IoT, embedded devices are somehow connected to the “cloud”. However, the benefits of the 
IoT are unlikely to be realized unless the connected embedded devices are capable of supporting the 
multi-tenanted architectures that are common in enterprise IT. This implies that IoT devices need to 
provide secure separation between the different tenants accessing the IoT infrastructure. 

For example, imagine a car as an IoT gateway device, with many demands on its systems 
infrastructure. Of course, the manufacturer will be first in the queue, providing software updates to 
security critical aspects of the vehicle and monitoring its condition. But alongside this core 
functionality there will also be a host of Apps from the Store to enable and entertain. The navigation 
service provider, accessing continuously evolving road data. Insurance applications, monitoring 
probationary drivers to help minimize premiums. Media streamers with the latest movies. Games, 
advertisements, and a host of other possibilities as yet unrealized. 
 
Multi-tenancy without security is not enough. As if to highlight that point, at the 2010 IEEE Symposium 
of Security and Privacy, researchers from the University of Washington and the University of 
California – San Diego remotely accessed the systems on a late model car to unlock the doors, start 
and stop the engine, lock brakes and disable windscreen wipers – all potentially life threatening 
actions1.   

In their paper on the subject, the researchers observed that  
 
“While the automotive industry has always considered safety a critical engineering concern (indeed, 
much of this new software has been introduced specifically to increase safety, e.g., Anti-lock Brake 
Systems) it is not clear whether vehicle manufacturers have anticipated in their designs the possibility 
of an adversary. Indeed, it seems likely that this increasing degree of computerized control also brings 
with it a corresponding array of potential threats. Compounding this issue, the attack surface for 
modern automobiles is growing swiftly as more sophisticated services and communications features 
are incorporated into vehicles.” 
 
It is precisely these conflicting demands for security and accessibility which makes this and similar 
environments quite so challenging.  
 
 
  

                                                           
1 Experimental Security Analysis of a Modern Automobile http://www.autosec.org/pubs/cars-

oakland2010.pdf 
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Designing an IoT Gateway 
Generalizing the automotive example to the wider Internet of Things, it is useful to consider exactly 
what properties are desirable in an IoT Gateway. Traditional embedded designs using COTS 
embedded operating systems can present many compromises.  

 
Traditional embedded gateway designs rely on monolithic architectures, such that applications are 
hosted by a single operating system and all I/O support, management controls, and security controls 
are integrated into the operating system kernel. This monolithic construction creates the following 
challenges: 

 

 Fragile Single Point of Failure 
IoT gateways are highly susceptible to attacks and failure due to their wide exposure to the 
internet across so many interfaces supporting a great deal of complex functionality. Because 
monolithic designs host all applications, perform I/O, and management functions, any failure 
in security policy or kernel coding flaw can jeopardize the security and availability of the 
system which will greatly limit the ability to operate in stringent safety markets.  

 Weak Separation 
In order to provide a platform as a service a strong degree of separation will be needed to 
prevent collocated applications from compromising the privacy or availability of other 
applications. Relying on a monolithic operating system to provide separating computing 
environments is risky given the number of ways monolithic operating systems can fail or be 
subverted. 

 Limited I/O Support 
With a monolithic design, all sensor and network interfaces drivers and I/O stack support must 
be built into the operating system kernel. If drivers do not exist for the selected OS, it can be 
difficult to support all varieties of desired sensor support and network interfaces. 

 Limited Application Support 
Certain applications may only be available for certain operating systems. Choosing an OS 
that provides the best IO support, application support, ideal deterministic behaviour, and 
secure design may not be feasible. 

 Limited Online Maintenance 
Due to highly complicated interdependencies of functionality in monolithic operating systems, 
the ability to patch or upgrade kernel functionality while maintaining platform operation is 
highly limited. The majority of kernel maintenance procedures require platform reboots which 
pose significant challenges for platforms that strive for full autonomy. 
 
The majority of issues in relying on a monolithic operating system as the foundation of an IoT 
gateway stem from limited application and IO support, and exposure to a single point of 
failure. A better approach is to have a more modular design that can provide more 
interoperability options and achieve higher levels of reliability and assurance. 

 
Given these traditional designs are compromised, it is useful to consider relevant academic principles 
as a basis for a better solution.   

The application of MILS principles 
 
The solution to this conundrum lies in the MILS (Multiple Independent Levels of Security/Safety) 
initiative. MILS is a high-assurance security architecture based on the concepts of separation and 
controlled information flow; implemented by separation mechanisms that support both untrusted and 
trustworthy components; ensuring that the total security solution is non-bypassable, evaluatable, 
always invoked and tamperproof2. A MILS compliant distributed secure system for the connected car 
will therefore comprise of high-assurance components and applications which can be independently 

                                                           
2 https://en.wikipedia.org/wiki/Multiple_Independent_Levels_of_Security 
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developed, modularly combined, evaluated and certified to adhere to these principles, in all aspects of 
its development. 
 
This paper outlines the principles and application techniques surrounding three enabling technologies. 
 

1. Least Privilege Separation Kernel Hypervisor, 
2. MILS based network components for network traffic encryption and the consolidation of 

multiple encryption tunnels 
3. MILS based data handling components to encrypt data and consolidate multiple storage 

partitions  

 

Least Privilege Separation Kernel 
 
The foundation of any such MILS compliant system is the Separation Kernel, a concept first mooted in 
1981 by John Rushby3. A separation kernel consists of “a combination of hardware and software that 
permits multiple functions to be realized on a common set of physical resources without unwanted 
interference”. By implication that suggests that the only interaction between the “security blocks” is by 
design, and that primary information flow will be from high to low security blocks (Figure 1). 
 
   

 
Figure 1. Primary information flow is from high to low security blocks – but some flow is required in the 
opposite direction. 

 
A few years earlier in 1975, Saltzer and Schroeder4 established a similar set of principles based on 
the idea of modularization, noting that “Every program and every user of the [operating] system 
should operate using the least set of privileges necessary to complete the job”. The concept of a 
separation kernel clearly goes some way towards that goal, but because separation kernels are 
traditionally based on resource isolation there was insufficient granularity to take that principle to its 
conclusion. 
 

                                                           
3 Design and Verification of Secure Systems. John Rushby, Computer Science Laboratory, SRI International. 
1981. 
4 Saltzer and Schroeder, The Protection of Information in Computer Systems, ACM Symposium on Operating 
System Principles (October 1973) 
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That coarse granularity, coupled with an inevitable requirement for at least some flow of information 
from low to high security blocks, results in considerable emphasis being placed on developers if the 
boundaries are not to be breached.  
 
The idea of marrying the two was therefore proposed by Levin, Irvine and Nguyen5 resulting in the 
concept of a Least Privilege Separation Kernel, where both resources and subjects (executable 
entities) could be modularized. In this way, no subject needs to be given more access than required to 
allow the desired flows (Figure 2). 
 

    
Figure 2. Superimposing Least Privilege principles on to those of a Separation Kernel combines per-
subject and per-resource flow control granularity 
 
In practical terms, the modularity of this approach enables the creation of de-privileged configuration 
utilities, device drivers, guest virtualization, device virtualization and management services. 
Hypervisor functionality is almost a by-product of this architecture, in that the subjects illustrated in 
Figure 2 can consist of anything from a minimally sized, “bare metal” application to a fully featured 
Real Time or General Purpose Operating System.  
 

MILS based network and data storage components 
 
In the context of our automotive example, this Least Privilege Separation Kernel Hypervisor may well 
be a well-founded principle, but it is only useful if it can be applied to provide the secure environment 
we need to ensure that the car as an “IoT gateway device” is not vulnerable to the attacks of the 
troublesome researchers and others with more malicious intent. 
 
This has to be achieved, however, in the context of an existing infrastructure consisting very largely of 
the public internet. The onus for security therefore falls on the gateway devices – and in our case, that 
means the systems contained within the car. 
 
There are also cost considerations to consider, particularly in the case of the ever expanding 
functionality of the modern car. To that end, it is important that the high build and maintenance costs 
associated with multiple vehicle networks should be avoided.  
 

                                                           
5 T. E. Levin, C. E. Irvine, and T. D. Nguyen. Least privilege in separation kernels. In J. Filipe and M. S. 

Obaidat, editors, E-business and Telecommunication Networks; Third International Conference, ICETE 
2006 
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Figure 3. Superimposing Least Privileged subjects to handle data storage and networking functionality 
on the Least Privilege Separation Kernel Hypervisor. 
 
Figure 3 shows how such a system could be designed in practice. The networking and data handling 
are implemented as minimalist least privilege “subjects”, tightly coded and running as “bare metal” 
applications to minimize their footprint and hence vulnerability. 
 
The configuration of the system is completed statically at installation time, and the facilities for 
modifying that configuration do not exist once the system is running.  
  
Three virtual machine (VM) subjects provide the means to run the Apps, possibly mapped to the 
individual cores of a multicore processor where there is hard real time dependency.  
 
Encryption keys ensure the integrity of three tiers of data security, while the Least Privilege 
Separation Kernel provides the underpinnings to guarantee that the trusted code base underpinning 
the system is minimalized.    
 
The net result is a robust solution, providing resilient application interfaces to prevent malicious 
software from subverting the virtual software architecture. It ensures the integrity of critical 
applications by protecting them from possible corruption from other application partitions. Costs are 
minimized and yet confidentiality is guaranteed through the application of a single network structure. 
And it can be ensured that vehicle applications are genuine, and that network encryption cannot be 
bypassed by server vehicle application VMs. 
 
In summary, by applying the MILS principles throughout, the security/accessibility conundrum is 
resolved. 
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The Gateway based on the Least Privilege Separation Kernel Hypervisor 
 
It is useful to summarize the pertinent capabilities and properties offered by Least Privilege 
Separation Kernel Hypervisors (more succinctly, “Separation Kernel Hypervisors”) in the context of 
the design of IoT gateways in general, and by implication, the connected car in particular.  
 

 Virtualization 
Separation Kernel Hypervisors offer the ability to run multiple variants of guest operating 
systems concurrently on the same platform. This capability provides many options for hosting 
applications from multiple different operating systems and supporting a variety of different 
sensor devices and network interfaces. For example, through virtualization a design can be 
made where timing critical applications such as load-balancing and failover protocols run in 
real-time operating systems while running lessor critical applications in more feature rich 
operating systems.  Virtualization is a key capability in dealing with interoperability challenges. 
Virtualization also plays a key role in supporting edge computing and platforms as a service, 
allowing analysis tools and tenants to use any operating systems and application best suited 
for the target task.    

 Bare-metal Applications 
Some Separation Kernel Hypervisors provide the ability to run applications without the 
assistance of an operating system. Bare-metal applications are helpful for designs that 
require high performance or high assurance. Removing the dependency of an operating 
system reduces application overhead. For deployments that face stringent safety and security 
requirements, code reviews of critical applications may be necessary. Bare-metal applications 
can greatly aid the code analysis process by removing the complex code dependencies on 
the operating system. 

 Full Mediation 
Separation Kernel Hypervisors provides the ability to explicitly monitor and control all platform 
transactions. This allows system architects to gain full awareness of the state of the system 
that can be used to help improve platform availability and assurance.  

 Isolation 
Separation Kernel Hypervisors partition hardware resources and assign them to either Guest 
OSs or bare-metal applications according to a specification defined by a system architect. 
Separation Kernel Hypervisors provide the strongest degree of protection of resources using 
the native capabilities of the CPU. Strong resource isolation is a key enabler for achieving 
high availability. 

 Robustness 
Because Separation Kernel Hypervisors serve as the central host of the computing platform, 
they are designed specifically to be highly reliable and resilient to malicious techniques of 
subversion. Separation Kernel Hypervisors achieve this property by relying on simple least 
privilege internal designs with limited functionality and limited exposure to hosted software. 
Separation Kernel Hypervisors tend to be ten to hundreds of times smaller than monolithic 
operating systems. 

 Determinism 
Separation Kernel Hypervisors provide the ability to control explicit execution schedules for 
guest operating systems and bare-metal applications. Coupled with the ability to isolate 
resources for software modules, Separation Kernel Hypervisors can guarantee the availability 
of a system, ensuring any critical application can never be pre-empted or starved by 
competing applications. The deterministic control Separation Kernel Hypervisors have over a 
computing platform is a key enabler for designing highly reliable systems.  

 Certification 
Separation Kernel Hypervisors are designed to support environments that face both security 
and safety regulation. Relying on the intrinsic properties and core capabilities of a Separation 
Kernel Hypervisor system architects are given the tools needed to design and implement 
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solutions greatly exceed the levels of reliability compared to a solution running on a monolithic 
operating system.  

 

Least Privilege Separation Kernel Hypervisor under attack 
 
All of these features clearly have merit, but ultimately the Separation Kernel Hypervisor itself is the 
critical component of the architecture; the trusted code base that makes the rest of the architecture 
possible. That make it a primary target for attack.   
 
It would be bold or foolish to claim that it could never be compromised, but the theoretical principles 
which guided its design also highlight why that threat is optimally defended. 
 
All attacks require an attack vector; a means of entry, commonly a NIC or device driver. LynxSecure 
offers no such direct attack vector because in accordance with the principles of a least privilege 
separation kernel, device drivers and communication mechanisms such as NICs are all placed within 
VMs.  
 
The possible configuration permutations of LynxSecure are almost countless. The superimposition of 
Least Privilege principles on Separation Kernel blocks results in fine per-subject and per-resource 
flow-control granularity, and so communication paths only exist if the system architect wants them.  
 
Where they must exist, should there be a concern that communication between VMs by means of a 
virtual Ethernet and its well-known protocol, then the architect might prefer to take advantages of the 
proprietary “hypercalls” API which adds an element of “security by obscurity” to the design.  
 
Figure 3 shows an example of a communications mechanism between VMs by means of virtual 
network cards. That clearly involves communicating through LynxSecure, but not with it. In other 
words, for this to represent a vulnerability there would have to be coding deficiencies to compromise 
the integrity – and the very fact that it is so small and has been certified to very high standards means 
that the risk is tiny.  
 
Finally, LynxSecure is statically configured. The mechanism required to modify that configuration 
does not exist at run time, and so there is no possibility of the installed configuration being modified 
by an attacker. 
 
In summary; there has to be a communications path through the gateway for it to fulfil its purpose, 
and that implies the existence of possible means of compromise. But here, the risks are kept to an 
absolute minimum in accordance with the principles on which its design is founded.  
  

Least Privilege Separation Kernel Hypervisor in practice 
The example of an automotive application is highly topical (figure 4).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/ 
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Figure 4. The vulnerability of the connected car is a highly topical subject, and a thorny one for the 
automotive industry 
 
It is perhaps no surprise that it is presently under review by a number of vehicle manufacturers and 
their tier one suppliers, and that at the time of writing the commercial relationships involved mean that 
detailing their practical application here is not possible.  
 
The security issue highlighted is new to the automotive sector, because until recently cars have been 
secure simply by virtue of being isolated. However, that is not true of all other fields of endeavour, and 
there are practical applications of this technology dating back for almost a decade. This state of affairs 
therefore has the potential to offer the automotive and other sectors a proven and seasoned solution 
to a new and challenging problem. 
 
One field where security has always been paramount in in the military, and it is perhaps natural that 
Separation Kernel Hypervisors have therefore found many of their earliest practical applications in 
that field. Such applications clearly demand certification in accordance with military security 
standards.  For example, a US armed forces program has used a Separation Kernel Hypervisor as 
the security foundation for an embedded mission critical security solution.  This solution successfully 
underwent a security certification involving extensive penetration and other testing for use in DOD 
High Threat Environments, satisfying the following security requirements: 
 
 Director of Central Intelligence Directive (DCID) 6/3 Protection Level (PL) 4 – separation of Secret 

to Secret/compartmented security domains in the presence of untrusted users. 
 

 8500.2 Mission Assurance Category I (MAC I) for systems handling information that is determined 
to be vital to the operational readiness or mission effectiveness of deployed and contingency 
forces in terms of both information system content integrity and timeliness/availability. 

Although further details about this certification and others like it are classified, the artefacts created to 
achieve that certification are mostly generic and hence relevant to other certification processes.   
 
Other “real life” applications include  

 A UAV ground controller, providing a user interface and control platform for controlling 
unmanned vehicles. The use of a Separation Kernel Hypervisor in this environment provided  

o A path to certification,  
o Safety critical partitioning of the user interface from the control function, 
o Deterministic control, and  
o Flexible application options. 

 An electronic “flight bag”, consisting of a cockpit user interface for features including a map 
display an electronic forms. In this case, the Separation Kernel Hypervisor provided 

o The separation of a low integrity user interface from a high integrity aircraft bus 
o The optimal OS for each application, permitting the use of state-of-the-art graphics 
o A certifiable approach to isolating fully virtualised OS  

 

Separation Kernel Hypervisor Based Design Strategies – an example 
Suppose that there is a requirement for an IoT gateway in a traffic control application. In its simplest 
form, the gateway in the system is providing local control for a set of traffic lights. Road sensors 
provide information about what is happening to the traffic flow, the gateway provides local control to 
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action the immediate policies, and the policy decisions are derived from the command centre based 
on the information fed back to it from the gateway. 
 

 

Figure 5. A simple IoT Gateway application providing local control for a set of traffic lights (left). 
More complex traffic control requires local peer-to-peer communication as well as policy decisions 
downloaded from a command centre (right) 
 
As this system is expanded, so the intercommunication between gateways and the command centre 
becomes more complex. Immediate traffic flow issues are management by means of local P2P 
networking while the policy decisions are still downloaded from the command centre (figure 5) 
 
 

 

Figure 6. Ultimately the system requires multiple domains to permit the various tenants safe access to 
the same TCP/IP stack  
 

Ultimately, the system requires third party access to collate data for traffic reporting; naturally a less 

critical domain requiring separation from the traffic control functionality of the system (figure 7).  

 

In the context of this traffic control system, several attributes of the Separation Kernel Hypervisor based 

gateway are significant. 

 

 Modular Composition 
Using the virtualization and bare-metal application capabilities, and relying on the isolation 
and deterministic properties of a Separation Kernel Hypervisor, platforms can be constructed 
out of a variety of software modules where individual functions of the platform can run in 
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independent partitions and simple interfaces between modules can be defined so that the 
state of the system is well defined and understood.   

 

Modular designs promote better options for interoperability and sustainability. For example, 

gateway maintenance routines such as new sensor device or network interface upgrades or 

bug patches can be performed without powering down the device or disrupting vital operational 

components. 
 
In the traffic control system (figure 7), we see a partition hosting a VM dedicated to the local 
lights and signage, a second to the receipt and analysis of data, and a third transmitting data 
to a traffic report service. An additional VM running a bare metal application (“Security 
abstraction”) takes care of the encrypted data from the different tenants. 

 Heterogeneous Computing 
Relying on virtualization, architects can mix and match combinations of operating systems 
concurrently running on the same platform to host a wide variety of applications and I/O 
interfaces that may be exclusive to certain operating systems. Heterogeneous computing is 
an excellent strategy for supporting the most interoperable designs, and defending against 
proprietary vendor lock-in or obsolescence. 

The traffic control example might deploy a bare metal application for the Network Gateway 
VM and the traffic signal control, perhaps an RTOS for the data analysis, and a general 
propose OS for the traffic report data handling.  

 Fault Tolerance 
Relying on the robust and highly available backbone of the Separation Kernel Hypervisor and 

modular design principles, system architects can create fault-tolerant designs using heart-beat 

and health inspection techniques. Some Separation Kernel Hypervisors allow guest operating 

systems to report their health status, policies can be set in a Separation Kernel Hypervisor to 

reboot or repair modules in the event of failed health status reports. Furthermore specialized 

custom modules can be created to inspect the health of other modules either through 

communication protocols or simply giving inspection modules access to view operating system 

and bare-metal application memory resources. 

 Security Abstraction 
A good architectural approach is to design systems such that applications run in separated 

environments from security sensitive applications to prevent security controls from being 

bypassed or infiltrated. In the traffic control system, the “Security Abstraction” layer takes the 

form of a VM running a bare metal application takes care of the encrypted data from the different 

tenants to prevent users from disabling or bypassing the crypto function.   

 

Conclusions 
Monolithic architectures pose significant challenges in the ability to support stringent safety standards 

and meeting demanding market needs. With the use of a Separation Kernel Hypervisor and modular 

design techniques, IoT gateway vendors are given many options for building highly interoperable, 

reliable, secure, and sustainable solutions using low cost COTS components. 

The automotive industry in particular has suffered by moving from a world where system isolation offers 

the ultimate security protection, to the connected car where that past assumption makes it especially 

vulnerable.  

Such industries cannot discard all existing code and applications, and re-write them overnight. 

Separation Kernel Hypervisors offers the proven, certified technology to provide separation of that 

vulnerable software from the dangers of external public access.  

This is not new technology. It is proven and has been certified and in use in the US military for almost 

a decade. It is not an operating system; not even a cut down operating system. It is a separation kernel, 

leveraging hardware virtualization to minimize both the trusted code base and the attack surface. 
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Abstract 

The rail transportation industry is highly dynamic and driven by the need to meet with mandatory safety 
criteria. Modern railway transportation systems are ever more sophisticated and rely heavily on 
embedded systems and communication networks.  Train builders and their suppliers have to develop and 
deliver these increasingly sophisticated embedded systems while meeting increasingly stringent quality, 
safety and certification constraints.   

Driven by the EN-50128 standard ‘Software For Railway Control And Protection Systems’ [3], which 
proposes needed methods to be used in order to provide software for control systems, train builders have 
applied processes and adopted tools that help to develop and validate software in compliance with safety 
constraints.  This paper will illustrate how model based system engineering approaches and frameworks 
provide full business process support to: 

 Validate the functional requirements of the systems (requirement management); 

 Design control and safety functions at the train, vehicle and equipment levels (functional design and 
software architecture); 

 Design and develop the software applications of electronic controllers; 

 Integrate, validate and qualify electronic systems in a progressive integration process; 

 Manage all changes during the lifecycle of the product (change management but also option and 
variant management); 

 Demonstrate the compliance with the required safety integrated level, 

 Train and educate drivers, rail network operators and maintenance technicians. 

This kind of development and validation process and the associated tools are now successfully used by 
many of today’s train manufacturers and equipment providers.   

Control engineers in railway commonly used development tools providing the IEC61131-3 languages 
‘Programmable Controllers – Programming Languages’ [1] that are deployed in industrial automation for a 
long time.  In this paper, we will give an overview of the languages properties and their integration in the 
development of software for railway.   

Since the latest version of EN-50128 introduced in 2011, train control system providers are facing 
increased constraints on the development processes but also on the verification and validation activities.  
The certification of a railway control system demands ever more documentations and demonstrations that 
the software complies with the safety rules and criteria. All these additional tasks increase the 
development and validation load but are nevertheless legitimate since they are designed to ensure the 
safety of the product.  As the railway operators ask for SIL2 product, this paper will present a new 
technologies helping railway OEMs and suppliers to increase the Safety Integrated Level of control 
software from SSIL0 to SSIL2 and to master the cost of the product.   
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State of The Art 

In railway industry, the functions (i.e. doors, traction, brake, lighting, fire detection, air conditioning) done 
with conventional control system (hardware based contactors, relays, circuit breakers, etc.) are 
increasingly being managed by intelligent control units. Those controllers are coordinated or synchronized 
by a centralized and networked control system named TCMS (Train Control and Monitoring System).  
Depending of the safety level of the functions, the software is developed using various tools: 

 softPLC providing IEC61131-3 languages  

 Model-Based System Engineering frameworks (providing previous languages or data flow, state 
machine, etc.) and dedicated code generators; 

 Hand coded in C or ADA for legacy reasons. 

Some of these tools are coming from automation and control engineering (mainly for SSIL0-2 software 
applications) and from the avionic industry (EN50128-SSIL4 is roughly the same asDO178C-DALA) even 
if a product qualified for a standard is not automatically qualified for another standard).  

With the growth of embedded controllers and networks in the rolling stock, train manufacturers and their 
sub-system suppliers need development methods and tools that are able to support the design and help 
stakeholder to validate requirements and functional specifications as early as possible in the project.  In 
fact, major issues in developing these systems is the development process itself (focusing on the delivery 
of safety documentation) and the decreasing time and budget available for the test activities including 
physical tests. Like in other industries, the railway control engineers are looking for virtual test, 
progressive integration and qualification of the electronic control units and electro mechanical equipment. 

In parallel, rolling stock and sub-system providers need to assess the overall safety of the systems, for 
both passenger and equipment, and to demonstrate compliance with the relevant railway rules & 
standards (EN-50126, EN-50128 and EN-50129 for hardware, software and product).  Traditionally, the 
design process for embedded electronic boards is built upon a number of elementary practices and 
follows a V Cycle as show in figure 1. The EN50128 recommend the implementation of this kind of 
development process including verifications and validation tests. 

Figure 1: V-Cycle development process with documentation delivery 
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Moving from a paper based development cycle… 

Functional and design specifications are exclusively supported by paper based communications. The 
project goes slowly because the verification of textual documents requires many review iterations and 
exchanges between business units, central office, sub-contractors and customers. Too much time is 
spent in “meeting” clarification and explanation making the sentences of the specifications clear, complete 
and understandable by all stakeholders involved in the project. Today, too much effort is spent on 
“paperwork” rather than on systems design, integration and physical tests.  The target is not to reduce the 
number and the content of paper (mandatory) but to ease this production. 

The deployment of a V-Cycle methodology also introduces problem.  As we can see in figure 1, the left 
side of the V-Cycle supports creation, definition, and refinement activities while the right side covers the 
testing activities.  It means that if coding errors can be found immediately during the programming and 
software module testing phases, the specification errors can be detected only at the late phases of the V-
Cycle during integration and validation phases. Consequently, projects frequently miss their delivery 
deadlines and are difficult to keep within budget. This legacy process raises important managerial issues 
that need to be addressed. 

… to a Model Based System Engineering Approach 

The first proposal was to move from a paper based approach to a model based system engineering 
approach that provides executable specifications in order to speed up the development of the control 
software and meet project deadlines. This process was first launched with Electronic Control Units (ECUs) 
for Train Control & Monitoring System projects and is today deployed on other sub systems like brake, 
doors or passenger information systems. For this purpose, Dassault Systèmes provides a development 
framework that enables the achievement of new productivity related objectives.  

Model a concept, a control function, a software module 

This development framework, named ControlBuild, provides a MIL (Model In the Loop) approach allowing 
railway engineers to specify and design a model of each control function prior to any implementation. This 
approach is made possible through the use of known, open and standardized languages.  

In the railway industry, control engineers develop the embedded software using the languages defined 
within the IEC61131-3 standard for many years (see Figure 2).  Both control engineers (including 
software and electrical engineers) and maintenance engineers (end users) daily use Sequential Function 
Chart, Structured Text, Ladder and Function Bloc Diagram for software development and modifications i.e. 
applying system corrections and improvements.  Currently, dozens of PLC and CPU manufacturers 
provide coding tools based on the IEC61131-3 standard, taking the main place in the coding activities. 

 

Figure 2: Simple models using IEC61131-3 languages 
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Therefore, Control Engineers naturally improve their efficiency focusing more on design activity than on 
the coding phase thanks to these languages. The only requisites were that the tool has to provide: 

 Code generators to ease the production of the source code of the software (in compliance with the 
required coding rules and properties); 

 Tools and advanced features to verify, to test and to assess the models (static metrics, quality level of 
the model, assertions, automatic tests, code coverage, dead code identification, traceability with the 
requirements, etc.) as presented in the figure 3.  

The functional design can be manually validated using scope, button, virtual panels and synoptic.  Tests 
of the specification and design models can also be automatically executed using test procedures and 
functional tests features.  This incremental validation approach enables time to be saved on software 
design and integration testing activities. The detection and the correction of an error during the system 
validation phases is close to 100 times more expensive than when the tests are made on the model 
during the design activity. 

Figure 3: Test functionalities and features 

Map the functional model on the hardware architecture 

The model of the system is independent of the hardware (manufacturer, brand, operating system, etc.) 
and the architecture (i.e. networks and protocols). It means that we have designed the model of the 
software which can be deployed on one controller or distributed on many controllers. At this step of the 
design phase, we have to map parts (called POU - Program Organisation Unit) of the model on a defined 
hardware topology of the train system or sub-system. The use of the FBD (Function Block Diagram) 
language helps the software architect to allocate the POU on the virtual controllers (refer to figure 4). 

 

Figure 4: System Mapping – Models to Controllers 
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Certification of a Software Application 

For railway control and protection systems, a certificate ensures that a product is compliant with the 
safety standards. To get a certificate, the product must be certifiable. It means that the product has been 
developed in such a way that it can be certified.  The EN 50126 standard addresses system issues on the 
widest scale [2] and the EN 50129 standards addresses the approval process for individual systems [4].  
Railway products embed software applications that have to be certified regarding the EN50128 standard.  
As in other industries, this railway standard define the notion of safety level to be achieved (SIL – generic 
standard, DAL for avionic, ASIL for automotive and SSIL for Railway) [5]. In avionic, the safety level 
determines the goal to achieve while in railway it is rather a means to implement. 

SSIL – Software Safety Integrated Level 

Even if the standard define 5 SSIL from 0 to 4 (4 = high level of criticality), the railway industry commonly 
proposes to use only 3 safety levels (technics to achieve the level 1 are closer to level 2, and level 3 is 
also not so far from level 4): 

 SSIL0: comfort, passenger information, energy … 

 SSIL2: traction/brake, doors 

 SSIL4: automatic train control 

To get the certification that a software application is compliant with a given SSIL, the software 
development team has to demonstrate to the evaluation engineers / certification authorities that: 

 A well-defined software development process is used (quality assurance like ISO9001) including 
verification and validation tests, 

 The software application covers every and only the customer requirements (using traceability 
requirement tools like Reqtify),  

 The software application complies with the safety coding rules (like MISRA rules - Motor Industry 
Software Reliability Association),  

 The software application is covered by test procedures, 

 All associated document specification and test reports are available. 

Be careful, SSIL0 doesn’t mean ‘no safety’; it is just the first level of safety and requires the same quality 
assurance process than for other SSIL. The safety case is just lighter.  

Challenges and issues 

Train operators are demanding even more SIL2 products for their trams, metros, inter-cities and high 
speed trains.  It means that the Software Safety Integrated Level of the software applications of these 
new products have also to be compliant with SSIL2.  In parallel, the latest version of the EN-50128 
standard introduces more stringent activities and constraints on the development of software systems.  
Event for SSIL0 software application, number of companies improved their development process 
replacing manual programming (mainly C code) by model based design and automatic code generators.   

Development tools supporting the IEC61131-3 standard are the most used in the railway community of 
control engineers for SSIL0-2 software applications.  A well-known tool used in the avionic industry, is 
rather used for the development of SSIL4 software for signalling - automatic train control systems – that 
concern less than 5% of the embedded software in a train). 

An IEC61131-3 tool usually provides two kinds of code generators: 

 Generation of a sequence of instructions to be executed by an interpreter.  The certification is difficult 
to achieve because the execution machine / runtime must be certified by the tool provider. Some 
softPLC providers got a SIL certificate (linked to the IEC61508 generic standard) covering a limited 
set of instructions (AND, OR, NOT, etc.) and reserved for the execution of Boolean expressions; 

 Generation of a source code to be compiled and executed on a real time platform. 

To reduce the dependency of the source code to the compiler, the EN50128 standard propose to define a 
subset of the language allowing a controllable execution (no jump, limited use of pointer, no dynamic 
memory access, no if without else, a default for switch case, only one return inside a function…).   
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There are many issues automatically solved because the IEC61131-3 languages are already limited (no 
pointer in structured text, no direct access to the operating system, etc.). Limited doesn’t mean simple but 
sufficient to provide the code for the controller of the traction/brake systems or for the other converters, 
doors, air conditioning, pantograph, etc.  

 

 

 

 

Figure 5: Simple example of C code generation from LD or FBD model 

  

Figure 6: Simple example of C code generation from SFC 

More than that, the modelling tools provide features and metrics allowing the developer to measure the 
complexity of the structure of the models (depth of the hierarchy, number of interfaces, number of lines, 
number of blocks, and number of sub-loops for example).  As the IEC61131-3 standard includes textual 
language (ST: Structured Text), the model described in ST must also be compliant with rules such as 
those defined by the MISRA group. 

However, at the end of the development process, the generated software application has to be certified 
like a manually programmed certifiable software application. 
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Certified SSIL2 Software generated by a Certified Code Generator 

The aim of a software code generator is to help developers to remove the coding activity and to ease 
some verification and safety demonstration. It is why most of the development tools provide an automatic 
translator that takes into account a systems model and delivers source code for implementation on 
electronic control units.  

At this step, the software engineers have to provide deliverables and demonstrations for the evaluation of 
the static and dynamic criteria defined in the safety standard:  

 First, from a quality point of view, the generated software has to be readable, testable, verifiable and, 
maintainable. This means that coding rules have to be assessed as if the software were written by 
hand (depth of the function calls, number of overlapping ‘IF’ statements, number of inputs, outputs & 
parameters, the justification of use of pointer or global variables, dead code, out of boundary 
protection, defensive code, etc.).   

 Another activity is to demonstrate that the proposed test cases totally cover the test requirement 
specification document, and then the customer requirements by using requirement traceability tools.  

 Then, the software engineers have to demonstrate that the generated software has the same 
behaviour as the IEC61131-3 models if validation activities were already done at the design level.  If 
not, all unit tests have to be executed and reported as if the software code were manually written. 

The aim of a certified code generator is to insure that the generated code satisfy a certain level of 
confidence regarding the accuracy of the outputs relative to inputs. A certified code generator helps 
developers to remove unit tests and number of manual demonstrations. 

Prerequisite: use of a well-defined input format 

Since the first release of the IEC61131-3 programming standard, users want to be able to exchange their 
programs, libraries and projects between development environments. in fact, there are more than one 
hundred tools providing the IEC61131-3 textual and graphical languages but saving the description using 
their own specific format. Although this was not the intent of the standard itself, it was a task that the 
independent organization PLCopen [6] committed itself to. IEC61131-3 is focused on the software 
development environment.  

This resulted in a workgroup named TC6 for XML. This committee defined an open 
interface between all different kinds of IEC61131-3 software tools. It provides the ability 
to transfer the information that is graphically presented on the windows of one coding 
tool to other coding tool. This format supports textual description (i.e. for structured text, 
SFC activity and receptivity) but also graphical information, like position and size of the 
blocks, connections (including route) between the objects of the language. 

The SSIL2 Certified Code Generator 

With aims of sustainability, we decided that our SSIL2 Certified Code Generator would take XML files 
defined by the PLCopen organization as the input and provide SSIL2 C code as the output. As in avionic, 
it is mandatory that the SIL level of the code generator has the same SIL level as the code it produce. 

The figure 6 shows that the SSIL2 Certified Code Generator is composed of 4 modules (light grey): 

 The PLCopen XML comparator: this module verifies that the XML input file is compliant with the 
version of the tool.  

 The IEC61131-3 library: the C functions associated to each IEC61131-3 function block have been 
certified by static analysis and unit tests. 

 The XML to C code generator. 

 The report generator of the code generation execution  

These 4 certifiable software modules have been developed following a SSIL2 development, verification 
and validation process. The evaluation process has been executed by the certification authority named 
CERTIFER [7] which deliver the 8270/0157 certificate: SILCoder version 3.00 meets the 551L2 
requirements of the standard EN50128:2011. 
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Figure 6: Certified Code Generator 

The certificate is associated to an annex which gives the list of the definition documents (requirements, 
plans, specifications, design, tests and reports) with the related version used for the evaluation, the 
results of the evaluation and also the perimeter of the certification. 

Some tangibles and intangibles results 

Contribution of Model based design and model based testing methodologies 

A model-based development process must be used closely to the requirement management process. 
Modelling frameworks allows stakeholders to simulate the requirements, the functional specification, the 
design specification and then the software and the hardware (engineers from the automotive fully play 
with Model In the Loop, Software In the Loop, Hardware In the Loop and today Driver or Human In the 
Loop). The customer requirements and needs are immediately understood by the system provider. 
Functional specification can be dynamically explained to the customer, same for design, software and 
hardware. For example, OEM provides us return of investment showing that only 3 reviews compare to 10 
before are necessary to get the design acceptance from the customer. 

Executable specifications allow easy verification and validation with both internal and external non 
experts groups.  End users like drivers or maintenance engineers are now involved in the specification 
reviews and design reviews rather than at the end of the project. Verification and validation at every stage 
of the V-Cycle significantly decreases system failure risks by finding errors at the earliest.  

 

Figure 7: Improvement of the V-Cycle using Model based Design and Certified Code Generator 
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Value of a Certified Code Generator 

The SSIL2 Certified Code Generator delivers SSIL2 Certified C Code.  As the software application is not 
just certifiable but automatically certified, software engineers can remove some demonstrations activities 
from their development and verification processes. The certificate gives the commitment and ensures that 
the software application is compliant with the SSIL2 readability and testability criteria and the 
recommended programming quality rules.   

The software to embed in a real time controller is composed by two parts (see figure 6): the software 
application that is specific to one project and the “basic software” which makes the link between the 
software application and the operating system or directly the hardware if the target has not an OS.   

As the specific application part is automatically certified using the Certified SSIL Code Generator, the 
product provider has only to certify the software dependent part of the generic target using his corporate 
SSIL2 Development and Verification & Validation process.  In fact the certification of the basic software 
has to be done one time independently of the projects by the team managing the execution platform as a 
product: Each train maker defines and certifies a platform (hardware + basic software) that will be used 
during 5-10 years for multiple railway projects).   

The final product is based on certified generic basic software (from OEM) and a certified specific 
software application (from our SILCoder). Certificates of the platform and of the code generator replace 
lot of tests and demonstration and save time and money.  The Control System provider can focus directly 
on the software integration activities and software/hardware integration activities.   

What we test is what we embed 

How to demonstrate that the behaviour of the model has the same behaviour as the software? This big 
issue is solved using our IEC61131-3 development framework (ControlBuild) and our certified code 
generator (SILCoder). Each IEC61131-3 model is saved using the PLCopen format (native format for 
ControlBuild) and a unique C code is automatically generated from the XML PLCopen description. The C 
code of each model is generated one time and is linked with the right target platforms for simulation, code 
generation, debug, and deployment or test bench objectives as we can show in the figure 8. 

 

Figure 8: What is simulated is what is embedded 

It means that we reuse the same generated C code (from the models) to provide software applications 
but also real time simulators (actuator, sensors and virtual controllers) for the HIL platforms (Hardware-in-
the-Loop, Iron Bird in avionic).  The test engineers focus on the virtual world making number of 
verifications. Like with Virtual Iron Bird, it is easier to execute test procedures and insert failures on the 
virtual environment (actuators/sensor) of the virtual product under test. Objective of virtual bench is to find 
and remove the last errors while the validation on HIL is to make the final demonstrations and to provide 
the deliverables for certification authorities.  
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Value for the railway industry 

The IEC61131-3 languages, mainly used by the software engineers, will continue to take an ever more 
important place in development and delivery of software applications for railway. As the Certified Code 
Generator delivers the right level of safety for the control software, the gap to change the level of the 
certification of the software applications from SSIL0 to SSIL2 is significantly reduced. But for sure, it also 
means that the system provider must still upgrade his development and verification & validation process 
and integrate the use of modelling and code generation tools. 

As in avionic with tools like SCADE®, the value of such a model based design and testing approach using 
ControlBuild coupled with a Certified Code Generator is promising in terms of productivity benefits and 
organizational effectiveness for the train makers. For the whole process, the time required to design and 
implement SIL2 Certified Train Control & Monitoring Systems is now halved with the ability to capitalize 
and reuse systems knowledge and certified assets on others projects through the standardization of train 
functions (and their certified products and software). 

With the other IEC61131-3 tools providers, we are engaged in the official standardization of the XML 
PLCopen format.  The name of this future standard will be IEC61131-10. This will open the use of the 
Certified SSIL2 Code Generator for all the developer’s community.  More and more products will be 
compliant with the SIL2 level for the safety of passengers, operators and systems. 

Terminology 

ASIL: Automotive Safety Integrated Level 

BCU: Brake Control unit 

CAN: Controller Area Network 

DAL: Design Assurance Level 

DCS:  Digital Control Systems 

DDU: Display Driver Unit 

ECU: Electronic Control Unit 

EDCU: Electronic Door Control Unit 

EE: Embedded Electronic 

FBD: Function Block Diagram 

HIL: Hardware In the Loop 

ICD: Interface Control Documentation 

IP: Intellectual Property 

LD: Ladder Diagram 

MIL: Model In the Loop 

MVB: Multifunction Vehicle Bus 

OEM: Original Equipment Manufacturer 

OS: Operating System 

PLC: Programmable Logical Controllers 

PLM: Product Lifecycle Management 

POU: Program organization Unit 

SFC: Sequential Function Chart 

SIL:  Safety Integrated Level 

SSIL:  Software Safety Integrated Level 

ST: Structured Text 

SUT: System Under Test 

TCMS: Train Control & Monitoring System 

TCU: Traction Control Unit 

WTB: Wire Train Bus 

XML: eXtended Mark-up Language 
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Introduction 
 
Model Driven Engineering is now recognized as a 
way to significantly improve the development 
process of industrial systems and software. This 
approach leads to the production of various kinds of 
models associated to each modelling and verification 
step of the life cycle. All these concrete models may 
differ in their abstract definition (meta-model) and in 
their syntactic expression. Such diversity cannot be 
easily avoided as each modelling language brings its 
own specific benefit or is fundamentally associated 
with a particular tool or technique. However, merging 
and processing heterogeneous models to support all 
the required development activities can become a 
real engineering issue in the context of industrial 
projects.  
 
This paper presents a solution to this problem. The 
proposed approach is based on the LMP[1] (Logic 
Model Processing) technology to provide a unique, 
standardized and easy to process representation of 
each model that is involved in a given project. Using 
this solution leads to the realization of a global 
homogeneous repository from syntactical conversion 
of each input model, without altering their semantic 
diversity. It then dramatically facilitates the 
development of model processing tools, such as 
model explorations, model verifications, model 
transformations and architectural reasoning. 
 
1. The model jungle 
 
1.1. Model roles 
 
Models can be used at the various stages of the 
system development life-cycle. In the descending 
branch of the life-cycle, we can easily find for a 
single project at least requirements models, design 
models and a set of models associated with early 
verification techniques. If we make the assumption 
that each individual model is well defined in the 
context of its own purpose, the key issue is then to 
ensure a proper inter-operability between these 
various steps of the life-cycle. This implies that we 
can manage various kinds of model dependencies, 
such as traceability (e.g. between design model 

entities and requirement model entities), 
transformation (e.g. between a design model and a 
verification model) and consistency (e.g. between 
the various subsets of a design model) 
 
1.2. Model syntax 
 
Models can be defined with different meta-modelling 
languages or approaches, including BNF, XML 
DTDs or schemas, MOF or ECore. This choice has 
of course an impact on the way the concrete models 
can be handled in a tool or a tool-chain. Most of the 
time, the internal representation of a model in 
memory is tool dependent. On the contrary, the 
result of a file serialization must comply with a 
standard representation which depends on the 
corresponding meta-model syntax. For instance, 
BNF leads to token based human readable models, 
XML DTD or schema leads to XML tag based 
models and MOF or ECore leads to XMI tag based 
models. In a given project, these three kinds of 
concrete model syntax may have to collaborate 
within a same tool chain. 
 
1.3. Model correctness 
 
Each modelling language carries semantic concepts 
that are defined more or less formally by the various 
layers of the language definition. For token based 
languages, syntax compliancy brings a first level of 
correctness that must usually be completed by the 
verification of additional legality rules. With other 
modelling languages, more rigorous structural rules, 
such as relation cardinalities, can be guaranteed by 
construct. However, the actual correctness of a 
model depends on its foreseen usage, and two 
models described with the same modelling language 
may have different contents according to their 
applicative domain. For instance, the model of a 
real-time system may look correct in the scope of the 
verification of its static architecture but not correct in 
terms of its timing behaviour. Another source of 
discrepancy may come from the compliancy with the 
corporate or project engineering rules. For instance 
the way to build a system in SysML[2] may 
significantly vary between the various users or tool 
vendors. 
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1.4. Model inter-operability 
 
All these differences may be fully justified but can 
become a blocking issue for the definition of 
complete tool-chains or for system wide model 
integration. Several approaches may be considered 
to solve these model inter-operability issues. The 
first natural solution is to express all the models with 
the same meta-modelling language and implement 
all the tools within the same framework. The typical 
example of this solution is the use of the Eclipse 
platform as it has been done with the Topcased and 
Polarsys[3] initiatives. Such an “all-in-one” approach 
does minimize the inter-operability problem but 
raises a certain number of other issues like a lack of 
modularity and an increase of the effort required to 
include specialized legacy models and tools. 
Another solution consists in offering a standardized 
communication layer by the mean of a logical bus 
that can be used to ensure model transformations 
and tool interaction in a transparent way. An 
example of this solution is ModelBus[4] which allows 
for heterogeneous tools interaction, but is dedicated 
to ECore based models. The alternate approach that 
we are describing below does not have these 
restrictions. This approach is called Logic Model 
Processing (LMP). 
 
2. Logic Model Processing 
 
LMP is based on the use of the Prolog[5] language 
to formally specify rules to be applied to an 
appropriate representation of the applicative model. 
This representation of the model is composed of 
Prolog facts. Prolog (Programmation Logique) is a 
declarative language that is used to express rules 
applying on predicates. Rules can then be combined 
using Boolean Logic. Prolog syntax is very simple 
and most programs can be specified using AND, OR 
and NOT logical operators.  
 
LMP consists of a methodology, a set of tools and 
prolog libraries.  
 
Model Driven Engineering activities are supported by 
LMP as follows: 
- The meta-model classes define prolog fact 
specifications whose parameters names correspond 
to the attributes names of the classes. 
- An instantiated model consists in a populated 
prolog facts base, where facts parameters values 
correspond to classes attributes values. 
- The model processing program is expressed as a 
set of prolog rules whose predicates are others rules 
or facts. 
- To execute a LMP program, it is necessary to 
produce the facts base associated with the model to 
be processed, to merge it with the rules base 
associated with the processing to be performed and 
to run a query with the prolog interpreter. 

 
With the prolog language being an ISO standard, 
any prolog environment can be used to support the 
LMP approach. The one that has been used until 
now is sbprolog[6]. Other environments such as 
SWI-Prolog[7] are also being considered. One of the 
particularities of sbprolog is that the facts and rules 
bases can be described in textual form or in a binary 
form (byte code). Sbprolog binary files can be 
concatenated which highly facilitates the realization 
of modular processing features and the merge of 
input models. 
 
In addition to the prolog interpreter itself and its run-
time environment, a set of additional tools and 
reusable libraries are also part of the LMP tool-box. 
These include in particular input model parsers and 
output model un-parsers (or printers). The currently 
available parsers are for XML/XMI models (xmlrev), 
AADL[8] models (aadlrev), and programming 
languages. Facts base generation can also be 
implemented for memory stored models handled by 
modeling tools. 
 
The main benefits brought by the LMP approach are: 
- A clear separation between the model to be 
processed (facts base) and the model processing 
program (rules base). 
- A strong traceability between model processing 
requirements and their implementation (one rule per 
requirement). 
- The declarative and logical programming style 
offered by the prolog language. 
- The ability to define modular set of processing 
rules and to link them together at run time. 
- The ability to use a same implementation language 
for all kinds of model processing, i.e. navigation 
within the model language constructs (query 
language), verification of model properties 
(constraint language), model to model, model to text 
and text to model transformations (transformation 
language). 
 
3. Current LMP Applications 
 
3.1. Stood 
 
LMP principles have been applied in their early 
phase in the Stood[9] design tool. It has been used 
in this context for more than twenty years to 
implement various features such as static rules 
checkers, code and documentation generators as 
well as reverse engineering tools. 
 
One of the most significant successes of the use of 
the LMP technology within the Stood tool has been 
the qualification of customized model verification by 
Airbus in support of the DO 178 certification process. 
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3.2. AADL Inspector 
 
After the positive experience of the use of the LMP 
approach for increasing the capabilities of the Stood 
tool, it was decided to apply it in an extensive way 
for the development of the AADL Inspector[10] 
framework.  
 
AADL Inspector is a model processing environment 
that can parse AADL models and connect them to a 
variety of verification and generation tools, such as 
Cheddar[11] for scheduling analysis, Marzhin[12] for 
event based simulation and Ocarina[13] for source 
code generation. AADL Inspector can also be used 
to convert SysML or UML-MARTE[14] models into a 
corresponding AADL specification to take advantage 
of the existing connections with the processing tools.  
 
AADL Inspector can thus be seen as a generic 
model processing framework using AADL as pivot 
language and LMP as transformation technique. 
 
3.3. The TASTE tool-chain 
 
The TASTE[15] tool-set resulted from spin-off 
studies of the ASSERT project, which started in 
2004 with the objective to propose innovative and 
pragmatic solutions to develop real-time software. 
One of the primary targets was satellite flight 
software, but it appeared quickly that their 
characteristics were shared among various 
embedded systems.  
 
The solutions that have been developed now 
comprise a process and several tools. The 
development process is based on the idea that real-
time, embedded systems are heterogeneous by 
nature and that a unique UML-like language was 
helping neither their construction, nor their 
validation. Rather than inventing yet another 
“ultimate” language, TASTE makes the link between 
existing and mature technologies such as Simulink, 
SDL, ASN.1, C, Ada, and generates complete, 
homogeneous software-based systems that one can 
straightforwardly download and execute on a 
physical target.  
 
Within the TASTE tool-chain, LMP is used to insure 
a link between the Domain Specific Models 
(Interface View and Deployment View) and the 
corresponding AADL specification that is used 
during the model processing phases (real-time 
analysis and code generation). 
 
3.4. The PMM editors 
 
The Property Model Methodology[16] is a system 
engineering approach that involves several 
interconnected models: the Specification Model, the 

Property Based Requirements, four kinds of Design 
Models and the overall System Model. 
 
A graphical editor is being developed to support this 
modelling approach and the use of LMP is foreseen 
to insure the various required model processing 
needs in this context. 
 
4. Using LMP to process heterogeneous models 
 
The examples of use of the LMP technology that 
have been presented in the previous section are all 
confined in the scope of a particular tool or tool-
chain: processing HOOD[17] models in Stood, 
processing AADL models in AADL Inspector and in 
TASTE.  
 
However, one of the most interesting benefits of this 
approach is that it can easily be generalized to 
address the models-interoperability issue that has 
been expressed in section 1 of this paper. In this 
section, we explain how LMP can be used to 
convert, merge and process heterogeneous models. 
 
4.1. Converting heterogeneous models 
 
The role of model parsing in the LMP context 
consists of performing a syntactic transformation 
from the original model stored in memory or 
serialized in a file into a normalized prolog facts 
base. 
 
In the case of text based input models, the 
conversion are insured by a parser which output 
consists of a list of prolog predicates. 
 
In the case of memory based input models, which 
are for instance produced by a graphical tool, the 
prolog predicates must be generated with a 
dedicated printing or serialization feature. 
 
When the sbprolog environment is used, LMP 
provides a C library for the production of binary 
predicates. This library can be linked to the model 
parsers or editors. 
 
4.2. Merging heterogeneous models 
 
The conversion step that is described in the previous 
paragraph can be applied to all the input models, 
whatever meta-model they comply with and 
whatever they are serialized in a file or stored in 
memory. 
 
The portable way of merging converted models is to 
concatenate the elementary textual prolog facts 
bases that have been produced by each conversion 
tool. I can be noted that additional information can 
be inserted at that stage under the direct form of 
dedicated prolog facts. This may be especially useful 
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to introduce processing instructions (pragmas) into 
the merged facts base. 
 
The main constraint that applies at this stage is the 
management of facts redundancy and ordering. A 
good practice to avoid issues is to ensure that each 
conversion tool produces a different set of 
predicates. When this is not possible, the variation of 
the number of parameters (arity) can be used to 
avoid facts overwriting. Another solution consists of 
using a dedicated parameter to identify the model 
source. 
 
In the case of sbprolog, it is not required to take care 
of the way textual facts are ordered. With other 
prolog environments it may be mandatory to group 
all the similar facts together. Moreover, sbprolog 
binary facts files can be also concatenated. 
 
At this stage, the resulting facts base is a 
homogeneous data repository representing the 
merged heterogeneous input models that is ready 
for any kind of processing. 
 
4.3. Processing heterogeneous models 
 
Most of what has been explained for the input 
models facts base can also be applied to the model 
processing rules bases. The main difference is that 
the rules bases are usually statically defined and 
stored in a model processing library, whereas the 
facts bases are dynamically elaborated from the 
current state of the applicative model. Another 
difference comes from the facts/rules separation that 
has strictly been applied until now for all the LMP 
realizations. However, some future applications may 
require that rules are also specified within the input 
model. This may be the case for instance while 
adding model constraints insertions during the 
modelling phases. 
 
All the variety of processing can now be applied to 
the merged facts base, such as static rules 
checkers, dedicated model generators to feed 
verification tools and source code generators. 
 
4.4. Example of use 
 
This section presents a practical example of use of 
the approach. This case study has been simplified 
as much as possible for illustrative purpose. We are 
addressing what could be the development process 
for a library of operations on complex numbers. 
 
We consider a development workflow that would be 
composed of four separate steps. Each step is 
associated with an ISO 12207 standard activity and 
is likely to use different description languages and 
tools: 
 

- step1: System Requirements Analysis (5.3.2). 
- step2: Software Requirements Analysis (5.3.4). 
- step3: Software Architectural Design (5.3.5). 
- step4: Software Coding and Testing (5.3.7). 
 
4.4.1 System requirements analysis 
 
The table below gives a small subset of possible 
requirements for the realisation of a mathematical 
library on complex numbers. 
 

Id Name Text 
1 R_ComplexLib The complex number 

library must define the 
complex number type 
and operations on 
complex numbers. 

2 R_ComplexType A complex number type 
must have a Real part 
and an Imaginary part. 

3 R_ComplexAttributes Real and Imaginary 
parts of a complex 
number must be real 
numbers. 

4 R_ComplexAdd The two operands and 
the return value of the 
add operation must be 
complex numbers. 

5 R_ComplexSub The two operands and 
the return value of the 
sub operation must be 
complex numbers. 

 

When done with a requirements analysis tool, such 
as IBM Doors or SysML compliant editors, a 
requirements model can be serialised in various 
formats. For the purpose of the example, we have 
selected the Requirements Interchange Format 
(ReqIF), as it is an OMG standard. A small fragment 
of the corresponding file is given below: 
 
<SPEC-OBJECTS> 
  <SPEC-OBJECT LONG-NAME="R_ComplexLib" ... 
  <SPEC-OBJECT LONG-NAME="R_ComplexType" ... 
  <SPEC-OBJECT LONG-NAME="R_ComplexAttributes" 
  <SPEC-OBJECT LONG-NAME="R_ComplexAdd" ... 
  <SPEC-OBJECT LONG-NAME="R_ComplexSub" ... 
</SPEC-OBJECTS> 
 

Applying the appropriate LMP parser (xmlrev) to this 
file provides the corresponding list of prolog facts: 
 
isXMLTag('#39','SPEC-OBJECTS','#13','39'). 
isXMLTag('#40','SPEC-OBJECT','#39','40'). 
isXMLAttribute('#40','SPEC-OBJECT', 

'LONG-NAME','R_ComplexLib','40'). 
... 

 
The fact type isXMLTag/4 keeps track of the XML 
tags hierarchy whereas isXMLAttribute/5 provides 
the name and value of each attribute for each XML 
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tag. This low level description may be hard to use 
during the next steps. We can thus improve the 
access to relevant information by introducing a first 
level of processing that defines a new set of 
predicates of type isSpecObject/1: 
 
getSpecObjects :-  
  isXMLTag(X,’SPEC-OBJECTS’,_,_), 
  isXMLTag(Y,’SPEC-OBJECT’,X,_),  
  isXMLAttribute(Y,_,’LONG-NAME’,R,_),  
  assert(isSpecObject(R)). 

 
This rule creates a new list of facts that hides the 
syntactic complexity of the original XML structure 
and filters the needed data for further use, such as 
performing requirements traceability. 
 
isSpecObject('R_ComplexLib'). 
isSpecObject('R_ComplexType'). 
isSpecObject('R_ComplexAttributes'). 
isSpecObject('R_ComplexAdd'). 
isSpecObject('R_ComplexSub'). 

 
4.4.2 Software requirements analysis 
 
We assume that the next modelling step consists in 
formalizing the data type requirements thanks to a 
UML class diagram, as shown below: 
 

 
Figure 1 : a UML class 
 
This UML class diagram can be serialized in 
standard XMI format. A little fragment of the resulting 
.uml file is given below: 
 
<uml:Model xmi:type='uml:Model' ...> 
<packagedElement xmi:type='uml:Class' ... 
 name='Complex'> 

<ownedAttribute xmi:type='uml:Property' ... 
name='Re'/> 
<ownedAttribute xmi:type='uml:Property' ... 
name='Im' /> 

</packagedElement> 

 
We can then use the same LMP parser as in the 
previous step to convert this UML model into an 
equivalent list of prolog facts.  
 
isXMLTag('uml#3','uml:Model','#2','3'). 
isXMLAttribute('#3','uml:Model', 

'xmi:type','uml:Model','3'). 
isXMLTag('#5','packagedElement','#3','5'). 
isXMLAttribute('#5','packagedElement', 

'xmi:type','uml:Class','5'). 
isXMLAttribute('#5','packagedElement', 

'name','Complex','5'). 
isXMLTag('#6','ownedAttribute','#5','6'). 
isXMLAttribute('#6','ownedAttribute', 

'xmi:type','uml:Property','6'). 
isXMLAttribute('#6','ownedAttribute', 

'name','Re','6'). 
... 

The XMI serialisation generated by UML tools may 
be huge even for a small model. To pre-select the 
useful information for a given processing purpose, 
we can create a more specialised facts base from 
the original one by specifying a filtering rule: 
 
getUmlClasses :-  
  isXMLTag(X,'uml:Model',_,_),  
  isXMLTag(Y,'packagedElement',X,_),  

isXMLAttribute(Y,_,'xmi:type','uml:Class',_),  
isXMLAttribute(Y,_,'name',C,_),  
assert(isUmlClass(C)),  

  isXMLTag(Z,'ownedAttribute',Y,_),  
  isXMLAttribute(Z,_,'xmi:type', 
                        'uml:Property',_),  

isXMLAttribute(Z,_,'name',P,_),  
assert(isUmlProperty(C,P)). 

 
The new facts base would then looks like the 
following, and could be easily enriched to contain 
other details such as attribute types or requirement 
satisfy abstractions. 
 
isUmlClass('Complex'). 
isUmlProperty('Complex','Re'). 
isUmlProperty('Complex','Im').  
 
4.4.3 Software architectural design 
 
We are now considering the software architecture 
and express the library as an AADL package, so that 
it can be used by the other parts of the application. 
Although the AADL standard has a graphical 
notation, its main usage is with the textual notation 
that is human readable and scalable. 
  
PACKAGE ComplexLib 
PUBLIC 
WITH Base_Types; 
 
  DATA Complex 
  END Complex; 
 
  DATA IMPLEMENTATION Complex.others 
  SUBCOMPONENTS 
    Re : DATA Base_Types::Float; 
    Im : DATA Base_Types::Float; 
  END Complex.others; 
 
  SUBPROGRAM Add 
  FEATURES 
    C1 : IN PARAMETER ComplexLib::Complex; 
    C2 : IN PARAMETER ComplexLib::Complex; 
    R : OUT PARAMETER ComplexLib::Complex; 
  END Add; 
 
  SUBPROGRAM Sub 
  FEATURES 
    C1 : IN PARAMETER ComplexLib::Complex; 
    C2 : IN PARAMETER ComplexLib::Complex; 
    R : OUT PARAMETER ComplexLib::Complex; 
  END Sub; 
 
END ComplexLib; 

 
In order to be able to process an AADL specification 
with LMP, we need to use the AADL parser 
(aadlrev). The result of the parsing is the facts base 
that is shown below: 
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isComponentType('ComplexLib','PUBLIC', 
  'Complex','DATA','',6). 
isComponentImplementation('ComplexLib','PUBLIC', 
  'Complex','others','DATA','','',9). 
isSubcomponent('ComplexLib','Complex','others', 
  'Re','DATA','Base_Types::Float','','',10). 
isSubcomponent('ComplexLib','Complex','others', 
  'Im','DATA','Base_Types::Float','','',11). 
isComponentType('ComplexLib','PUBLIC', 
  'Add','SUBPROGRAM','',15). 
isFeature('PARAMETER','ComplexLib','Add','C1', 
  'IN','','ComplexLib::Complex','','',16). 
isFeature('PARAMETER','ComplexLib','Add','C2', 
  'IN','','ComplexLib::Complex','','',17). 
isFeature('PARAMETER','ComplexLib','Add','R', 
  'OUT','','ComplexLib::Complex','','',18). 
... 

 
Due to the token based nature of the AADL syntax 
as opposed to the XML/XMI based languages, the 
resulting facts base is much more compact and 
directly usable without having to define a new set of 
more precise predicates. 
 
4.4.4 Coding 
 
For the last step of our development process, we will 
process an implementation of the library in Ada 
language. A possible realisation in source code 
could be: 
 
package ComplexLib is 
  type Complex is record 
    Re : Float; 
    Im : Float; 
  end record; 

function add ( 
  C1 : IN Complex;  
  C2 : IN Complex )  
  return Complex; 
function sub ( 
  C1 : IN Complex;  
  C2 : IN Complex )  
  return Complex; 

end ComplexLib; 

 
We can then use another parser of the LMP toolbox 
(adarev) to build a facts base from the Ada code. 
 
packageSpec('ComplexLib','_root_'). 
typeComponent('ComplexLib','Complex',  
  'Re','Float',''). 
typeComponent('ComplexLib','Complex',  
  'Im','Float',''). 
typeSpec('ComplexLib','Complex','...'). 
operationSpec('ComplexLib','add','...'). 
param('ComplexLib','add','...', 
  'C1','Complex','in',''). 
param('ComplexLib','add','...', 
  'C2','Complex','in',''). 
param('ComplexLib','add','...', 
  'return','Complex','out',''). 
... 

 
For the same reason as for AADL, there is no need 
to create a new facts base to select the useful 
information. 
 

4.4.5 All together 
 
Although they are coming from different modelling 
languages, the syntactic transformation into prolog 
predicates allows for global processing of the 
merged model. 
 
The facts sub-bases can be concatenated to provide 
all the required data to perform cross-activity 
processing. In particular, this can be used to verify 
the consistency of the workflow, such as 
requirements coverage or code compatibility with the 
architecture. 
 
All these verification rules can be expressed in 
standard prolog language, as shown in the two 
simple examples given below. 
 
Rule1. the data types specified in the software 
specification must be defined in the software 
architecture: 
 
checkR1 :-  
 isUmlClass(T),                         /*UML*/ 
 not(isComponentType(_,_,T,'DATA',_,_)),/*AADL*/  

write('Error R1 for: '), write(T). 

 
Rule2: the data types specified in the software 
architecture must be defined in the source code: 
 
checkR2 :-  

isComponentType(_,_,T,'DATA',_,_),    /*AADL*/ 
  not(typeSpec(_,T,_)),                 /*Ada*/ 
  write('Error R2 for: '), write(T). 

 
Similar rules could be defined to check that all the 
system requirements are properly covered by design 
entities.  
 
After having shown how LMP could ease static 
processing of merged heterogeneous models, we 
will now consider dynamic architectural reasoning. 
 
5.  Architectural Reasoning Using LMP 
 
The prolog fact-based representation of the LMP 
form presents a good foundation for the logical 
reasoning and processing of the architectural 
models. In the next sections we present some 
simple examples to illustrate the flexibility of the LMP 
approach. 
 
5.1.Physical Separation and Independence Analysis  
 
To illustrate this potential, we present a simple LMP-
based extension to illustrate how physical zonal 
independence can be assessed from the LMP 
model.   
 
In modern aircraft, there is often a need to ensure 
that the independence assumed within a fault-tree is 
sufficient to mitigate the potential of physical 
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damage that may arise from adverse system events 
such as fire, or explosions. Many manufactures 
require a minimum physical separation among 
redundant elements. In Integrated Modular Avionic 
(IMA) architectures, assuring that this separation is 
achieved for all of the hosted functions can be non-
trivial, as multiple sub-function elements are 
distributed across the IMA processing and 
input/output hardware elements.  As architectures 
become increasing networked and distributed, the 
complexity of such analysis may only increase, 
hence the ability to address it systematically is 
attractive. 

 
Figure 2 : Example Wheel Brake System 
 
To illustrate the technique we present the wheel 
brake system case study, shown in Figure 2.  This 
system comprises two independent hydraulic circuits 
that are each controlled by a dual lane command 
/monitor computation system.  For each circuit, the 
command processor modulates the expected 
pressure to achieve the required braking force; the 
monitor processor supervises the commanded 
braking operation, monitoring commanded output 
pressure sensor feedback. If the monitored pressure 
is not in agreement with the monitor’s expected 
limits, the monitor closes the isolation valve and 
removes all hydraulic pressure, rendering the 
channel in active. It then yields control to the other 
channel.  
 
For brevity of the presentation, our example analysis 
focuses on the placement of the command and 
monitoring processing hardware of each lane.  
 
To introduce the physical location of components 
onto the model a new AADL property is defined. In 
our simple example, we utilize a single point, but in 
practice this may be a series of points, which 
represent the physical boundaries of the 
components. Inherently extensible, via property sets 

adding such notions to an AADL model is very 
straightforward. 
 
property set Location  is 
 
Location: list of record  
( x_pos : aadlreal; 
  y_pos :aadlreal; 

z_pos : aadlreal; )  
applies to 
( processor, system, abstract, device ); 
 
end Location; 

 
To represent both good and bad configurations, two 
system implementations are defined, by extending 
the base implementation. In the first configuration 
the command and monitor components within each 
lane are placed to be adjacent, and the computation 
elements of the Alt and Norm lanes are separated by 
10 meters, as illustrated below. 
 
System implementation 
wbs_com_mon_dual_lane.good_impl  
  extends wbs_com_mon_dual_lane.impl 
 
properties 
Location::Location => 

([x_pos => 1.0; y_pos => 1.0; z_pos=> 1.0;])  
applies to monAlt; 

Location::Location => 
([x_pos => 1.1; y_pos => 1.0; z_pos=> 1.0;])  
applies to comAlt; 

Location::Location=> 
([x_pos => 10.0; y_pos => 1.0; z_pos=> 1.0;])  
applies to comNorm; 

Location::Location => 
([x_pos => 10.1; y_pos => 1.0; z_pos=> 1.0;])  
applies to monNorm; 

          
end wbs_com_mon_dual_lane.good_impl; 

 
In the second configuration the monitor of the Alt 
channel is swapped with the monitor of the Norm 
channel.  It should be noted that, this configuration is 
insufficient with respect to the required physical 
channel separation, since failure of a single physical 
zone will destroy critical components of both lanes of 
redundancy. Hence, it is our intention is to illustrate 
this using model analysis. 
 
The AADL composite error model, records the 
assumptions of the structure of the redundancy, 
hence the first stage of analysis is to convert this into 
LMP form. This is done using the ADDL parser 
(aadlrev) that has been extended under this work to 
capture the structure of the Error Annex logical 
expressions.  
 
composite error behaviour 
states 
--Unannunciated braking loss 
[  
( ( pumpGreen.Failed or isolNorm.Failed or   

  bcvNorm.Failed or monNorm.Failed or   
  comNorm.Failed ) and  

  ( pumpBlue.Failed or isolAlt.Failed or  
  bcvAlt.Failed or monAlt.Failed or  
  comAlt.Failed ) ) or  

( pedalLeft.Failed and PedalRight.Failed ) or 
brake.Failed 
]-> UnannunciatedBrakingLoss; 
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The LMP representation for the above model 
comprises two facts; isEMV2CompositeStateElem is 
used to store failure conditions, and 
isEMV2CompositeStateExpr facts are then used to 
map the logical relationships of the elements. Two 
example facts are shown below. 
 
isEMV2CompositeStateExpr('wbs','wbs_com_mon_dual
_lane','impl','unnamed_A1','unnamed_K1','$1','pu
mpGreen.Failed','OR','isolNorm.Failed',235). 
 
isEMV2CompositeStateElem('wbs','wbs_com_mon_dual
_lane','impl','unnamed_A1','unnamed_K1','$2','bc
vNorm.Failed','NIL',235). 

 
In a similar manner to other LMP parsers, element 
and expression identifies and indexes ‘$1’ are 
maintained to support the mapping and relating of 
the facts. Once in LMP form, the next stage of the 
physical separation, is to convert the logical 
structure of the fault-tree into a form that can be 
executed with prolog, This conversion comprises a 
simple mapping. Each expression is converted to a 
dynamic prolog fact as illustrated below. 
 
 init :- 
  dynamic('pumpGreen.Failed'/0), 
  dynamic('isolNorm.Failed'/0), 
  dynamic('bcvNorm.Failed'/0), 
  dynamic('monNorm.Failed'/0), 
  dynamic('comNorm.Failed'/0), 
  dynamic('pumpBlue.Failed'/0), 
  dynamic('isolAlt.Failed'/0), 
  dynamic('bcvAlt.Failed'/0), 
  dynamic('monAlt.Failed'/0), 
  dynamic('comAlt.Failed'/0), 
  dynamic('pedalLeft.Failed'/0), 
  dynamic('PedalRight.Failed'/0), 
  dynamic('brake.Failed'/0). 

 
The init predicate introduces all of the potential 
faults as dynamic facts in the prolog database. It is 
complimented by a clear, predicate (not shown) that 
retracts all facts related to failures. Clear is then 
used to establish a clean baseline for iterative 
analysis and queries. This is also useful to support 
working in the interactive prolog shell, when 
manually exploring failure combinations. 
 
The isEMV2CompositeStateExpr are similarly 
reduced and mapped to a simplified executable form 
as illustrated below.  
 
exp11 :- exp5,exp10. 
exp12 :- 'pedalLeft.Failed','PedalRight.Failed'. 
exp1 :- 'pumpGreen.Failed';'isolNorm.Failed'. 
exp2 :- exp1;'bcvNorm.Failed'. 
exp3 :- exp2;'monNorm.Failed'. 
exp4 :- exp3;'comNorm.Failed'. 
exp6 :- 'pumpBlue.Failed';'isolAlt.Failed'. 
exp7 :- exp6;'bcvAlt.Failed'. 
exp8 :- exp7;'monAlt.Failed'. 
exp9 :- exp8;'comAlt.Failed'. 
exp14 :- exp11; exp13. 
exp15 :- exp14;'brake.Failed'. 
exp5 :- exp4. 
exp10 :- exp9. 
exp13 :- exp12. 

 
Logical structure of these is generated from the 
structure of the composite error model state-

annotations. It should be noted that the code and 
effort required to generate executable form from the 
LMP representation is very small comprising less 
than 100 lines of prolog in total. 
 
We remind that the logical operator AND (resp. OR) 
is expressed in prolog by a comma (resp. a 
semicolon). 
 
Once in this reduced form, prolog is able to compute 
how the combination of failures impacts the top-level 
event. In our simple the top-level event is 
represented by the expression with the highest 
index. 
 
The next stage of the analysis is to generate the set 
of failures that can correspond to the different zones. 
Once processed by LMP, the location properties 
introduced previously yield a set of facts for each 
component as shown below. 
 
isRecordField('wbs','wbs_com_mon_dual_lane', 
'good_impl','monAlt','LOCATION::LOCATION',1,'x_p
os','1.0',275). 
isRecordField('wbs','wbs_com_mon_dual_lane', 
'good_impl','monAlt','LOCATION::LOCATION',1,'y_p
os','1.0',275). 
isRecordField('wbs','wbs_com_mon_dual_lane', 
'good_impl','monAlt','LOCATION::LOCATION',1,'z_p
os','1.0',275). 

 
The local facts are then grouped by component 
using a ftacomponent predicate as shown below, 
that simply maps the component name and X,Y,Z 
location.  
 
ftacomponent(P,T,I,Name,X,Y,Z) :- 
  isRecordField(P,T,I,Name,'LOCATION::LOCATION', 
    1,'x_pos',XA,_), 
  isRecordField(P,T,I,Name,'LOCATION::LOCATION', 
    1,'y_pos',YA,_), 
  isRecordField(P,T,I,Name,'LOCATION::LOCATION', 
    1,'z_pos',ZA,_), 
  atom_number(XA,X), 
  atom_number(YA,Y), 
  atom_number(ZA,Z). 

 
The system then examines all instances of the 
ftacomponent and generates zones of collocated 
component using the a simple separation auxiliary 
predicate, that returns true if the two components 
are located within a defined separation limit 
(Distance), which in our case was 6 meters. 
 
separation((X1,Y1,Z1),(X2,Y2,Z2),Distance):- 
  Xd = X2 - X1, 
  Yd = Y2 - Y1, 
  Zd = Z2 - Z1, 
  D is sqrt((Xd * Xd) + (Yd * Yd) + (Zd * Zd)), 
  D < Distance. 

 
As illustrated below the code to build_zones is 
relatively terse comprising only a few lines of code. 
This is one of the attractions of the declarative 
nature of the prolog processing. 
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build_zones([],PP,TT,II,Acc,Acc). 
build_zones([(_,X,Y,Z)|T],PP,TT,II,Acc,Final):- 
findall((B,BX,BY,BZ), 
   (ftacomponent(PP,TT,II,B,BX,BY,BZ), 
   (seperation((X,Y,Z),(BX,BY,BZ),6))),Zone), 
    (not(member(Zone,Acc)) -> 
 append(Acc,[Zone],NewAcc); 
 NewAcc = Acc ), 
    build_zones(T,PP,TT,II,NewAcc,Final). 

 
Once the zones are complete, we simply instantiate 
a zonal related failure set for each zone, but adding 
zone predicates to the output. The zone predicates 
for the good and bad wheel brake command monitor 
configurations are shown below. 
 
zone_good_impl0:- 
 assertz('comAlt.Failed'), 
 assertz('monAlt.Failed'). 
zone_good_impl1:- 
 assertz('monNorm.Failed'), 
 assertz('comNorm.Failed'). 

 
zone_bad_impl0:- 
 assertz('monNorm.Failed'), 
 assertz('comAlt.Failed'). 
zone_bad_impl1:- 
 assertz('comNorm.Failed'), 
 assertz('monAlt.Failed'). 

 
To explore the system, it is only necessary to 
instantiate each of the generated zonal fault-sets 
with the fault tree expression logic discussed 
previously, and querying the state of the top-level 
hazard, in out case exp15. To package such 
analysis in smaller form large LMP database, a 
stand-alone file ‘ftap.pro’ is generated by the LMP 
processing logic.  
 
This can then be loaded into the interactive SWI-
Prolog environment. A trace from an interactive 
session following the loading of the file is shown 
below for the good component placement example. 
 
- ['ftap.pro'].    
true. 
?- init.         
true. 
?- clear.           
true. 
?- exp15.           
false. 
?- zone_good_impl0. 
true. 
?- exp15.           
false. 
?- zone_good_impl1. 
true. 
?- exp15.           
true . 

 
Evaluating exp15 following the single zone failure 
zone_good_impl0 concludes false, indicating that 
the failure of zone_good_impl0 is not sufficient to 
cause the top-level event.  However, the subsequent 
additional failure of zone_good_impl1 does cause 
the top-level event, and the subsequent query of 
exp15. 

 
Repeating the procedure with the bad configuration, 
we see that failures of the single zone are sufficient 
to cause the failure of the top-level event as 
illustrated in the trace below.  
 
?- ['ftap.pro']. 
true. 
?- init. 
true. 
?- clear.        
true. 
?- exp15.        
false. 
?- zone_bad_impl0. 
true. 
?- exp15.          
true . 

 
Note, that in our toy example, we are using a 
simplified representation of location. In real 
deployments our single point may be expanded to 
present the component boundary points. Similarly, 
other types of queries such as the use of a common 
CPU type, cooling zone, and or power-supply 
distribution etc., are easily implemented given 
AADL’s extensible property provisions. In each case 
basic analysis technique would remain largely 
unchanged, only requiring adaption of the 
build_zones criteria.  
 
5.2. Modelling Completeness Checks. 
 
A second application of the LMP processing is the 
implementation of automated model completion and 
completeness checking.  In large systems the level 
of detail and abstraction within the model needs to 
be managed and maintained. Organizations often 
maintain modelling standards that define the 
required model content. However, enforcing such 
standards can be cumbersome without the 
appropriate automation.   
 
However, if the model is expressed in LMP, the 
automation of consistence and compliance checks 
becomes very simple. Given that, all aspects of the 
architecture are represented by facts, simple queries 
against the fact bases can be generated for each 
requirement.  For example, as shown below, only a 
few lines of code are necessary to execute the query 
to check that all processing hardware components 
have a consistent error model associated with them. 
 
isComponentType(P,_,X,'PROCESSOR',_,_),  
not(isAnnex(P,X,_,_,'EMV2',_,_)),  
writeErrorMessage(P,X). 

 
By examining the architectural model, using 
additional system composition predicates and/or 
predicates derived from fault-tolerance theory 
predicates, the architectural correctness may be 
simply validated.  For example, a simple predicate 
may check that all bus components have a specified 
error model, e.g. Bit Error Rate (BER). A more 
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advanced predicate may check that protocols that 
are bound to the bus utilize a suitable end-to-end 
data transport protocol to mitigate the expected 
error-rate. More elaborate queries, such as 
Byzantine vulnerability analysis, are also possible, 
by highlighting all instances where forked data paths 
of the logical model, have terminals that bind to 
different physical components. 
 
Related Work 
 
The fault-tree representation used by our illustrative 
case-study was inspired from the original work of 
Shuchi[18].  
 
In the area of architecture model processing, several 
alternate solutions have been explored, such as 
REAL [19], RESOLUTE [20] and AGREE [21]. The 
definition of a “constraint annex” is also under 
discussion by the AADL standardisation committee. 
 
On-going and Future Work 
 
LMP is used for the development of the new 
processing plug-ins that will be integrated in the 
future distributions of the AADL Inspector tool. The 
current work is focused on extending the import 
capabilities for UML profiles models such as 
MARTE, SysML, SCADE System, or CAPELLA as 
well as new processing features, especially for 
safety analysis.  
 
In order to facilitate the connection with Domain 
Specific Modelling Languages, an automatic 
generation of most the prolog rules that are required 
to parse, navigate and process ECore based models 
is being developed. A similar approach is also 
envisaged for XSD definitions. 
 
Following the idea that LMP allows a tool agnostic 
infrastructure to be developed, integration with 
solutions like Modelbus is also considered.  
 
Another area of active research is the generation/ 
derivation of the AADL Error-Annex composite 
model annotations from a case-based reasoning 
approach of the known component failure modes in 
conjunction with architectural topology.  
 
Conclusion 
 
This paper introduces the raising issue of 
heterogeneous models processing and proposes an 
original solution to address it. This solution merges 
the principles of logic programming and those of 
model driven engineering to define the Logic Model 
Processing (LMP) approach.  
 

This approach and the supporting tools are 
described in the paper and several examples are 
provided to illustrate its benefits. 
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Abstract 

SAVOIR has taken inspiration from AUTOSAR, although the underlying industrial 

business model is different. The space community is smaller, the production is based 

on a few spacecraft per year, and there are industrial policy constraints. Still, there is 

a need to streamline the production of avionics and improve competitiveness of 

European industry. Reference architectures, reference specifications and standard 

interfaces are an efficient mean to achieve the goal. Space agencies and space 

industry are actively working at developing such reference specifications. Reusing 

specification is expected to allow reusing products. 

1. Description of SAVOIR 

A. What is SAVOIR 
SAVOIR (Space Avionics Open Interface aRchitecture) (http://savoir.estec.esa.int) 

is an initiative to federate the space avionics community and to work together in 

order to improve the way that the European Space community builds avionics 

subsystems. 

 

The objectives are: 

- to reduce the schedule and risk and thus cost of the avionics procurement 

and development, while preparing for the future, 

- to improve competitiveness of avionics suppliers, 

- to identify the main avionics functions and to standardise the interfaces 

between them such that building blocks may be developed and reused across 

projects  

- to influence standardisation processes by standardising at the right level in 

order to obtain equipment interchangeability (the topology remains specific to 

a project). 



- to define the governance model to be used for the products, generic 

specifications, interface definition of the elements being produced under the 

SAVOIR initiative.  

The process is intended to be applied as part of the Agencies ITTs, and throughout 

the subsequent procurements and development process. A particular goal is to have 

SAVOIR outputs exploited in future projects and relevant products as part of 

European supplier’s portfolios. 

 

SAVOIR is coordinated by the SAVOIR Advisory Group (SAG) including representative 

of ESA, CNES, DLR, AirbusDS, TAS, OHB, RUAG, Selex Galileo, and Terma. 

 

SAVOIR has been presented in ERTSS2012 [ERTSS2012]. The purpose of this paper 

is to give an update on the status of the initiative, the new technical areas that have 

been investigated, the documents that are available, the review process aiming at 

achieving consensus on the documents, and the application in space projects. 

 

It is interesting to note how SAVOIR intentions have evolved. The initial ambition 

was to propose not only reference architecture and specification, but also building 

block products allowing the construction of the avionic systems. The discussions with 

industry have shown that it was more efficient to leave the development of the 

products to industry and let them manage their product lines. However, it was clear 

that the role of the Agencies was to prepare generic specifications at system level, as 

well as the basic technology that industry will then use to build products. 

 

In addition, SAVOIR started with three pillars (data handling, control systems and 

software). It appeared soon that the operability was another important pillar which 

has a substantial impact on the variability of on-board avionics. This addresses space 

ground interface, operability concepts, and can also lead to harmonizing the software 

architecture on board and on ground. 

B. State of the Art 
The closest example of state of the art is AutoSar [AUTOSAR], triggered in the 

automotive industry. The business model is different (producing high number of cars 

and equipment), and therefore the resulting cooperation consensus is different. But 

the principle of “cooperating on standards and competing on implementation” 

remains. This was the motivation to start SAVOIR, but some differences where 

quickly noted: 

- Managing complexity is the driver for AutoSar, but not for SAVOIR. Instead, 

SAVOIR aims at product lines within a domain of reuse which is relatively well 

known. The concern was more the variability of the requirements than their 

complexity. Beside, complexity is intended to be addressed with the model based 

approach, both system and software. 

- The hardware architecture includes nearly a hundred of ECUs in a car, whereas 

the spacecraft platform computers can be counted with two hands’ fingers. 

- The business model is different, while millions of the same car are sold, space 

industry delivers some one-off spacecrafts a year. Instead, the European space 

cooperation rules enforce sub-contracting through “geographical return” (ESA 

must finance the industry of a Member State proportionally to the Member 

State’s contribution to ESA), creating the need for interoperability and clean-cut 

architecture. 

 



The American initiative SUMO (Space Universal MOdular Architecture) [SUMO] has 

been started by the American office of the director of national intelligence, with 

inspiration of SAVOIR. According to the SUMO published data (credit Bernie Collins 

ODNI/AT&F), this innovative satellite acquisition has for objective to reduce the 

overall cost of space assets to government clients, and to enhance the global 

responsiveness of the space industrial base.  

The policy drivers are based on the US National Space Policy 2010: “To promote a 

robust domestic commercial space industry, foster fair and open global trade and 

commerce through the promotion of suitable standards and regulations that have 

been developed with input from U.S. industry.” 

 

 

Other worldwide initiatives include (credit SUMO): 

- SPA:  AFRL’s Space PnP Architecture – focused on reducing satellite development 

to months instead of years.  A draft standard has been created through AIAA.  It 

evolved to MONArch. 

- cFE: NASA Goddard’s core Flight Executive software framework enables basic 

software functions to be reused across programs, while allowing for tailoring of 

mission-specific software application functionality. 

- Common Avionics Architecture (SpaceAGE Bus): NASA Goddard combines 

cFE/CFS with modular hardware (intra-box electrical & mechanical) definition for 

board level building-block functional elements; may be combined to form box 

level functionality 

- FDK: DARPA’s F6 Developer’s Kit, which is a set of open source interface 

standards, protocols, behaviours, and reference implementations thereof, 

necessary to develop a new module that can fully participate in a fractionated 

cluster. 

- Joint Architecture Standard (JAS): DOE Sandia National Labs – satellite PL 

processing & data com architecture, focuses on increasing mission flexibility, 

accommodating enhanced sensor performance, optimizing payload size, weight & 

power (SWaP) consumption. 

 

2. Scope of the project 
 

A. Initial working groups  
At the time of ERTSS2012, the SAVOIR Advisory Group was supported by three sub 

working groups: 

SAVOIR-SAIF (Sensor/Actuator InterFace) 
This working group addresses the electrical interface of the sensor 

and actuators used for the attitude control and the guidance of the 

spacecraft. 

The group achievement has been to detect the excessive costs due to the systematic 

redevelopment of an RS422 protocol, and therefore to propose its standardization in 

the scope of ECSS. A preliminary study defined physical and data link layer 

requirements as input to an update of the ECSS-E-ST-50-14C standard. This update 

is on-going.  



SAVOIR-SAFI (Sensor/Actuator Functional Interface) 
This working group is in charge of the standardization of the 

functional interface with sensors and actuators. 

The group’s achievement has been to define a standardized 

functional interface for the Star Trackers, which was proposed to be included in the 

ECSS-E-ST-60-20C (Star Sensor Terminology And Performance Specification). 

 

 
Figure 1 Star Tracker functional interface 

 

The group investigated then the possibility to expand the same activity to 

gyroscopes. The results of the discussion in SAFI are that there are coarse and FOG 

gyro which are so different that it is not possible to harmonize between the two 

families. So there could be two standardizations. However, the FOG gyros have been 

harmonized already by the primes who are procuring them. The coarse gyros are too 

few for harmonization. Therefore this investigation was stopped. For the other 

sensors-actuators, which are simpler, the standardization is not necessary. Therefore 

the work of SAFI was stopped.  

Further activity on sensor-actuator interface will happen around the technology of 

Electronic Data Sheet (EDS) that intends to support the automatic configuration of 

the access to the devices within the software architecture.  

SAVOIR-FAIRE (Fair Architecture and Interface Reference Elaboration) 
This working group is in charge of the on-board software reference 

architecture. 

The group achievement has been to come with a complete definition of the on-board 

software reference architecture [OSRA], including: 

- Users’ needs and high level requirements for such an architecture 

- the definition of two layers (application and execution platform) 

- a Space Component Model description to support the description of application 

with components 

- a functional specification of the execution platform, and of the interface between 

the components and the execution platform. 

- a demonstrator of feasibility in ESA laboratory.  



B. Recent working groups 
Since ERTSS 2012, two new working groups have been created: 

 

SAVOIR-IMA (Integrated Modular Avionics) 
The working group addresses the spin in of the aeronautical 

Integrated Modular Avionics (IMA) concept into space. 

The group’s achievement has been to produce high level 

requirements for a concept of Time and Space Partitioning in the software 

architecture, use cases and their prioritization, the definition of industrial roles in the 

production of IMA for Space systems, and an architecture of a TSP based execution 

platform. 

Several R&D activities supported this achievement. The last one intended to 

harmonize the “classical” architecture produced by SAVOIR-FAIRE with the IMA 

architecture. Its results are now being integrated in the final SAVOIR-FAIRE 

documents. 

The motivation was to segregate the integration, verification and validation of some 

software functions that could be independent, such as the various payload software 

or sensor software, while running them on a single computer and thus saving 

electronics costs. 

SAVOIR-MASAIS (MAss Storage Access Interfaces and 
Services) 
The working group addresses the data storage (for platform and 

payload) and the related use of files in spacecraft’s operation. 

The group achievement for the moment is to produce system level requirements for 

a data storage system. Later results will be to produce requirements of a File 

Management System, supported by a specific R&D activity. Spacecraft operation has 

traditionally be based on packet transfer, and only recently files are used on-board 

(e.g. Euclid). This requires harmonization between the spacecraft operators and the 

on-board implementation of data storage. 

 

A new working group is under creation: 

SAVOIR-UNION (User Needs In On-board Network , name TBC) 
The working group will investigate the definition of the functional, 

performance, operational and interface requirements of the functional 

links and their management. The scope is limited in the identification 

and characterisation of the needs of users in term of communication and does not 

address the definition of communication standards and protocols. 

 The group will come with system level requirements of an avionics network. The 

difficulties encountered in some project to integrate and validate some avionics link 

within the system composed of the main computer, the data storage and the 

payloads, has shown that the avionics system approach had not been enough 

investigated. 



3. Major results 

A. Documents 
 

SAVOIR delivers two levels of documents: the system level documents used by the 

customer Agencies, and the product specification used by primes in their 

procurement. 

 
Figure 2 SAVOIR documentation tree 

 

In Figure 2, the top documents are the ESA System Requirement Documents (SRD) 

and Operation Interface Requirement Documents (OIRD) that will be developed in 

the frame of SAVOIR (for avionics) and more generally at Agency level for other 

disciplines. The bottom documents are the product specifications intended to be used 

by the Large System Integrators. They address hardware (ASRA side: Avionics 

System Reference Architecture) and software (OSRA 

side: On-board Software Reference Architecture). 

 

In addition to the reports of some of the working groups (SAVOIR-FAIRE, SAVOIR-

IMA, SAVOIR-SAIF and SAVOIR-SAFI), 4 documents are available at the time of 

ERTSS2016: 

 SAVOIR documentation tree (SAVOIR-TN-000 technical note) 

 Avionics System Reference Architecture (SAVOIR-TN-001 technical note). This 

document introduces the reference architecture with a functional approach. A 

list of the functions usually implemented in hardware on a spacecraft platform 

(and partially on payload) is provided, together with their description. 

 On-Board Computer generic specification (SAVOIR-GS-001 applicable 

document). This document list the requirements applicable to the group of 

functions commonly implemented in an on-board computer. 

 Initialisation Sequence Software (boot software) (SAVOIR-GS-002 applicable 

document). This document lists the minimum set of requirements that are 

applicable to any boot software of a spacecraft processor. 

The two –GS- documents (Generic Specification) associate requirements with a 

formal reference, their justification, and some notes on their applicability. They 

can be optional or mandatory. They are associated with parameters to be defined 

when the document is actually used in a project. They are intended to be later 

administered in an IBM Rational DOORS requirement database. 



 

 

 

 

The way the documents are distributed is based on the European Space Software 

Repository (ESSR), a repository intended for the diffusion of ESA software assets. 

This repository allows for a controlled distribution, in particular allowing the 

dissemination within member states only. The ESSR has been opened to the public in 

September 2015.  

 

SAVOIR status is also disseminated every year in the Avionics Data Control Software 

Systems in October at Estec (http://adcss.esa.int). 

 

Out of SAVOIR, ESA is working on generic System Requirements Document and 

Operation Interface Requirement Document that will harmonize further spacecrafts 

procurements. 

However, within SAVOIR, some sections of the avionics part of the SRD have been 

internally drafted. A draft generic OIRD has been produced in ESA and is under SAG 

review. 

 

In the future, the software documents are being refined in order to be ready to enter 

into a public review: 

 Space Component Model (including pseudo-component definition and 

component-container interface) (applicable) 

 Execution Platform functional specification (applicable) 

 Interaction layer – execution platform interface (technical note) 

 Execution Platform internal interface (technical note) 

 

 

B. Public review 
The process of public review is similar to the ECSS process. Eurospace, the entity 

that represents the space industry, has nominated reviewers from selected 

companies.  An organisation note of this industrial consultation has been agreed. 

The public review started in January 2015. About 500 comments (159 majors and 

the rest minors) from 20 companies were received on the 3 documents. The spirit of 

the review was very constructive. The penetration of the SAVOIR knowledge within 

industry was considerably improved. About 300 modifications on the 3 documents 

were implemented intending to improve the understanding of the documents (scope, 

applicability, and glossary), the applicability of the document (refinement of the 

domain of reuse, applicability matrix, additional industrial relevance) and some 

technical aspects of the document. The review used the web-interface tool that ESA 

actually deploy in the spacecraft’s project reviews, which allows for a full visibility of 

the comments by the community and a full traceability of the evolutions. 

 

 

 

 

 

 

 



C. Reference Architecture 
The SAVOIR Advisory Group, supported by R&D activities, came up with a reference 

avionics architecture: 

 

 
Figure 3 SAVOIR Avionics System Reference Architecture 

 

 

On the hardware side, avionics was organized in functional blocks with interfaces: 

 

 
Figure 4 The avionics functions 

 

 

The mapping of these functions on actual physical boxes is let to industry to decide, 

in the scope of their definition of product lines. Some examples are given in the 

document SAVOIR-TN-001. 

 

 

 

 



On the software side, the notion of execution platform was further described in the 

following diagram: 

 

 
Figure 5 Details of the Execution Platform 

D. Progress 
Key indicator of progress are the assiduity to the SAG meetings and the constant 

high audience of the dissemination events ADCSS, as well as the increasing maturity 

of the SAVOIR documents, through substantial R&D work, prototyping, industry 

exchanges and reviews. 

 

The main difficulty encountered is to initiate this change process. SAVOIR is a not 

only a technical adaptation, but it is a “life style” involving view point change from all 

the stakeholders. Agencies have to specify always the same way, Large System 

Integrators have to procure with the same specification, and Suppliers have to 

arrange for product lines. Harmonizing the way that ITTs are done at Agencies level 

is a substantial task, as well as it is to influence product line management in large 

companies who have also commercial markets out of the institutional Agencies 

market.  

 

The applicability of SAVOIR documents must also be defined. Indeed, if they are 

labelled in ITTs as Reference Document, there is no incentive for industry to take 

them on-board projects, and there is no way for the SAVOIR coordination to measure 

their suitability and to adapt the documents to the needs. On the other hand, if they 

are labelled as Applicable Documents, they are binding, traceability of non-

compliance is feasible and can be fed back to the SAVOIR organization. But at the 

same time, non-compliance is seen at contractual level as a competitive 

disadvantage decreasing the chances to win the contract, whereas the nature of non-

compliance to SAVOIR is not going to change the mission performance, but maybe to 

achieve the mission objectives with a different set of functional specification. Still, it 

will break the product lines industrial objective. 

 

The measure of SAVOIR success is somehow difficult to quantify, as long as the 

documents are not formally made applicable. However, they find their way in some 

projects, and several proposals have clearly been derived from the SAVOIR 

documents. 



4. Conclusion 
The objectives fulfilment is assessed in the following way. 

 

The two first objectives are very long term and cannot be directly measured: 

- to reduce the schedule and risk and thus cost of the avionics procurement and 

development, while preparing for the future, 

- to improve competitiveness of avionics suppliers, 

 

The other objective starts to be reached: 

- to identify the main avionics functions and to standardise the interfaces between 

them such that building blocks may be developed and reused across projects 

This has been done and examples of building blocks are coming (OBC, RTU, software 

operating system, execution platform)  

- to influence standardisation processes by standardising at the right level in order 

to obtain equipment interchangeability (the topology remains specific to a 

project). 

A number of standards have been created or modified, in particular in ECSS. The 

SAVOIR technical activities have also been useful to review external standards, in 

particular the [CCSDS]. The [SOIS] standards have been reviewed by industry, and 

consequently their use in OSRA has been better targeted. The [MOS] standard have 

been analysed and a technical roadmap has been produced for a long term 

consideration in on-board architecture. 

- to define the governance model to be used for the products, generic 

specifications, interface definition of the elements being produced under the 

SAVOIR initiative. 

We are at the beginning of the governance of products, but software experience 

exists with the management at ESA level of the qualification of the operating system 

[RTEMS]. In the same line, discussions are on-going to define the governance of the 

separation kernel [Xtratum]. Cooperation ESA CNES is discussed around the product 

[LVCUGEN]. 

 

Some lessons learned may be derived from the exercise: 

- it takes a lot of time to federate a community around objectives that are globally 

beneficial, 

- however, this background continuous harmonization between customers and 

suppliers is extremely efficient to keep heads aligned in the same direction. 

- customers should not try to rule it all, instead each stakeholder can act at his 

level in the scope of its own constraints 

- avionics is not only software, hardware and control, but also operability has a 

substantial impact on it. 

 

SAVOIR should not be seen as direct product standardization, where on-the shelves 

products are imposed by the agencies in spacecrafts. This would not work. Instead, 

SAVOIR is a continuous Harmonization process within the avionics community where 

each stakeholder adjusts his behaviour at his level for the benefit of all industry. 

This change process is challenging, but the progressive penetration of the concept 

within the many layers of the avionics community is successfully on-going. 
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Abstract — The strong cost pressure of the market and 
rigorous safety regulations affect the development of 
avionic systems. Safety standards like SAE ARP4754A 
and RTCA DO-178C require high efforts for assuring 
compliance with applicable airworthiness requirements. 
Hence, industry is forced to continuously optimize their 
lifecycle processes and tool environments to facilitate the 
development of safety-critical systems. In this paper, we 
report on our experience of adopting lean enablers to 
systems engineering. The approach covers requirements 
quality analysis, model-based systems engineering, 
model-based testing, product family engineering and 
safety analysis. The experiences are gained from an 
industrial case study in the aerospace domain.  

Keywords — Application lifecycle management, domain 
ontologies, end-to-end traceability, functional analysis, 
lean systems engineering, model-based systems 
engineering, model-based testing, product family 
engineering, requirements patterns, requirements 
quality analysis, safety analysis, variants. 

1. INTRODUCTION 

Safety-relevant avionic systems are becoming more and 
more complex. Additionally, safety standards like SAE 
ARP4754A and RTCA DO-178C require rigorous 
development and assurance activities to demonstrate 
compliance with applicable airworthiness requirements. 
However, defects introduced in system specifications such 
as missing or unclear requirements may cause rework in the 
downstream activities leading to unnecessary costs. In 
addition, product variants sharing similar features are often 
developed by different teams hindering the reuse of existing 
solutions. Due to the strong cost pressure in the aerospace 
market, industry is forced to optimise their lifecycle 
processes and tool environments.  

In order to address these challenges, we propose a Lean 
Systems Engineering (LSE) approach. Lean Thinking is a 
methodology which aims to deliver value to the customer 
while cutting out waste inadvertently generated by the 
process, see Figure 1.  

 

Figure 1. Lean thinking [17]. 

The lean methodology can be traced back to the success of 
the Toyota Production System (TPS) and Taiichi Ohno who 
is considered as the father of the TPS.  J.P. Womack and 
D.T. Jones [18] published the basic principles in their book 
on Lean Thinking:  

 Value, 
 Value streams, 
 Flow, 
 Pull, 
 Perfection. 

In order to advance lean thinking in systems engineering, 
INCOSE has established the LSE Working Group. One 
significant result of this working group is a list of 194 
practices and recommendations of systems engineering 
based on lean thinking, the so-called lean enablers [1]. In 
this paper we refer to the following lean enablers: 

Map the value stream:  

 Map the systems engineering value stream: have 
cross-functional stakeholders work together to 
build the agreed value stream. 

 Plan for frontloading: anticipate and plan to resolve 
as many downstream issues and risks as early as 
possible to prevent downstream problems. Plan 
early for consistent robustness and "first time 
right". 

 Plan to develop only what needs developing: 
promote reuse and sharing of program assets. 

 Plan leading indicators and metrics to manage the 
program: use metrics structured to motivate the 
right behaviour. 
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Make value flow continuously along the value stream: 

 Clarify, derive, prioritize requirements early: use 
architectural methods and modelling for system 
representations (prototypes, models, simulations) 
that allow interactions with customers. 

 Promote smooth systems engineering flow: 
minimize handoffs to avoid rework. 

 Make program progress visible to all: make work 
progress visible and easy to understand to all, 
including external customer. 

 Use lean tools: use lean tools to promote the flow 
of information and minimize handoffs. 

Pursue perfection: 

 Strive for excellence of systems engineering 
processes: build in robust quality at each step of 
the process, and resolve and do not pass along 
problems. Apply basic PDCA (Plan-Do-Check-Act) 
method to problem solving. 

 Develop perfect communication, coordination and 
collaboration policy across people and processes: 
ensure timely and efficient access to centralized 
data. 

In the remainder of this chapter we will introduce four aims 
of the proposed lean systems engineering approach that 
allow to cover the lean enablers mentioned above. 

Our first aim is to significantly improve the quality of 
system specifications, since reducing defects in 
requirements is the earliest opportunity in the lifecycle to 
save money [8]. This is accomplished by the following 
intertwined activities:  

 Perform linguistic analysis of requirements 
supported by domain ontologies to obtain well-
formed requirements which fulfil given quality 
characteristics. 

 Conduct system modelling guided by model-based 
systems engineering (MBSE) best practice to 
ensure consistency and completeness of the 
requirements. 

 Define requirements-based test cases to guarantee 
verifiability of requirements. 

 Perform simulations of the system model and 
execute model-based tests to conclude the 
validation of the system specification. 

Our second aim is to standardize the development of 
variants that share commonalities and promote reuse. In 
past projects substantial effort was spent for the 
development of each single variant. Thus, we introduce 
product family engineering practices leveraging reuse, 
allowing shorter time-to-market, reducing development 
cost, while taking into account the variability and diversity 
of users and customers [2]. 

Our third aim is to integrate model-based system 
engineering with functional safety analysis and foster cross-
functional work. Thus, safety aspects are considered early in 
the system development process. Furthermore, the approach 
allows safety and system engineers sharing common 

artefacts. As a consequence, there is substantial potential for 
cost savings and quality improvements [14]. 

Our fourth aim is to establish a tightly integrated systems 
engineering environment (SEE) with interoperable tools 
providing requirements management, requirements quality 
analysis, modelling, safety analysis, simulation and test 
capabilities. This SEE shall support end-to-end traceability 
across different tools, enable efficient access to lifecycle 
data, support team collaboration and communication, and 
provide visual dashboards for process measurements. The 
tool integration relies on the Linked Data approach [15] and 
leverages interoperability standards such as Open Services 
for Lifecycle Collaboration (OSLC) [16]. 

In this paper, we present a demonstrator based on an open 
platform for lifecycle tool integration and an experimental 
case study which was performed by Airbus Defence and 
Space in the frame of the ARTEMIS Joint Undertaking 
research project CRYSTAL1 in order to validate the 
approach from an industrial point of view. 

The remainder of the paper is organized as follows. Section 
2 introduces the industrial case study and the envisioned 
SEE. Sections 3 to 9 exemplify the approach. Section 10 
concludes the paper and provides an outlook to future work.  

2. INDUSTRIAL CASE STUDY 

Airbus Defence and Space develops avionic systems that 
support helicopter pilots in degraded visual environments 
(DVE) which can be caused by e.g. rain, fog, sand and 
snow. Many accidents can directly be attributed to such 
DVE where pilots often loose spatial and environmental 
orientation (see Figure 2 on the left side). In this case study 
we employ the landing symbology function which is part of 
the “Pilot Assistance Landing” capabilities of the situational 
awareness suite Sferion™. Other Sferion™ capabilities are 
“Pilot Assistance In-flight” or “Obstacle Warning”. 

The landing symbology function supports helicopter pilots 
during the landing approach. It enables the pilot to mark the 
intended landing position on ground using a head-tracked 
HMS/D (Helmet Mounted Sight and Display) and HOCAS 
(Hands on Collective and Stick). During the final landing 
approach the landing symbology function enhances the 
spatial awareness of flying crews by displaying 3D 
conformal visual cues on the HMS/D (see Figure 2 on the 
right side). Additionally, obstacles residing in the landing 
zone can be detected.  

 
Figure 2. Landing aid in degraded visual environments. 

                                                                 
1 Critical System Engineering Acceleration, http://www.crystal-

artemis.eu/ 
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The situational awareness suite Sferion™ constitutes a 
product family to be deployed on different helicopter 
platforms. The reuse of development assets, e.g. 
requirements, design or test cases, can be significantly 
improved by the application of product family engineering 
practices. In this case study we applied the product family 
engineering practice “Scoping”. The practices “Domain 
Requirements Engineering” and “Domain Design” have 
been applied on system level to develop system 
requirements and the system design for the product family 
[2].   

The envisaged SEE includes tools and databases to support 
Application Life Cycle Management (ALM) and Product 
Lifecycle Management (PLM), see Figure 3. For 
interoperability, each tool has to provide a connector that is 
based on open interoperability standards (IOS) such as 
OSLC2. The communication between the tools (e.g. sending 
of requests to other tools, receiving data from tools) is 
realised by well-established web protocols. 

 
Figure 3. Envisioned seamlessly integrated SEE. 

The following sections summarize the steps performed in 
the case study and describe the related tool chain: 

 Define product family scope. 

 Develop system requirements. 

 Analyse and improve requirements quality. 

 Develop system model. 

 Perform safety analysis. 

 Develop and perform model-based tests. 

 Create product variants. 

3. PRODUCT FAMILY SCOPING 

First, the characteristics of potential products (e.g. low-cost 
or high-end variants) are categorized. In the Sferion™ 
product family three main configurations have been 
identified: class 2, 3 and 4.  

                                                                 
2 Open Services for Lifecycle Collaboration, http://open-

services.net / 

Then, features of the product family are identified by [7]: 

 Analysing the capability in terms of end user visible 
services, internal operations needed to provide the end 
user visible services and definition of non-functional 
properties, e.g. performance. 

 Analysing the operational environment of the product 
family to define the context, e.g. external systems and  
interfaces. 

 Analysing domain technology required to implement 
services or operations, e.g. development approaches or 
tools.  

 Analysing implementation technique to indicate key 
design and implementation decisions used to implement 
other features. 

Features are refined in terms of commonality and variability  
rather than describing all details. Common features are 
described on top level. Feature variations are refined until 
no variation is exposed among products. An initial 
classification of each feature is performed (e.g. feature is 
optional; feature is refined into a range of alternatives), see 
Figure 4. Then, each feature is allocated to the intended 
product variant. 

Finally, each feature is assessed by the stakeholders with 
respect to customer value, development risk and cost 
yielding a relevance indicator. A threshold for the relevance 
is defined in order to get the list of features which should be 
in the scope of the product family. The results of the 
scoping process are recorded in an Excel sheet – the Product 
Feature Matrix (PFM).  

 

Figure 4. Extract of a Product Feature Matrix (PFM). 
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Important descriptive goals of the feature model are: 

 Understanding of the variability among products. 

 Communication of requirements in terms of 
features. 

 Specification of product variants. 

Additionally, prescriptive goals of the feature model are 
important for this case study: 

 Guidance for the development or transformation of 
core assets which are in our case study the product 
family system requirements and product family 
architecture. 

 Guidance for variant derivation of the system 
requirements and the system architecture model. 

The variability modelling tool pure::variants was selected to 
support the prescriptive feature modelling goals. Based on 
the PFM, a variability model has been set up with 
pure::variants in order to formalize the results of the product 
family scoping in a feature tree, see Figure 5.  

Subsequently, features, commonalities, variabilities and 
structural relationships have been added to the variability 
model. 

The feature tree was manually optimized to represent 
variabilities and commonalities rather than functional 
dependencies like a function call hierarchy. 

For example, the mandatory feature “Mark landing 
position” can be realized in two ways: either the handling 
pilot only or both pilots are allowed to set the landing 
position. All product variants provide the safety feature 
“FrozenImageDetection”. However, the frozen image 
detection on “HMD” is optional.  

 
Figure 5. Feature model describing the variabilities.  

The main advantage of the feature modelling approach is 
that based on the feature model, validation mechanisms 
assure that only valid product configurations are defined.   

In order to provide guidance for variant derivation it is 
important to add composition rules to optional and 
alternative features. Essential composition rules are: 

 

 Mutual dependency relationship: features that shall 
be selected along with the designated one. 

 Mutual exclusion relationship: features that shall 
not be selected along with the designated one. 

For example, if “Check_Obstacles” is selected, an Obstacle 
Warning System (OWS) is required. In this case, one of the 
sensor equipments “ELOP” or “SferiSense” has to be 
selected.  

4. REQUIREMENTS DEVELOPMENT 

After the definition of the product family scope, a first set of 
system requirements covering all features of the product 
family and derived from stakeholder needs is defined using 
the requirements management tool  DOORS NG. The 
requirement type is assigned. This enables filtering 
requirements according to their type, e.g. gathering all 
functional requirements as input for the subsequent 
functional analysis.  

In order to support the requirement authoring activity, we 
use two additional tools from the Requirements Quality 
Suite (RQS) [11]: 

 Knowledge Manager (kM), which is used to create 
and maintain the domain ontology and 
requirements patterns. 

 Requirements Authoring Tool (RAT), which 
provides on-the-fly guidance for the requirements 
specification activity [9].  

First, we developed a domain ontology by defining terms, 
abbreviations, agreed-upon concepts and relations that hold 
in our application domain. Then, we defined requirements 
patterns by defining sequences of fixed syntax elements for 
each type of pattern to cover the relevant requirements 
statements [10]. Requirements patterns can be specified in 
an elementary way and then concatenated to cover more 
complex sentence structures, allowing keeping the number 
of required patterns low while at the same time having a 
high flexibility. The majority of the functional requirements 
of our case study could be covered with a few set of 
patterns.  

Figure 6 shows how a Natural Language (NL) requirement 
is represented by a pattern. The pattern consists of fixed 
syntactic elements and variable elements. The latter are 
mapped to semantic concepts in the domain ontology such 
that the requirement can formalized by a semantic graph.  

Using requirement patterns is an effective way to mitigate 
many types of ambiguity in NL requirements and to enable 
advanced formal analysis of these requirements, see Section 
5. For instance, we can detect requirements formulated in 
passive voice or any requirement structure that is not well-
formed like “It shall be possible...” which lacks an actor. 
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Figure 6. Semantic analysis. 

The RAT tool uses the concepts of the domain ontology 
together with the set of pre-defined requirement patterns 
managed in the common asset repository to provide a list of 
suggestions the requirements author can directly build on 
when defining textual requirements. If done manually, 
pattern conformance checking can be cumbersome, 
particularly when requirements change frequently. The tool 
gives real-time feedback whether a selected pattern is 
matched or not and also on the quality. Additionally, terms 
of the controlled vocabulary fitting with the next matched 
pattern element are suggested, which force the authors to 
use consistently agreed-upon domain terms. 

Having a proactive and interactive guidance that tries to 
improve requirements quality while actually writing 
requirements, is a real benefit. It is essential that errors in 
requirements are found early to avoid cost and error 
propagation later in the project, as well as reducing rework 
and modification loops. According to Boehm's law [6], 
revealing a defect in the requirements stage is 100 times 
cheaper than fixing one in coding. Additionally, using a 
domain ontology allows a better know-how transfer 
between domain experts and requirements authors in order 
to achieve a common understanding on the set of 
requirements between all project stakeholders. Dealing with 
all these new tools beside DOORS NG as requirements 
management tool bring new challenges and a systematic 
process for ontology creation and maintenance is needed as 
well as a new engineering role: the knowledge manager.  

In order to integrate the set of system requirements with the 
variability model, formal relationships between individual 
system requirements and features need to be established. 
The OSLC connector of pure::variants reads all 
requirements including the allocated features from DOORS 
NG and initializes the family model defining the reusable 
artefacts accordingly. In case of changes, the family model 
can be synchronized again with changes performed in 
DOORS NG. 

 

 

 

5. REQUIREMENTS QUALITY ANALYSIS 

The quality of requirements has a major impact on project 
success. Badly written requirements are a well-known 
source of project failure. Moreover, the quality of 
requirements should be secured before reusing them in 
different product variants. For this reason, quality metrics 
are employed to measure the requirements quality and to 
identify language defects, see Figure 7. Some quality 
metrics are: readability, use of passive voice, ambiguous 
terms, negations, abuse of connectors, undefined acronyms, 
and inconsistent use of measurement units. The INCOSE 
Requirements Working Group [4] and ISO/IEC 29148 [5] 
provide an exhaustive definition and justification of 
requirements quality characteristics. 

Quality analysis can be done on different levels as depicted 
in Figure 7:  

 Textual analysis: e.g. size or readability. 

 Lexical and syntactic analysis: e.g. ambiguous 
terms and passive voice. 

 Semantic analysis based on domain ontologies: e.g. 
overlapping requirements and completeness.  

 
Figure 7. Derivation of requirement quality metrics. 

We use the Requirements Quality Analyser (RQA) for 
DOORS NG that provides an automatic quality evaluation 
of NL requirements by performing lexical and linguistic 
checks as well as semantic analysis based on the developed 
domain ontology and requirement patterns, see Section 4.  

RQA comprises more than 60 pre-defined metrics, from  
which a subset may be selected for quality analysis. Every 
single requirement is analysed one by one and a series of 
indicators (e.g. readability, ambiguous phrases, and 
traceability) is determined for every requirement. Every 
indicator is then transformed into a qualitative value by the 
associated quality function. During the evaluation, every 
quality metric rated as medium or low will generate some 
hints and suggestions for improvement. Figure 8 depicts 
measurement results for one requirement. Most relevant 
findings are: 

 Ambiguous sentences: “be capable of” 

 Ambiguous use of connectors: “and/or” 

 Missing traceability: outlink of type “satisfies” is 
missing 
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Figure 8. RQA quality report. 

There is also another view for the whole set of requirements 
in a DOORS NG module, which provides a quick overview 
of the requirement quality in this module. Moreover, the 
most frequent quality issues are displayed which allows 
identifying focused corrective actions. 

In addition, there exist several ontology-based metrics 
which give feedback whether concepts are properly used at 
the right level of abstraction. For instance we can make use 
of metrics related to the Product Breakdown Structure 
(PBS), which is represented within the ontology. In lower 
level documents, we activate the detection of “compound” 
terms to force the authors to specify the concrete sub-
elements as defined in PBS. On the other hand for high-
level documents, we can check whether “part” terms have 
been used to avoid that there exist too specific terms there.  

Some additional metrics make use of the categorization of 
terms within a specific semantic cluster. Terms which 
represent a system, component or a sub-component of the 
PBS are assigned to e.g. the semantic cluster “SYSTEM”. 
These clusters are used within the pattern definition to 
restrict the allowed terms within the defined patterns. 

Additionally, we make use of the common asset repository 
for advanced requirements analysis like consistency and 
completeness of the whole set of requirements. When 
dealing with complex systems and a high number of 
requirements as well as many hierarchal levels, consistency 
and completeness checks are difficult manual tasks. Here 
are some examples of automated quality checks:  

 Identification of inconsistent use of measurements 
units. 

 Identification of redundant requirements by means 
of their respective formalization as a semantic 
graph. Overlapping requirements between different 
hierarchical levels may be an indication for an 
insufficient refinement. 

 Completeness assessment whether any 
requirements of a specific category (e.g. safety, 
performance…) are possibly missing based on the 
matched pattern groups within the ontology. 

Finally, analysis results are interpreted; requirements are 
improved and updated in DOORS NG. In addition, the 
domain ontology needs to be updated and validated by 
changing concepts and pattern formalizations to improve 
guidance and analysis results.  

The whole set of RQS tools provides an effective support in 
defining well-structured requirements and performing 
automated analysis of requirements. With this approach, the 
review is more efficient since the amount of manual work is 
reduced; all trivial checks are performed by the tool and can 
even be corrected by the author itself. The reviewer can 
then concentrate on “difficult” points, the assessment results 
are reproducible and do not depend on individual reviewers’ 
subjective opinion. Quality criteria are clear right from the 
beginning and hints are provided which motivate authors 
and drive the quality improvement process of requirements 
according to the PDCA (Plan-Do-Check-Act) cycle [8]. 

6. SYSTEM MODEL DEVELOPMENT 

In order to support early validation of the system 
specification and improve communication within the project 
team and with stakeholders, we adopt a Model-based 
Systems Engineering approach (MBSE), which constitutes 
three different viewpoints: 

 Functional viewpoint 

 Logical viewpoint 

 Physical viewpoint 

The aim of the functional viewpoint is to describe in detail 
from a technical perspective the functions and behaviour the 
intended system shall provide, the interaction via identified 
interfaces with external systems, users and operators, and 
the interaction and dependencies between the different 
functions (black box approach). The functional analysis is 
performed with Rhapsody based on the MBSE methodology 
Harmony/SE [3] and results in use case diagrams, activity 
diagrams, sequence diagrams, block diagrams and statechart 
diagrams.  

First, the system requirements are accessed from DOORS 
NG and displayed in Rhapsody. The goal is to prove the 
complete consideration of all relevant system requirements 
during the functional analysis process. Then, the system 
context with interfacing actors is defined with a use case 
diagram. Other use case diagrams may be created to group 
the functional scope accordingly. Subsequently, the 
different functional flows are captured using activity 
diagrams. In the next step, a set of sequence diagrams 
consistent with the activity diagram and describing the 
behaviour of the system in a particular situation, is derived. 
Operations are derived from actions. Events and related 
event receptions are defined in relation with external actors. 
The identified events are linked to data items that are 
transported across interfaces. With the identified sequence 
diagrams, the system ports and interfaces including all in- 
and outgoing events can be defined using an internal block 
diagram. To complete the functional analysis, a statechart is 
added to the system block to describe its state-based 
behaviour. 

Thanks to the formal semantics of statecharts, code can be 
generated that implements the state-based behaviour of the 
system. Although the generation of production code is 
possible, we only use code generation for the execution of 
the functional model since we do not intend to qualify the 
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code generator. When executing the model, the system 
behaviour can visually be inspected with the help of 
animated statecharts. Model execution is a powerful method 
to check the correctness and completeness of the functional 
model and the related system requirements. For this purpose 
simulations can be setup either by manually stimulating the 
system with events or by implementing model-based tests. 
The latter is described in more detail in Section 8. 

The aim of the logical viewpoint is to identify an 
architecture of logical blocks which realises the functions 
and behaviour identified during the functional analysis  
(white box approach). In this process also non-functional 
aspects are considered, e.g. reduction of the number of 
interfaces, segregation of functions with different 
criticalities (see Section 7), reuse of available functions (see 
Section 9), integration of external suppliers, and utilization 
of COTS elements. The system block representing the 
complete functional scope is decomposed into logical 
blocks. Activity diagrams and sequence diagrams are 
refined considering partitions and lifelines related to logical 
blocks. System internal ports and interfaces are added for 
connecting the logical blocks. The state-based behaviour of 
all logical blocks is defined which allows to validate the 
logical architecture using model execution. 

The aim of the physical viewpoint is to find a suitable 
system architecture consisting of system elements (e.g. 
hardware or software items) that allows to implement the 
logical blocks identified in the logical viewpoint, while 
considering the business needs and non-functional 
constraints. In order to derive a candidate system 
architecture, the logical blocks of the logical architecture are 
mapped to physical elements of the physical architecture. In 
the same way, the logical interfaces are mapped to physical 
interfaces. Both physical elements and physical interfaces 
need to comply with associated performance requirements. 
Additionally, the properties of the selected physical 
elements (e.g. power consumption, memory size, …) are 
identified and modelled. Based on a set of prioritized 
criteria, different candidate solutions can be assessed during 
a trade-off study. Finally, a solution is jointly selected by all 
stakeholders.  

Moreover, traceability is established between the system 
requirements in DOORS NG and the model elements in 
Rhapsody for all viewpoints of the system model to support 
coverage and impact analysis. For example, when 
requirements are changed, a suspect indicator is 
automatically added to the trace which helps maintaining 
consistency. 

7. SAFETY ANALYSIS 

Based on system requirements and the functional analysis of 
the system, hazards can be identified. Contributing system 
functions, as they have been identified through the 
functional analysis in the black box system model, are 
classified according to their related criticality level. The 
classification of the system functions as part of the 
Functional Hazard Assessment (FHA) considers failure 
modes (e.g. total loss, partial loss, inadvertent provision, 

and erroneous provision) of functions and the flight phase 
(e.g. takeoff, approach, and landing) where this failure 
conditions occur. Further results of the hazard assessment 
are derived requirements. These new safety requirements 
are then considered in the white box system model within 
the logical and physical architecture, where the system 
architecture has to show compliance not only to the initial 
functional requirements but also to all safety related 
requirements. 

Figure 9 illustrates the black box approach that comprises 
the functional analysis and shows how the FHA process is 
integrated with the functional viewpoint. 

 
Figure 9. Black box approach. 

The white box approach consists of the logical viewpoint, in 
which an architecture is iteratively developed preventing all 
failures which have been identified through the FHA. Since 
also the physical viewpoint, that involves the identification 
of real interfaces and hardware components, is emerging 
from the white box approach, fault trees can be elaborated 
with a failure condition as a starting point and refined up to 
physical elements, where acceptable probabilities for the 
occurrence of failure conditions are assigned. 

Figure 10 shows the white box approach comprising the 
logical and the physical viewpoints. 

 

Figure 10. White box approach. 

System modelling including functional, logical and physical 
viewpoints is performed with Rhapsody, whereas safety 
requirements and failure condition lists are kept in DOORS 
NG. Fault trees as part of the Preliminary System Safety 
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Assessment (PSSA) are generated with isograph 
FaultTree+. As shown in Figure 11, system functions 
identified from black box analysis are made available for 
the FHA elaborated in DOORS NG. As a result from the 
FHA, safety requirements and design constraints are 
available for the white box analysis in Rhapsody. Moreover, 
they could have an impact on the black box analysis since 
new functions may have to be elaborated to mitigate the 
safety concerns. Using the FHA output and the white box 
analysis refinement into components, a PSSA is developed 
including fault trees. Resulting from these fault trees 
FDALs (Function Development Assurance Level) and 
IDALs (Item Development Assurance Level) are then 
allocated to components. This proceeding allows 
establishing traceability between safety requirements, 
function classifications and the system model. 

 
Figure 11. Tooling and exchanged artefacts. 

8. MODEL-BASED TESTING 

The notion of Model-based Testing (MBT) refers to the 
application of models for automation of testing activities as 
well as modelling of test artefacts. In the following MBT is 
used to automatically generate test artefacts from the black 
box system model which represents the system under test 
(SUT). As discussed in Section 6 this model allows the 
simulation of the system behaviour. The intention is to 
verify that this simulation is compliant with the expected 
behaviour as defined by the system requirements [12]. 

The underlying process can be divided into the following 
phases [13]: 

1. Modelling of the SUT and/or its environment. 
Creation of the test architecture. 

2. Generation of executable test cases from the black 
box system model. 

3. Test execution on the SUT and assignment of 
verdicts. 

4. Analysis of the test results. 

Figure 12 provides a graphical overview of the MBT 
process. 

Figure 12. MBT process. 

Modelling of the behaviour of the SUT is already described 
in detail in Section 6. TestConductor (TC), the test 
execution and verification engine of Rhapsody is employed 
for creating the test architecture of the selected SUT. Test 
architectures comprise all artefacts which are needed for test 
automation, e.g. test components are created for stubbing of 
external interfaces. 

For automatic generation of executable test cases the 
Rhapsody Automatic Test Generation add-on (ATG) is 
applied. By analysis of the specified system model ATG 
automatically generates suites of test cases which are 
specified by UML sequence diagrams as depicted in  Figure 
13. Test stimuli are generated which allow observing the 
behaviour of the SUT. In this format the test cases are ready 
for execution. 

 

Figure 13. Test case generated by ATG. 

TC is employed for executing the test cases.  Test verdicts 
are provided which for example allow to identify all 
requirements which are not satisfied by the black box model 
or state to which extent the system model has been covered 
by the executed tests.  

After completion of the test execution a detailed report 
summarizing all relevant information including test results 
and model coverage analysis is generated, see Figure 14.  

 

Figure 14. Model coverage report generated by TC. 
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9. VARIANT MANAGEMENT 

The definition of product variants is supported by an auto 
resolver based on the feature model (see Section 3). Figure 
15 illustrates how the configuration process is performed.  
Mandatory features like “MarkLandingPosition” are 
automatically selected. Optional features without a 
composition rule like “TerrainDataFusion” need to be 
selected manually. Features affected by composition rules 
are selected or deselected by the auto resolver, e.g. if 
“Check_Obstacles” is user-selected, the feature “OWS” is 
automatically selected by the auto resolver. 

 

Figure 15. Configuration of a product variant. 

Inconsistencies in the feature model or missing feature 
decisions, e.g. in case of alternative feature selections, are 
highlighted in order to conclude a valid variant description, 
see missing decision on the alternatives of feature 
“MarkLandingPosition” in Figure 15. 

Product variants are compared and validated using the 
product variant matrix view, see Figure 16. 

 

Figure 16. Product matrix view. 

Each variant configuration is input to the transformation 
process that creates system requirements, system models, 
and tests for product variants. Finally, system specifications 
can be generated automatically capturing the information 
gathered during the requirements and system model 
development in a structured way. The generated documents 
can be used to perform formal reviews, fulfil contractual 
obligations or show regulatory compliance. 

10. CONCLUSION 

We reported on our industrial case study in the aerospace 
domain which was conducted in the frame of the ARTEMIS 
Joint Undertaking project CRYSTAL. The case study and 
the demonstrator cover the identification of variabilities, the 
construction of a feature model using pure::variants, the 
development and quality analysis of system requirements 
using DOORS NG and RQS, the elaboration of a system 
model using Rhapsody and safety analysis tightly integrated 
within the MBSE process. Moreover, requirements-based 
test cases are developed with TestConductor and ATG that 
allow verifying the system model by simulation runs. 

Applying our approach to the industrial case study has 
produced promising results and addresses the following lean 
enablers (see Section 1): the basic PDCA method is applied 
during the requirements quality analysis to resolve problems 
related with badly written requirements. The use of 
architectural methods and models in the model-based 
systems engineering approach allows to clarify requirements 
early. Through the combination of linguistic analysis, 
model-based systems engineering, and model-based testing 
the quality of system specifications can significantly be 
improved. This contributes to the “first time right” 
objective. The tightly integrated safety analysis supports 
cross-functional team work between systems and safety 
engineers, promotes the flow of information and minimizes 
handoffs and rework. Additionally, the product family 
engineering approach allows to derive system specifications 
for different variants and promotes reuse of shared artefacts. 
The integrated SEE supports efficient access to systems 
engineering data. It enables to make the work process 
visible using metrics and facilitates end-to-end traceability 
analysis across different tools. 

The experience gained from the realisation of the case study 
can be summarized as follows: 

 Setting up useful ontologies that effectively 
support authoring and quality analysis of 
requirements still requires a lot of experience and 
specific skills. Therefore, the depth and 
thoroughness of quality analysis has to be carefully 
planned depending on the objectives and boundary 
conditions of each project. 

 In the case study a monolithic feature model was 
chosen. In more complex systems a modular 
feature model structure might be considered. A 
modular feature model approach is easier to 
understand and provides a better separation of 
concerns but has the burden of maintaining the 
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traceability and dependencies between the feature 
models. 

 The tool integration approach of the SEE allows 
loosely coupled tools to share and link data based 
on standardized and open web technologies. It 
should be noted that an  increasing number of tool 
vendors support the OSLC standard. However, 
standardisation needs to be extended in order to 
support domains not covered yet, e.g. variability 
management and safety analysis. 

We are currently working to further develop the integration 
of safety analysis into the MBSE approach. In addition, we 
are using formal specifications that can be analysed with 
model checking techniques. Moreover, we are adopting a 
more holistic approach of configuration management which 
provides means to define global system configurations 
containing all relevant types of artefacts (e.g. requirements, 
system model and test cases) including the traceability links 
between them.  

Our future work will advance and improve component-
based and model-based systems engineering practices. 
Components will comprise executable specifications and 
ease virtual integration and prototyping. They will provide 
variation points in order to support product families by 
derivation of variants. Contractual specification of 
components  enable more efficient system verification and 
continuous checks of functional safety properties, e.g. by 
formal checks performed during virtual integration. 
Components already being qualified provide certification 
evidence to support incremental qualification and 
certification approaches. New systems can then be 
constructed with components according to domain-specific 
reference architectures. Domain-specific languages will 
further ease the specification, architectural design and 
verification of complex systems. 
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Abstract—In a typical software project, 40% to 60% of design 

bugs are caused by faulty requirements that generate  costly 

iterations of the development process as specifications need to be 

redefined, design and implementation modified accordingly, and 

then retested. The major reason for this  situation is that no 

practical tool exists for debugging requirements while  drafting 

specification, and the many tools that exist for requirement 

management and traceability do not address this problem.  

STIMULUS provides an innovative solution for the early 

debugging and validation of functional real -time systems 

requirements. It provides a high-level language to express textual 

yet formal requirements, and a solver-driven simulation engine 

to generate and analyze execution traces that sati sfy 

requirements. Visualizing what systems will  do enables system 

architects to discover ambiguous, incorrect, missing or 

conflicting requirements before the des ign begins. 

We demonstrate the use of STIMULUS on the specification of 

automatic headlights from the automotive industry. We show 

how this unique simulation technique enables to discover and to 

fix ambiguous and conflicting requirements, resulting in a clear 

and executable specification that can be shared among engineers.  

Keywords—Requirement Engineering, Real-time Embedded 

Systems, Domain Specific Languages, Formal Methods, 
Debugging, Simulation. 

I.  INTRODUCTION 

Many tools have been proposed for the development of 
embedded software, in which the validation activity may 
represent more than 60% of the whole development effort. In 
this process, functional validation aims at checking that the 
system design is correct with respect to requirements, but few 
tools exist for the functional validation of system requirements 
themselves. 

In this paper, we focus on real-time requirements, such as 
the following cruise control example:  

“When active, the cruise control shall not permit actual 
and desired speeds to differ by more than 2 km/h during more 
than 3 seconds.” 

Such requirements usually describe a combination of logical 
and numerical properties of system signals over time. They 
stand in contrast to non-functional requirements, such as 
performance, usability, reliability, cost, etc. Being 
requirements, they express what a system should do or not do, 
but they do not describe how to achieve it: here for instance it 
could be done with a PID (proportional-integral-derivative) 
controller. 

 In practice, requirements are mostly written in natural 
language and are generally validated through manual reviews. 
As a consequence, many ambiguities and errors remain until 
validation testing. It is well-known that the later these errors 
are detected, the more expensive it is to fix the bug. The cost is 
even worse when third parties are involved as the extra process 
iterations involve specification and contractual changes. 

 Argosim STIMULUS addresses this issue of requirement 
early debugging and validation by providing two key features: 

(I) Expresses real-time requirements and environment 
assumptions in a formal yet close to natural 
specification language; 

(II) Generates and observes simulation results that satisfy 
requirements under environment assumptions. 

The ability to formalize requirements in an easy-to-read 
language is a necessary condition for the approach to get 
acceptance by users, while the ability to simulate “what 
systems shall do” makes requirements validation possible 
while writing specifications, instead of delaying it to a later 
phase of the development process. This limits specification 
errors and ultimately reduces costs in the design phase. 

In this paper we show how STIMULUS supports these 
claims by describing its technical foundations and by 



illustrating its use to formalize, debug and validate the 
requirements of a car automatic headlights controller which 
was provided to us by a Japanese software and tools vendor. 

II. RELATED WORK 

Several requirement engineering tools  do exist, such as 
IBM DOORS. Compared to STIMULUS, they focus on 
requirement management and traceability, rather than 
validation.  

Specification and simulation tools, like UML/SysML or 
Mathworks Simulink, aim at modeling and validating system 
design and architecture rather than high-level requirements. 
There are efficient at describing how a system should be 
implemented, but they lack the expressiveness to describe and 
to simulate what a system should do without describing the 
how. The case-study of this paper will clarify this point.  

 Formal methods tools, in particular model-checkers and 
proof systems, like the Rodin platform based on Event-B [1], 
provide expressive languages and exhaustive validation 
features. There are the tools to use to prove the consistency of a 
set of worked-out requirements, but less so to incrementally 
debug partial, possibly incorrect requirements and to discover 
missing requirements, for the two following reasons. 

1. They can only detect formalized inconsistencies: they do 
not help the user to discover problems that he has not 
anticipated.  

Consider the cruise control example given in introduction. 
Before submitting this requirement to a model-checker or 
a proof assistant, the user has to define a relevant property 
to prove on it, which is not trivial. Moreover, there is no a 
priori guarantee that the chosen property can detect a 
mistake like omitting the absolute value operator  when 
translating the condition “speeds should not differ by more 
than two km/h”. In contrast, as we will see, the simulation 
feature of STIMULUS enables the user to discover 
unanticipated problems in requirements  by observing 
simulation traces. 

2. Model-checkers and proof assistants require fairly complete 
requirements to issue relevant results , that is, either a 
successfull proof of a non-trivial property on them, or a 
meaningful counter-example to it. This makes this 
approach hard to use in an incremental specification 
process where rough initial requirements are progressively 
refined. 

The two approaches are actually complementary: 

 STIMULUS enables to debug requirements and to validate 
them by simulation; its strength is its ability to quickly 
exhibit problems. This provides a level of confidence in 
the quality of requirements, which is arguably higher than 
the level provided by manual reviews, but do not deliver 
either a formal proof of consistency and correctness. 

 Once good quality requirements are obtained, they can be 
submitted to model-checkers and/or proof systems to 
obtain formal proofs. Problems can still be discovered at 
this step, but much less frequently than if the previous step 
had not been performed.  

This complementarity motivated a partnership with SafeRiver, 
a consulting company specialized in safety and cyber-security 
for software-based systems. SafeRiver makes intensive use of 
formal methods and tools, and is looking for solutions to speed 
up the correct  formalization of safety requirements before 
performing exhaustive proofs on them. 

III. STIMULUS TECHNICAL FOUNDATIONS 

The scientific backgrounds of STIMULUS being detailed  
in [1], we give only an overview of it. The two key features of 

STIMULUS are an expressive formal specification language 
and a simulation engine based on a constraint solver. 

A. A Constraint Real-Time Specification Language 

Stimulus combines the concepts of the synchronous languages 
LucidSynchrone [5] and Lutin [6]: 

 LucidSynchrone (like its industrial version SCADE) 
provides proven and mature concepts for modeling real-
time systems, such as dataflow equations, hierarchical 

state machines, and synchronous parallel composition.  

 Lutin provides the concepts needed for modeling real-
time non-deterministic behaviours, namely dataflow 

constraints and non-deterministic control choices. It was 
designed for describing generic test scenarios for real-
time systems. 

We list below the main concepts of the resulting language. 

a. Data: Synchronous Data-Flow Constraints 

The behaviour of signals is specified with dataflow constraints 

like: 

count = (0 -> last count) + (if evt then 1 else 0); 
count <= 10; 

in which the integer signal count counts the number  of 
occurences (in time) of the Boolean signal evt and is 
constrained to be less than or equal to 10. -> is the 

initialization operator : e1 -> e2 evaluates to e1 on reset, and 
to e2 otherwise, and last v denotes the value of signal v in 
the previous step. In other words, this specifies than evt might 

be true at most ten times during an execution, but specifies 
nothing more about when evt can or cannot be true. 

b. Control: Hierarchical State Machines. 

They are typically used to model running modes, to define the 
temporal operators of the standard library, and also to model 
probabilistic choices in scenarios. States can contain 

constraints, as shown by the state machine of Fig 1. State 
machines in STIMULUS have a strong, preemptive transition 
semantics  according to the terminology of [5]: transitions are 

fired and their condition evaluated in the same step as their 
destination state. In addition, they implement an original 

notion of termination which happens to be crucial to combine 
the temporal operators of the standard library. 

c. Modularity: Systems and Macros.  

As other synchronous languages or Mathworks Simulink, 

Stimulus encapsulates statements into systems that can then be 
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Fig. 1: requirement about the occurrences of evt 

instantiated at several places. One can for instance define a 
system Count that counts the number of occurrences of an 

event (using an internal memory) and that can be reused to 
specify more complex constraints, like Count(evt1) >= 
Count(evt2). 
 Stimulus also provides a robust system of macros with 
clear scoping and typing rules that accepts statements as 
parameters, in addition to signals having a value. They are used 
to define temporal operator, such as the 

when <condition>, <BODY> 

operator defined by the macro depicted on Fig. 2. 

d. Readability: Sentence Templates  

Formal requirements are easier to read when they look like 
textual requirements instead of programs. To achieve this 

goal, a system or macro can be associated with a user-defined 
format that specifies how instances should be edited and 
displayed in the editor.  

For instance, if one associates to the macro When and the 
system Count the formats When %condition%, %<BODY>% and 
number occurences of %event%, the requirement of Fig. 1 

rewritten using When and Count will appear as: 

 

which is arguably more concise and more readable than the 

automaton of Fig. 1, while still enjoying the same 
unambiguous, formal definition. 

e. Architecture: Block Diagrams. 

Systems can be instantiated not only as a sentence, as 
described above, but also as blocks connected to other blocks 
in block diagrams, like in Mathworks Simulink, see Fig. 8. 

This enables developers to graphically describe the 
architecture of a system and to visualize the flow of 
information in it. 

Other technical features of the STIMULUS language are a 

construct for controlling constraint propagation and orienting 

constraints, in the spirit of [12], which provides scalability 

both for solving constraints and for model understanding by 

the user, type inference techniques of functional languages 

[13,14]  to minimize the annotations required from users, and 

a physical dimension analysis [15,16] to statically detect this 
kind of inconsistencies. 

Regarding the modeling of time, currently STIMULUS 
provides a simple periodic physical time model, by using a 
period to assign physical time values to logical time steps. In 

the long term we plan to provide a more flexible, aperiodic 
time model. 

B. Compilation Process and Simulation Engine 

 SIMULUS compilation process follows the principles of 
[3,4,5,6] for (i) reducing parallel composition of hierarchical 
state machines to sets of statements guarded by choices on the 
clocks representing the active states of state machines, and (ii) 
ordering statements properly with respect to dependency 
constraints. 

The simulation engine follows the principles of [7,8] and 
combines an exploration algorithm for resolving the non-
deterministic choices induced by state machines and a 

constraint solver for resolving the non-determinism induced 
by constraints on variables. The solver handles logico-
numerical constraints mixing logical operators on Boolean and 

enumerated variables, and linear constraints on numerical 
variables. The restriction to linear numerical expressions 

concerns only the unknown variables to be solved: the solver 
can deal with non-linear sub-expressions on variables that are 
known at solving time, like inputs or memories. For instance 

the constraint x*(last x) >= y*(last y)*(last y) is linear 
on the unknowns x and y. 

IV. METHODLOGY FOR DEBUGGING REQUIREMENTS 

In the previous section, we gave an overview of a new 
real-time constraint programming language built by 

combining the two research lines of work lead by M. Pouzet 
[3,4,5,6] and by the synchronous team of VERIMAG 
laboratory [7,8,9,10].  Now, how can it be used to debug 

requirements of real-time systems ? 

 
Fig.2 Macro defining the temporal operator When 



With the current practice, requirements are mostly textual 
that are worked out and validated through manual reviews, 
and then given as inputs to 

1. system designers and programmers on the one hand, who 
will implement the system; 

2. test engineers on the other hand, who are in charge of 

writing functional test cases and test verdicts to confront 
the implementation w.r.t. the initial requirements. 

Fig. 3 depicts the functional test bench architecture of a real-

time system. I and O denote resp. the inputs and outputs of the 
System Under Test (SUT), which is considered as a black box. 

The box “Scenarios” feeds the SUT with inputs I, possibly 
taking into account outputs O to produce realistic inputs. The 
box “Requirements” reads both inputs I and outputs O of the 

IUT and emits a verdict. 
As mentioned in the introduction, the experience shows 

that half of the bugs discovered by functional tests are 

requirements bugs, and not implementation bugs. The problem 
is that these bugs can be found only after the SUT becomes 

available. 
 

Fig. 3 : Classical test architecture of a real-time system 

 

 
Fig. 4 : Debugging architecture for requirements and 

scenarios with STIMULUS 
 

In contrast, the methodology made possible by the 

STIMULUS constrained-based language and its simulation 
engine is the following one: 

 Requirements are seen as constraints between inputs I, 
outputs O, and the verdict (OK/NOK). 

 The box “requirements” in Fig. 4 act as an outputs 
generator. At each simulation step: 

o the inputs I and the verdict OK are provided to 
the box “requirements”; 

o the simulation engine solves the constraints in 
the remaining unknowns O and picks a random 
solution for them. 

 Similarly, scenarios are also seen as constraints between I 
and O, which may describe general assumptions on inputs 
and/or more specific test cases. 

 The box “scenarios” in Fig. 4 acts as an inputs generator: 
given outputs O provided to it by the feedback loop, the 
simulation engine solves the constraints in the remaining 

unknowns I and picks a random solution for them. 
The fact that scenarios may be generic scenarios with a 

large variability on control and data allows the simulation 

engine to generate many different simulation traces, and 
ultimately makes more likely the discovering of an unexpected 
behaviour corresponding to a problem in the requirements. 

Actually scenarios are optional: one may simulate 
requirements alone. However, in practice, one often needs 

some general assumptions on the stability or the variation of 
signals to make simulation traces readable or realistic. 

Another important observation is that once scenarios and 

requirements have been worked out using the architecture of 
Fig. 4, they can be reused directly in the test architecture of 
Fig. 3 with a black-box system under test: indeed, there are 

executable, and STIMULUS have a mechanism to turn a 
generator into an observer, which enables to turn the 
requirements box of Fig. 4 in the requirements box of Fig. 3. 

 
We described in the two previous sections the scientific 

foundations of STIMULUS and the methodology it enables 
for debugging requirements together with their associated 
generic test scenarios. The sequel of the paper aims at 

answering to the following questions:  

 How does it work in practice? Is it easy to formalize 
informal textual requirements with STIMULUS? How far 

is the formalized version to its informal counterpart in 
term of readability (traceability feature)? 

 Are simulation traces effective at discovering problems? 
In other words, despite the non-exhaustiveness of our 
validation-by-simulation approach, is it “exhaustive 

enough” in practice? 
To answer to these questions, we will illustrate the use of 

STIMULUS for formalizing and debugging requirements of 

an automatic light system coming from the automotive 
industry.  

V. FORMALIZING THE REQUIREMENTS OF 

AUTOMATIC HEADLIGHTS 

These requirements were provided to us by a Japanese 

software and tools distributor, as a typical example of the kind 
of requirements his customers have to deal with in the 
automotive industry. We insist on the fact that they have not 

been specifically invented for evaluating a tool like 
STIMULUS, neither by us nor by researchers or developers of 
alternative solutions. 

The original, textual specification of the automatic 
headlights is depicted on Fig. 5. The head sentence is a sort of 

informal, high-level requirement that describe the general 
purpose of the four more precise, lower level requirements 
that follow. This purpose is to command the switching of the 

lights. In the sequel we will formalize the four requirements 
named 3Aa, 3Ab, 3B and 3C.  

Fig. 6 depicts the initial formalization of requirement 3Aa, 

which will be debugged by simulation and upgraded in the 

System Under Test 

  

Scenarios 

  

Requirements 
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I 
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next sections. One recognizes in Fig. 6 the pieces of sentence 
underlined on Fig. 5. This formalization is based on the use of 

STIMULUS standard library, which provides a number of 
sentence templates that are ubiquitous in real-time 
requirements, such as: 

 “as long as  <expression>, <statement>” 
 “initially <statement>, afterwards  <statement>” 

As explained in Section III.A.d, such sentence templates are 
user-definable views for formal systems and macros, and their 

purpose is to make easy tracing the formalized requirement 
back to the textual, non-formalized requirement. 

The other requirements 3Ab, 3B and 3C are similarly 
formalized. 3Aa and 3Ab roughly specifies an hysteresis. 3B 

and 3C in addition require the light intensity to be low or high 
to hold for some time before switching respectively on or off 
the headlights. This is to prevent the headlights to blink too 
quickly, for instance when driving under a bridge. 

VI. SIMULATING AND REFINING THE REQUIREMENTS 

We just showed how the requirements can be formalized. 

However the major innovation of STIMULUS is the ability to 
simulate them.  

A. Simulation architecture 

Fig. 8 depicts the block diagram defining the simulation 

architecure considered  in this paper. The block Env generates 
values for the signal lightIntensity that satisfy the 
assumptions depicted on Fig. 9. These assumptions combine 

general physical assumptions on the range of the light 
intensity (a percentage of a maximum intensity) and of its 
derivative, and a scenario making it alternatively increase or 

decrease. In this paper, we maintain the signal switch to 
AUTO, as we want to simulate the behaviour of the system 

under this mode. 
The block R003_v1 on Fig. 8 is defined by the 

requirements discussed in Section Erreur ! Source du renvoi 

introuvable.. This block will generate possible values for 
headLight that are compatible with these requirements and 
the values of the other signals. 

B. First simulation and detection of a problem 

Fig. 10 depicts a possible execution trace of the system 

defined by Fig. 8. One can observe the behaviour of 
lightIntensity and headLight signals. L60 and L70 are the 

two thresholds 60% and 70% that appear in the requirements. 
What can be observed is that at start headLight has the 

expected behaviour: it is first OFF because the light intensity 

is above the 70% threshold, and when the light intensity falls 
below the 60% it becomes ON. However, afterwards the 
behaviour seems completely random and appears in 

contradiction with the intended behaviour.  
Hence the simulation exhibits a problem either in the 

textual requirements, or in their formalization, or in both. 

C. Investigating and solving problem 1 

Consider the textual requirement 3Aa on Fig. 6 and more 
precisely its second part:  
“[…] Afterwards the headlights should continue to stay ON in 

AUTO as long as  the light intensity is not above 70%”. 
The textual expression “as long  as” is actually ambiguous: 
does it mean 

1. as long as  condition, something [afterwards nothing]” 
(sequential behaviour) 

If the switch is AUTO then the headlights turn on or off, depending on the ambient light intensity - with a defined hysteresis 
to prevent blinking. 
REQ_003Aa: if the switch is turned to AUTO, and the light intensity is at or below 70% then the headlights should stay or 
turn immediately ON.  

Afterwards the headlights should continue to stay ON in AUTO as long as the light intensity is not above 70%. 
REQ_003Ab: if the switch is turned to AUTO, and the light intensity is above 70% then the headlights should stay or turn 
immediately OFF.  
Afterwards the headlights should continue to stay OFF in AUTO as long as the light intensity is not below 60%. 
REQ_003B: if the switch is in position AUTO, the headlights are OFF, and the light intensity falls bellow 60%, 
then the lights should turn ON if this condition lasts for 2s. 
REQ_003C: if the switch is in position AUTO, the headlights are ON, and the light intensity is above 70%, then the lights 
should turn OFF if this condition lasts for 3s. 

Fig. 5: Original specification of the automatic headlights  

 

 
Fig. 6 : Requirement 3Aa in STIMULUS, initial version 

 

 
Fig. 7 : Requirement 3B in STIMULUS, initial version 

 



2. or “[always] when condition, something” 
(cyclic behaviour)? 

This ambiguity is not really an artefact introduced by 
STIMULUS sentence templates: it is a real ambiguity which 
already exists in the textual version, between a sequential or a 

cyclic behaviour.  
On Fig. 6 we opted inadvertently for the first 

interpretation, but clearly we expect a cylic behaviour here. 
Let us try the second one, which is available in the standard 
library. Requirement 3Ab which follows the same pattern is  

similarly modified. Let us simulate this new version of 
requirements: 

 
 
We obtain a conflict at simulation step 6: this means that some 

requirements are contradicting each other. Let us highlight the 
requirement 3Aa and 3Ab in the debugger at step 6 where the 

conflict occurs:         

 
The debugger highlights the active parts of the requirements, 
and allows the user to discover that at this step, the 

requirements implie headLight to be ON and OFF at the same 
time! 

D. Investigating and solving problem 2  

Consider again the textual requirement 3Aa on Fig. 1. We 

formalized the expression  
“headLights should continue to stay ON” 

underlined in Fig. 1 with the formalized sentence  

“headLights shall be ON”. 
Was that the right interpretation? The sentence could also 
mean: 

“if it was ON, maintain it at ON, otherwise do nothing”. 
To check this hypothesis, we defined a new, user-defined  

sentence template  
“<expression> should continue to stay <constant>” 

 
Fig. 8: simulation architecture 

 

 
Fig. 9: system Env describing the assumptions on the light intensity 

 

 

Fig. 10: Simulation of requirements, initial version 
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with this semantics and used it to update requirement 3Aa, 
resulting in the requirement of Fig. 11. Requirement 3Ab was 

similarly modified. 
Fig. 12 depicts a possible execution trace with this new 

version of requirements, which follows much better the 

expected behaviour of the head lights which should not blink 
and which should switch to ON or OFF according to two 
thresholds. 

A last problem, that we will not detail as much, concerns 
the requirements 3B and 3C: they express that something 

should happen when a condition hold for some time duration, 
but say nothing about what should happen before. Hence 
unwanted, blinking head lights behaviour might occur with a 

more generic scenario in which the switch is not always equal 
to AUTO. This is a typical example of a missing requirement. 

VII. DISCUSSION 

The four textual requirements of Fig. 5 look rather simple 
and reasonable. Yet they contain several ambiguities  and 

omissions, some of them leading to unwanted behaviours, 
others to contradictions. Actually, although looking simple, 
they specify a complex behaviour that depends on the past 

history of signals, and on physical time. This complexity 
behind apparent simplicity is typical of real-time requirements 
and explains the strong need for their early validation, 

especially as they are often requirements of security-critical 
systems. 

A. Comparison of simulation approach to alternative 
requirements validation approaches 

It is difficult to discover by manual reviews the problems 
we discovered by simulation. This is why many of them are 
discovered later, either by developers or test engineers when 

they start exploiting the requirements given to them, or, worse, 
even later during the functional test phase. 

We claim that model-checker or formal proof systems are 

not very suitable either for this debugging and elicitation task. 
For detecting and fixing the first problem found in Section 

VI.D, it is necessary 
1. to explicitly formalize the higher-level property capturing 

the bad behaviour, which requires having already 

identified it as a potential error; 
2. to check the validity of the requirements against this 

property – this will fail of course; 

3. to analyse the cause of the failure and to try a new 
alternative. 

The simulation approach made possible by STIMULUS 

(i) completely removes the need for subtask 1; the user can 
still insert property observer to automatize the detection 
of an already identified potential problem, but this is 

optional;  
this subtask is actually replaced by the observation of 
simulation traces enabling the discovery of unanticipated 

behaviours or getting an higher confidence in the 
relevance of the requirements  

(ii) makes subtask 2 arguably easier: model-checkers may 
have an issue with too complex models, either in terms of 
size or expressiveness (non-linear computations for 

instance), and proof systems are not always fully 
automatic; in contrast simulation techniques are less 
computationally demanding and can handle complex 

models fully automatically
1
. 

Subtask 3 remains the same but in overall the removal or the 

simplification of the other subtasks make the trial-error cycle 
much quicker. 

The use of model-checking and formal proof approaches is 

of course still meaningful to obtain an exhaustive confirmation 
of consistency, or to discover inconsistencies occurring in very 
uncommon cases that a simulation approach may miss. 

B. Evaluation w.r.t. announced criteria 

At the end of Section IV describing our methodology, we 

proposed two main evaluation criteria to our approach, 
namely: 

1. Easiness of formalization, readability of formal models 
and traceability w.r.t. informal, textual requirement; 

2. Effectiveness of the simulation engine in generating 

simulation traces exhibiting problems, that is, sufficient 
“practical exhaustiveness”.  

 

                                                             
1
 As mentioned in Section III.B, the constraints of 

STIMULUS models should be linear, but only on the 
unknown variables at solving time, which is  not restrictive in 

practice. 

 
Fig. 12: Simulation of requirements after the second 

correction 

 

 
Fig. 11 : Requirement 3Aa in STIMULUS, second correction 

 
 



We hoped to have successfully convinced the reader that 
the formalized requirements of Figs. 6 and 7 remain close to 
and as concise as their informal counterpart of Fig. 5. 

Although these formal requirements are not pure English, 
everybody can understand what they are talking about. In 
addition, they gain a perfectly formal semantics: the user can 

look at the formal definitions of the sentence templates to get a 
more in-depth understanding of a sentence, and simulate them 
to observe their dynamic behaviours. 

Technically, this is a benefit of the combination of a 
powerful programming language (which is mostly hidden to 

the user), the use of sentence template as a view for 
programming constructs, and the design of well-thought 
standard library. 

 
Regarding the second evaluation criteria, the two problems 

discovered in Section VI were both discovered with the very 

first simulation trace. This means that although the validation-
by-simulation approach is not exhaustive, in practice the 

simulation engine is efficient at quickly exhibiting problems 
when they exist. In particular, the conflict discovered at the 
end of Section VI.C, which would have been easily found by a 

model-checker, was in practice as easily found by the 
simulation engine, using the very unspecific generic scenario 
of Fig. 9.  

Of course, if the assumptions on the environment disallow 
some scenario, STIMULUS will not exhibit problems that are 

specific to them. But the same applies to model-checkers and 
formal proof systems: formal proofs are valid only w.r.t. the 
considered assumptions on the environment. STIMULUS 

actually supports the incremental process of starting 
debugging requirements with very simple scenarios, and later 
stimulating them with more complex or corner-case scenario. 

This process allows the user to progressively gain confidence 
in the quality of its requirements, instead of having to cope 

with too many unwanted behaviours at a time.  
Technically, the effectiveness of the STIMULUS 

simulation engine for generating “really random” traces inside 

the set of possible traces satisfying the requirements  comes 
from the use of a general constraint solver and of a fair 
algorithm to pick a random solution inside the solution space. 

VIII. CONCLUSION 

In this paper, we presented STIMULUS, a modeling and 

simulation tool for the early validation of functional real-time 
requirements, and we demonstrate its effectiveness for 
debugging a few requirements typical of the industrial 

practice, which contain subtle ambiguities and omissions. 
STIMULUS is based on modern programming languages 

and simulation techniques, with many features dedicated to 

requirement readability. It exploits mature and well-proven 
research results to make things simple for the users.  

It enables engineers to formalize requirements using 
predefined or user-defined sentence templates, to model 
environment assumptions and to observe execution traces that 

satisfy the requirements using the innovative simulation 
architecture of Fig. 4. It helps finding ambiguous, incorrect, 

incomplete, or conflicting requirements, as shown on the real-
time requirements of an automatic head lights controller of a 
car provided to us by a software and tools vendor.  

Relying on this case study, we discussed the additional 
benefits that the validation-by-simulation approach for 
requirements engineering proposed by STIMULUS can bring 

to the current validation-by-review and validation-by-proof 
approaches. One can actually observe than in the different 
domain of control system design, one of the most popular tool 

is TheMathworks Simulink, which also implements a 
validation-by-simulation approach. 

We did not detail in this paper how to reuse STIMULUS 
scenario and requirements models for testing black-box real-
time systems as depicted on Fig. 3, but this is a hot topic for 

our customers. Other topics are the automation of some 
common editing tasks, such as providing functional coverage 
criteria for requirements, and to automate debugging and 

testing tasks, such as guiding executions to favor the 
functional coverage of requirements according to these 
criteria. 
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Abstract—Finding problems and optimal designs in the re-
quirements phase is more efficient than later phases. However,
over-constraining the solution is also sub-optimal since not all
information is necessarily available upfront. ‘Build-then-test’
approaches which insist on developing first requirements, then
architecture, then implementation are not suitable for building
systems that must be rapidly fielded and respond to ever-changing
demands. Our approach, ALISA, is working on integrating four
pillars for incrementally building systems which can be shown
to satisfy the relevant requirements. Our four key pillars for as-
suring requirements satisfaction are requirements specifications,
architecture models, verification techniques, and assurance case
traceability between the first three. In this paper we introduce our
approach, and highlight how we are integrating these pillars using
an XText-driven DSL and tool meta-model leveraging existing
tools and languages. Our current focus is on understanding
exactly which requirements are responsible for the majority of
design constraints. Identifying this subset promises to reduce
architecture design space exploration and verification overhead,
increasing delivery cadence.

I. INTRODUCTION

Safety-critical systems function where an error can be
mission- or life-threatening. They are carefully specified and
designed according to a rigorous process, usually by different
collaborating teams. Through the development process, sys-
tem stakeholders define their goals, engineers define system
requirements from them, and architects design the architec-
ture, breaking the system into several layers and parts. Each
part/layer is implemented by potentially different teams, tested
separately and then integrated. One major issue of this actual
process is the late discovery of errors: 80% of implementation
errors are found at system integration but studies have shown
that such issues (70% actually, shown in Fig. 1) are likely
introduced earlier, when defining the system requirements.
Thus, these errors could be discovered and fixed earlier, by
improving requirements specification and design.

In this paper, we introduce our approach for improving
requirements specification and design, called Architecture-
Led Incremental System Assurance, ALISA. Our approach is
traceable and testable from end to end, that is, from system
requirements and stakeholders, down to software and verifica-
tion outputs. This new method connects requirements to other
system artifacts (specifications, models, code, etc.), enabling
requirements traceability and validation along the development

Fig. 1. The Double-V model, showing sources of errors

process. It provides assurance of requirements validation early
in the development process, reducing certification cost of
safety-critical systems through measurably better requirements
and compositional verification evidence.

To improve the quality of requirements we focus on cover-
age of system specifications, quality attributes, and hazards,
as well as management of uncertainty in the requirements.
To improve the quality of evidence we use compositional
verification, and multi-valued logic to automate the planning,
execution of verification plans, and management, reporting of
assurance evidence. In order to so we work with three different
flavors of incrementality:

1) incrementality by refinement, working with one archi-
tecture layer or module at a time

2) incrementality by criticality, focusing on critical re-
quirements/quality attributes first, and then the full set

3) incrementality by change impact, to manage the impact
of changes on requirements, architecture design, and
verification evidence.

II. RELATED WORK

Moving from requirements to architecture is a key problem
in software engineering. Current standards [1], [26] describe
the life-cycle process to follow in order to develop software
but consistency between development phases is often not syn-
chronized, performed using a manual, labor-intensive process
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and consistency between each phase is not automated, and
becomes out of date as products evolve.

One important issue has been to identify architecturally-
significant requirements from a requirements specification; that
is, those requirements which will have the most impact on
how the system is implemented. For example, a well-developed
methodology for this is the Quality Attribute Workshop [5]
and design approaches such as the Architecture-Driven Design
(ADD) approach. Seminal work includes moving from goals to
agent-oriented software, with Tropos [14]; moving from KAOS
specifications to software in [27]; and work by Dewayne Perry
and his students [8]. One key advance is that there now exist
many mature languages for both requirements (e.g., KAOS
[9] and the URN standard [15]) and architectures (e.g., AADL
[2] and SysML [22]). This allows us to leverage well-known
formalisms for the translation. Furthermore, while there were
hints in earlier work towards refinement, there was no explicit
step for driving evidence-based changes in the requirements,
as we propose in ALISA.

In the iterative context, requirements are ideally ‘conversa-
tion starters’ for design elaboration. For example, one takes
the provided user story and queries the product owner about
any uncertainties. And in an iterative context, particularly
with iterations of 2-4 week duration, one can fairly easily
refine these requirements. This approach does not work in all
contexts, however, and may be guilty of finding local optima
(e.g., under-designing), particularly in more complex systems
[10].

The most similar approach to ALISA in integrating archi-
tecture and requirements is by AutoFocus 3 [4] and Whalen et
al. [28]. Whalen et al. describe how SysML can be used with
requirements models to accommodate the essential hierarchical
nature of system engineering: a flow from more abstract
(system requirements) to less (software requirements, then
architecture models and code). It is key to recognize that
there may be existing architectures and implementations that
flow ‘upward’ to constrain requirements. This paper illustrated
that it is often component interaction that provides most
system failures, which can be traced to improper requirements
decomposition and refinement. AutoFocus 3 [4], from the
Fortiss Research Group, is a model-based engineering platform
that, like ALISA, supports Eclipse-based end-to-end system
development, starting with requirements and finishing with
architecture. The two projects have a lot in common; key
differences include the languages underpinning the architecture
models (AADL in the case of ALISA, a custom language
in for AutoFocus), and the verification mechanisms supported
(nuSMV model checking in the case of AutoFocus; any AADL
compatible verification approach in the ALISA case).

The concept of ‘virtual integration’ tries to leverage
the promise of these model-centric approaches to reduce
cost/cycle-time and risk (i.e., rework) by using early, and
frequent, virtual integration, illustrated in the System Archi-
tecture Virtual Integration (SAVI) initiative ([23], [12]). For
simplicity, a related paper [24] suggests doing requirements
modeling directly in the architecture-modeling tool (in this
case, Simulink). Although adoption and ease-of-use goals
are important, our experience suggests this is not ideal for

complex requirements models and higher layers of abstraction.
For architecture-centric approaches the specific details of the
‘architecture’ is ambiguous. There are at least four types of
architecture we have identified:

• Functional architectures capture functional requirements
but with little or no information about how those func-
tions will be encapsulated in components.

• Conceptual architectures specify how a system is de-
composed into software and hardware components and
the interfaces between them. Conceptual architectures
are used during architecture trade studies and acquisition
planning.

• Design architectures specify detailed performance char-
acteristics of individual components, including internal
design detail to the level required to support the analyses
desired.

• Implementation architectures specify details needed to
integrate and verify an overall system; for example, data
that can be used to automatically generate configuration
files or perform model-based testing.

This overlapping of abstractions makes it very difficult to
properly separate solution context from problem context. Our
intent is to provide separate languages (and vocabularies)
for discussing these abstractions (for example, requirements
specification tools for “functional architectures”), linked with
shared identifiers.

In architecture-centric approaches, there is no explicit nota-
tion for capturing requirements (as part of a single process).
For instance, the values for rate of change of speed thresholds
are defined external to the modeling approach. This makes it
unclear where and why these values are derived. For example,
if the car we are building is a sports car, high acceleration may
be desirable. If the car is a minivan (where small children may
be more likely), high acceleration may be undesirable. To add
traceability and rationale from requirements to architecture,
we focus on linking stakeholder goals, system requirements,
and an assurance case model for mapping verification strate-
gies to goals. The compositional reasoning from [28] could
be integrated as another technique for modeling architecture
components and verification strategies.

III. LANGUAGES

Defining and verifying requirements rely on several con-
cepts, that are addressed today by separate tools that are not
integrated. Each tool covers one or several concepts but does
not address the whole process from requirement definition to
system validation. As shown in Table I, we distinguish the
following concepts, which we call the four pillars of system
integration [11]:

• Requirements and Goal Definitions: defines the stake-
holders, system objectives and requirements. Require-
ments engineering frameworks offer a formal specifi-
cation of system requirements, avoiding textual speci-
fication. There are several tools to capture and model
requirements, such as KAOS [9] or RDAL [7].

• Architecture Specification: capture the system architec-
ture structure. This is currently managed by languages
such as SysML [22] or AADL [25].
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• Verification: analyze system artifacts (i.e. model, code,
specification), to check requirements. However, these
activities are not directly related to the system require-
ments specifications. This is currently handled by model
analysis tools, such as Resolute [13].

• Claims, Arguments, Assurance: show how the system
enforce the requirements and provides confidence about
system quality. This is currently handled by linking
verification to requirements and architecture using Struc-
tured Assurance Cases (SACM) [21].

One (or several) pillars are supported by existing tools,
but, as the sparseness of Table I shows, the artifacts are
independent and loosely coupled, and thus, do not cover the
entire development process, from requirements specification
to system validation. In addition, some tools support the
same pillars but with a different (and potentially inconsistent)
approach.

For that reason, we propose to unify these concepts. Lever-
aging existing approaches, we address each pillar with a
separate language, and connect them with tool support. Using
such an approach, users can then specify their requirements,
attach them to the architecture and ultimately, validate them,
demonstrating system compliance with the requirements.

We defined the following languages:
• ReqSpec: stakeholder goals and system requirements.

The language borrows concepts from RDAL [7] and
KAOS [9].

• Verify: for verification activities, verification plans,
methods (i.e. how to analyze and process system artifact
to verify a property). This language is based on concepts
from SVM [3], JUnit [17] and Resolute [13].

• Alisa: for defining assurance work areas, tasks This
language borrows concepts from Mylyn [16].

• Assure: for assurance case instances. This language
reuses concepts from JUnit [17], Resolute [13], SACM
[21]

These languages have been implemented within Eclipse
using the Xtext [6] framework. Our tool supports require-
ments/goals specification, validation methods and activities to
check requirements enforcement in the architecture/implemen-
tation and automatic assurance case generation using the Goal
Structuring Notation (GSN) 1 The tools check for requirements
coverage (what architecture elements is missing a requirement,
and vice versa), consistency (is there conflict between re-
quirements) and auto-generate assurance cases using the GSN
notation and tooling from [19] to show how requirements are
validated and enforced within the architecture.

Note that we are not committed to a requirements →
architecture mapping; indeed, in most cases we expect to
have an existing architecture and requirements models, so
the tracing can be either direction. We call this approach
“architecture-led requirements specification” to capture the
notion that the architectural model is the central hub of our
model-driven engineering approach, with the spokes being the
requirements, verification plans, and other artifacts. This does

1http://www.goalstructuringnotation.info

not demand that an architecture exist before requirements, but
it does acknowledge that a strictly linear process is not realistic.

IV. THE LIGHTBULB EXAMPLE

We show how to use ALISA languages and concepts on a
simple system: a light-bulb being powered by a battery. The
objective is that the battery has enough capacity to power the
bulb.

The architecture of this system is shown in Figure 2 (the
AADL textual representation is shown in Listing 1). It consists
of two devices: one battery and one bulb. Both components are
connected through a power socket. The goal of our example
is to show that the battery has enough capacity to power the
bulb.

While the graphical representation does not include AADL
properties (that specify power capacity and budgets), the
textual representation (listing 1) includes such information to
capture the power capacity and budget.

Fig. 2. AADL model of the bulb example

package simple al isa power

public

wi th SEI ;

bus power
end power ;

device bulb
features

powersocket : requires bus access power ;
properties

SEI : : PowerBudget => 60.0 W applies to powersocket ;
end bulb ;

device b a t t e r y
features

powersocket : provides bus access power ;
properties

SEI : : PowerCapacity => 80.0 W;
end b a t t e r y ;

system i n t e g r a t i o n
end i n t e g r a t i o n ;

system implementation i n t e g r a t i o n . i
subcomponents

bulb : device bulb ;
b a t t : device b a t t e r y ;

connections
c : bus access b a t t . powersocket −> bulb . powersocket ;

end i n t e g r a t i o n . i ;
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KAOS RDAL Resolute AGREE SACM AADL

Requirements Stakeholder Goals X
System Requirements X X

Architecture Specification X X X
Instance X

Verification Activities X X X
Verification Methods X X X

Assurance Claims and Arguments X X
Assurance Results X X

TABLE I. TOOL COVERAGE AND GAPS IN SYSTEM PHASES

end simple al isa power ;

Listing 1. Architecture of the lightbulb system

To specify the system requirements, the first step is to
specify the stakeholders of the system, as shown in listing
2. For this example, we will keep the number of stakeholders
to one, the system electrician.

organization mycompany
stakeholder e l e c t r i c i a n

[ f u l l name ” John Doe” ]

Listing 2. Stakeholders definition

The next step consists in defining the stakeholders require-
ments, also known as goals (i.e. what the system is supposed
to be and what constraints it is supposed to comply with).
Goals definition are written using the ReqSpec language, as
illustrated in listing 3. A goal is bound to a component (in
the present example, the global system), a description and is
associated with a stakeholder (the electrician defined before).

stakeholder goals mygoals for simple al isa power : : i n t e g r a t i o n
[ goal g1 : ” Power OK” [

description ”We should be able to power the bulb ”
ra t ionale ” Without l i g h t , we cannot see ”
stakeholder mycompany . e l e c t r i c i a n

] ]

Listing 3. Stakeholders Goals (REQSPEC lang.)

Once goals are defined, one should define the system
requirements. The ReqSpec language is also used to define
system requirements, as shown in listing 4. A system require-
ment is associated with a component, defines a description
and is ultimately associated with a goal so that the tool is
able to trace goals coverage (what goals are being linked to
system requirements) but also architecture validation (what
components have requirements).

requirement speci f icat ion myrequirements
for simple al isa power : : i n t e g r a t i o n
[

requirement enough power : ” The b a t t e r y should have \
enough power ” [

compute actua lbudget
description th is ” should have a b a t t e r y w i th enough \

power for the bulb ”
see goal mygoals . g1

]
]

Listing 4. System Requirements (ReqSpec language)

Then, verification plans are defined with the Verify lan-
guage, that specifies how requirements are verified. The assur-
ance plan is separated by claim being validated using analysis
tools. Listing 5 shows that the system requirements previously
defined are supported by a claim c1 that checks that the system
has enough power. This claim is verified by a verification
activity (mylibrary.electric_requirements, defined in a
general verification library) that will analyze the AADL model
and ultimately, check the property values, making sure that the
power provided by the battery is more than the power required
by the bulb.

plan myplan for simple al isa power : : i n t e g r a t i o n . i [
claim c1 for myrequirements . enough power [

assert a l l [ my l i b ra ry . e l ec t r i c requ i r emen ts
] argument ” The bulb has enough power ”

]
]

Listing 5. Validation Plan (VERIFY lang.)

Ultimately, the overall assurance plan is defined using the
Alisa language that defines verification plans are executed
(ordering of tests). This is shown in Listing 6, which shows a
definition of a basic assurance plan that executes the verifica-
tion plan defined before (myplan).

a l isa myplan
assurance plan power for simple al isa power : : i n t e g r a t i o n . i
[ assert myplan ]
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Listing 6. Assurance Plan Workflow (ALISA lang.)

We have also added a function to automatically export the
result of the verification process into an assurance case using
the Goal Structuring Notation (GSN) [19]. The objective is to
formalize the validation activities into a standardized notation.
Our tool export these results into a GSN format that can be
processed by the D-case assurance case tool [18].

Fig. 3. GSN export example

The GSN diagram of the bulb example is shown in Fig. 3.
It details how the goal is decomposed and validated: the stake-
holder goal (Power requirements are met) is decomposed into
an evidence (The bulb has enough power) which are ultimately
validated in the model (justification Analyze Power Across
The System). Automating the production of the assurance case
would avoid the labor costs associated with the production of
such document, but also make them accurate with respect to
the actual validation activities done on the model.

V. LARGER-SCALE EXAMPLE – THE SYSTEM
ARCHITECTURE VIRTUAL INTEGRATION CASE

In 2009 the SAVI initiative published a white-paper [12]
describing a case study outlining how the notion of virtual
integration – the use of an annotated architecture model as
the single source for architecture analysis – can dramatically
reduce rework and verification costs in safety-critical systems
development. We have begun to implement that example in the
ALISA tool-chain in order to demonstrate ALISA’s suitability
to realistic problems. In the 2009 report we modeled the
sample problem – a Tier 1 airplane system - in AADL, one of
the components of the ALISA tool-chain. We have completed
this analysis using the ReqSpec tools, reverse engineering the
requirements both from the existing architectural documents
and pre-existing natural language requirements.

Figure 4 shows the SAVI Tier 1 model components, and
figure 5 shows a portion of the Tier 2 model of the Integrated

Modular Avionics subsystem. Note that AADL has a robust
behavioral specification language, shown in Figure 6.

From these architectural models we focused on the flight
guidance subsystem, creating appropriate requirements and
verification specifications for these systems. The Verify lan-
guage asserts that a given claim in the requirements (ReqSpec)
is met. Listing 8 shows the verification plan for the re-
quirements defined in listing 7. The Plugins.ResourceAnalysis
verification activity (listing 8) calls a separate, standalone
verification tool to check the associated requirement and ulti-
mately returns one of {True, False, Unknown}. The automatic
traceability support in our tool propagates the truth-value of
each claim to mark requirements as satisfied (claims are True)
or unsatisfied (claims are Unknown or False). The result will
then be saved and used later to build the associated GSN (as
the one shown in figure 3 for the lightbulb example).

We are currently researching better support for more com-
plex propagation of verification outputs. For example, we may
use semantics that provide for another verification activity if
the first attempt is either Unknown (e.g. a model checker times
out) or False (which we are calling fail-then semantics).

system requirements ADC SW : ” Requirements for the Software \
Subsystem of the ADC subsystem of the F l i g h t Guidance System ”

for I n t e g r a t o r : : FGS : :ADC: : Spec : : p rA i rDataFunct ion
[

va l U t i l R a t i o = SystemConstants . U t i l i z a t i o n R a t i o

va l ADC ProcessingBudget = SystemConstants .TBDm
va l ADC RAMBudget = SystemConstants .TBDmb
va l ADC ROMBudget = SystemConstants .TBDmb
assert ADC ProcessingBudget <=

ADC HW. ADC ProcessingCapacity∗Resource Ut i l izat ion RoT
assert ADC RAMBudget <=

ADC HW. ADC RAMCapacity∗Resource Ut i l izat ion RoT
assert ADC ROMBudget <=

ADC HW. ADC ROMCapacity∗Resource Ut i l izat ion RoT

requirement R1 1 : ”ADC Processing Budget ” [

Fig. 4. Tier 1 (system view) of SAVI proof of concept
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description ” The processing needs of the Software
Subsystem of the ADC subsystem s h a l l not exceed ”
U t i l R a t i o ” percent o f ”
ADC ProcessingBudget

]

requirement R1 2 : ”ADC RAM Memory Budget ” [
description ” The RAM memory needs of the Software

Subsystem of the ADC subsystem s h a l l not exceed ”
U t i l R a t i o ” percent o f ”
ADC RAMBudget

]

requirement R1 3 : ”ADC ROM Memory Budget ” [
description ” The ROM memory needs of the Software

Subsystem of the ADC subsystem s h a l l not exceed ”
U t i l R a t i o ” percent o f ”
ADC ROMBudget

]

]

Listing 7. FGS Requirements specified in ALISA’s ReqSpec

v e r i f i c a t i o n plan ADC SWPlan for ADC SW
[

claim ADC SW. R1 1 [
a c t i v i t i e s

processingbudget : P lug ins . ResourceAnalysis ( )
]

claim ADC SW. R1 2 [
a c t i v i t i e s

RAMbudget : P lug ins . ResourceAnalysis ( )
]

claim ADC SW. R1 3 [
a c t i v i t i e s

ROMbudget : P lug ins . ResourceAnalysis ( )
]

]

Listing 8. FGS Requirements specified in ALISA’s Verify.

Fig. 5. Tier 2 AADL model of SAVI PoC

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented ALISA, our vision for integrating
four pillars for incrementally building systems: requirements
specifications, architecture models, verification techniques, and
assurance case traceability between the first three. We ex-
plained how we created DSL-based tooling to build these
pillars, using a simple example. We then presented our ex-
ample from an avionics domain to support our claim that the
ALISA approach promises to reduce architecture design space
exploration and verification overhead.

Our current and future work is to work with industry
partners to add functional and safety requirements to an
existing safety-critical system. We will apply the ALISA tools
to perform compositional verification to provide assurance
evidence. We are currently translating existing requirements
from a DOORS and Excel environment to an ALISA-based
requirements and safety hazards specification. We hope to
demonstrate measurable improvement in requirements cover-
age and consistency. This will show the value of ALISA in
early project phases. Our ultimate aim is to show measurable
reduction in system rework costs by earlier defect detection.
The certification process for safety-critical systems is one place
where demonstrating compliance can produce large savings, so
we are working with a collaborator to to produce additional
evidence and certification artifacts to complement their testing
evidence. Future work also includes integrating an assessment
of requirements uncertainties (such as described by [20]),
in order to further circumscribe the set of requirements that
need to be checked. For example, in a car we may already
be comfortable with our level of knowledge in the anti-lock
braking subsystem, but less sure about the new fuel injector.
We have also created import and export mechanisms with the
OMG’s Requirements Interchange Format (ReqIF)2 in order to
facilitate interchange.
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Abstract—Cyber-physical systems (CPS) integrate computa-
tion with physical processes, enabling the dynamic adaption of
systems based on economic and environmental conditions. The
adoption of CPS in industrial process automation is impeded by
legacy systems with severe functional safety constraints and the
need for highly configurable devices. To transfer the benefits of
CPS to process automation, the inherent conflict between CPS
safety and configurability must be explicitly considered during
system design and operation. This paper proposes aspect-oriented
modeling of safety and data for CPS in process automation as a
baseline for formal consistency monitoring.

I. INTRODUCTION

Cyber-physical Systems (CPS) integrate computation and
physical processes [1]. A remaining key research challenge for
CPS is the definition of suitable modeling approaches covering
abstraction and functional safety [2], [3]. Devices used in
process automation CPS are usually mass market products
which must be adapted to the specific process environment
of the customer. Suppliers implement this requirement by
adding configurability to their products, tailoring them to the
customer’s requirements during production and on-site. This
drastically increases device complexity, an effect which is
amplified by the emergent requirements for highly dynamic
systems arising from initiatives like the German ”Industry 4.0”,
where factory automation shall enable the dynamic adaption
of the production to customer’s desires or real-time demand
and economical factors along the life cycle of a product [4].
Unlike in factory automation, systems in process automation
are typically large scale plants with complex static control
loops, where despite its benefits CPS adoption is limited by
functional safety restrictions imposed by standards such as IEC
61508 [5] due to risks for humans and environment. Safety-
critical applications require extended verification of the plant’s
safety functions, which is impeded when the implementing
CPS components are configurable, creating a dependence
between safety-critical behavior and configuration data. This
conflict raises the need for formal specification and verification
techniques to enable safety verification of devices considering
specific configurations. In [6], we introduced a domain model
for hierarchical modeling of CPS in process automation. In
this paper, we propose a modeling approach advancing our
domain model, using the aspect-oriented paradigm to explicitly
model the safety and data concerns separated from the CPS
domain model. Our goal is to enable the reasoning about
safety in presence of complex configurability, setting a baseline

for the application of dynamic CPS in process automation
while preserving the required functional safety of the legacy
installations.
The remainder of this paper is organized as follows: Section
II examines related work on CPS modeling, Sections III and
IV describe the interconnected modeling of the safety and data
aspects. Both aspects are jointly examined in a case study in
Section V, which also covers inconsistencies between aspect
and domain models. Section VI gives a conclusion and outlines
further research directions.

II. RELATED WORK

To obtain an overview of methods for modeling CPS
in process automation, we conducted a systematic mapping
following the method introduced in [7]. The mapping identified
and categorized a total of 448 relevant publications, 15 of
which target the domain of process automation. This low
number is also confirmed by [8], where only one publication
from the domain of industrial automation is listed.
Following our mapping, we further examined the relevant
papers from all domains in a systematic literature review
as suggested in [9], focusing on the aspects of data and
functional safety. From the 15 process automation papers only
[10], [11] and [12] address functional safety. A combination
of safety and data modeling was only found in [12], where
the reachability of unsafe hybrid parametrized automata states
is determined but further safety and data concepts such as
hierarchical modeling and data dependencies are not covered.
To additionally cover cross-domain and generic approaches,
we broadened our investigation to relevant approaches from
all domains and identified 5 further papers covering data
and safety aspects in CPS ([13], [14], [15], [16], [17]). [14]
describes architectural views for heterogeneous CPS models
and consistency considerations between these views as well
as behavioral semantics for system verification. The approach
uses automata states to model and verify the safety of the
CPS. [16] develops a formal framework and graphical notation
for the development of hybrid systems using graphs and
hybrid automata. Neither [13], [14], [15] nor [16] include the
modeling of safety concepts that are incorporated in the design
of the whole CPS on various abstraction levels or the in-depth
coverage of configuration and the effects of configuration data
on system behavior and safety. [17] does not cover physical
and deployment views of CPS which we consider important
for safety and data consistency. In addition, none of the
publications mentioned before use aspect-oriented modeling



for the cross-cutting concerns of safety and data.
Concluding our literature review, to the best of our knowledge
our approach differentiates from the state of the art by covering
the explicit aspect-oriented modeling of functional safety and
data for CPS in process automation. We are further not aware
of generic or cross-domain approaches providing a compre-
hensive modeling coverage of safety and data concepts which
we consider crucial for CPS in process automation.

III. ASPECT-ORIENTED SAFETY MODELING

In aspect-oriented development, cross-cutting concerns af-
fecting major parts of the development artifacts are represented
as detached aspects to achieve separation between functional-
ity and cross-cutting concerns [18]. During the definition of
our domain model, we identified the influence of functional
safety on its structural, behavioral, physical, deployment and
communication viewpoints on the plant, CPS, subsystem and
component layers of abstraction. In addition to their distributed
influence, safety concepts typically are major development
artifacts which regarding to their specification and certification
efforts are desired to be reused in multiple projects. We there-
fore follow the aspect-oriented paradigm by integrating these
concerns into safety aspect models abstracted from a specific
device development and connecting them to our domain model
using formal weaving functions.
Fig. 1 shows the scope of our safety aspect. Aspect models
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HW / Deploy
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well-formedness rules

monitored by

controls

Fig. 1. Scope of the safety aspect

define cross-cutting safety concerns from all viewpoints and
abstraction layers. Multiple concerns are integrated to safety
concepts implementing safety functions, which are defined in
IEC 61508 [5] as functions controlling a process or system
to mitigate the risk of dangerous failure causing harm to hu-
mans and environment. The connection points between aspect
models and the domain model are formally defined by weav-
ing functions and structurally constrained by well-formedness
rules (wfrs). The following paragraphs give an overview of the
aspect beginning with the cross-cutting concerns.
The influence of functional safety on the logical CPS structure
is primarily specified by the criticality and safety integrity
level (SIL) of structural model elements, needed as baseline
for further approaches such as partitioning and deployment.
The function crit defines whether an element is safety-related
(sr), non-safety related (nsr) or has a mixed criticality:

critcritcrit :Entity ∪DeployContext ∪ Channel ∪ Protocol

→ {sr, nsr,mixed} (1)

The function sil defines a SIL for each element used to
determine its valid dependencies regarding safety. To connect
this safety information to our domain model, we define the
weaving-function addAttribute:

addAttributeaddAttributeaddAttribute ={faA1 , ..., faAn}
faAi =E′ ⊆ Entities→ type(atti ∈ Attributes)

(2)

specifying a function faAi
for each attribute Ai that shall be

added to the domain model. faAi
assigns the type of Ai to

each of the targeted Entities E′. faAi
is by convention named

after the added attribute Ai. The application of every weaving
function is constrained by associated structural wfrs.
IEC 61508 differentiates between systematic failures and
random hardware failures e.g. due to hardware aging. The
latter are included in safety analysis such as Failure Modes
Effects and Diagnostic Analysis (FMEDA) to determine the
risk of dangerous undetected failures of the safety function.
We add hardware failure information to the hardware
elements in the domain model using the weaving function
addAttribute, covering the probability of a hardware error,
the fractions of safe, unsafe, detected and undetected errors
and aggregated values for system integrators.
The dependable transfer of safety-related data must be
ensured by safe communication channels in safety-critical
CPS. The applicability of a channel for transporting data
of a specific SIL is influenced by the bit error probability
of the underlying hardware link as well as qualitative and
quantitative communication measures modeled by the safety
aspect both in the deployment and communication viewpoints.
Safety-critical CPS typically adapt their behavior according

Startup Nonsafe 
Operation

Safe 
Operation

Maintenance 
Mode

Safe Error 
State

error detected

error resolved
!error resolved

service attempt

DD error 
detected

Safety Checkmode 

change

[check 

successful]

[!check successful]
DU / SD / 
SU error

Fig. 2. Safety modes introduced by the safety aspect

to their internal safety mode. To model the overlaying safety
modes of the CPS under development and the modification of
the domain model behavior during the modes, our aspect uses
a safety automaton connected to the behavioral semantics
of the domain model via weaving functions. Behavioral
changes triggered by the safety mode are the augmentation
of the behavioral semantics, e.g. the addition of an additional
safety check, and their restriction, e.g. due to a simulation
function which may only be started in nonsafe operation.
Both augmentation and restriction can be applied to all
behavioral models used in [6]. Fig. 2 shows the generic safety
automaton, describing the internal safety mode of the CPS
from startup to nonsafe and safe operation. The CPS stays
in safe operation in case of dangerous undetected and safe
errors, switching to a safe state on detection of critical errors.
The augmentation of behavioral semantics is used in the
motivated verification of process safety functions considering
their configurable realization. On the subsystem layer, safety
functions are modeled by adding control modes to the hybrid
automaton of the process step. The process safety time, i.e.
the time between the occurrence of a failure and a resulting
hazardous event defines the detection and reaction time
available to the safety functions for mitigating the risk of
the event and is modeled inside the safety automaton of the
specific CPS. The realization of safety functions is modeled
on the component layer by modifying the system’s activity
diagrams. Both concepts are detailed in section V-D.
As shown in Fig. 1, our safety aspect additionally defines
reusable safety concepts from sets of cross-cutting concerns.
These templates can e.g. define diagnostic functions to detect
the hardware failures introduced above, facilitating the tracing



between failure analysis and mitigation as shown in the
2-channel safety concept in Fig. 11.

IV. ASPECT-ORIENTED DATA MODELING

The device development for industrial CPS targets
mass markets where it is unfeasible to develop individual
products for every customer. As a result, complementing
the measurement data the CPS gathers and processes,
industrial CPS contain a large number of configuration data
used for the customization of base device variants to the
customer’s application. Both data categories influence all
viewpoints over the entire system hierarchy. A configuration
data model is often used detached from a specific device,
e.g. during manufacturing and order processes or customer
service and should be separated from other development
artifacts. We therefore model CPS data as aspect to enable
data development, deployment and analysis to be conducted
independently from the domain model.
Fig. 3 shows the fundamental data aspect model for CPS
in process automation, categorizing data items into device
variables and static data. Device variables represent values
connected to the physical process which are periodically
refreshed and distributed throughout the CPS, whereas static
data items describe typically persistent attributes of the CPS
itself. Every data item is uniquely identified by its localId
and scope, which defines the area where device variables are
distributed and static data is synchronized and available to
all modules. This can be e.g. a partition or a node. Device
variables are produced by one distinct software module
(producer), can be set to a synthetic test value (synthetic)
and connected to an external CPS interface (outputChannel).
Each device variable has an update interval and can be kept
local by stopping the bus distribution. The data aspect defines
two types of device variables: a float value with timestamp
and a double value. Static data is protected by an access
level specifying valid editors as well as the item’s settings for
persistent storage and replication between data stores. Static
data is defined for several data types and contains actual,
default and SIL values and associated value ranges.
The data aspect also defines dependencies between data
items. Configuration details of device variables such as limits
and default values are given by a referenced static data item
(configuredBy). Both device variables and static data can be
derived from other data items. Derived data items are locally
calculated from primary data items and are not persistently
stored. In addition, static data items can interfere with each
other during the update of their values. An updateDependency
between multiple data items denotes that the CPS can only
accept an updated value of a data item if the dependent
items are also updated. The checkDependency is an internal
dependency that triggers a validation of connected data items
if the value of one data item is altered.
While the safety and data aspects are specified concurrently
to the domain model, there is interdependence between
the aspect models. Device variables and static data both
have a criticality and SIL defined via the weaving function
addAttribute from the safety aspect. In addition, the SIL value
in static data items defines a value that is set when the safe
operation mode specified by the safety aspect is entered.
The aspect model is connected to the domain model using

Fig. 3. Basic data model defined by the data aspect

the concepts of weaving functions and restrictions specified
by wfrs as described in Section III. In the structural,
communication and deployment views, attributes can be
altered and entities such as software modules can be
deactivated by the data aspect. As the data aspect models
the CPS internal representation of process values, it adds a
connection between process values and device variables thus
connecting physical and computational parts of the domain
model. In the deployment and communication views, the
storage and distribution data flow of device variables and static
data is modeled using the weaving function addData. This
function also specifies hardware configuration by connecting
static data items to hardware nodes. As described in Section
III, the aspect models influence the behavior of the CPS. The
influence of configuration data to the behavioral semantics
is modeled using the weaving functions addBehavior and
removeBehavior as shown in Fig. 9.

V. CASE STUDY

A. Example Process - Distillation in MDI Production

We use the simplified chemical process of methylene
diphenyl diisocyanate (MDI) production [19] as case
study for exemplary application and evaluation of our
modeling approach. MDI as a base product of polyurethanes
is one of the most produced isocyanates. It can be
generated by condensation of aniline and formaldehyde
to methylenedianiline (MDA) using hydrochloric acid (HCl)
as catalyst followed by phosgenation of the MDA. Using
the highly dangerous phosgene, the process is well-suited to
study our domain model in a safety-critical environment. As
shown in Fig. 4, phosgene and HCl must be separated from
the crude MDI after the phosgenation in a distinct subprocess
”phosgene separation”, on which we focus in our case study.
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Fig. 4. Schematic Overview of MDI Production



The separation of phosgene, HCl, MDI and the solvent
chlorobenzene (MCB) can be realized by distillation, as
schematically shown in Fig. 5. The feed mixture F enters
the column in liquid state and flows towards the base of
the column which is continuously heated by circulation of
the base product (MCB and MDI) through a steam reboiler.
This leads to vaporization of phosgene, HCl and parts of
the MCB, forming a vapor flow V towards the head of the
column. This head product exits the column and enters a
condenser, which cools down the vapor to liquefy MCB
and phosgene while extracting the gaseous HCl. MCB and
phosgene are then stored in an output tank and directed
towards other subprocesses. In a non-ideal distillation column,
the vapor emerging at the column bottom contains both the
lighter and heavier compound. To reduce this mixing and to
obtain higher purity of base and head product, column floors
and a partial reflux L from the output tank to the column
are installed. When the steam meets with the reflux at a
certain floor, it partly condenses whereat mostly the heavier
compound is liquefied. The condensing energy contrarily
causes the vaporization of the lighter compound in the reflux.
Moving towards the column head, this effect is multiplied by
introducing additional floors to reach a desired level of purity.
Typical distillation columns are controlled using five control
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loops. To obtain stable column operation, the levels at the
column base (LC1) and the output tank (LC2) as well as the
column pressure (PC) are controlled. The product quality is
defined by the desired separation between the compounds in
both base and head product (distillate). Control schemes for
distillation columns are commonly named after the variables
used to control the product quality. In our case study, we
apply the LV control scheme, which controls the head product
composition by the reflux (FC1 controlling L) and the base
product composition by the flow of steam to the reboiler
(FC2 controlling V). To reduce the size of our case study, we

evaluate our aspect-oriented modeling approach focusing on
condenser and output tank of the distillation. In the following
section, we introduce both process steps and derive a state
space representation to which we apply our approach.

B. State Space Representation

Control algorithms in process automation are designed
based on system models either deduced from physical
characteristics of the controlled process or aggregated from
measurements. The variables and detail of the model must
be adapted to the actual control task. In our case study, the
safety-relevant criterion of the condenser is the complete
liquefaction of phosgene, warranted if the condenser cools the
head product lower than the boiling point of phosgene at 7.44
degrees Celsius. The controlled variable in the condenser is
the mass flow wc of the coolant. We abstract the behavior of
the condenser with that of a heat exchanger:

˙Thp =
whp

mhp
Thp0 − whp

mhp
Thp(t)− kAThp(t)

mhpchp
+

kATc(t)

mhpchp

Ṫc =
wc

mc
Tc0 − wc

mc
Tc(t) +

kAThp(t)

mccc
− kATc(t)

mccc

(3)

where ˙Thp and Ṫc are the time-derivatives of the head product
and coolant temperatures after condensing, k is a constant of
the heat exchanger describing its ability to transfer energy, A
is the area of the heat exchanger, mhp and mc are the masses,
chp and cc the heat capacities, whp and wc the mass flows
and Thp0 and Tc0 the temperatures at the entry point of the
condenser of the head product and coolant, respectively.
The change in head product temperature depends on the heat
transfer between product and coolant as well as on their initial
temperatures. For controlling the head product temperature by
manipulating the mass flow of the coolant, we rewrite the
second equation for Tc(t) and insert it into the first to obtain
a non-linear equation for the dependency of ˙Thp and wc. To
facilitate control and verification activities we generate a linear
state space representation of the form

∆ẋt = A∆x(t) + B∆u(t) + E∆d(t)

∆y(t) = C∆x(t) + D∆u(t)
(4)

where ∆x(t) =

(
∆Thp(t)
∆Tc(t)

)
is the state, ∆u(t) = ∆wc(t)

the input, ∆d(t) =

(
∆whp(t)
∆Thp0(t)

)
are the disturbance variables

and ∆y(t) is the output of the condenser. ∆ symbolizes
small deviations from the original variables in the cause of
linearization. The matrices A, B, C, D and E are obtained
by Taylor linearization of the equations in (3) at a specific
operation point in which Thp and Tc are stable, i.e. ˙Thp = 0
and Ṫc = 0 :

A =

(
0 −whpRccwcR

kA
− whpR − ccwcR

chp
− kA

chp
kA

mccc
−wcR

mc
− kA

mhpchp

)

B =

(
−whpRccTcR

kA
+

whpRccTc0

kA
− ccTcR

chp
+ ccTc0

chp

Tc0 − TcR

)

C =
(
1 0

)

D = 0

E =

(
Thp0R − ccwcRTcR

kA
− TcR + ccwcRTc0

kA

whpR

mhp

0 0

)

(5)



Variables with the index R are fixed in the operation point.
While more complex models for condensing processes exist
(see e.g. [20]), we use this abstracted form to keep the size of
the verification problem manageable for our case study.
The output tank is the second process step covered by our
case study. The critical process variable concerning functional
safety is the level of the distillate h(t) inside the tank which is
controlled by LC2 via the valve FCD. The level is influenced
by the input qc from the condenser, the reflux qr to the column
and the output flow qD:

qc = V fc ∗ dc(t)
qr = kr ∗ dr(t)

√
2gh(t)

qD = kD ∗ u(t)
√

2gh(t)

(6)

The flows are defined by the opening of the corresponding
valve (dc(t), dr(t), u(t) ∈ [0..1]) and the constants kr, V fc, kD
defining the maximum flow at the entry and exit points of the
flow. For the level control, dc(t) and dr(t) are disturbances and
the input u(t) is located at FCD. qr and qD are dependent on
the current level h(t) according to Torricelli’s law. The time-
derivative ḣ is given by the non-linear equation

ḣ =
qc − qr − qD

AT
(7)

which can be linearized to a linear state space model in the
form of (4) where ∆x(t) = ∆y(t) = ∆h(t) and

A =
(

1
AT

√
2g 1

2
√

hR

(krdrR + kDuR)
)

B =
(
− 1

AT
kD
√

2g
√
hR

)

C = 1

D = 0

E =
(
V fc
AT

− 1
AT

krR
√

2g
√
hR

)
√

hR =
−V fcdcR

(−krdrR − kDuR)
√

2g

(8)

C. Modeling the CPS

Focusing on the condenser and output tank of the phosgene
separation, we first model the control systems PC and LC2

from Fig. 5 excluding data and functional safety. Both span
over the subsystem and component layers of abstraction. The
connection between the continuous state space models of
condenser and tank introduced in section V-B and the behavior
of their control systems is established on the subsystem layer
using hybrid automata as defined in [21].
The states V of a hybrid automaton
H = 〈X,V,E, init, inv, flow, jump, event,Σ〉 represent
control modes defining the continuous flow of real number
variables X , while the transitions E specify discrete mode
switches. The labeling functions init, inv, flow and jump assign
predicates to each control mode vi, where init assigns initial
values to the variables of vi, inv defines invariants for the
variables, flow specifies the continuous change of variable
values within a control mode and jump defines conditions for
control switches. The function event assigns a triggering event
from the set Σ of events to each control switch. In our domain
model, the automata of a subprocess can exchange signals and
change their control modes by the discrete event of receiving
a signal and by the violation of a state invariant.
Figure 6 shows the hybrid automaton of the condenser, whose
control state defines the control algorithm of the condenser in
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Fig. 6. Behavior of the Condenser Control System on Subsystem Level

safe operation mode, where the mass flow of the coolant wc

is controlled to keep the temperature Thp below Thp max. The
control system in our case study uses a proportional controller
∆wc(t) = kc(w(t)−∆y(t)) which multiplies the comparison
of reference variable w(t) and output ∆y(t) by a factor kc.
The invariants of the control state define that during regular
control, the HCl output valve FCFS1 is constantly open and
the temperature ∆Thp is always below the threshold Thp max

of 7.44 degrees Celsius. Similar to the condenser, the behavior
of the output tank on subsystem level is defined as hybrid
automaton shown in Fig. 7. During regular operation, the
automaton controls the level of the output tank via the valve
FCD, as defined in (8).
In our domain model, the component layer as lowest layer
of abstraction specifies the implementation of the control
algorithms defined on the subsystem layer. Fig. 8 shows the
deployment structure of the condenser and output tank. The
condenser consists of five nodes which are containers for
groups of hardware units connected by communication links
and typically contained in a separate housing. Three of the
nodes are vortex sensors which count the vortexes in the
Kármán vortex street behind a bluff body in the pipe to mea-
sure the flow speed. The structural model of a vortex node in
our domain model consists of a sensor (e.g. piezo elements or a
physical switch) for vortex counting, pressure and temperature
sensors for mass flow calculation, a vortex algorithm software
calculating the mass flow from the vortex frequency f as well
as software components for inter-node data management and
communication. Condenser Vortex1 and Condenser Vortex2
measure the mass flow whp and the temperature Thp0, while
Condenser Vortex3 measures the incoming mass flow wc and
temperature Tc0 of the coolant. The node Condenser Temp1
contains two temperature sensors measuring the temperature
Thp of the distillate. In addition to the three sensor nodes,
the converter includes a node with two microcontroller units
(MCUs) running the software components for the temperature
control algorithm and the actual valve control. The converter
controls the valve nodes FCC, FCSF1 and FCSF2.
The output tank in our case study consists of three nodes: two
radar level sensor nodes Tank Radar1 and Tank Radar2 as
well as the Tank converter node which runs the level control
algorithm and controls the valve FCD. The nodes of the
converter and the tank are connected using a bus system while
the connections between valves and control nodes are realized
via point to point links.
On the component level the behavior of each control mode
from the hybrid automaton on the subsystem level is modeled
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as activity diagram defining the control and data flows between
the control system entities in this specific mode. Each of
the activities carried out by an entity can additionally be
detailed by a distinct activity diagram. Fig. 9 partly shows
the activity diagram for the control mode of the condenser.
The grey actions mark the standard behavior of the control
system while the dotted flows and white activities are weaved
from the safety aspect as described in section V-D. The mass
flow whp1 is calculated from the vortex frequency fhp1 and the
temperature Thp0 1 and transferred via the bus using the action
transferSR denoting safety-critical communication. Together
with the current temperature value Thp, the temperature control
calculates a control input controlFCC which is adjusted in the
ValveControl module of the valve FCC .

D. Modeling Safety Aspects

Complementing the system specification, we use safety
aspect models to define the safety functions of condenser
and tank on the subsystem layer of abstraction as well as
their realization on the component layer. To demonstrate
the specification of hardware failures and their tracing to
detection methods, we apply the safety concept of 2-channel
redundancy by structural and behavioral weaving to the
condenser domain model.
The safety functions of condenser and output tank are
closely coupled. SFC1 in the condenser ensures that the HCl
which is used in other processes or even sold to contractors
is not contaminated with phosgene. To prevent this, PC
continuously controls pressure and temperature Thp by
manipulating the incoming mass flow wc of the coolant. A
demand on the safety function SFC2 occurs when Thp rises
above 7.44 degrees Celsius due to insufficient cooling. In
this case, the safety function assumes that phosgene has not
been completely liquefied and is flowing as gas towards the
valve FCSF1. SFC2 must close the valve before phosgene
exits. The resulting effect is a mixture of HCL and phosgene
leaving the condenser towards the output tank.
The output tank has four distinct safety functions. SFOT 1
continuously controls the tank level via the valve FCD.
SFOT 2 reacts on the flow of HCl towards the output tank
evoked by the triggering of SFC2 by closing the valve
FCSF2 before HCl can enter the tank, directing the complete

TABLE I. SAFETY FUNCTIONS OF CONDENSER AND OUTPUT TANK

Process Step Mode Control Description
SFC1 condenser continuous PC temperature control
SFC2 condenser on demand PC prevent phosgene output
SFOT 1 tank continuous LC2 level control
SFOT 2 tank on demand LC2, PC prevent HCl output
SFOT 3 tank on demand LC2 prevent HCl output
SFOT 4 tank on demand LC2 prevent empty pipe

condenser output back to the distillation column as reflux.
SFOT 3 closes the input and output valves FCSF2 and FCD

in case SFOT 2 is not successful in preventing the entry of
HCl into the output tank. SFOT 3 is responsible for emptying
the tank via the reflux to ensure that no HCl is put out to
following subprocesses. A demand on SFOT 4 is triggered
when the tank level falls below a minimum threshold. SFOT 4
is responsible for ensuring that the output valve is never
opened when the tank is completely empty to prevent damage
to following subprocesses caused by empty pipes. Table I
lists the safety functions covered by our case study.
As introduced in section III, our domain model extends
the behavioral specification of the system models using the
weaving functions addBehavior and removeBehavior. Fig. 6
shows the behavioral extension of the condenser automaton by
the behavior of the safety functions from Table I. The safety
function SFC1 is continuously executed during safe operation
in the control state of the automaton without altering the
behavior. SFC2 is executed on demand, i.e. when a dangerous
event occurs that may lead to process risks which have to
be mitigated. We use the weaving function addBehavior
to add three additional states to the automaton that are
executed by SFC2. The demand for SFC2 is modeled by the
transition tSFC2 1 which transfers the automaton to the state
switchover when the temperature Thp(t) rises above Thp max

and broadcasts the signal ECond T high. In this state, SFC2
closes the valve FCSF1 at maximum speed vFCSF1 which is
denoted by the flow equation ˙FCSF1 = −vFCSF1. When the
valve is completely closed, SFC2 enters the state overtemp in
which the valve FCSF1 remains closed ( ˙FCSF1 = 0) so that
gaseous phosgene cannot be released and the total output of
the condenser flows towards the tank. When the temperature
Thp(t) falls below Thp max including a hysteresis preventing
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the rapid switching of control modes, transition tSFC2 3 fires
and the valve FCSF1 is opened again in the state switchback
to finally return to the behavior of the control state when the
valve is completely opened.
The same mechanism is used to attach the safety functions
of the output tank to the hybrid automaton in Fig. 7. SFOT 1
is continuously processed in the control state of the hybrid
automaton. The safety functions SFOT 2 and SFOT 3 are
chained. SFOT 2 is entered when the valve FCSF1 is
completely closed or the signal ECond T high is received
which announces the triggering of SFC1. In both cases, the
tank control closes the input valve ( ˙FCSF2 = −vFCSF2)
to prevent the inflow of HCl. The safety time for SFOT 2 is
defined by the time the HCl needs to flow from the condenser
to the valve FCSF2. If FCSF2 closes before the safety time
exceeds, SFOT 2 returns to the control state via tSFOT2 3.
If the closing of the valve requires more time (denoted by
the signal ESFOT2 Timeout), HCl enters the output tank and
the transition tSFOT3 1 activates safety function SFOT 3 as
second part of the chain. SFOT 3 closes the output valve
FCD by setting the flow ˙FCD = −vFCD in the state
output closing. Once FCD is completely closed, tSFOT3 2

fires and the tank level decreases due to the reflux to the
column. The safety function waits for the signal ECond control

which announces regular condenser operation with complete
separation of HCl and phosgene. If at this point in time the
tank still contains HCl and phosgene, SFOT 3 enters the state
tank draining and waits for h(t) to decrease to zero. If h(t)
equals zero, the safety function reopens FCSF2 in the state
input opening, filling the output tank with phosgene, and
returns to normal operation via tSFOT3 6 when the level rises
above a minimum threshold hmin + hysteresis.
The safety function SFOT 4 ensures that the output valve
FCD is closed when the tank level h(t) decreases to zero to
prevent damage to following subprocesses. The demand for
the safety function is a decrease of h(t) below a configurable
threshold hmin which causes firing of the transition tSFOT4 1.
In the state output closing, SFOT 4 closes the valve FCD.
If FCD is completely closed, the safety function waits in

the state output closed for the tank level to rise over the
minimum threshold with hysteresis and switches back to
normal operation via tSFOT4 4. If however the tank level
decreases to zero before FCD is completely closed, a
safety-critical error Err Lvl occurs representing the failure of
SFOT 4 in preserving a safe system state for the process step.
The safety functions of condenser and output tank have to
react by transferring their process step into a safe state during
the interval between the occurrence and the consequence of
dangerous events referred to as process safety time. Fig. 10
shows the safety automaton of condenser and output tank. As
described in section III, in addition to the modes of operation
the safety automaton defines the process safety times and
safety-critical errors for each safety function. For SFC2, the
automaton defines the safety time tsafeSFC2 whose violation
leads to the critical error Err FCSF1, and the chained safety
times tsafeSFOT2 and tsafeSFOT3 leading to the error state
Err FCD. Section V-F argues that the occurrence of these
safety-critical errors depends on the configuration on both
subsystem and component layer and uses the automaton in
Fig. 10 to define a reachability problem supporting the prove
of correct system configurations regarding functional safety.
To support reuse and reduce modeling complexity, the safety
aspect defines safety concepts which can be used to implement
safety functions. These safety concepts are weaved into both
structural and behavioral models on the component layer. Fig.
11 shows the structural aspect model of the safety concept
”2-channel” which introduces a system of two sensors, two
processing units and two actuators. The sensors send a
dynamic data item to both processing units where they are
compared by software modules. The comparison modules on
each processing unit then calculate a derived data item and
exchange it to verify the calculation on each MCU. Each
of the processing units controls an actuator connected to
the same physical process. This safety concept introduces
redundancy to safety-related control tasks.
Fig. 8 shows the weaving of the 2-channel safety concept to the
condenser control structure. Both the node Condenser Vortex2
and the processing units VortexMCU2 and ControlMCU2 and
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the corresponding bus channels are part of the 2-channel
safety concept added to the model via the weaving function
addEntity. Well formedness rules ensure the correct binding
of aspect and domain models using the types of the elements
in the aspect model as reference.
The hardware failure information introduced in section
III can be used on the component level to document the
identified failure modes from a safety analysis and trace their
implemented countermeasures to support system certification.
In Fig. 8 this is illustrated using the failure dataCorruption
which occurs at the memory of VortexMCU1 and leads to
a dangerous failure with the rate λD = 1.7 ∗ 10−9. The
2-channel safety concept acts as diagnostic measure against
the dataCorruption error with a diagnostic coverage DCD of
90% regarding dangerous failures.
Complementing the structure, a behavioral description of
safety concepts is part of the aspect models as shown for the
2-channel concept in Fig. 12. The activity diagram defines the
cross-verification data exchange between the concept entities.
An exemplary weaving of the safety concept is shown in the
activity diagram of the condenser in Fig. 9 using the weaving
function addBehavior to add entities, activities, control and
data flows to the original behavior with correspondence to the
safety concept ensured by well-formedness rules. The aspect-
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oriented approach improves the accessibility of common
safety patterns like the 2-channel approach to domain experts
without explicit safety knowledge and encourages extended
reuse from implementation to documentation and certification
artifacts when reusing complete safety concepts.

E. Modeling Data Aspects

We use the data aspect to add configurability to condenser
and tank on subsystem and component level and demonstrate
how a specific configuration can be defined and bound to the
domain models. On the subsystem level, the aspect focuses
on the parameters of process steps and their safety functions,
providing a process owner’s point of view. The major part
of the data represent customization and data processing of
the CPS parts realizing the process control on the component
level. Similar to the safety aspect, weaving functions connect
device variables and static data items with the behavioral
and structural models on both layers, where the weaving on
component level corresponds to the customization of a mass
market device to a specific application.
The hybrid automata on the subsystem layer use device
variables in their flow equations and static data items in
transition guards and invariants. The weaving function
addData connects the device variables and static data items
from the data aspect to the variables and constants of the
hybrid automata. Fig. 6 shows the connection of the device
variable Thp and its configuration data item ConfThp as well
as the maximum value Thp max to the condenser automaton.
This reduced data set shows that inline modeling of all



configuration data values would magnify the complexity of
behavioral models beyond the point of efficient handling.
Using our aspect-oriented approach, we promote to hold
complete data models externally, e.g. in a separate database
and trace the connections to the variables in the automata via
the aspect weaving.
On the component layer, the origin of the device variables
introduced in the hybrid automata is defined by connecting
the device variables to producing software modules in the
structural and deployment viewpoint using the weaving
function producedBy. Dependent on their scope, the device
variables are then distributed to all data management modules
in the scope of the device variable. Fig. 8 illustrates the source
modules of device variables by the labels of their outgoing
links. Hardware-related characteristics used by software
modules are bound to the respective hardware unit or link
via the addData weaving function, configuration of software
modules is done using the function configure. In Fig. 8, the
construction variable bluff body width of the vortex sensor
CV 3 is defined using the static data item bluffBodyWidth and
the baudrate of the bus system connecting the nodes is set
using the data item bus1Baudrate. The storage and replication
of static data items is defined in the structural models of the
component by the weaving functions replicate and deploy, as
shown in Fig. 8 for the example of the maximum temperature
at the condenser Thp max, which is deployed at TempMCU1
of the condenser and replicated to ControlMCU1.
Configuration data influences the behavior of the control
system on the component layer by manipulating the control
flows of the overview and detailed activity diagrams. The
scope and distribution settings of device variables can add
sending behavior via the addBehavior weaving function as
shown in Fig. 9 for whp1. The common case of behavioral
manipulation is the binding of activities and control paths to
device variables as shown for the control state of the tank
subsystem in Fig. 13.

F. Model-based Verification

During our case study, we focused on inconsistencies aris-
ing from the interdependence between the influences of data
and safety aspects on the domain model. The configuration
of a domain model via the data aspect can lead to an unsafe
system due to structural and behavioral configuration errors.
Structural inconsistencies are static misconfigurations which
prevent correct system execution, arising from the weaving of
the data aspect into domain models with varying complex-
ity. They can be mitigated using the well-formedness rules
connected to the weaving functions of our aspect models. For
example in the hardware and deployment viewpoint, the safety
aspect adds wfrs that constrain the deployment of elements to
safety considerations:

Wfrsil deployWfrsil deployWfrsil deploy : ∀depi ∈ Deployee, dci ∈ DeployContext :

(depi, dci) ∈ deploy → sil(depi) ≤ sil(dci)
(9)

wfrsil deploy ensures that elements depi may only be deployed
on hardware or partitions dci that have a SIL high enough to
provide the safety demanded by depi. Additional wfrs restrict
the control of safety-related actuator and sensor hardware. In
our case study, the deployment of device variables to producing
modules in Fig. 8 must be checked using wfrs that guarantee
that the producing software modules of sr device variables are

sr themselves, have a sil equal or higher than those of the
device variable and are deployed on an appropriate hardware
unit.
Apart from these errors within the scope of a single viewpoint,
more complex scenarios arise when interactions of multiple
system parts defined on multiple views must be considered.
The device variable whp1 e.g. is produced at the vortex sensor
Condenser Vortex1, and transferred to both Control MCUs of
the condenser where it is compared before further processing
(see Fig. 8 and 9). If one of the compared whp values is
configured with a narrow scope, it is not transferred and
thus not usable by the comparison module. In addition, static
inconsistencies can arise due to influence of both data and
safety aspects on the same domain model elements. During our
case study, this conflict occurred in combination with check
and update dependencies of data items. Check dependencies
ensure that the configuration of a data item d1 is only accepted
by the system if the attached data items d2..dn perform checks
including range compliance on their values. If the safety
aspect however removes parts of an activity diagram by the
weaving function removeBehavior to which the dependent data
item di>1 is attached, data item d1 cannot satisfy its check
dependencies and thus cannot be configured. In industrial scale
CPS with multiple processes and control loops, even the basic
single-view cases discussed above become critical and the set
of possible inconsistencies are not manually controllable. Our
case study therefore confirms the need for algorithmic support
to concisely monitor the structural consistency of safety and
data aspects with respect to the domain model during system
development and operation.
Inconsistencies arising due to the influence of data items on the
system behavior are more difficult to detect. As illustrated in
Fig. 10, safety functions of a control system must mitigate risks
within the process safety time defined in the hybrid automata
on the subsystem layer from the process owner’s point of view.
In contrast to this, device vendors deliver systems which are
highly configurable via data items manipulating structure and
behavior on the component layer. As motivated before, this
raises the problem of verifying that a system configuration
given by an instanced data model does not prevent the safety
functions from transferring the system into a safe state in
case of a dangerous event within the safety time. A longer
query interval of the valve value FCSF1 due to energy
restrictions e.g. leads to longer activation and thus shorter
available reaction time of the safety function SFOT 2.
To detect and prevent these error scenarios, we propose to
extend the activity diagrams on the component layer by worst
case execution times (WCET) determined for each action and
accumulated for activities in the overview activity diagrams.
Since every state in the hybrid automaton of a control system is
represented by a distinct overview activity diagram at the com-
ponent layer, the accumulated execution times of a diagram
iteration can be interpreted as the WCET of a transition exiting
the corresponding state in the hybrid automaton of the control
system. Through the manipulation of control flows in activities,
the influence of static data items and device variables on the
WCET becomes traceable and can be automatically evaluated
from the activity diagrams, specifying the correlation between
data and execution time.
Fig. 13 shows excerpts from the tank and safety automaton
and the overview activity diagram of the tank control state.
Transition tSFOT2 1 marks the activation of safety function
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Fig. 13. Dynamic Verification

SFOT 2 by detection of the closing of valve FCSF1. The
example activity diagram shows that the configuration of the
device variable FCSF1 heavily influences the execution time
of the transition: updateMs defines the update interval of 50ms,
busMapped defines the transfer function used and the static
data item bus1Baudrate influences the transfer time of the
device variable. In the example, the data-including WCET of
the transition tSFOT2 1 is 393.5ms. This delay is added to
the counter tSFOT2 in the safety automaton which models
the occurrence of a safety-critical error in case of a safety
timeout. Note that the timer in the safety automation starts at
the condition FCSF1r == 0 which references the real value
of the valve independent of control system delays.
Using this approach, the ability of a control system to perform
its safety functions within the safety time under a given
configuration can be expressed as reachability problem, where
the error states of the safety automaton may not be reached by
the configuration under test. When moving from our simple
example to more complex models, e.g. the 2-channel safety
scheme weaved into the condenser behavior in Fig. 9, the
need for automated verification becomes obvious. Such a
verification approach must prove that the error states of the
system, e.g. Err FCD in Fig. 13, can never be reached
given the influences of the data configuration on the execution
times of the hybrid automata. Existing approaches use over-
approximation of the continuous flows inside the automata
states to manage termination and execution time and space.
We currently investigate the application of the tool SpaceEx
which was used by Frehse et. al. in [22] for control system
verification to our data-driven approach.

VI. CONCLUSION AND FUTURE WORK

In this paper, we extend our domain model for hierarchical
modeling of CPS in industrial automation introduced in [6]
by defining comprehensive aspect models for the cross-cutting
concerns of functional safety and data. Both aspects are key
concerns in process automation systems. We use the concepts
of weaving functions and well-formedness rules to give a
concise definition of the valid connections between aspect
and domain models, providing a baseline for isolated formal
reasoning about data and safety. We apply our aspect models to
a case study on the development of an industrial CPS in MDI
production, focusing on the conflicts between functional safety
and configurability. We identify possible consistency conflicts
due to the interdependence between safety and data aspects

and the domain model. Based on our case study, we propose
approaches for static and dynamic verification of the safety
of given configurations and deduce the need for algorithmic
support for monitoring and configuring large-scale industrial
safety-critical CPS.
Future work includes the formal definition of configuration
and data conflicts in industrial CPS and research on algorithms
enabling offline and online monitoring of configurations con-
flicting with the functional safety of the CPS.
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Abstract— This paper addresses the problem of how to identify 

all safety goals for an item in the automotive E/E domain. The 

paper gives a background on the problem of hazard analysis and 

risk assessment in general, and for the automotive domain in 

particular. A key factor for success is to identify all the relevant 

hazardous events, which task constitutes a paradox. Either the 

specification of the possible driving situations and the system 

hazards are done too general and abstract implying a too 

conservative analysis, or done too detailed and specific ending up 

with an almost infinite list of hazardous events to consider. This 

paper addresses this paradox by the formulation of a number of 

rules enabling to reduce the potentially infinite set of candidates 

of hazardous events to a limited number, still sufficient to cover 

all safety goals. Besides that it enables solving the paradox of 

becoming both detailed and limited, it also can be used as a tool 

for reviewing the completeness of a set of safety goals. 

 
Index Terms— Hazard analysis, Automotive, ISO 26262. 

 

I. INTRODUCTION 

n all domains of functional safety, it is essential to perform 

a complete and correct Hazard analysis and risk assessment 

(HA&RA). The purpose of this activity is to identify and 

categorize all Hazards, i.e. all potential sources of accidents 

caused by erroneous behaviour of the function under 

consideration. In the automotive domain, the rules for 

HA&RA are given by part three of the ISO 26262 standard 

[1].  The goal of this HA&RA is to produce the so called 

Safety Goals. The rest of the standard prescribes how to 

guarantee that all these Safety Goals in the end are fulfilled, 

thus implying functionally safe road vehicles. However, in 

order for the complete vehicle to act functionally safe, first the 

set of items analysed must be complete, and secondly, for 

every item the set of Safety Goals must be complete. This 

paper addresses the latter problem.  

In the process to identify the Safety Goals, the standard ISO 

26262 prescribes to analyse all Hazardous Events that might 

have an impact on this set. This means that all possible 

failures of the Item of concern should be considered, and for 

all driving scenarios and all environmental conditions. The 

combined effect of the driving scenarios and the 

environmental conditions are called ‘situation’ in the ISO 

26262 terminology. As there is no predefined standard set of 
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situations, this would potentially generate an infinite number 

of Hazardous Events to analyse. The question is whether we 

can come up with a way to identify if there is a limited set of 

Hazardous Events that completely identifies the full set of 

Safety Goals. The reason why this would work is that a large 

number of Hazardous Events do not contribute to the 

identification of a unique Safety Goal. What we need is a way 

to identify a limited set of Hazardous Events, which still cover 

all Safety Goals for the item. 

In ISO 26262 it is prescribed that the HA&RA shall be 

done, and that there shall be performed a verification activity 

showing the “completeness with regard to situations and 

Hazards”. However, there is no information how to solve the 

problem of showing completeness. This paper addresses this 

problem. The remainder of the paper is structured as follows. 

The next section presents the HA&RA activity of ISO 26262, 

and why it is considered as a hard problem to identify a 

limited, but still efficient set of Safety Goals. In section III is 

introduced the concept of formulating rules to identify which 

Hazardous Event that are of interest when formulating the 

Safety Goals. Section IV is giving a structure how to 

categorize all possible pairs of Hazardous Events. The 

following section formulates the set of rules necessary, and 

section VI then shows the completeness and consistency of 

this set. The paper ends with a summary and conclusions. 

II. BACKGROUND 

It is well known in the area of functional safety, that the 

quality of the HA&RA is critical for the relevance of all other 

risk reducing activities prescribed by a standard. In Birch et al. 

[2] is discussed how the complete safety case is dependent on 

a proper identification of the Safety Goals in the automotive 

domain, which in turn is dependent on the Hazardous Events. 

There are a number of techniques in this area which have in 

common that they address how to avoid missing any candidate 

Hazard. Often mentioned are Preliminary Hazard Analysis, 

HAZOP and FMEA. Other recommendations exist like a 

generic method by Jesty et al. [3] based on a state machine 

model of the transitions between a failure occurring in a 

system and a Hazardous Event.  

In the following we are addressing specifically the HA&RA 

as specified for the automotive domain. Even though there are 

many similarities, there are also a number of fundamental 

differences between the industrial domains, as is pointed out 

in a comparative study by Blanquart et al. [4]. Section 7 of [1] 

prescribes in detail how an HA&RA shall be done according 
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to ISO 26262. In principle it consists of the following 

activities: 

 Identify all relevant Situations 

 Identify all relevant Hazards 

 Combine Situations and Hazards to Hazardous Events 

 Perform classification of Hazardous Events 

 Identify Safety Goals covering all Hazardous Events  

 Verify completeness and consistency 

The end result of the HA&RA is a set of Safety Goals, each 

having an ASIL attribute that is limiting the occurrence of a 

certain Hazard. One Safety Goal may cover several different 

Hazardous Events, which implies that it gets the highest ASIL 

value among those. For each Hazardous Event, the ASIL 

attribute is calculated by determining a factor for each of: 

severity (S), exposure (E) and controllability (C). For each 

given Hazardous Event these factors may be determined by 

application experts, and may include driver controllability 

experiments, field data collection, etc. The problem of how to 

determine ASIL attribute of a given Hazardous Event is not 

addressed in this paper. Here is rather the focus how to find a 

list of Hazardous Events for which it is worth getting high 

confidence in the E, S and C factors. 

 As said above, in the automotive E/E domain, the HA&RA 

problem is explicitly decomposed into finding the Situations 

and the Hazards, and analysing all resulting effects. When 

performing this work, different organizations have different 

templates for identification of the Hazardous Events of 

concern. A frequent pattern is to separate the driving 

conditions from the environmental conditions. The former is 

focused on the state and the intended manoeuvres of the 

vehicle (driving at 70km/h, full braking, etc), and the latter 

describes the state outside the vehicle (dark, wet road, playing 

child on the road etc). There are initiatives to formalize the 

potentially infinite number of Situations. In Jang et al. [5] the 

authors present a template where they decompose the 

Situation into properties for vehicle, road and environment. 

For each of these they propose a number of properties to 

determine, each with some standard alternatives. Even in this 

rather simplistic template, the number of possible alternatives 

for each situation is about 50 millions. Then are still not the 

different possible Hazards considered. Multiplying the number 

of possible Hazards for a given Item, with 50 million would 

generate a prohibitively long list of possible Hazardous 

Events. This is not what the authors propose, but this shows 

that even if there is a standardized set of Situations and/or of 

Hazards, there will be a need for techniques to identify which 

Hazardous Events that are important for identification of the 

Safety Goals. 

The German automotive organization VDA has created a 

standardized list of situations [6]. The aim of this list is to 

harmonize the determination of the exposure factor between 

vehicle OEMs when performing the HA&RA. 

Martin et al [7] presents a study where the original list of 

Hazardous Events consists of 640 candidates. This list was 

reduced by checking the ‘plausibility of the combinations’ into 

121 Hazardous Events. After this reduction, they started the 

classification and ASIL determination. This presented 

example is far from unique in the number of Hazardous 

Events to consider, and still it might be the case that this 

HA&RA is not detailed enough to allow a precise (not too 

conservative) formulation of Safety Goals. This is why this 

paper addresses the task of enabling of automatic reduction of 

a potentially infinite list of Hazardous Events.  

As pointed out in [8] it becomes even more important to 

find a carefully chosen set of Safety Goals when introducing 

vehicles capable of highly automatic driving (HAD) or even 

autonomous vehicles. The implications of many such Safety 

Goals are spread on a larger part of the E/E systems of the 

vehicle. This implies that ending the HA&RA activity with a 

few Safety Goals that could be regarded as too unelaborated, 

and thus potentially too conservative, may generate a 

significant increase in cost of the vehicle. This also motivates 

why it is important to identify rules assisting in formulating an 

efficient set of Safety Goals. 

III. RULES FOR IDENTIFICATION OF DOMINANCE AND NON-

DOMINANCE 

There are a number of cases when adding a new Hazardous 

Event would not extend the list of already identified Safety 

Goals. Such Hazardous Events are of no interest, as the 

objective of the list of Hazardous Events, is to identify the list 

of Safety Goals. It would be beneficiary to have a set of rules 

that automatically can check whether a given candidate 

Hazardous Event would generate a new Safety Goal, or if it 

can be considered as redundant. We call such rules 

Dominance rules, as they identify if one Hazardous Event can 

be identified as dominated by other already identified 

Hazardous Events. Obviously we want to reduce a given list of 

Hazardous Events so that all the dominated ones are omitted 

from the final list. 

In a similar way it would be efficient to have a set of rules 

that could clearly identify if a Hazardous Event will generate a 

unique Safety Goal that is not covered by any other Safety 

Goal. We call such rules Non-Dominance rules, as they 

identify Hazardous Events that cannot be identified as 

dominated by any other already formulated Hazardous Event. 

In this paper we identify eight explicit rules that together 

cover all cases for determining dominance and non-

dominance, respectively. These rules can be used in at least 

two ways. The first use case is to review a list of candidate 

Hazardous Events, and remove all of these that can be shown 

as dominated by any of the others. For the remaining 

Hazardous Events, it is then possible to show that they 

pairwise show non-dominance. The second use case is to 

review a list of Hazardous Events with respect to its 

completeness. This means that rules for non-dominance are 

used to identify candidates missing in the list.  

IV. CATEGORIZING HAZARDS AND SITUATIONS 

Today, different organizations have a little bit of difference 

in their methodology how to list the Hazardous Events and 

how to perform the resulting analysis. For the following 
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discussion, it is not necessary to include so many columns in 

the table that often are used. 

In the following, we will use an example Item that we call 

Lane Keeping Assistance in Steering (LKA Steering). Once 

activated, this functionality takes the responsibility for the 

vehicle to stay in lane. Unless overridden by the driver, the 

LKA controls the steering of the vehicle. In the Table 1 is 

depicted a set of example Hazardous Events for the chosen 

example. 

Even in this simplified example, it is not obvious if the part 

of the list of Hazardous Events (HE) in Table 1 is long enough 

to generate the identification of all Safety Goals, or if some of 

the HE are not contributing at all to the analysis. Let us first 

have a look on the effect of the different classification factors: 

Exposure (E), Controllability (C), and Severity (S). When 

setting up a detailed list of HE, it is of interest to identify the 

situations which constitute a border between two different 

values for at least one of the factors E, C or S. In our example 

this means that we shall identify the sizes of the steering angle 

failure, and the Situations, where (at least) one of the factors 

changes from one level to another. In the next section we look 

a little deeper in the question how these columns relate to each 

other. 

A. Analysis of Exposure, Controllability and Severity 

The Exposure factor is a direct function of the Situation, 

and independent of the Hazard. The definition of the E factor 

is that it categorizes how often a vehicle is in a given situation. 

If the situation is very general, the E factor will be higher than 

if we confine the situation. For example, comparing the HE2 

and HE3 in Table 1, they only differ in how specific the 

situation is defined. For the more general situation of HE2 we 

argue that the factor should become E4, while the confinement 

made in HE3 implies a lowering of the E factor to E3. This 

lowering in turn implies a lowering of the resulting ASIL 

attribute. The HE2 is the more conservative case to consider. 

This means that it is a valid classification, but it might become 

too restrictive if there is no situation other than those in HE3 

that will have the same effect on Controllability and Severity 

for the given Hazard. 

The Controllability factor is a function of not only the 

situation, but also of the Hazard and the Severity. The 

interpretation of the C factor would be expressed as: “How 

easy is to avoid the specified Severity in this Situation given 

this Hazard”. In our example (comparing HE4 and HE5) we 

say that there is a limit when the steering angle suddenly 

becomes 20% wrong, for the driver being able to avoid an S3 

accident, when driving at high speed in heavy rain. For an 

error of more than 20% we consider it a C3, while staying in 

the interval between 5% and 20%, it will be lowered to a C2. 

As before, it is not the point of this example to be fully 

correct, but to illustrate the principles. 

The Severity factor is also a function of all: the Situation, the 

Hazard and the Controllability. This means that the S and C 

factors respectively are mutually dependent on their 

interpretation for a given Hazardous Event. The interpretation 

of the S factor would be interpreted as “What might be the 

Severity given the specified C-factor in this situation given 

this Hazard”. In our example list of Hazardous Events, there is 

a limit when we compare HE5 and HE6. The difference 

between these two cases is that the Severity is reduced when 

lowering the speed to medium.  

When looking at all three of these factors, we conclude that 

Severity and Controllability are dependent and should be 

interpreted in any actual pair. It makes sense to interpret the 

Controllability factor as how easy it is to avoid a given 

Severity. 

We conclude that when looking for the dimensioning 

Hazardous Events, it would be of interest to find those 

Situations and Hazards where any of the three factors E, C or 

S will change its value. The reason for this is that any such 

Table 1. Example extract of a Hazardous Event table 
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case also will imply a change in the ASIL attribute value. We 

conclude that there is no meaning of having two Hazardous 

Event candidates that only differs a little bit in the definition 

of the situation, if this will not imply any change of any of the 

E, C, or S factors.  

The question is whether all changes of Situations implying a 

change in any of the E, C, or S factors are relevant to consider, 

and what set of Hazards to take into account. This question is 

further elaborated in the following sections. 

B. Categorizing Situations 

When comparing two Situations, this means that both the 

driving scenarios and the environmental conditions are 

considered. When saying that two Situations are identical, this 

implies identity for everything specifying a Situation. One 

Situation can be seen as a special case of another. In our 

example, the Situation of HE1 (driving, under all conditions) 

can be seen as a general Situation of which the Situation of 

HE2 (driving at high speed) is a special case. Two Situations 

can also be seen as mutual exclusive. The Situations ‘driving 

at high speed’ (HE2) and ‘driving at medium speed’ (HE7), 

can never include any common scenario. Finally two 

Situations can be over-lapping. This implies that some special 

Situations only may occur according to one of the Situations, 

some only to the other, and some to both. These four possible 

relations are depicted in figure 1.  

. 

 

Fig. 1. Categorizing relations between two Situations A and B 

To clarify the subset relation we can formulate two 

implications: 

A⊂B ⇨Any possible situation in A will also be a possible 

situation in B. 

A⊂B ⇨Guaranteeing the absence of any situation in B, will 

also guarantee the absence of that situation in A. 

 

For our example we can list the following Situations: 

A: Driving (under all conditions) 

B: Driving at high speed 

C: Driving in heavy rain 

D: Driving at high speed in heavy rain 

E: Driving at low speed on dry road 

 

Then we can derive the following pairwise relations: 

B⊂A; C⊂A; B∩C≠∅ (overlapping); D⊂B; D⊂C; D∩E=∅ 

(mutual exclusive) 

 

Testing the conclusions as above, on some of these relations, 

we get: 

D⊂C ⇨ Any Situation that may be characterized as 

‘Driving at high speed in heavy rain’ may also be 

characterized as ’Driving in heavy rain’. 

 

D⊂C ⇨  Guaranteeing the absence of any Situation that 

may be characterized as ‘Driving in heavy rain’ 

will imply the absence of any Situation possible to 

characterize as ’Driving at high speed in heavy 

rain’. 

 

B⊂A ⇨ Any Situation that may be characterized as 

‘Driving at high speed’ may also be characterized 

as ’Driving’. 

 

B⊂A ⇨ Guaranteeing the absence of any Situation that 

may be characterized as ‘Driving’ will imply the 

absence of any Situation possible to characterize 

as ’Driving at high speed’. 

 

This is in line with our intuitive understanding of these 

relations. The relations of these five example Situations can be 

depicted as either a Venn diagram or as partially ordered 

relations shown in the figure 2 below. 

 

 

Fig. 2. Relations between example Situations 

C. Categorizing Hazards 

In a similar way as for the possible Situations, we can also 

categorize the possible relations between any two Hazards. 

Naming the two Hazards X and Y, respectively, the possible 

relations are as depicted in figure 3. 

 
 Fig. 3. Categorizing relations between two Hazards X and Y 

 

To clarify the subset relation we can formulate two 

conclusions:  

X⊂Y ⇨ Any possible Hazard in X will also be a possible 

Hazard in Y. 

X⊂Y ⇨ Guaranteeing the absence of any Hazard in Y, 

will also guarantee the absence of that Hazard in 

X. 

 

For our example we can list the following Hazards: 

X: complete loss of steering functionality 

Y: steering angle delayed too late  >0.5 s 
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Z: steering angle more than 20% wrong 

V: steering angle more than 5% wrong 

U: steering angle between 5% and 20% wrong 

W: any loss of steering functionality 

 

Then we can derive the following pairwise relations: 

X⊂Y; X⊂Z; X⊂V; X⊂W; U∩Z=∅ (mutual exclusive); 

Y∩Z≠∅ (overlapping); U⊂V; Z⊂V; V⊂W; Y⊂W; U⊂W; 

Z⊂W 

 

Testing the conclusions as above, on some of these relations, 

we get: 

X⊂V ⇨ Any Hazard that is characterized as ‘Complete 

loss of steering functionality’ could also be 

characterized as ‘Steering angle more than 5% 

wrong’. 

 

X⊂V ⇨ Guaranteeing the absence of any Hazard that is 

characterized as ‘Steering angle more than 5 % 

wrong’ will also imply the absence of any 

Hazard possible to characterized as ‘Complete 

loss of steering functionality’. 

 

Z⊂W ⇨ Any Hazard that is characterized as ‘Steering 

angle more than 20% wrong’ could also be 

characterized as ‘any loss of steering 

functionality. 

 

Z⊂W ⇨  Guaranteeing the absence of any Hazard that is 

characterized as ‘Any loss of steering 

functionality’ will also imply the absence of any 

Hazard possible to be characterized as ‘Steering 

angle more than 20% wrong’. 

 

 

If the difference between the two Hazards X and W, was not 

completely clear before, these clarifications have hopefully 

made the semantics of any of the Hazards in the list above 

clearer. The relations of these six example Hazards can be 

depicted as either a Venn diagram or as partially ordered 

relations shown in the figure 4 below. 

 

Fig. 4. Relations between example Hazards 

D. Categorizing the Effects on the E, C and S Factors 

In the previous sections we have categorized the relation 

between two Hazardous Events by first looking at the 

Situation column and then at the Hazard column. The 

remaining columns necessary to categorize are the ones for 

Exposure, Severity, Controllability, and the concluded ASIL 

value. As pointed out earlier, the important thing when 

comparing two HE, is the resulting ASIL value. Any 

difference in the E, C or S factors will imply a difference in 

the resulting ASIL value. The E, C, S factors are still 

important to list in the HE tables because they give guidance 

to the classification of the Situations and the Hazards. When 

choosing how confined/general a certain Situation or a certain 

Hazard should be expressed, the ideal cases would be those 

that result in differences in any of the E,C or S factors. 

Once a Hazardous Event is formulated, for the purpose of 

determining dominance, it is sufficient to only consider the 

resulting ASIL value. The relation between ASIL values is 

easier to categorize than the relation between Situations or 

between Hazards. In fact there are three possible relations. 

Either the two HE have identical ASIL values, or the one is 

higher or the other is higher. The symbols =, > and < are used 

for this in the following sections of this paper. 

V. RULES FOR REDUCING CANDIDATES OF HAZARDOUS 

EVENTS 

In the following we use the notation as of the table 2 below 

when discussing the relation between Hazardous Events in a 

table. For the rules defined in the coming sections we compare 

the two general Hazardous Events HE1 and HE2. HE1 has the 

general Situation A, the Hazard X, and gets the concluded 

ASIL attribute value ASIL1, when analysing the resulting 

effects on Exposure, Controllability and Severity. For HE2 the 

Situation is denoted B, the Hazard Y, and the resulting ASIL 

value ASIL2. 

 

Table 2. General notation in Hazardous Event table used in 

formulation of rules  

Hazardous 
Event ID 

Situation Hazard Integrity 
Value 

HE1 ‘A’ ‘X’ ‘ASIL1’ 

HE2 ‘B’ ‘Y’ ‘ASIL2’ 

HE3 ‘C’ ‘Z’ ‘ASIL3’ 

… … … … 
 

A. Rules for Identification of Dominance 

There are a number of cases when adding a new Hazardous 

Event would not contribute to the list of already identified 

Safety Goals. Such Hazardous Events are of no interest, when 

the objective of the list of Hazardous Events is to identify the 

list of Safety Goals. A first obvious example is when the 

candidate HE has exactly the same Situation and the same 

Hazard as an already listed HE, but a lower ASIL value. The 

same applies if it is only a difference in Situation or a 

difference in Hazard, and the other two columns are identical. 

In all these cases we can directly conclude that the candidate 

HE will not add any Safety Goal compared to the ones already 

identified. Thus, we can formulate our first rule of dominance:  

 

Rule DI: Dominance exists if two columns show relation 

’identical’ and the third one has the relation ’⊂’ or 

‘<‘. 
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Our next observation is that for a given Hazard, there will only 

become one resulting Safety Goal (this is how Safety Goals 

are identified). Thus if two Hazardous Events have the same 

Hazard, but different ASIL values, the one with the lowest 

ASIL value does not add anything to the analysis. This leads 

us to the second rule of dominance:  

 

Rule DII: Dominance exists if Hazard show relation 

’identical’ and the Integrity values are different 

(regardless of relation for Situation).  

 

In a next step, we can conclude three more observations 

possible to aggregate into one rule. 1) A more general 

Situation with a higher ASIL value will dominate as long as 

the Hazard relation is identity. 2) A more general Hazard with 

a higher ASIL will dominate as long as the Situation relation 

not implies a subset relation in the opposite direction. 3) When 

both Situation and Hazard are more general, this will cause 

dominance if the ASIL value is not lower. We aggregate these 

observations into our third rule of dominance: 

 

Rule DIII: If two or more columns have the relation ’⊂’ or 

‘<‘, there is dominance if they are all in the same 

direction, given that the column Hazard does not 

have the relation ‘mutual exclusive’ or 

‘overlapping’.  

 

Finally, we have the case when the one Hazard is a special 

case of the other (a subset), and the more confined Hazard also 

has a lower ASIL value. In this case, the more general Hazard 

with the higher ASIL value will generate the dimensioning 

Safety Goal, and the other Hazardous Event will not add 

anything to the analysis. This will always hold, independent of 

how general the Situations are defined. This leads to the fourth 

and last rule of dominance: 

 

Rule DIV: Dominance exists if Hazard has ’⊂’ relation in the 

same direction as the Integrity value has the ‘<‘ 

relation, regardless of the Situation relation.  

 

For now we say that these are the only four rules of 

dominance needed to categorize all possible cases where one 

Hazardous Event can be seen as dominated by another. In a 

section VI, there is a proof that no other rules are needed, i.e. 

these four rules of dominance are complete. Before this, the 

rules for non-dominance are identified.  

 

B. Rules for Identification of Non-Dominance 

In the previous section we identified the rules identifying 

when one Hazardous Event makes another one unnecessary, 

i.e. when the other does not imply a unique Safety Goal. In 

order to determine the relation between any two Hazardous 

Events, it is as important to conclude when they both 

contribute to unique Safety Goals. 

Our first observation regarding such so called non-dominance, 

is when we are comparing two mutual exclusive Hazards or 

two overlapping Hazards. As long as both Hazardous Events 

are based on a Hazard which is (partly) unique, this will also 

imply that it will contribute to a unique Safety Goal. We can 

hence formulate our first rule of non-dominance: 

 

Rule NI: There is never dominance between two mutual 

exclusive Hazards or between two overlapping 

Hazards.  

 

Next observation is that a more specific Hazard having a 

higher ASIL attribute than the general Hazard will add a new 

Safety Goal, but the first Safety Goal will still stay unique. For 

example, we can have one Safety Goal stating that we shall 

avoid steering angle failures above 20% by ASILD, and 

another one stating that we shall avoid steering angle failures 

above 5% by ASILC. The first one is more restrictive 

regarding the ASIL value, while the second is more restrictive 

regarding the threshold above which a deviation is considered 

as a failure. This means that no one of these two Safety Goals 

includes the other one, and they are hence both to be 

considered as unique. This leads us to the formulation of our 

second rule of non-dominance: 

 

Rule NII: If the Hazard and Integrity relations are in different 

directions, there is never dominance.  

 

Furthermore, we can observe that even if the Integrity value is 

identical for a pair of Hazardous Events, they will still both 

contribute to unique Safety Goals if either of Situation or 

Hazard cannot be seen as a subset of the other one. If either of 

the Situation or the Hazard relations, are mutual exclusive or 

overlapping, this implies that we cannot say that the Safety 

Goal derived from the one HE will include the Safety Goal 

derived by the other. This leads us to the formulation of the 

third rule of non-dominance: 

 

Rule NIII: There is never dominance if Integrity value relation 

is 'identical', and any of the other two relations are 

either 'mutual exclusive' or 'overlapping’.  

 

Finally, we conclude that even if the Integrity relation between 

two Hazardous Events is ‘identical’, this will still imply two 

unique Safety Goals if the relations for Situation and Hazard 

both have a subset relation, but in different directions. This 

leads us to the conclusion of the fourth rule of non-dominance: 

 

Rule NIV: There is no dominance if Integrity value relation is 

'identical', and the other two relations are in 

different directions. 

 

We have now formulated 4+4 rules to determine whether any 

pair of Hazardous Events will generate one or two Safety 

Goals. In the former case we call that dominance, and in the 

latter case non-dominance. In the next section we investigate 

to what extent these eight rules are complete and consistent. 

We want that all possible pairs of Hazardous Events are 

handled by at least one rule, and that there will never be any 

conflicting rules for any pair of Hazardous Events. 
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VI. COMPLETENESS AND CONSISTENCY OF THE RULES 

In the previous chapter we categorize any pair of Hazardous 

Events as the combined effect of the relations for Situation, 

Hazard and ASIL value, respectively. For the Situation and the 

Hazard relations, there are five different possibilities each: 

Identical, Mutual exclusive, overlapping, and a subset relation 

in any of the two directions. For the ASIL value relation, there 

are three possibilities: Identical, and the one is higher or the 

other is higher. In total this implies 5*5*3=75 different 

possibilities to categorize the relation between any pair of 

Hazardous Events. Below in table 4, there is an extensive list 

of all these 75 possibilities, and for each is also noted what 

rules for dominance and for non-dominance that apply. 

The first row in this table is about when the two Hazardous 

Events are identical, and thus no comparison is motivated. For 

the remaining 74 rows there is some difference between the 

two compared Hazardous Events. We observe that for every 

row in this list, there is at least one rule that is found 

applicable. Furthermore we observe that there is no row where 

there is one rule for dominance and another for non- 

dominance at the same time. The fact that all rows are covered 

by at least one rule, and that there is no row showing any 

contradicting rules, implies that our set of 4+4 rules is 

complete and consistent. 

VII. DISCUSSION 

Our eight rules for determining dominance or non-dominance 

can be used in at least two ways. The first use case is to review 

a list of candidate Hazardous Events, and remove all of these 

that can be shown as dominated by any of the others. For the 

remaining Hazardous Events, it is then possible to show that 

they pairwise show non-dominance. The second use case is to 

review a list of Hazardous Events with respect to its 

completeness. This means that rules for non-dominance are 

used to identify candidates missing in the list. Let us go back 

to our example with LKA steering list of Hazardous Events 

from Table 1. As shown in the Table 3 we can now conclude 

that neither of the candidates HE2, HE3, and HE6 will 

conclude to the identification of a unique Safety Goal. 

Furthermore, we can also make sure that the remaining 

Hazardous Events, all contribute to a unique Safety Goal.  

We can then continue our review by challenging this list by 

trying to add more Hazardous Events. However, we only add 

those candidates that are shown not to become dominated by 

one of the existing ones. We might come up with a new 

candidate that dominates one of the HE already in list, which 

implies that the new one will replace the dominated one. 

In our example we can now consider all combinations of 

Situations and Hazards to find out whether any of these would 

generate a dimensioning Hazardous Event. Given that we have 

chosen these Situations and Hazards, respectively, and that 

they catch the cases when any of the E, C or S factors can 

change its value, we can argue for the completeness of the 

concluded list of Hazardous Events. Our rules give a hint 

which potential Hazardous Events to consider, which means 

that we can find arguments for a number of Hazardous Events 

at the time, why not to consider any of them (as they would be 

dominated by an existing Hazardous Event).  

For example, given that we have HE1 in our list above, we can 

directly conclude that we do not need to look for any other 

Situation to combine with this Hazard, as they would all be 

dominated. The argument for this conclusion is that HE1 will 

not have a lower ASIL than any other HE, and also that no 

other Situation could be seen as a superset to the Situation of 

HE1. We can formulate it by saying that comparing HE1: 

<A,X,ASIL1> with any other HEk: <B,X,ASIL2> (the same 

Hazard), HEk will always be dominated by HE1. The 

argument for this is that ASIL2 is not greater than ASIL1 

(ASIL1=ASILD), and B is always a subset of A (A is the most 

general situation). This means that either ASIL2=ASILD and 

then rule DI is applicable, or ASIL2 has a lower value and 

then rule DII is applicable. In a similar way as in the example 

above, a number of candidate Hazardous Events can in many 

situations be evaluated simultaneously. 

 

Table 3. Example extract of a Hazardous Event table, revisited 
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Table 4. Investigation of all possible pairs of HE 

Situation Hazard Integrity Dominance Rule(s) 
Identical Identical Identical - Identity 
Identical Identical ASIL1 

lower 
HE2 
Dominates 

Rule DI, DII 
Identical Identical ASIL2 

lower 
HE1 
Dominates 

Rule DI, DII 
Identical Mutual 

exclusive 
Identical No Dominance Rule N1, NII 

Identical Mutual 
exclusive 

ASIL1 
lower 

No dominance Rule NI 
Identical Mutual 

exclusive 
ASIL2 
lower 

No dominance Rule NI 
Identical X subset of Y Identical HE2 dominates Rule DI 
Identical X subset of Y ASIL1 

lower 
HE2 dominates Rule DIII, 

DIV Identical X subset of Y ASIL2 
lower 

No dominance Rule NII 
Identical Y subset of X Identical HE1 dominates Rule DI 
Identical Y subset of X ASIL1 

lower 
No dominance Rule NII 

Identical Y subset of X ASIL2 
lower 

HE1 dominates Rule DIII, 
DIV Identical Overlapping Identical No dominance Rule NI, NIII 

Identical Overlapping ASIL1 
lower 

No dominance Rule NI 
Identical Overlapping ASIL2 

lower 
No dominance Rule NI 

Mutual 
exclusive 

Identical Identical No dominance Rule NIII 
Mutual 
exclusive 

Identical ASIL1 
lower 

HE2 dominates Rule DII 
Mutual 
exclusive 

Identical ASIL2 
lower 

HE1 dominates Rule DII 
Mutual 
exclusive 

Mutual 
exclusive 

Identical No dominance Rule NI, NIII 
Mutual 
exclusive 

Mutual 
exclusive 

ASIL1 
lower 

No dominance Rule NI 
Mutual 
exclusive 

Mutual 
exclusive 

ASIL2 
lower 

No dominance Rule NI 
Mutual 
exclusive 

X subset of Y Identical No dominance Rule NIII 
Mutual 
exclusive 

X subset of Y ASIL1 
lower 

HE2 dominates Rule DIII, 
DIV Mutual 

exclusive 
X subset of Y ASIL2 

lower 
No dominance Rule NII 

Mutual 
exclusive 

Y subset of X Identical No dominance Rule NIII 
Mutual 
exclusive 

Y subset of X ASIL1 
lower 

No dominance Rule NII 
Mutual 
exclusive 

Y subset of X ASIL2 
lower 

HE1 dominates Rule DIII, 
DIV Mutual 

exclusive 
Overlapping Identical No dominance Rule NI, NIII 

Mutual 
exclusive 

Overlapping ASIL1 
lower 

No dominance Rule NI 
Mutual 
exclusive 

Overlapping ASIL2 
lower 

No dominance Rule NI 
A subset of B Identical Identical HE2 dominates Rule DI 
A subset of B Identical ASIL1 

lower 
HE2 dominates Rule DII 

A subset of B Identical ASIL2 
lower 

HE1 dominates Rule DII 
A subset of B Mutual 

exclusive 
Identical No dominance Rule NI, NIII 

A subset of B Mutual 
exclusive 

ASIL1 
lower 

No dominance Rule NI 
A subset of B Mutual 

exclusive 
ASIL2 
lower 

No dominance Rule NI 
A subset of B X subset of Y Identical HE2 dominates Rule DIII 
A subset of B X subset of Y ASIL1 

lower 
HE2 dominates Rule DIII, 

DIV A subset of B X subset of Y ASIL2 
lower 

No dominance Rule NII 
A subset of B Y subset of X Identical No dominance Rule NIV 
A subset of B Y subset of X ASIL1 

lower 
No dominance Rule NII 

A subset of B Y subset of X ASIL2 
lower 

HE1 dominates Rule DIV 
A subset of B Overlapping Identical No dominance Rule NI, NIII 
A subset of B Overlapping ASIL1 

lower 
No dominance Rule NI 

A subset of B Overlapping ASIL2 
lower 

No dominance Rule NI 
B subset of A Identical Identical HE1 dominates Rule DI 
B subset of A Identical ASIL1 

lower 
HE2 dominates Rule DII 

B subset of A Identical ASIL2 
lower 

HE1 dominates Rule DII 
B subset of A Mutual 

exclusive 
Identical No dominance Rule NI, NIII 

B subset of A Mutual 
exclusive 

ASIL1 
lower 

No dominance Rule NI 
B subset of A Mutual 

exclusive 
ASIL2 
lower 

No dominance Rule NI 
B subset of A X subset of Y Identical No dominance Rule NIV 
B subset of A X subset of Y ASIL1 

lower 
HE2 dominates Rule DIV 

B subset of A X subset of Y ASIL2 
lower 

No dominance Rule NII 
B subset of A Y subset of X Identical HE1 dominates Rule DIII 
B subset of A Y subset of X ASIL1 

lower 
No dominance Rule NII 

B subset of A Y subset of X ASIL2 
lower 

HE1 dominates Rule DIII, 
DIV B subset of A Overlapping Identical No dominance Rule NI, NIII 

B subset of A Overlapping ASIL1 
lower 

No dominance Rule NI 
B subset of A Overlapping ASIL2 

lower 
No dominance Rule NI 

Overlapping Identical Identical No dominance Rule NIII 
Overlapping Identical ASIL1 

lower 
HE2 dominates Rule DII 

Overlapping Identical ASIL2 
lower 

HE1 dominates Rule DII 
Overlapping Mutual 

exclusive 
Identical No dominance Rule NI, NIII 

Overlapping Mutual 
exclusive 

ASIL1 
lower 

No dominance Rule NI 
Overlapping Mutual 

exclusive 
ASIL2 
lower 

No dominance Rule NI 
Overlapping X subset of Y Identical No dominance Rule NIII 
Overlapping X subset of Y ASIL1 

lower 
HE2 dominates Rule DIII, 

DIV Overlapping X subset of Y ASIL2 
lower 

No dominance Rule NII 
Overlapping Y subset of X Identical No dominance Rule NIII 
Overlapping Y subset of X ASIL1 

lower 
No dominance Rule NII 

Overlapping Y subset of X ASIL2 
lower 

HE1 dominates Rule DIII, 
DIV Overlapping Overlapping Identical No dominance Rule NI, NIII 

Overlapping Overlapping ASIL1 
lower 

No dominance Rule NI 
Overlapping Overlapping ASIL2 

lower 
No dominance Rule NI 

 

VIII. CONCLUSION 

We have defined eight rules to be used for the identification 

of a minimal set of Hazardous Events necessary to identify all 

Safety Goals of an Item. The rules are used to compare any 

two candidates of Hazardous Events to conclude whether they 

are both generating a unique Safety Goal, or whether the one 

Hazardous Event can be seen as uninteresting (dominated by 

the other). 

The rules are based on a categorization of the Situations, the 

Hazards and the ASIL attribute values, respectively. 

Regarding the ASIL attribute values, the integrity levels are 

either equal, or one of them is higher than the other. For both 

Situations and for Hazards, we use set theory to describe any 

pairwise relation. We show that our eight rules are complete 

and consistent. The completeness is shown as any possible 

combination of relations between Situations, Hazards, and 

ASIL attribute value, is covered by at least one rule. 

Consistency is shown as none of these possible combinations 

implies both dominance and non-dominance. This means that 

any combination is uniquely identified as either dominance or 

non-dominance. 

This set of rules makes it possible to solve the paradox of 

being specific in the list of Situations and Hazards, and still 

end up with a limited number of dimensioning Hazardous 

Events. Today, many companies fear to be too detailed in the 

Hazard Analysis, as it might generate a potentially infinite 

number of Hazardous Events. Instead they run the risk of 

becoming unnecessarily conservative in the analysis, leading 

to a too expensive product. By applying a methodology where 

these eight rules are applied in the generation and the review 

of Hazardous Events, it is feasible to generate a list that is at 

the same time complete and precise. 
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ABSTRACT 
This paper discussed an architecture-led approach to diagnosing time sensitive issues with a stepper motor controller that 
manages fuel flow of an engine. A real engine control system design had originally been modeled and verified with SCADE. 
The potential for missed steps that result in misalignment in the fuel valve position is difficult to test for and was not discovered 
until after the engine went into operation. We utilize the execution and communication timing semantics of AADL to 
architecturally characterize the interaction between the elements of the stepper motor control systems. We then characterize the 
functional behavior in the context of the task dispatch and input handling semantics using the AADL Behavior Annex and 
identify potential fault sources and their impact using the AADL Error Model Annex. The identified the potential error sources, 
early arrival and mismatched command rates, we quantify the condition for this to occur and analyze the system based on timing 
data from scheduling analysis and actual timing measurements. We use this analysis to evaluate several proposed design 
corrections. 

I. INTRODUCTION 
This case study shows how an analytical architecture fault-modeling approach can be combined with static analysis techniques 

to diagnose a time-sensitive design error in a control system and to verify that proposed changes to the system address the problem. 
The analytical approach demonstrates the value of the SAE Architecture Analysis & Design Language (AADL) standard [1] with its 
well-defined timing and fault behavior semantics in discovering hard-to-test errors and correcting them early in the life cycle, thereby 
reducing rework cost. This virtual system integration approach is a key element of an architecture-centric framework for improving 
the qualification assurance of software-reliant safety-critical systems [2]. 

In this case study, we investigated an actual stepper-motor system (SMS) that is part of an aircraft engine control system that 
manages fuel flow by adjusting a fuel valve. The original design was developed and verified in a model-based development 
environment called SCADE Suite, and an implementation was tested on actual equipment. In some test situations, actual fuel flow 
did not correspond to the desired fuel flow. The failure was suspected to be due to execution time jitter in the stepper-motor control 
system, which resulted in some steps being missed. Missed steps were not immediately detectable by the controller to take corrective 
action. Two repairs were proposed to correct the problem, but there was little evidence other than testing that either proposed solution 
would address the problem of missed steps. We use the same analysis techniques to diagnose the problem and to determine whether 
the proposed design changes addressed the problem. A full case study report elaborates on how to manage the results of the diagnostic 
analysis and verification as an assurance case [3]. 

We first describe the SMS and characterize its architecture as an AADL model. We then diagnose the SMS in three steps: discuss 
the behavioral verification of the different SMS elements to eliminate computational errors; discuss the fault analysis of the SMS 
with focus on time sensitive issues, but also supporting a full fault impact analysis; and discuss a quantification of the timing condition 
under which the potential for missed steps can occur. We then proceed with applying this analysis to proposed design changes to 
correct the problem. 

II. THE STEPPER MOTOR SYSTEM (SMS) 
The stepper-motor control system operates open loop (i.e., there is no direct feedback on the successful execution of a step by the 

motor). The enclosing engine control system can detect deviation from desired fuel flow, but not at the granularity of individual 
stepper motor steps. In other words, the problem is not detected until multiple steps are missed. 

The SMS is commanded to open the fuel valve in terms of a percentage with zero being closed and 100 being completely open. 
The stepper motor takes a known number of steps to move the fuel valve from a completely closed to a completely open position. 
The SMS is expected to reach the commanded position within a bounded time that is proportional to the distance between the current 



 
 

position and the desired position. At command completion the stepper motor is expected to have reached the commanded position 
closest to the requested opening percentage. 

The position control system (SM_PCS) operates periodically, and converts the percentage requested into the desired position in 
terms of stepper motor steps. It then commands the actuator to move the stepper motor a specified number of steps in the open or 
close direction. The maximum number of steps that can be taken per frame is a function of the frame rate and the time it takes the 
motor to move one step. To move the fuel valve as quickly as possible to the new position—that is, in a time roughly proportional to 
the number of steps required to move from the current position to the desired position—the position-change command sequence 
passed to the actuator consists of a sequence of maximum step count commands followed by a single command with the remaining 
steps less or equal to the maximum step count. 

SM_PCS maintains a record of the desired position and the position to be reached through the most recent position-change 
command (commanded position). On completion of the position command, the desired position, commanded position, and actual 
position of the motor are expected to be the same. A homing command (to a fully closed position) is executed during initialization to 
synchronize the actual position with the initial desired and commanded position assumed by the SM_PCS. 

The SMS may receive a new command before it completes the previous command. SMS is expected to immediately respond to 
the new command (i.e., immediately moves the fuel valve to the most recent commanded position without first continuing to the 
previously commanded position). As we will show this immediate response feature is not the culprit. Instead, the behavior of the 
actuator is sensitive to command arrival timing. 

The SMS was implemented according to the above design and it was discovered that the expected location of the stepper motor 
deviated from the actual location of the stepper motor over time (that is, steps were missed). The functionality of the stepper motor 
had been modeled and verified using SCADE, but without detecting the potential missed steps problem.  

III. SMS MODELING IN AADL 
The SMS was modelled in AADL in three levels of abstraction: 

• SMS as the system of interest in its operational context to capture the commanded input and expected result of the controlled 
system, 

• the runtime architecture of the SMS as a set of interacting tasks to capture the execution and communication timing 
semantics of the implementation to analyze the time-sensitive nature of the problem (Figure 1),  

• a specification of SMS component states and functional behavior that provides the basis for quantifying the conditions under 
which some commanded steps may be missed. 

 
The SMS and the Engine Control System (ECS) are represented as AADL system components. This allows us to decompose the 

SMS as necessary to elaborate its architecture. The ECU is represented as an AADL processor, and the device bus for transferring 
data between any sensor, the actuator, and the processor as an AADL bus. The power supply is also modeled as an AADL bus, in 
this case transferring electricity. The fuel valve is represented as an AADL device. 

The SMS consists of three components: digital position control software for the stepper motor SM_PCS, an actuator SM_ACT 
that translates commands from the position control software into electrical signals to a stepper motor, and the stepper motor 
SM_Motor. Note that the commands received by SM_ACT (Commanded_Position) take the form of a step count to be completed 
within a frame in the original system design. The interface between SM_ACT and SM_Motor (SM_Command_Signals) is represented 
by a feature group, i.e., a collection of event ports. The mechanical interface of the stepper motor (Mechanical_Control_Position) is 
represented by an abstract feature, i.e., a feature without specific communication timing semantics that are associated with ports. 

 
Figure 1: The SM_PCS Architecture 

The position control system software SM_PCS is an AADL thread with a period of 25ms that resides in an AADL process called 
SM_PCS_App. The figure also shows a health monitor (SM_HM) thread with a period of 1ms in the same process that has no logical 



 
 

interaction with SM_PCS. This indicates that the two threads share the same address space; thus, a coding error in one can potentially 
affect the other.   

A Binding property in the operational environment of SMS, which contains the ECU, indicates that SM_PCS and SM_HM 
execute on the ECU. A Priority property indicates that SM_HM takes precedence over SM_PCS, thus, can affect the completion time 
of SM_PCS due to preemption. A Scheduling_Protocol property on the ECU indicates that preemptive scheduling is used. 

The SM_ACT and SM_Motor are modeled as AADL devices to reflect that they are separate physical components. We can 
specify the execution and communication timing behavior of devices the same way as for threads. We specify that the actuator 
responds immediately to a new command from SM_PCS. We reflect this in the AADL specification of SM_ACT (Figure 2) by the 
aperiodic dispatch protocol. The Queue_Size and Overflow_Handling_Protocol properties allow us to specify details of handling 
arrival of input (see Section IV.B). Similarly, the stepper motor immediately responds to each step signal from the actuator – 
expressed by aperiodic dispatch.   

device SM_ACT  
features 
-- logical interface 
  Commanded_Position: in event data port StepCount { Queue_Size => 0; 
    Overflow_Handling_Protocol => Error; }; 
  SM_Command_Signals: feature group inverse of SM_Command_Signals; 
-- physical interface 
  DMA: requires bus access DirectAccessMemory; 
  Power: requires bus access Power_Supply.Volt28; 
flows 
  flowpath : flow path Commanded_Position -> SM_Command_Signals; 
properties  
  Dispatch_Protocol => Aperiodic; 
end SM_ACT; 

Figure 2: The SM_ACT Interface Specification  

IV. DIAGNOSIS OF THE SMS 
We diagnose the SMS problem in three steps. First, we establish a record of the functional behavior verification and its 

assumptions. Second, we utilize the fault modeling capability including a taxonomy to identify potential fault contributors and refine 
the AADL model to more fully capture the timing behavior of the SMS. Third, we formalize the time-related condition under which 
the problem can occur.  

A. Behavioral Verification of the SMS 
The original behavior specification was modeled and verified in the SCADE Suite. This verification asserts that the desired, 

commanded, and actual positions of SM are correctly maintained. However, verification tools such as the model checker in SCADE 
or Simulink make assumptions about synchronous execution behavior and timing. Typically, execution timing is separately verified 
through scheduling analysis and benchmark measurements of code. For example, TAXYS [4] combines verification and code 
generation from Esterel models (predecessor to SCADE) with timing verification based on timed automata. Recent research in 
verification of time-sensitive applications includes model checking of specifications extracted from source code [5] and verification 
of time sensitive behavioral constraints of AADL models annotated with BLESS [6]. We have created a BLESS specification of 
SMS, but were faced with the challenge to represent with multiple execution rates and aperiodic execution behavior. 

To better understand the effects of execution and communication timing of the different elements of SMS affects functional 
behavior we elaborate the AADL specification with AADL Behavior Annex (BA) annotations [7]. These annotations specify how 
the functional behavior originally specified in SCADE interacts with the execution and communication timing behavior of the SMS 
components. This mapping into the AADL tasking model allows us to diagnose where the synchronous execution model of SCADE 
is potentially violated. 

The behavior specification of SM_PCS is shown in Figure 3 and is equivalent to the SCADE model. It maintains two states: 
DesiredPositionState to represent the target position received by the last command, and CommandedPositionState to represent the 
position resulting from the execution of the last command sent to SM_ACT. It states that on every periodic dispatch SM_PCS will 

1) check whether a new Desired_Position command has arrived, validate that the value is within the expected range of 0 to 100, 
and set it to be the DesiredPositionState; an out of range command is ignored.   

2) compute a step count up to a maximum of 15 steps per frame (SPF) in the appropriate direction to move the 
CommandedPositionState towards the DesiredPositionState; and issue the appropriate step count command to SM_ACT; this results 
in a series of 15 step command, with the last non-zero count possibly less than 15, and then a count of zero once the desired position 
is reached.  



 
 

thread implementation SM_PCS.impl 
subcomponents 
  DesiredPositionState: data SM_Position; 
  CommandedPositionState: data SM_Position; 
annex Behavior_Specification {** 
  variables 
    distance: Base_Types::Integer; 
    stepcount: Base_Types::Integer; 
  states  
   Ready: initial complete state; 
  transitions 
    Ready -[on dispatch]-> Ready { -- on every 25ms dispatch  
    -- check for new command and out of range if a new command has been received 
    if ((Desired_Position'fresh = true) and (Desired_Position >= 0 ) 
        and ( Desired_Position <= PCSProperties::MaxPercent)){ 
    -- convert from PercentOpen to Steps 
      DesirePositionState := PCSProperties::MaxPosition*Desired_Position/100     
    } end if; 
    distance := DesiredPositionState - CommandedPositionState ; 
    if (abs(distance)> PCSProperties::MaxStepCount) 
      stepcount := PCSProperties::MaxStepCount  
    else 
      stepcount := abs(distance) 
    end if; 
    if (distance>0){ 
      Commanded_Position := stepcount; 
      CommandedPositionState := CommandedPositionState + stepcount 
    } else { 
    -- this case handles steps in the close direction as well as zero steps 
    -- note that zero step commands are expected to be issued  
      Commanded_Position = - stepcount; 
      CommandedPositionState = CommandedPositionState - stepcount 
    } end if; 
    Commanded_Position!; 
  }; -- end action 
**}; 
end SM_PCS.impl; 

Figure 3: Behavior Specification of SM_PCS 

Both the SCADE model and the AADL BA specification of SM_PCS have been verified to correctly send a command sequence 
to SM_ACT. The verification also showed that the arrival of a new desired position command before the previous desired position 
has been reached is handled correctly, i.e., that SM_PCS responds within one frame to the new command and sends a command 
sequence to actually reach the latter desired position. The verification results show that the SCADE and BA specifications reflect the 
same behavior with respect to the verified invariant. 

Furthermore, we have used an end to end flow specification in the AADL model and performed latency analysis [8] to determine 
that the system responds “immediately” to the new command, the amount of time it takes for SMS to respond to the new command, 
i.e., that it responds within less than two frames as shown in Figure 4. This latency includes the one frame sampling delay by SM_PCS 
and the processing and communication time by SM_PCS and SM_ACT to issue the first step command to the motor. 

 

Figure 4:  End-to-End Latency Analysis Results for New SMS Command 



 
 

The specification of the actuator as a physical device is a little more interesting in terms of timing. In this case, we reflect in the 
BA specification that SM_ACT responds to two inputs, the arrival of the next step count from SM_PCS and the completion of a step 
from the motor. This is determined by the specification of SM_ACT as an aperiodic thread with a queue size of zero for arriving 
commands. The SCADE model had assumed that the commands arrive at the frame rate of 25ms and that at that time the previous 
command had been completed.  

The actuator maintains system state in the form of a persistent StepsToDo count as shown in Figure 5. This count is set to the step 
count value as soon as a command is received from SM_PCS. The actuator then sends individual step signals to the motor at the 
specified rate until the count is zero. For that purpose, the specification is characterized by three states:  

1. Ready, indicating that it is waiting for a command from SM_PCS  
2. WaitOnStep to indicate that the execution of a step by SM is in progress  
3. Decide as an intermediate state dealing with the decision of whether there are steps left to be executed by SM.  

Arrival of a Commanded_Position in the form of a step count is handled by the Ready state and the WaitOnStep state.  StepsToDo 
is set to the newly arrived value. A positive value results in increasing the stepper motor position, while a negative value results in a 
decrease. The first transition out of the Decide state determines that no step has to be taken. The other transition out of the Decide 
state specifies whether an Increment_Step or Decrement_Step signal is to be issued according to the specified Direction and updates 
the step count. The transition out of the WaitOnStep state triggered by the step completion signal leads to the Decide state, which 
determines whether additional steps are to be performed.  

device implementation SM_ACT.impl 
subcomponents 
  StepsToDo: data StepCount; 
annex Behavior_Specification {** 
  states 
    Ready: initial state; 
    WaitOnStep: complete state; 
    Decide: state; 
  transitions 
    Ready -[on dispatch Commanded_Position]-> Decide { 
      StepsToDo := Commanded_Position  
    }; 
    WaitOnStep -[on dispatch Commanded_Position]-> WaitOnStep { 
      StepsToDo := Commanded_Position 
    }; 
    WaitOnStep -[on dispatch SM_Command_Signals.StepDone]-> Decide ; 
    Decide -[StepsToDo = 0]-> Ready ; 
    Decide -[StepsToDo > 0]-> WaitOnStep { 
      If StepsToDo > 0 
        StepsToDo :=  StepsToDo - 1; 
        SM_Command_Signals.DoIncrement!; 
      else if StepsToDo < 0 
        StepsToDo :=  StepsToDo + 1; 
        SM_Command_Signals.DoDecrement!; 
      end if 
    }; 
**}; 
end SM_ACT.impl; 

Figure 5: The Functional Behavior of the Actuator 

As mentioned above the SCADE model assumed that the previous command had completed, i.e., the StepToDo count is zero at 
the time the new command arrives. The verification of the BA specification shows that in the Ready state the StepsToDo count is 
always zero. In the case of WaitOnStep the count may be non-zero unless the last step has been issued. The verification shows that if 
the precondition of a zero StepsToDo count does not hold the number of individual step commands to the motor will deviate from 
the incoming step count command sequence. 

B. Fault Analysis of the SMS 
We use a fault taxonomy that is part of AADL Error Model Annex specification [9,10] to systematically identify potential 

contributors to missed steps. We do so by annotating every incoming and outgoing port with error propagation types as shown in 
Figure 6. The Error Model Annex comes with fault taxonomy to identify omission, commission, value, timing, rate, sequence, 
replication, concurrency, authentication, and authorization error types. The notation lets us use guidewords relevant to the domain as 
aliases to the more abstract terms used in the taxonomy, e.g., missing command as alternative to omission.  



 
 

Since the functional behavior of SM_PCS has been verified we specify that certain errors are not expected to be propagated. 
Figure 6 shows the actuator assuming that the step count is within range and that the command does not reflect an incorrect position. 
For SM_PCS we also specify that incoming commands with out of range values are mapped into missed commands to reflect the 
behavior specified in Figure 3.  

To diagnose the problem, we focus on timing related error propagations. We specify that early or late command delivery or a 
command sequence at an incorrect rate may occur (see Figure 6). Late command delivery delays the commanding of SM_ACT and 
indirectly the stepper motor, i.e., we specify an incoming late delivery is propagated as outgoing slow response by the stepper motor. 
Similarly, arrival of commands at a rate lower than expected results in slower response by the stepper motor. 

annex EMV2 {** 
use types SMErrorTypes; 
error propagations 
  Commanded_Position : in propagation { MissingStepCountCommand, TimingError, RateError}; 
  Commanded_Position : not in propagation { StepCountOutOfRange, IncorrectPosition}; 
  SM_Command_Signals : out propagation {MissingStepCommand, SlowResponse, NoCommandSequence}; 
  ElectricalPower : in propagation {PowerLoss}; 
flows 
  MissingCmd: error path CommandedPosition{MissingCommand} -> SM_Command_Signals{MissedSteps}; 
  LateCmd: error path CommandedPosition{LateDelivery} -> SM_Command_Signals{SlowResponse}; 
  EarlyCmd: error path CommandedPosition{EarlyDelivery} -> SM_Command_Signals{MissingStepCommand}; 
  Fast: error path CommandedPosition{ HighRate} -> SM_Command_Signals(MissingStepCommand); 
  Slow: error path CommandedPosition{ LowRate} ->  SM_Command_Signals(SlowResponse); 
  MechanicalFailure: error source SM_Command_Signals{NoCommandSequence} when {ActuatorFailure}; 
  NoPower: error path Power{PowerLoss} -> SM_Command_Signals{NoCommandSequence}; 
end propagations; 
**}; 
end SM_ACT; 

Figure 6: Fault Propagation Specification for the Actuator 

Early command arrival at SM_ACT is the interesting case. The specification of SM_ACT in Figure 2 indicates that input is not 
queued (Queue_Size of zero in Figure 2). In other words, SM_ACT responds to the arrival immediately. The BA specification in 
Figure 5 shows that the new step count is assigned to StepsToDo at arrival. As discussed in the previous section this potentially leads 
to overriding a non-zero count.  We reflect this behavior in the SM_ACT interface specification by the Overflow_Handling_Protocol 
property value of Error for the incoming port of SM_ACT (see Figure 2). Based on this observation we proceed in the next section 
to define the condition in terms of time for which the StepsToDo count is non-zero. 

The fault propagation specification for SM_ACT shown in Figure 6 includes physical failures as well, e.g., the mechanical failure 
of the actuator device, and the loss of electrical power from a power source external to the actuator (and SMS). Once we have 
completed such fault propagation specifications for each of the SMS component we can perform a fault impact analysis [11] and 
identify other potential contributors to missed steps or other stepper motor malfunction. Figure 7 shows a portion of a fault impact 
report for SMS. 

 

Figure 7: Fault Impact Report for SMS 

C. Formalized Time Sensitve Fault Condition 
Once we understand the issue of overriding a non-zero StepsToDo count, we can quantify how early a command must arrive for 

this condition to occur. The latest time for a non-zero value is when the last step of a position-change command is issued. Since the 
actuator is a reactive component, the maximum early arrival time between two commands from SM_PCS must not exceed the 
difference of the period of 25ms and this time limit.  

This leads to the following condition that must be satisfied in order to avoid a missed step. The maximum early arrival time for 
commands arriving at SM_ACT must be less than the time difference between the latest time for a non-zero step count value and the 
next frame, which we refer to as AStepMissBound..  

Max(EarlyArrivalTime) < StepMissBound 



 
 

The maximum early arrival time is determined by the maximum early send time by SM_PCS and variation in communication 
time. Figure 8 illustrates how the maximum early send time is determined. The time difference between a send at maximum 
completion time followed by a send at minimum completion time is the frame time minus the delta between maximum and minimum 
completion time. Thus, the early send time corresponds to this delta. This is reflected in the formula 

Max(EarlyArrivalTime) = Delta(CompletionTimeSM_PCS) + Delta(Comm) 

  
Figure 8: Maximum Early Send Time to Actuator 

The value of step count is non-zero until the last step of a position-change command has been issued (i.e., until (Step_Count -1) 
* Step_Duration). This results in a worst-case step miss bound for the maximum acceptable variation of inter-arrival time of  

StepMissBound = 25ms – ((MaxStepCount -1) * max(Step_Duration))  

According to the stepper motor specification the step duration varies between 578 (1.730ms step duration) and a maximum of 
621 steps (1.61ms step duration). Using the maximum step duration as worst case, this results in a step miss bound of 0.78ms.  

For a particular set of execution times for SM_PCS and SM_HM we can calculate the inter-arrival time variation. The worst-case 
send time variation corresponds to the variation in execution completion time for SM_PCS. The completion time can be determined 
by a scheduling analysis and confirmed by actual timing measurements of executing code. Effectively, the completion time is 
determined by the variation in actual execution time of SM_PCS plus any preemption variation by SM_HM. Note that preemption 
variation by SM_HM may be multiples of SM_HM execution time as the minimum and maximum number of preemptions may 
differ. The resulting number is compared to the bound of 0.78ms to determine the possibility of missed steps. 

A rate mismatch between the sender SM_PCS and the receiver SM_ACT can occur for two reasons:  

• SM_PCS executes at a rate faster than the specified 25ms frame rate  
• SM_ACT requires more than 25ms to complete the execution of the position-change command. 

SM_PCS can execute faster than 25ms if the hardware clock of the ECU operates faster. For our case study we assume that this 
is not the case.  

Notice that this bound is less than the minimum duration of one step execution. In other words, the last step may not complete 
before the end of the 25ms frame. Recall that the data sheet for the stepper motor indicates that the stepper motor’s step duration 
varies between 578 and 621 steps per second when executing at the rate of 15 steps per frame. This results in a SM_ACT completion 
time variation between 24.15ms and 25.95ms for performing 15 steps. In other words, SM_PCS may send commands at a higher rate 
than SM_ACT is processing them.  

In a worst-case scenario, the stepper motor could continuously operate at the longest step duration, falling behind 0.95ms for 
every frame that executes a position-change command of 15 steps. The completion delay is cumulative for a sequence of consecutive 
maximum step count commands. Note that SM_PCS sends the maximum step count only until the desired position is reached. A step 
count less than the maximum allows the stepper motor to catch up with the SM_ACT commands and make up for the time delay.  

This leads to a derived requirement for the SMS implementation.  

max(StepDuration) * MaxStepCount * max(MaxStepCountCommandSequenceLength) < StepMissBound 

It takes 16 commands (250/15) to go from a completely closed to a completely open position with a cumulative delay of 15.2ms. 
This number is larger than the step miss bound, leading to missed steps.  

To make matters worse, the maximum step count sequence potentially can be longer. A new desired position may be issued before 
the previous one has been reached. The new position may be in the opposite direction from the current position. As a result, the 
sequence of maximum step commands can be larger than 16 step count commands. In this case the cumulative delay may exceed a 
frame, resulting in missing a complete step count command.  

V. VERIFICATION OF ALTERNATIVE DESIGNS 
Two possible design changes had been proposed to address the missed step problem. The first proposed design change was to 

minimize output jitter by the SM_PCS by a second periodic thread sending the output at a fixed offset from its dispatch time (Fixed 
Send Time solution). The offset was chosen to be half the period as this would allow an implementation with a single thread executing 



 
 

at double the rate to alternate between computing the step count and sending the resulting command. In the AADL model we chose 
to specify a second thread with an offset start time. When analyzing this design alternative, we determine that early arrival time has 
been reduced but not eliminated. However, we have additional thread dispatches. Furthermore, we have to assure that the computation 
of SM_PCS completes before the chosen output time. Otherwise, the old step count value may be sent again. Finally, the solution 
does not address rate errors. 

The second proposed design change was for the actuator to buffer the incoming command until the execution of the previous 
command is completed (Buffered Command solution). This can be accomplished by actually buffering the command or by adding 
the incoming step count to the StepsToDo count. If we choose command buffering it is natural to assume a queue size to be sufficient 
since commands are issued at the frame rate. However, the rate error analysis has shown that there is potential for cumulative delay. 
The addition of the step count to the StepsToDo count requires more complex functional logic in the actuator device. For this solution, 
we can verify that the count is updated correctly, even when the direction changes. The solution is less sensitive to rate errors. 
Cumulative delay reduces the responsiveness of the stepper motor.  

In the original design and the two proposed design changes SM_PCS sends a step count to the actuator. This step count represents 
a state change, i.e., the difference between the current state and a new state. The full fault analysis considers the potential of data 
corruption or loss when the step count is communicated to the actuator. Communication of state change is sensitive to such faults, 
i.e., results in missed steps or execution of an incorrect number of steps. Therefore we consider an architecture design of SMS where 
the state, i.e., the target position is communicated to the actuator. 

 In in this design the desired position is validated by SM_PCS and then passed to the actuator. The functional logic of the actuator 
is slightly more complex, i.e., it has to compare to values instead of testing a single value for zero.  However, the complexity of 
SM_PCS is significantly reduced. We have eliminated the functional logic of SM_PCS to transform the desired state (Desired 
Position) into a sequence of state changes (step count).  Note that a design that operates with state changes assumes guaranteed 
communication and execution of every state change. In other words, it is sensitive to malfunction such as incomplete execution or 
data corruption during data transfer. An architecture design that communicates the desired state more robust, e.g., transient data 
corruption during transfer does not lead to a permanently inconsistent state. 

In the case study we have considered not only logical design defects in the SMS, but also the effect of other contributors to missed 
steps. Table 1 presents a comparison of the four architecture design alternatives in terms of their full fault analysis. The first row 
focuses on logical failures in the SMS design, the second row describes mechanical failures within the SMS, the third row captures 
the effects of computer hardware on the SMS, and the last row represents mechanical failures in the operational environment.  

The comparison shows that the position-commanded actuator design is not sensitive to early delivery or high rate errors, nor is it 
sensitive to transient message corruption or loss, while the original design is sensitive to transient data corruption. This is due to the 
design choice of commanding the actuator by desired position rather than by a sequence of position-change commands.  

We can also see that mechanical failures affect the SMS the same way in all designs and must be addressed at the enclosing 
system level (e.g., by replication of the engine control system and the engine).  

Missed Step Original Design Fixed Send Time Buffered Command Position Command 
SMS logical 
failures 

EarlyDelivery  
HighRate 

HighRate HighRate  

SMS 
mechanical 
failures 

ActuatorFailure 
StepperMotorFailure 

ActuatorFailure 
StepperMotorFailure 

ActuatorFailure 
StepperMotorFailure 

ActuatorFailure 
StepperMotorFailure 

Transient 
comm failures 

MessageCorruption 
MessageLoss  

MessageCorruption 
MessageLoss 

MessageCorruption 
MessageLoss 

 

Mechanical 
failures in Op 
Environment 

ECUFailure  
PowerLoss 
ValveFailure 

ECUFailure  
PowerLoss 
ValveFailure 

ECUFailure  
PowerLoss 
ValveFailure 

ECUFailure  
PowerLoss 
ValveFailure 

Table 1: Comparison of Architecture Design Alternatives 

VI. CONCLUSION 
The purpose of this case study was to show how architecture fault modeling and analysis can be used to diagnose a time-sensitive 

design error encountered in a control system and to investigate whether proposed changes to the system address the problem. The 
analytical approach demonstrates that such errors that are hard to test for can be discovered and corrected early in the life-cycle, 
thereby reducing rework cost.  

The case study example is a stepper motor controller to manage the fuel flow of an engine. Its original design had been verified 
with SCADE without discovering until system integration and operational testing the potential for missed steps due to variation in 
command inter-arrival time. The use of models to capture the behavior of a system and their verification through simulation or model 
checking is an established practice. For time sensitive applications these models assume a particular execution model, e.g., a periodic 



 
 

sampling processing model with deterministic sampling behavior. Scheduling analysis is used to assure that a set of tasks are 
schedulable, i.e., the tasks meet their deadline. Application code and the runtime executive may be generated and configured from 
such verified models to ensure consistency. The resultant system still goes through system integration and operational tests.  

We have presented an architecture-led approach that is more comprehensive in utilizing model-based analysis early in 
development and as diagnostic tool. Our unique contribution is to complement the above mentioned techniques with a combination 
of AADL BA, and EMV2, to represent the system, utilize a fault taxonomy to identify potential faults, and quantify timing related 
faults.  

AADL captures a specification of the task and communication behavior of software as well as hardware devices in AADL that 
captures both synchronous and asynchronous system execution behavior of software and physical devices. BA associates functional 
behavior specification with the task and communication model, which allows us to identify mismatched assumptions about execution 
and communication timing semantics. We utilize a fault taxonomy and EMV2 annotations of AADL models to identify potential 
issues and analyze their impact throughout the system. We quantify timing related conditions that violate a behavioral assumption 
about command completion and utilize scheduling analysis result of variability between best case and worst-case completion times 
to assess whether this condition can occur. 

To diagnose the time sensitive nature of the problem we have captured the original SMS architecture design and three design 
alternatives in AADL, the Behavior Annex, and the EMV2 Annex, and quantified a timing related condition due to early rather than 
late arrival times that allows us to analytically assess whether the condition can actually occur.  

The ability of AADL abstractly capture the dispatch and input handling of software threads like the stepper motor controller and 
physical devices like the actuator helped us focus on the essential architecture aspects of the system. The ability to specify the 
functional behavior of each component in the context of its dispatch and input handling behavior allowed us to recognize command 
execution is aborted due to the fact that a counter is set to a new target value even under circumstances when it contains a non-zero 
value. We have applied the fault taxonomy of the AADL Error Model Annex to perform a full safety analysis that includes logical 
design errors as well as physical errors. This fault taxonomy includes error types that deal with the time-sensitive nature of systems, 
both in terms of early or late arrival and in terms of mismatched arrival rates. We have been able to quantify the condition for timing 
related faults. We have then used results from scheduling analysis or actual timing measurements to analytically determine whether 
and when the missed step failure can occur. We have shown that in addition to early arrival, rate mismatch can lead to missed steps 
in the operation of the stepper motor. 

We have applied the analysis to the original design as well as the three design alternatives. Three design communicate state 
change, i.e., the number of steps to be performed, while the fourth communicates state, i.e., the target position. During fault analysis 
we have identified system designs that involve state change to be more sensitive to transient faults such as data corruption or message 
loss. They result in persistent incorrect state for the receiver. When communicating complete state repeatedly, transient data corruption 
and message loss is limited to transient effects.  This leads to a more robust system design.   
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1. Introduction 
Avionic system design is an extremely complex activity due to: 

- Different concerns from different teams: 
o Complexity of functions to realize 
o Hardware and software redundancies to manage safety considerations 
o Communication protocols 
o Complex hardware network with configuration switches,  
o Etc. 

- Amount of data to manage: 1,000s of data 
- Resource sharing principle (CPU, network, …) 

Current methods to manage system engineering complexity rely on refinement levels and view-points. Industries 
promote ICDs (Interface Control Documents) as a contractual means to assign the development of system 
components. These are basically large databases that gather the result of system architecture design.  

In the domain of safety critical software, the benefits of a model based approach are well established. Now, using 
an example of avionics architecture, we will show how Model Based System Engineering (MBSE) brings many 
benefits when the tools are suited for system designers and applied to solve industrial challenges. 

Proponents of MBSE provide strong arguments for improving the efficiency of complex system development, 
promising to achieve at least the same level of quality in a shorter time. However, this gain in efficiency must be 
proven. This paper details the way a realistic complex avionics system can be designed efficiently using a MBSE 
tool, with hundreds of data passed through ARINC 429 and ARINC 664-P7 messages.  

A classical methodology is followed to manage the different levels of concern: 

- Functional architecture  
o Functional data flow communications 

- Software architecture 
o Function organization into software components 
o Software message definition and propagation between the components 

- Platform hardware architecture 
o Definition of buses, switches, and computing units 
o Software to hardware mapping 
o Virtual link definition for the ARINC 664-P7 communication 

- Software design, code generation and verification with SCADE Suite [10] 

In order to sustain industrial deployment as a cost-effective MBSE tool, the following must be addressed: 

- Interoperability – By conforming to a standard, such as SysML [6], users avoid the risk of vendor lock-in 
and can integrate with other technologies. 

- Usability – In order to overcome reluctance to change, the tool should speak the language of system 
engineers rather than forcing engineers to force their design into an awkward formalism. 

- Efficiency - Tools and methodology should bring savings in design, analysis, and document generation 

The SCADE System Avionics Package delivers the following answers: 
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- Fully customizable interface driven by Domain Specific Languages 
- Clean separation and consistent relationships of the Functional, Software and Hardware layers 
- Templates for standard avionics protocols (ARINC 429, ARINC 664-P7, CAN provided) 
- Intuitive hierarchical data modeling and automated ICD generation 

These means are detailed in this paper; the design of the industrial case study that is first introduced has 
demonstrated the efficiency of the tool support. 

2. Avionics system case study 
For this case study, Dassault Aviation provided a simplified representative example of a Braking System, based on 
a COM-MON architecture. Principles of the COM-MON design are not detailed but focus is made on the ARINC 
664-P7 and ARINC 429 communications between the COM, MON and other systems. 

- At the functional level, COM and MON interact with 9 sub-systems. 175 functional data are considered. 
- At the software level, COM and MON partitions are respectively interacting with 12 partitions. 14 ARINC 

664-P7 messages and 48 A429 messages are defined. 
- The platform level contains 4 Processing cores (CPU), 4 Switches, a dual A/B ARINC 664-P7 network, 

and 30 Virtual Links (VL). 

Based on this example, we realized a complete retro-fit in SCADE System through the following steps: 

- Description of the entire architecture (Functional, Software and Platform) 
- Production of the application ICDs 
- Management of data consistency checks across the complete application 
- Management of Virtual Link paths to facilitate switch configurations 
- Analysis of message allocation with respect to network bandwidth  
- Synchronization of the system architecture with the software design 

Screen shots and details of the complete example are provided after we have introduced all the tool features that 
enable efficient support of the design method. 

3. Proposed Model Based Engineering Method and Tool Support 
As introduced in the first section, a traditional system design approach is used, relying on several abstraction 
layers: functional, software (sometimes called “logical”), and platform. Our approach is unique in how it defines and 
manages the relations between these levels of abstraction. 

The following technical means are hereafter detailed: 

- Allocation and interface specification, relying on data management 
- Customization of SysML objects 
- Analysis of the model, in particular to produce the Interface Control Documents (ICD). 

3.1. Allocation and interface specification 

When designing a system in several abstracting layers, consistency and completeness of each layer must be 
ensured. The difficulty comes from the fact that the abstraction levels are not a simple hierarchical decomposition. 
The functional, software, and hardware views are all hierarchical, but with a different hierarchy. 

The relationship between the different layers is called projection. SysML comes with a dedicated construct, 
allocations, to support this. Projections provide a straightforward way to show the realization of a function by a 
software component, and show how a software component is run by a hardware component. 

Before focusing on the interface allocations themselves, it should be noted that the intention of a projection is to 
specify precisely which item shall be supported by which item. The projection must take into account that blocks 
may be instantiated several times. The difficulty arising from the hierarchical instantiation is solved in SCADE 
System though a block replica mechanism detailed in [13]. The result of the replication mechanism is that each 
object from the real world is represented with a dedicated object in the model. This replication mechanism is 
reused for the data objects presented below. 

Projection of the component interfaces can be realized in the same simple way as for block components. But this 
does not lighten the burden of making all interfaces consistent with each other. Let’s consider the following case:  

- A function F produces data D, for several other functions defined in the functional decomposition. 
- Each function is allocated to a software component, some sharing the same component, others not. 
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- The software components exchange messages in order to transmit the functional data. 

It is easy to specify that the software component S supporting F shall produce a message M carrying D. But what 
about the other sides of the communication? The message M must be sent to all software components that 
support a function receiving data D. This rule must be maintained whatever the data propagation and function 
allocations, something that may evolve during the design process. 

Another consideration is that ARINC 429 and ARINC 664-P7 messages can carry several data elements. The 
designer may define either one message carrying several data to other software components, even if some data 
are not required by all the message recipients, or to define several messages. All these challenges are supported 
by a concept of data. 

3.2. Data management 

SCADE System comes with an original and powerful means to specify the interface allocations efficiently. It relies 
on data objects that can be structured and propagated. 

The data propagation mechanism first published in [13] is summarized here: 

- Data are implemented as SysML blocks, allowing SCADE System to conform to the SysML meta-model, 
but managed as data in the tool. 

- Data are propagated along block ports and connectors thanks to a dedicated feature of the tool 
- Propagation of a data D out of a block B through one of its ports consists in the creation of a data proxy in 

the parent blocks instantiating B. 
- All proxies are connected as a chain; the tool allows managing the data attributes (feature detailed in 

section 3.3) whatever the selection of one proxy of the chain. 

This mechanism brings two important benefits. First, it allows handling a complete “path” through a block hierarchy 
and connections from a single data element. Second, it allows managing thousands of data, each broadcasted or 
multi-casted in a straightforward way by the designer, without graphical scalability issues by avoiding the creation 
of numerous ports and connectors (the proxies are automatically created from path selection). 

Individual data are structured thanks to an internal model transformation: 

- Data structures are defined with classical structured types 
- Applying a structured type to data replicates the structure inside of the data definition. This allows for each 

data to have its own individual fields. 

Structured data is an ideal means to model messages; the message fields represent place-holders for the 
functional data. Simple allocations of functional data (defined at the functional abstraction layer) to a field of a 
structured data message represents the fact the message carry the functional at a certain place in the message. 
This would not be possible without the internal replication of the message type because the field of type would be 
shared by all the messages sharing the same type. 

Allocating a propagated functional data to a propagated message data implements the interface allocations 
between the abstraction layers. 

An additional feature allows managing the user interface scalability: There may be several thousand of functional 
data, and data messages in a model. Managing the allocation between the different levels of abstraction is 
challenging for the usability perspective of a graphical tool. Even a traditional list of objects can be cumbersome for 
the users. SCADE System IDE comes with a customizable filtering mechanism that restricts possible candidates to 
correct allocations and propagation. The principle is the following: 

- A checking rule verifies that a functional data FD propagated from function FA, allocated to Component 
CA, to function FB, allocated to component CB, is allocated to message data MD that goes from CA to CB. 
This check takes into account both the possible multiple propagation target of a data, and possible multiple 
allocations to messages to handle redundancies. 

- In addition to automated verification and report generation at the end of the design, the checking rule is 
used dynamically by the UI to filter out the allocation and propagation possibilities that would lead to a 
violation of the rule. That way, the UI exposes a much shorter list of possible selections, and correct 
designs are realized much faster. 

This mechanism extends very easily: users can program their own verification rules from the model API, and use 
them both for final batch verifications, and as filters in the allocation and the data propagation interfaces. 
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3.3. DSL vs. SysML: Configuration of the SCADE System tool 

The method presented above only requires blocks, ports, connectors, data, and structured type objects. However, 
these constructs fall short of easily addressing a specific domain. The ability of a tool to meet the needs of domain 
expert engineers is a key success deployment factor, which must go beyond these few generic SysML objects. 

There are traditionally two competing approaches when it comes to domain-specific system modeling: 

 “Pure” Domain-Specific Languages (DSLs) 

 Customizations of generic modeling solutions, e.g. UML with profiles such as SysML 

Proponents of the first approach appreciate the total freedom that DSLs provide in order to best fit actual domain 
concerns, without incurring the cost of supporting legacy UML peculiarities. Proponents of the second approach 
claim that reliance on standards such as UML provide better long term sustainability and interoperability. 

SCADE System stands out with an original hybrid approach that combines the best of both worlds: While the 
internals of SCADE System rely on UML/SysML and profiling (therefore providing full standard support and 
interoperability), SCADE System still presents itself as a domain-agnostic system modeling language and toolset, 
via a pure DSL “virtual layer” implemented transparently on top of UML and SysML. This layer is naturally 
extended to accommodate domain-specific needs without starting from scratch: The domain specialist simply 
designs a domain-specific language as a meta-model that specializes SCADE System’s domain-agnostic meta-
model. Additional information is conveyed by appropriate attributes in specializing meta-classes and relationships 
among them; additional constraints imposed by the domain are enforced by redefinitions of existing relationships. 

SCADE System transparently handles the intricacies of UML profile management and dynamically adjusts its 
interface to the domain-specific “configuration”, offering new modeling constructs (in toolbars, property pages, etc.) 
while forbidding others according to constraints of the domain. Moreover, models based on a domain configuration 
can be manipulated via a “pure” API derived from the domain meta-model, not UML concepts and stereotypes. 

Figure 1 below shows the tool workflow in practice: the domain specialist designs the domain meta-model; from it, 
a “configuration plug-in” is automatically generated. By loading this plug-in file, SCADE System is transformed into 
a Domain Specific tool with the customized “creation palette” and object properties. 

 

Figure 1: System Configuration Workflow 

Figure 1 also shows an extract of the ARINC 429 meta-model. 

- At the top of the diagram, Data, Struct and Field refer to SCADE System meta model; 
- Below, Message, MessageDefinition, MessageField and MessageData are defined in the “generic” 

Avionics configuration. They all inherit from SCADE System meta classes 
- Finally at the bottom of the diagram, the ARINC 429 meta-classes refine the Avionics meta-classes, 

providing all information needed for the definition of ARINC 429 messages. 
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Similar meta-models are provided for ARINC 664-P7 and CAN messages. The same technique is used to define 
all meta-classes needed at the platform definition layer, with the physical ports, switches, etc. 

3.4. ICD production 

Now that we have described the data management process, Interface Control Documents can be generated from 
the model. These Excel sheets are needed by many different development teams, each requiring different 
information, presented in the way they expect. For example: 

- Partition table 
- Messages definition with their parameters 
- Messages source and targets with ARINC 664-P7 ports, transmission rate, length, etc. 
- ARINC 664-P7 Virtual Links definition 

Each table being specialized for a specific usage, the tool should not rely on dedicated built-in tables, but offer a 
means for each user to customize their own view. SCADE System comes with a simple but powerful means:  

- A dedicated dialog allows defining the hierarchy of objects to display in a table: the list of possible children, 
references, or even arbitrary queries is proposed for selection. 

- For each line in this tree, the list of possible attributes, references, or arbitrary queries is proposed to 
create columns in the table. 

These lists of possible children, references and attributes are directly exposed from the model API. This includes 
the domain meta-model API specified. So, in a few clicks one can for example set-up the table of all ARINC 429 
messages, with their target and with the parameters from data allocated from the functional design. 

All table examples listed below have been produced for the designed aircraft braking system. They comply with the 
original MS Excel tables that were given at the start of the project. Of course the displayed tables can be exported 
in a click to MS Excel files. 

4. Application to an Avionics system case study 
We will now apply the methodology and tools to the avionics system case study described at the beginning of the 
paper. As explained in section 3 we proceed in layers focusing on data management (producing and consuming). 

4.1. Functional architecture 

 

Figure 2: Functional architecture 
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Beginning with the functional architecture, we define the functions of the Braking System and the data produced 
and consumed (required) for each function. 

The COM function of the Braking System needs 3 functional data produced by the ADIRU Function 
(ADIRU_AC_ACCEL: Aircraft Acceleration; ADIRU_AC_GND_SPEED: Aircraft Ground Speed; 
ADIRU_AC_PITCH_ANGLE: Aircraft Pitch Angle). The graphical diagram shows the functions and their data flow 
dependencies. Designers have fine-grained control over the functional data displayed in the diagram.   

As a result of this stage, Functional Data with producer/consumer tables are available for each Function as 
illustrated in Figure 4 below for the ADIRU and a global table with all functional data produced and consumed by 
the Braking System application. Automated checks allows immediate detection of functional data that are not 
produced or functional data that are not consumed (useless data). 

 

Figure 3: ADIRU functional data table 

4.2. Software architecture 

The software architecture defines the software components of the Braking System and the messages produced 
and consumed (required) by each software component. Again the messages are propagated in the software 
architecture by the data propagation mechanism. 

In the example illustrated below, the BCS_COM software component of the Braking System requires one message 
(MSG_ADIRU_COM_C10: ARINC 667-P7 message) produced by the ADIRU component.  

The Software architect may use several diagrams to focus on ARINC 664-P7 or ARINC 429 communication as 
illustrated in figures 5 and 6 below. 

 

Figure 4: Software architecture focusing on ARINC 664-P7 Communication 
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Figure 5: Software architecture focusing on ARINC 429 Communication 

At the software level we also describe all messages (ARINC 664-P7 and ARINC 429). Figure 7 illustrates the 
MSG_ADIRU_COM_C10 (ARINC 664-P7) message, with its three data set containing the functional data 
AC_GND_SPEED, AC_ACCEL and AC_PITCH_ANGLE. 

 

Figure 6: ARINC 664-P7 Message definition Table 

Data Set information are gathered in another Table as illustrated below in figure 8. 

 

Figure 7: ARINC 664-P7 Data Set Table 

4.3. Functional to Software mapping 

Now that we have defined the functional and the software architecture, the functional to software mapping consists 
in the allocations of functions to the software components (illustrated in figure 9), and the functional data mapping 
to software messages (illustrated in figure 10). Allocation tables are used for that purpose. 
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Figure 8: Function to Software allocation Table 

 

Figure 9: Extract of Functional Data to Software Message allocation Table 

Automated consistency checks confirm that these allocations are consistent with the data and message 
propagation: the message to which a functional data element is allocated to must be produced by a software 
component to which the producer function is allocated to, and must be propagated to the software components to 
which the consumer function is allocated to.  Inefficiencies are also detected, for example when a message carries 
a data not needed by all recipients of the message. One can now analyze in detail the design tradeoff for message 
definitions. 

4.4. Platform architecture 

At this stage we capture the platform components (CPUs, switches, buses, external devices, etc) describing the 
possible resources (CPU, memory, bandwidth, etc) available to the architect to deploy the application. The BCS 
platform consists of 4 CPUs, 4 Switches, an external device (RDC) and several buses as described in Figure 11. 

 

Figure 10: Platform architecture illustrating Chanel A, Chanel B Virtual link routes  



ERTS
2
 2016 Benefits of Model Based System Engineering for Avionics Systems 9 

At this platform level, we allocate software components to the CPUs and define message paths between them. For 
ARINC 664-P7, these paths are known as Virtual Links. Again, these paths are implemented as dedicated data 
propagated in this architecture. For example, with the ADIRU software being hosted in CPU4 and the COM being 
hosted in CPU1, the VL associated to MSG_ADIRU_COM_C10 are defined for channel A and channel B, following 
the classical redundancy means in ARINC 664-P7 communication.  

Virtual Links routing are automatically produced in Tables enabling configuration of switches. 

4.5. Software to Platform mapping 

One of the important tasks for the integrator is to allocate the software components onto the platform and optimize 
usage of available resources. This is one of the main challenges for IMA (Integrated Modular Avionics). 

Allocation of the software components (Partition) to CPUs is illustrated in Figure 12 below. 

 

Figure 11: Software (Partition) to Platform projection 

In the same way software messages allocated to Virtual Links are illustrated in table 13 below. 

 

Figure 12: Extract of Message to Virtual Link allocation 

We can then perform resource usage checks, such as bandwidth checks, as illustrated in Figure 14 below. 

 

Figure 13: ARINC 664-P7 bandwidth checks results 

4.6. Braking System ICD (Interface Communication Document) 

Thanks to this final allocation step we have a complete description of data communication from the functional level 
down to platform integration from which ICD tables are automatically produced as illustrated in Figure 15 below.  

 

Figure 14: Extract of Braking System ICD 
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5. Comparison with other approaches 
The NASA handbook [4] states that a clean process must be set up to “identify and resolve interface 
incompatibilities and to determine the impact of interface design changes”. Management of Interface Control 
Documents (ICDs) [5] is indeed at the center of most industries’ system engineering processes, but most often 
supported by tedious manual processes  based on MS Excel files cross analysed and reviewed by the different 
engineering teams involved. 

More robust processes rely on databases. They provide scalability, and the database schema enforces some 
design rules.  However, this is not as powerful as the meta-modelling capability provided by UML-based tools, and 
does not support a graphical representation which is an essential communication means between engineers. 

SysML [6] is the most known standard in system engineering, but it does not come with specific constructs to 
model software messages that are exhanged between “blocks”. SCADE System Avionics is compliant with SysML, 
and provides such constructs. Other standards have been set-up which focus on the component interfaces. We 
now compare our approch with three of them that have been deployed in the industry. 

EAST-ADL [7], initially defined in the European ITEA EAST-EEA project that has been then aligned with the 
AUTOSAR automotive standard was a good source of inspiration. In the same way as the method presented 
here, the central features of EAST-ADL, is its multi-layer approach, which defines multiple abstraction levels and 
distributes all development information across these levels.  Just like the SCADE System Avionics package, 
EAST-ADL is supported by a UML Profile. The main difference is in the focus we have put on the detailed 
definition of the component interfaces that gather information from the different levels of abstraction. On the 
other hand EAST-ADL provides a focus on timing information that has not been yet considered in the SCADE 
System Avionics Package. 

The SAE “Architecture and Analysis Description Language” (AADL) [8], has its roots in the avionics domain. AADL 
allows for the description of both software and hardware parts of a system. In contrast to SysML’s limited generic 
components of "block", "port", etc., AADL provides precise modeling concepts to describe the runtime architecture 
of application systems in terms of concurrent tasks, their interactions, and their mapping onto an execution 
platform. It also separates the definition of block interfaces from their implementation, but does not make the links 
between functional, software and platform interfaces in the way presented in this paper. 

The more recent FACE standard [9] also focuses on the non-ambiguous specification of interfaces for “Unit Of 
Portability” (UoP). It describes the component interfaces at three different layers, conceptual (e.g. mass, length 
…), logical units (e.g. Kg, millimeters …), and platform implementation (e.g. uint8, float64 …). This complements 
very well our approach. Indeed it allows setting a “meaning” to the functional data used at the top level of the 
process we have presented, while FACE itself does not detail the way this information shall be carried into 
software messages. 

It is perfectly possible to define with SCADE System Configurator the EAST-ADL, the AADL, and the FACE meta-
models. On-going work to support the FACE standard as a complement of the Avionics package presented here 
will be published in the coming months. 

6. Conclusion 
This paper presents a model based development approach and tooling enabling efficient and agile process 
development focusing on data. Applied to a case study based on a braking system example, we 
have demonstrated a complete flow from functional architecture capture down to platform deployment showing the 
main benefits of a model based approach: 

 Automated checks ensuring that the functional, software, and platform architecture are consistent with 
each other 

 Data flow checks ensuring proper usage and production of data all along the process 

 Platform resource and usage domain checks enabling design tradeoff in platform definition 

 Automatic generation of ICD (Interface Communication Document) 

 Automatic generation of configuration files (for OS and switches) 

 Full description of communication (CAN, ARINC 429, ARINC 664-P7, discrete) 

 Full description of Software architecture    

Other important topics covered at tool and methodology level are not addressed in this paper: 

 Requirement traceability all along the process  

 PLM/ALM (Product or Application Lifecycle Management) linkage 

 Product Line Engineering and Variant Management 
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 Synchronization of System and Software engineers work 

Starting from the provided ICD files of the braking system example, the complete retro-fit in SCADE System has 
been achieved in a couple of months. Thanks to the model based solution, with a user interface that speaks the 
language of the avionics system designer, design modification and regeneration of consistent ICDs is now mature. 
This demonstrates a large efficiency and the capability to significantly accelerate the development cycle in 
handling design changes.  

Well supported by tools with features detailed in this paper, we believe the system design methodology can reach 
the maturity level the software component design has achieved since several years. 
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Abstract—The development of dependable embedded auto-
motive systems faces many challenges arising from increasing
complexity, coexistence of critical and non-critical applications,
and the emergence of new architectural paradigms on the one
hand, to short time-to-market intervals on the other hand. This
situation requires tools to improve efficiency and consistence
of development models along the entire development lifecycle.
The existing solutions to date are still all too frequently in-
sufficient when transforming system models with higher levels
of abstraction to more concrete engineering models (such as
software engineering models). Future automotive systems require
appropriate structuring and abstraction in terms of modulariza-
tion, separation of concerns, and supporting interactions between
system, and component development.

However, refinement of system designs into hardware and
software implementations is still a tedious task. The aim of this
work is to enhance an automotive model-driven system engi-
neering framework with software-architecture design capabilities
and a model-transformation framework to enable a seamless
description of safety-critical systems, from requirements at the
system level down to software component implementation in a
bidirectional manner.

Keywords—Automotive, model-based development, reuse, trace-
ability, model-based software engineering, ISO 26262.

I. INTRODUCTION

Embedded systems are already integrated in our every-
day lives and play a central role in all domains including
automotive, aerospace, healthcare, manufacturing industry, the
energy sector, or consumer electronics. In 2010, the embedded
systems market accounted for almost 852 billion dollars world-
wide, and is expected to reach 1.5 trillion by 2015 (assuming
an annual growth rate of 12%) [18]. Current premium cars
implement more than 90 electronic control units (ECU) per
car with close to 1 Gigabyte software code [6], these are
responsible for 25% of vehicle costs and bring an added value
of between 40% and 75% [23].

The trend of replacing traditional mechanical systems with
modern embedded systems enables the deployment of more
advanced control strategies providing additional benefits for
the customer and for the environment, but at the same time,
the higher degree of integration and criticality of the control
application is posing new challenges. These factors are result-
ing in multiple cross-domain collaborations and interactions in
the face of the challenge of mastering the increased complexity

involved and also to ensure consistency of the development
along the entire product life cycle.

Model-based development supports the description of the
system under development in a more structured manner, in
the context of handling upcoming issues with modern real-
time systems and also in relation to ISO 26262. Model-based
development approaches enable different views for different
stakeholders, different levels of abstraction and central storage
of information. This improves the consistency, correctness, and
completeness of the system specification. Nevertheless, such
seamless integrations of model-based development still tend
to be the exception rather than the rule and often fall short of
target due to the lack of integration of conceptual and tooling
levels [4]. Consequently, this work focuses on improving the
continuity of information interchange from system develop-
ment level to software development level models.

With this objective in mind the work focuses on improving
the continuity of information interchange for architectural
designs from system development level (Automotive SPICE
[26] ENG.3 respectively ISO 26262 [10] 4-7 System design)
to software development level (Automotive SPICE ENG.5
respectively ISO 26262 6-7 SW architectural design). More
specifically, the approach is based on the enhancement of a
model-driven system engineering framework with software-
architecture design capabilities. The model-transformation
framework automatically generates software architectures in
Matlab/Simulink described via high level control system mod-
els in SysML format. The goal is, on the one hand, to support
a consistent and traceable refinement from the early concept
phase to software implementation. On the other hand, the
bidirectional update function of the transformation framework
enables facilitation in gaining mutual benefits for the basic
software and the application software development from the
coexistence of information for them both within the central
database.

The document is organized as follows: Section II presents
an overview of related approaches as well as model-based
development and integrated tool chains. In Section III a de-
scription of the proposed bridging approach for the refinement
of the model-based system engineering model to software
development is provided. An application and evaluation of
the approach is presented in Section IV. Finally, this work
is concluded in Section V with an overview of the approach.



II. RELATED WORK

Model-based systems and software development as well as
tool integration aim at moving the development steps involved
closer together and thus improving the consistency of infor-
mation over the expertise and domain boundaries. Pretschner’s
roadmap [19] highlights the benefits of such a seamless model-
based development tool-chain for automotive software engi-
neering. Model-based development is also claimed to be the
best approach to managing the large amount of information and
the complexity of the modern embedded systems involved by
Broy et al. [4]. Their paper illustrates why seamless solutions
have not been achieved so far and mentions concepts and
theories for model-based development of embedded software
systems. Additionally they make reference to commonly used
solutions and problems arising with inadequate tool-chain sup-
port (e.g. redundancy, inconsistency and lack of automation).
Nevertheless, the challenge of enabling a seamless integration
of models into model-chains is still an open issue [20], [21],
[27] Often, different specialized models for specific aspects
are used at different development stages with varying ab-
straction levels. Traceability between these different models
is commonly established via manual linking due to process
and tooling gaps.

The work of Holtmann et al. [9] highlights process and
tooling gaps between different modeling aspects of a model-
based development process. Giese et al. [8] address issues of
correct bi-directional transfer between system design models
and software engineering models. The authors propose a
model synchronization approach consisting of tool adapters
between SysML models and software engineering models in
AUTOSAR representation.

Dealing with this gap between system architecture and
software architecture, especially while considering component-
based approaches such as UML and SysML for system ar-
chitecture description and AUTOSAR for SW architecture
description, is one of the most important topics in this entire
issue. Two common variants in the automotive domain are
the usage of SysML [3], [8], [11], [14], [17] or X-MAN
[12] approaches for architectural description and AUTOSAR
for software system description. Boldt [3] proposed the use
of a tailored Unified Modeling Language (UML) or System
Modeling Language (SysML) profile as the most powerful and
extensible way to integrate an AUTOSAR method in company
process flows.

The approach of bridging the gap between model-based
system engineering and software engineering models based on
EAST-ADL2 architecture description language and a comple-
mentary AUTOSAR representation is also very common in
the automotive software development domain [5], [16], [25].
EAST-ADL represents an architecture description language
using AUTOSAR elements to represent the software imple-
mentation layer of embedded systems [2]. More recently the
MAENAD Project1 is also focusing this approach.

Kawahara et al. [11] propose an extension of SysML
which enables description of continuous time behavior. Their
tool integration base on Eclipse and couples SysML and
Matlab/Simulink via API.

1http://maenad.eu/

Farkas et al. [7] describe in their paper an integrative
approach for Embedded Software Design with UML and
Simulink. Their presented approach aims in a stepwise mi-
gration towards model-based development and enables the co-
operative usage of MATLAB/Simulink & UML for functional
specification and code generation. The focus of this work is on
the combination of source codes generated by different model-
based tools, rather than the interchange of data between the
different model representations.

SysML and model-based development (MBD) as the back-
bone for development of complex safety critical systems is also
seen as a key success factor by Lovric et. al [13]. The paper
evaluates key success factors of MBD in comparison to legacy
development processes in the field of safety-critical automotive
systems.

Tool support for automotive engineering development is
still organized as a patchwork of heterogeneous tools and
formalisms [2]. On the one hand, general-purpose modeling
languages (such as UML or SysML) provide modeling power
suitable for capturing system wide constraints and behavior,
but are lacking in synthesizability. On the other hand, special-
purpose modeling languages (such as C, Assembler, Matlab,
Simulink, ASCET ) are optimized for fine granular design, but
are less efficient in high-level design.

The issue of improving these interactions, especially those
which deal with cross-domains affairs (such as the architectural
design refinement from system development level to software
development level), thus requires a comprehensive understand-
ing of related processes, methods, and tools. The work of
Sechser [24] describes the experiences gained when combining
two different process worlds in the automotive domain.

III. MODEL-TRANSFORMATION BRIDGE APPROACH

This paragraph gives a brief overview of the underly-
ing framework and related preliminary work which supports
the proposed approach. The presented framework focuses on
improving the continuity of information interchange from
system development level to software development level. The
basic concept behind this framework is to have a consistent
information repository as central source of information, to
store all information of all the engineering disciplines involved
for embedded automotive system development in a structured
way [15].

The methodical support of system architectural design
and refinement of this design to software design often fell
short of the mark. To handle this situation the AUTOSAR
methodology [1] provides standardized and clearly defined
interfaces between different software components and develop-
ment tools and also provides such tools for easing this process
of architectural design refinement. Nevertheless, the enor-
mously complex AUTOSAR model requires a high amount
of preliminary work and projects with limited resources often
struggle to achieve adequate quality within budget (such as
time or manpower) using this approach. This approach thus
arises out of common AUTOSAR based approaches and forces
a direct model transformation from SysML representation to
Matlab/Simulink. The reason for making the decision of not
fostering an AUTOSAR approach is based on the one hand on
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Fig. 1. Portrayal of the Bridging Approach Transferring System Development
Artifacts to SW Development Phase

focusing not only AUTOSAR but also rather on generally Mat-
lab/Simulink based automotive software development. On the
other hand, experiences we made with our previous approach
[14] confirm the problem mentioned by Rodriguez et al. [21].
Not all tools fully support the whole AUTOSAR standard,
because of its complexity, which leads to several mutual
incompatibilities and interoperability problems. The presented
MDB model has been developed using profiles which use a
subset of the SysML language to define a SW architecture
model particularly tailored to automotive SW engineering in
context of ISO 26262. In the following paragraphs we describe
the additional model enhancements to support software devel-
opment and modeling of complex software architectures for
function software development. The contribution presented in
this work supports automatic generation of software architec-
tures, interface definition, timing setting, and auto-routing of
signals in Matlab/Simulink based on SysML representation.

Figure 1 shows an overview of this approach and the
imbedded bridging of abstract system development and con-
crete software development models. More specifically, our
contribution consists of the following parts:

• SW modeling framework: Enhancement of a SysML
profile for the definition of SW component interfaces
and SW architecture composition. Required for con-
sistent SW system description, see Figure 1 – model
addon.

• SW architecture exporter: Exporter to generate the de-
signed SW architecture in Matlab/Simulink for further
development of SW functions, see Figure 1 – tool
bridge.

• SW architecture importer: Importer to integrate refined
SW architecture and interfaces from the software
development tool (to support round-trip engineering),
see Figure 1 – tool bridge.

This proposed approach closes the gap, also mentioned
by Giese et al. [8], Holtmann et al. [9], and Sandmann
and Seibt [22], between system-level development at ab-
stract UML-like representations and software-level develop-
ment modeling tools (e.g. Matlab/Simulink or Targetlink). The
bridging supports consistency of information transfer between

Fig. 2. Screenshot of the SW Architecture Representation within the System
Development Tool and Representation of the Interface Information

system engineering tools and software engineering tools and
minimizes redundant manual information exchange between
these tools. This contributes to simplifing seamless safety
argumentation according to ISO 26262 [10] for the system de-
veloped. The benefits of this development approach are highly
noticeable in terms of re-engineering cycles, tool changes, and
reworking of development artifacts with alternating dependen-
cies. As can be seen in Figure 1, the lack of supporting tools
for information transfer between system development tools and
software development tools can be dispelled by our approach.
The implementation of the bridge based on versatile C# class
libraries (dll) and Matlab COM Automation Server ensures
tool in-dependence of the general-purpose UML modeling tool
(such as Enterprise Architect or Artisan Studio) and version
in-dependence of Matlab/Simulink through API command
implementation. This makes the method especially attractive
for projects and companies with limited resources (either in
manpower or finances). Small projects or start-up companies
in particular often struggle with the problem of setting up their
development processes so as to achieve adequate quality.

A. Software Modeling Framework

The first part of the approach is a specific SysML modeling
framework which enables the possibility of designing software
architectures in an AUTOSAR aligned manner within a system
development tool. The profile enables an explicit definition
of AUTOSAR components, component interfaces, connections
between interfaces and makes the SysML representation more
manageable for the needs of the design of an automotive
software architecture. Furthermore, it opens up the possibility
for defining software architecture and ensures establishment
of communication between architecture artifacts with inter-
face specifications (e.g. upper limits, initial values, formulas).
Special basic software and hardware abstraction modules are



TABLE I. SW ARCHITECTURE IMPORTER INDICATORS OF TYPE OF
CHANGE

Indicator Type of Change

A model artifact added
AC interface connection added
D model artifact deleted
DC interface connection deleted
U model artifact updated
UC interface connection updated

assigned to establish links to the underlying basic software
and hardware abstraction layers. Moreover, these SW modeling
artifacts can be linked to the system model artifacts and
requirements in such a manner that traceable links can be
established more easily. This has further benefits in terms of
constraints checking, reuse, and reporting generation (e.g. for
safety case generation). Figure 2 shows an example of software
architecture artifacts and interface information represented in
Enterprise Architect. Furthermore, this integrated definition of
system artifacts and software module in one tool supports the
work of safety engineers by adding values and visual labels
for safety-relevant software modules.

In addition to standard VFB AUTOSAR profiles the profile
features assignment and graphical representation of ASIL to
dedicated signals and modules and provides specification of
runnables with timing constraints (such as WCET), ASIL, and
priority. This additional information enables mapping of tasks
to a specific core and establishment of a valid scheduling in
a later development phase. Further benefits result in terms of
constraints checking and traceability of development decisions.

B. SW Architecture Exporter

The second part of the approach is the SW architec-
ture exporter. The implementation of the exporter is based
on Matlab COM Automation Server and generates models
through API command implementation, which ensures tool
version-independence. The export functionality enables the
export of software architecture, component containers, and
their interconnections designed in SysML to the software
development tool Matlab/Simulink. The SW architecture ar-
tifacts to be transferred can be selected by user input and
the corresponding Matlab/Simulink model is generated by a
background task. As can be seen in Figure 3 the user is able
to select the SW artifacts for exporting, the desired model rep-
resentation in Matlab/Simulink (either TargetLink or Simulink
representation), and the exporting mode (m-file based, API
based, or as ARXML file). The export mode variants also
enable exporting if Matlab/Simulink is not available (m-file
based) or an AUTOSAR based SW development toolchain is
used (ARXML file based). Listing 1 shows some excerpts of
the automatically generated Matlab API commands. As can
be seen in this listing, each model artifact, parameter, and
connection is transferred to Matlab/Simulink, where the blocks
are arranged and sized in a correct manner. Besides this, unique
links to the EA representation and assigned safety-criticality
marking of the artifact (Listing 1 line 3 and 8) are established.

Fig. 3. Screenshot of the SW Architecture Exporter GUI

Listing 1. Excerpts of Matlab API Commands
1 addpath(genpath(’C:\EGasSystem’))
2 add_block(’Simulink/Ports & Subsystems/Model’,’EGasSystem/

EGasCtrl’)
3 set_param(’EGasSystem/EGasCtrl’,’ModelNameDialog’,’EGasCtrl’

,’Description’,’EA_ObjectID@1969;ASIL@QM’)
4 set_param(’EGasSystem/EGasCtrl’,’Position’,[250 50 550 250])

5

.

.

.
6 add_block(’Simulink/Ports & Subsystems/In1’,’EGasSystem/

APedl2’)
7 set_param(’EGasSystem/APedl2’,’Position’,[50 200 80 215])
8 set_param(’EGasSystem/APedl2’,’Outmin’,’0’,’Outmax’,’5’,’

OutDataTypeStr’,’single’,’Description’,’
EA_ObjectID@1966;ASIL@B’);

9

.

.

.
10 add_line(’EGasSystem’,’APedl1/1’,’EGasMonr/1’,’AUTOROUTING’,

’ON’)

11

.

.

.
12 save_system(’EGasSystem’)
13 close_system(’EGasSystem’)
14 cd ..
15 cd C:\EGasSystem

C. SW Architecture Importer

The last part of the approach is the import functionality
add-on for the system development tool, which in combination
with the export function, enables bidirectional updates of
software architecture representations in the system develop-
ment tool and the software modules in Matlab/Simulink. The



Fig. 4. SW Architecture Importer User Interface

Fig. 5. Top-Level Representation of Demonstration Use-Case in Enterprise
Architect

importer analyzes the Matlab/Simulink model representation
and identifies the unique links to the EA representation (shown
in Listing 1 line 3 and 8). Thereby new and modified model
artifacts can be differentiated and changes made in the software
development tool can be kept consistent within the system
development model representation. This ensures consistency
between the models, enables importing of newly available soft-
ware modules from Matlab/Simulink, and therefore guarantees
consistency of information across tool boundaries. Figure 4
shows the user interface within the system development tool.
As can be seen in this figure, modifications between the two
models are identified and a selective update of the SysML
representation can be triggered by the user. Furthermore, a
highlighting of the type of change can also be depicted. Table
I shows the different change type indicators and types of
changes.

IV. APPLICATION OF THE PROPOSED APPROACH

This section demonstrates the introduced approach by an
automotive embedded system use-case. To provide a compar-
ison and highlighting of the improvements of our approach

we use the 3 layer monitoring concept [28] as an evaluation
use-case. This elementary use-case is well-known in the auto-
motive domain, but is nevertheless representative. Moreover,
this elementary use-case is illustrative material, which is also
used for internal training purposes with students and engineers.
The disclosed and commercially non-sensitivity use-case is not
intended to be exhaustive, nor to be representative of leading-
edge technology.

The definition of the software architecture is usually per-
formed by a software system architect within the software
development tool (Matlab/Simulink). With our approach this
work package is included in the system development tool
(depicted in Figure 5). This does not hamper the work of the
software system architect, but it enables constraint checking
features and helps to improve system maturity in terms of
consistency, completeness, and correctness of the development
artifacts. Besides this, the change offers a significant benefit
for the development of safety-critical software in terms of
traceability, replicability of design decisions and it unambigu-
ously visualizes dependencies while putting visual emphasis on
view-dependent constraints (such as graphical safety-criticality
highlighting of SW modules in Figure 5).

The 3 layer monitoring concept use-case presented consists
of 7 SW modules with 34 interfaces and 30 signal connections.
Hereby the SW module representations contain 3 configurable
attributes per element and the SW interfaces 34 attributes per
element. The use-case thus sums up to a total count of 41
model artifacts with 361 configuration parameters and 30 rela-
tions between the elements. This elementary example already
indicates that the number of model elements and relations
between the model elements already becomes confusing. A
manual transformation of the information represented within
the models would already be cumbersome, error-prone, and
would involve a great amount of additional work to ensure
consistency between the two models.

The presented approach in this work checks the information
and model artifacts for point-to-point consistency of interface
configurations before automatically transferring the model rep-
resentation via 212 lines of auto-generated Matlab API code,
which provides evidences and ensures the completeness of the
model transformation. The presented SW architecture importer
functionality enables round-trip engineering and bi-directional
updates of both models and therefore supports evidence for
the consistency of both models.

In terms of safety-critical development and reuse the fea-
tures of the approach presents are crucial to transfer infor-
mation between separated tools and link supporting safety-
relevant information. Moreover, the approach eliminates the
need for manual information reworking without adequate tool
support, ensuring reproducibility, and traceability argumenta-
tion.

V. CONCLUSION

The challenge with modern embedded automotive systems
is to master the increased complexity of these systems and
ensure consistency of the development along the entire product
life cycle. Automotive standards, such as ISO 26262 safety
standard provide a process framework which requires efficient



and consistent product development and tool support. Nev-
ertheless, various heterogeneous development tools in use are
hampering the efficiency and consistency of information flows.

This work thus focuses on improving the continuity of
information interchange of architectural designs from system
development level (Automotive SPICE ENG.3 respectively
ISO 26262 4-7 System design) to software development level
(Automotive SPICE ENG.5 respectively ISO 26262 6-7 SW
architectural design). For this purpose, an approach to seam-
lessly combine model-based development tools on system level
(such as Enterprise Architect) and on SW development level
(such as Matlab/Simulink) has been proposed.

The applicability of the approach has been demonstrated
utilizing an elementary automotive use-case, the 3 layer mon-
itoring concept, which is an illustrative material and does
not represent either an exhaustive or a commercially sensitive
project. The main benefits of the presented approach are:
improved consistency and traceability from the initial design
at the system level down to the software implementation, as
well as, a reduction of cumbersome and error-prone manual
work along the system development path.
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Créteil, France

wenhao.wang@ensea.fr

Fabrice Gravez*, Yael Chambrin*
VALEO Engine and
Electrical Systems

Cergy, France
firstname.name@valeo.com*

Benoı̂t Miramond
LEAT Lab, CNRS UMR 7248

University of Nice Sophia antipolis
Nice, France

bmiramond@unice.fr

Abstract—Multi-core platforms have gained in popularity
in nowadays automotive domain. But, even if multi-core ar-
chitectures are now supported by the AUTOSAR framework,
this migration remains a great challenge. First of all, software
designers need new methods to fill the gap between application
description and tasks deployment. The use of multiple cores
has also to remain compatible with real-time and safety design
constraints. Finally, developers need tools to assist them in the
new steps of the design process. We propose in this paper a
partitioning method integrated in the AUTOSAR design flow
acting as a decision guide for the distribution of complex and real
world control applications onto automotive multi-core systems.

Keywords—Multi-core, Partitioning, AUTOSAR, Metaheuris-
tics.

I. INTRODUCTION

Nowadays, the multiplication of electronic features in smart
engine control implies the execution in real-time of complex
computational models. To face this evolution, cars embed ever
more ECUs (Electronic Control Units), increasing again the
part of embedded software development in the design costs
of new generations of vehicles. In the same time, a trend in
automotive industries is the adoption of multi-core architecture
in critical embedded systems. Now is the time to put it all
together by proposing novel design methods facing the scale
up of applications, adapting the design process to face the
distribution and prediction issues coming from the multi-core
advent, while still ensuring the functional safety standards
(ISO26262) of the automotive domain.

AUTomotive Open System ARchitecture (AUTOSAR) [1]
contributes to meet the increasing complexity in nowadays’
automotive electrical and electronic systems. To achieve the
technical goals of modularity, scalability, transferability, and
function reusability, AUTOSAR standardizes the software de-
velopment by separating the application and infrastructure.
This allows applications to exist and communicate indepen-
dently of a particular infrastructure. Since its revision 4.0
AUTOSAR has been introducing a new design dimension by
supporting multi-core architectures.

On the one hand, regarding the scheduling policies in multi-
core systems, AUTOSAR still adopts the static allocation and
static priority for the tasks in the system. Static scheduling has
been widely studied in the literature, and it remains an efficient
way to address the difficult issues of prediction and validation
of complex interactions between tasks and shared resources.

On the other hand, multi-core introduces additional chal-
lenges that are still difficult to deal with in real world indus-
trial domains where applications exhibit high complexity and
special cases features that do not fit with theoretical models.
Thus, the shift towards multi-core systems in the automotive
industry has revived the challenge of application partitioning
to enhance productivity, reusability and predictibility.

This paper proposes a method for the distribution of com-
mand and control applications into multi-core architectures, in
the purpose of partitioning the computations on the different
cores in a near optimal way. We model the problem considering
the AUTOSAR specificities and apply metaheuristic algorithms
to solve it. This paper presents the first results of such opti-
mization methods on industrial applications of engine control.

The rest of the paper is organized as follows. Section II
presents the automotive context and the industrial design flow
in which our contribution takes place. We also describe in
this section the state of the art on distribution automation in
automotive multi-core systems and we explain why current
methods are not applicable for concrete automotive projects.
Section III presents the formal modeling of the multi-core
problem as a Combinatorial Optimization problem. We present
our developed tools for partitioning into multi-core platform
in section IV. In Section V, we present the automotive case
studies considered to evaluate our approach and the quality of
the design solutions explored by our tool. Finally, conclusions
and future works are discussed in section VI.

II. AUTOMOTIVE CONTEXT & PROBLEM DESCRIPTION

A. Automotive application design using AUTOSAR

AUTOSAR mitigates the problems existing in the
automotive systems design process by its standardized three-
layer software architecture, i.e., the Application layer, the Ba-
sic Software layer (BSW) and the RunTime Environment layer
(RTE). In the application layer, the applications encapsulate
functionalities within a collection of software components.
AUTOSAR follows a software component approach as in
several description languages. The software components in
AUTOSAR (SWC) can interact independently of a particular
infrastructure through an abstract environment called Virtual
Functional Bus (VFB). Each SWC contains one or more
runnables. These runnables are composed of the pieces of
codes that can be executed and scheduled independently.
Figure 1 depicts such software architecture. All the runnables



are triggered by one or several events, such as timing event
for periodic runnables [2], data received event for data reading
notification and operation invoked event for server (function)
calls by clients. The communication between runnables is done
by writing and reading the variables. For intra-component
communications, these variables are labeled as InterRunnable-
Variables (IRV) that can only be shared by the runnables in the
same software component. Inter-component communications
are realized through Ports and Interfaces.

B. Configuration of the embedded software

The implementation of the VFB is realized by the gen-
eration of the Run-Time Environment (RTE). RTE is mainly
responsible for linking the application to the BSW including
Operating System (OS). It also involves the realization of
communication between components and the generation of all
the RTE events that activate the behavior of runnables.

The configuration of BSW for a specific hardware plat-
form consists in the configuration of the OS and other BSW
stacks (communication stacks, memory stacks and I/O stacks).
The OS is responsible for the execution of real-time tasks
containing executable entities. Each task defines an execution
sequence of the runnables mapped to it. The introduction of
multi-core in AUTOSAR leads to additional works in the
configuration: (1) Software allocation to cores, (2) Task set
definition configuration and mapping the runnables to tasks,
(3) Variables distribution to memories in the case of hardware
architecture with memories hierarchy, (4) Synchronization of
the execution flow in multi-core systems.

We consider step (1) and (3) in this paper, as shown in
Figure 2. To achieve this goal, real-time scheduling techniques
need to be considered in order to adapt the application to
the targeted multi-core platform. The considered multi-core
platform is composed of a set of 32 bits superscalar cores
(from 3 to 8 cores) and a set of associated closely coupled
memory local memories. As depicted in Figure 2, data
exchanged for inter-core communications are stored at the
second level into a shared memory. A typical target is the
Aurix architecture from Infineon1.

In the automotive domain, only static scheduling policies
are supported by AUTOSAR. That is, all the runnables are
statically attached to cores, and the runnables in each core are
scheduled by a local scheduler. One of the core often executes

1http://www.infineon.com

Figure 1. AUTOSAR software architecture

in lockstep the critical parts of the application, which then
needs redundancy. Reliability is not considered in the current
version of the tool, but will be considered in the future works.
In the design flow presented in section III, all these decisions
have to be explored by the proposed automation method.

C. Application partitioning

In this work, we focus on partitioning applications driven
by control and data flow (e.g. engine control, brake control
etc.). For that type of command and control applications the
order in which the individual statements are executed is very
important and the proportion of parallel code is often hard
to identify. In consequence, the partitioning of automotive
applications into multiple cores requires a fine analysis of the
dependencies between runnables and tasks. The paper studies
in what extent a design automation method can be employed
for that purpose.

D. Related works

The theoretical formulation of application partitioning
has been widely studied in the past either in the domain
of multiprocessor computing [3] or in hardware/software
co-design [4]. But the proposed partitioning methods rapidly
faced a major limitation considering the lack of real use
cases integrated in a full industrial working process. The
explored solutions at high-level were too abstract to be
really considered. Moreover, when considered alone, the
formal optimization clears out the designer from the problem
and neglects that not all the design considerations can be
theoretically formulated.

In recent years, the adoption of multicore architectures in
critical embedded systems has revived the need of design flows
fully integrating the exploration phase. So, several works have
dealt with the partitioning problem of AUTOSAR applications
onto multi-core systems. So, in [5] authors developed heuristic
algorithms for mapping runnables into different cores. In
this paper, runnables are grouped into clusters before being
distributed across cores by optimizing a specific objective
function. The works of Faragardi et. al [6] and Saidi et. al [7]
proposed a heuristic algorithm to create a task set according
to the mapping of runnables on the cores. With the goal

Figure 2. Application partitioning on the targetted multi-core platform



of minimizing the communications between runnables, the
problem is classically formulated as an Integer Linear Pro-
gramming (ILP). Therefore, conventional ILP solvers can be
easily applied to derive a solution. In [8], Genetic Algorithms
(GA) are applied to partition the application in an optimal way.
The results of task allocation are evaluated by their simulation
tool TA-Toolsuit. A demonstration version is available in [9]
but only simplistic applications are provided. The limitations
of the demonstration version avoid any comparison on real
applications.
However, all the partitioning methods proposed in the literature
only consider the optimization formulation without considering
the full design flow. Compared to the existing research work,
the proposed method is fully thought into an industrial V-cycle
development process. Our contributions are then the following:

• a full working process composed of 5 main phases
(see figure 5): application description, dependency
analysis, design space exploration, configuration of the
executive layer, validation onto the target device;

• back-annotation from the validation phase, enabling
optimisation of the cost function from real and credi-
ble measurements;

• proposition of a cost function mixing functional and
non-functional criteria;

• validation of the solutions explored at high-level
thanks to a fully automated refinement process; The
detailed description of our working process in section
IV will explain how to achieve this goal.

We summarize in table I the properties of the partitioning
methods existing in the literature in order to point out our
contributions.

Reference Cost func-
tion f

Optimization
method

Target ar-
chitecture

Associated
design
flow

Validation

[3] Intercore
Commu-
nication
Overhead
(ICO)

ILP Hetero-
geneous
multicore

No No

[4] Total
execution
time

*SA Hetero-
geneous
Hw/Sw

No No

[5] ICO heuristic Automotive
multicore

No No

[9] Response
time, ICO

GA Automotive
multicore

partial high-level
simula-
tion

Ours Load
balancing,
ICO,
real-time
con-
straints,
response
time

SA, GA,
*TS

Automotive
multicore

full cycle-
accurate

Table I. COMPARISONS OF SOFTWARE PARTITIONING METHODS IN THE
STATE OF THE ART. *SA IS SIMULATED ANNEALING ALGORITHM, TS IS

TABU SEARCH ALGORITHM

III. INTEGRATION OF A SW DISTRIBUTION METHOD IN
THE AUTOSAR DESIGN FLOW

Our proposed automation of the partitioning first asks to
formalize the design constraints as a combinatorial optimiza-

tion problem which mainly relies on the definition of the
objective function.

A. Combinatorial Optimization theories

Minimizing the objective function involves researching an
optimal combination of runnables to cores as well as variables
to memories. This problem is assimilated to a Combinatorial
Optimization (CO) problem, where solutions are encoded with
discrete variables. A model P = (S,Ω, f) of a CO problem
consists in:

• S: a search space where a finite set of discrete
variables are defined;

• Ω: a feasible domain defined by a set of constraints;
• f : an objective function to be minimized.

As the CO problems are NP-hard [10], the complete
methods that search for every instance to find optimal solution
might need exponential computation time in the worst case.
For practical purpose, we often prefer to get a good solution
(not the optimal solution) in a significantly reduced amount of
time, even though finding optimal solution is not guaranteed.
Metaheuristic is this kind of approximate algorithm that aims
at exploring the search space efficiently and effectively. This
class of algorithms includes - but not restricted to Simulated
Annealing (SA), Tabu Search (TS) and Genetic Algorithm
(GA).

Simulated Annealing is inspired by the physical anneal-
ing process of solids. It accepts solutions according to an
acceptance probability computed following the Boltzmann
distribution e−

f(s′)−f(s)
T , where s′ is a neighbor solution of

the current solution s, and T represents the temperature.

Tabu search maintains a tabu list and allows adopting the
best solution in the neighborhood in condition that it does not
exist in the tabu list. This solution is then added into the tabu
list after this iteration.

Unlike SA and TS that deal with one single solution
at each iteration, Genetic Algorithm treats a population of
potential solutions at each iteration. GA uses ideas from
biological evolution that includes three main steps: selection,
reproduction and replacement. More details on these classical
methods can be found in [11], [12], [13].

De-facto, this optimization problem has been modeled in
industrial contexts. Reference [14] applies GA to solve the
optimization issue of the SWC-to-ECU mapping, and reference
[8] applies GA to optimize the task allocation for multi-core
processors.

B. Application and architecture modeling

The software architecture is modeled using a directed graph
G(V,E), such that V is a set of nodes (set of runnables here
for AUTOSAR application) and E is a set of edges, also called
transitions (links between runnables). A node is modeled as an
execution time, a trig mode, a period. A transition has a weight
that depends on the size of data transmitted, the period of the
producer, etc. The graph size is optimized by the creation of
buses between nodes.

We assume that each node V is associated with a period Ti.
For the runnables activated by a periodic event, Ti is the period



of the activating event. Similarly, for the runnables activated
in response to another runnable’s result or request, Ti denotes
the period of the runnable invoking it or, if it is still not a
period event, our partitioning tool identify the one invoking it
and so on iteratively.

Each runnable is also associated with execution informa-
tion that contains two parts: variable accessing time Ta and
execution time Te.

The accessing time Ta mentions the time for a runnable to
read or write its related variables located in the memories. In
our multi-core architecture, each core is associated with a local
distributed memory. Runnables can also access data in shared
memories. It is worth to mention that all the memories can be
accessed by all the runnables distributed to all the cores, which
implies that the accessing time for a runnable to write or read a
variable varies with the location of the runnable as well as the
location of its variable. In Figure 2, the right part represents
a simple model of our architecture with 2 cores: each core
has a local memory and there is one shared memory in the
system. The accessing time for runnable ρ to access variable θ
depends on the location of ρ and θ. All the potential cases are
shown in Table II, where Taθ (i, j) means the accessing time
for ρ located in ith core to access θ located on jth memory.
It is obvious that Ta is much shorter if we locate θ into the
local memory of the core where ρ is located. Accessing a
variable in the local memory of another core is much slower;
and accessing to shared memory is dedicated to data exchanged
between cores.

The execution time Te represents the time for a runnable
to execute some instructions. Te is influenced by two factors.
One is the performance of the core on which the runnable is
located in. The higher computing power, the faster the runnable
will finish its corresponding treatment. In a real-life automotive
system, the real-time constraints also depend on the execution
modes, such as the engine speed or driving modes. E.g. the
amount of executed codes depend on the vehicle speed. In the
following we denote these contexts cases, and it is the second
factor that influences Te. A weight w is associated to each case
to model its importance in the system (high value of w means
high importance). So for a given runnable ρ, Teρ(i, n) varies
with its location (ith core) and the nth case, an example with
3 cases is shown in Table III.

The communications between nodes are presented as tran-
sitions E. Each transition contains two nodes ρi and ρj ,
(ρj , ρj ∈ V ), model ρi 7→ ρj present the dependency between
ρi and ρj , where ρi is the predecessor of ρj and ρj is the
successor of ρi. The predecessor ρi sends a set of variables
that are received by the sucessors. The sum of the size of these
variable is noted as Ss. So the sent data rate for the predecessor

Table II. ACCESSING TIME FOR RUNNABLE ρ TO VARIABLE θ

Variable θ Mem 1 Mem 2 Share Mem
Core 1 Taθ (1, 1) Taθ (1, 2) Taθ (1, 3)
Core 2 Taθ (2, 1) Taθ (2, 2) Taθ (2, 3)

Table III. EXECUTION TIME FOR RUNNABLE ρ

Runnable ρ Case 1 Case 2 Case 3
Core 1 Teρ (1, 1) Teρ (1, 2) Teρ (1, 3)
Core 2 Teρ (2, 1) Teρ (2, 2) Teρ (2, 3)

ρi is

sρi =
Ss
Ti

(1)

Similarly, the received a set of variable from predecessors. The
sum of the size of these variable is noted as Sr, and received
data rate for the the successor ρj is

rρj =
Sr
Tj

(2)

C. Cost function formalization

According to the discussion above, we give the formulation
of the problem as follows:

The multi-core architecture is composed of a set of cores
{π1, ...πI} and a set of memories {M1, ...MJ}, with J > I
and M1 to MI are attached to the local memories of cores
π1 to πI , while MI+1 to MJ represent the shared memories.
The partitioning involves the distribution of a set of runnables
{ρ1, ...ρK} to the cores and also a set of variables {θ1, ...θL}
to the memories. We note ρk,i when the kth runnable is
distributed to ith core and θl,j when the lth variable is
distributed to jth memory. Taθl (i, j) mentions the accessing
time for the runnable located on the ith core to access the
variable θl located on jth memory. We also define a set of
contexts cases {K1, ...,KN}, and wn is the weight for the
nth case. Then, Tek(i, n) represents the execution time for
kth runnable located in the ith core and in the nth case.
Thus when we distribute a runnable ρk to core πi, based on
its execution time, accessing time and period, this runnable
results in a load uρk,i :

uρk,i = f
(
Taθl (i, j), Tek(i, n), Tk

)
(3)

The load of core πi is the sum of the loads caused by the
runnables distributed to this core, mentioned as uπi :

uπi =
∑

k

uρk,i (4)

Considering α as the max load ratio of a core, the load of
each core must respect

∀i : uπi < α (5)

Based on the loads of each runnable in (4) and the weight wn
of each case, we can deduce the load for the entire multi-core
system.

The load of the multicore distribution must be well bal-
anced, with a tolerated deviation of 2%. It appears as the main
design constraint in the optimisation formulation.

We also define the size of memory Mj as Sj and the size
of variable θl as Sθl . The maximum occupation ratio of each
memory is noted β. So the occupation ratio of each memory
should not exceed it:

∀j :

∑
l Sθl
Sj

< β (6)

The intercore communications represent the main chal-
lenge to pass from monocore to multicore architectures. They
are estimated by summing the number of data access per



millisecond. Minimizing this overhead, under load balancing
constraints, corresponds to the objective function that evaluates
the performance of our partitioning solutions:

F = g
(
uρk,i , wn

)
(7)

Equation (7) shows that the cost value of the objective
function is decided by the loads generated by the runnable
(uρk,i ) in every execution context (weighted by wn). The
loads consider two elements: the CPU utilization computed
as Te

Tk
and the communication overhead that is influenced by

accessing time of the variables. It is obvious that different ways
of partitioning will change the cost value of objective function.

Figure 3 (a) shows a simple example: the application
contains 3 runnables ρ1, ρ2 and ρ3. ρ1 send variable θ1 to
ρ2 and θ2 to ρ3. The hardware model shown in Figure 3
(b) consists in a 2-core system with a shared memory M3.
Besides, each core is attached to a local memory M1 and M2.
We assume that the execution time for each runnable at each
core is identical. The objective is to distribute the application
to this 2-core system. Solution in Figure 3 (c) allocates all
the runnables in one core, and distributes the variables in its
local memory. This could minimize the accessing time, so
the communication overhead is low. But the loads of CPU
are not well balanced as the other core is empty. Solution
in Figure 3 (d) allocates the runnable ρ3 to the other core, so
when runnable ρ1 finishes its execution, ρ2 and ρ3 can execute
parallel. Therefore the loads of CPU are better balanced.
However, the communication overhead is increased as the
accessing time for the variables allocated at the shared memory
is much longer. This compromise is considered in our objective
function.

In this work, we aim at developing a practical policy
for partitioning software applications, composed of several
hundreds of nodes, onto multiple cores that will minimize this
objective function, while respecting the dependencies and the
constraints in AUTOSAR and also verifying the rules in (5)
and (6).

D. Description of the optimum solutions searching method

The partitioning solution is represented as a vector in
which each element presents the position for runnables or
variables. The vector is an ordered list with the length of

Figure 3. Explanation for objective function (a) Application; (b) Hardware
model; (c) and (d) Solutions considering different criteria

l = L+K, where the L represents the number of the variables
and K is the number of runnables to be distributed. In the
position i of the vector, i ∈ [0, L), a memory is distributed
for the corresponding variable and in position j, j ∈ [L, l), a
core is attached to the corresponding runnable. The different
combinations of the memories and cores will change the value
of objective function. In order to deal with this combinatorial
optimization problem, we take the metaheuristic algorithms
as a solver. The method to search the optimum solution is
described as follows:

• the initial solution can be obtained in a random way
as well as by heuristic guide. The quality of the initial
solution would affect final solution;

• the neighbourhood structure of a solution defines
its possible move direction for improvement, which
involves 2 operators: operator N1 changes only the
memory attached to one single variable to another
memory or operator N2 changes only the core at-
tached to one single runnable to another core. The
move will choose one operator randomly each time;

• the constraints guarantee the viability of solutions on
each move proposed by the neighbourhood operator:
all the solutions (including the initial solution) shall
respect all the defined constraints;

• the metaheuristic algorithms provide the searching
policies to find the optimum (or good) solutions in
an efficient way: starting at the initial solution, the
improvement is effectuated by a single move (defined
by neighbourhood structure) each iteration.

In this work, we apply three metaheuristic algorithms : SA,
GA and TS. All the algorithms share the same framework such
as initial solution, neighbourhood structure. Each algorithm ef-
fectuates different searching policies to find the final solution.
The evolution of solutions iteration by iteration is illustrated in
Figure 4, which shows the convergence of optimization process
by our objective function with the goals that both benefit the
acceleration of performance from multi-core and respect the
real-time constraints on the dependant tasks.

The results obtained with this method show the contribu-
tions of our work :

• the quality of the solutions explored according to the
cost function;

• the diversity of the solutions around the optimum at
the convergence of the method. This diversity will

Figure 4. An example of research result by SA



provide the designer the guide needed to take its final
decision [15];

• the scalability of the method over complex AU-
TOSAR applications potentially composed of several
hundreds of runnables and several thousands of tran-
sitions.

IV. PRESENTATION OF THE PARTITIONING TOOL

Our partitioning tool presented in Figure 5 is designed
to analyze the automotive applications in AUTOSAR and
distribute them automatically onto cores. The application tar-
geted in these experiments is composed of a set of software
components (SWCs) described in the input AUTOSAR XML
files (.arxml). The tool is based on eclipse and written in
Java. It allows to analyze a software application by parsing
the AUTOSAR XML files. The working process of the tool is
described as follows.

A. Dependency analysis

As the high sensibility of the execution order and low
proportion of parallelism exist in the targeted applications,
the partitioning of automotive applications into multiple cores
requires a fine analysis of the dependencies between functional
elements. For this reason, the tool analyzes the features by the
following steps:

• re-works the software architecture: modeling the ap-
plication as a directed graph presented in the section
III-B;

• determines the levels of dependency: building statistics
on each transition in the graph;

• analyzes the data information for each transition such
as data size, data rate, data unit ;

• identifies the sequences of communications: extraction
of data flows.

Figure 5. Working process for partitioning automotive application onto
multicore architectures

The results of the analysis of dependencies drive the distri-
bution step. More precisely, the level of dependencies and data
information are used to evaluate the communication overhead;
the sequence of execution would guide the distribution tool to
determinate the response time for sequence chains.

B. Software distribution

For the distribution part, the tool performs design space
exploration (DSE) of the graph designed in dependency analy-
sis step, to distribute the applications into multi-core systems.
As stated in the section III, the problem is formalized as a
combinatorial optimization problem, which mainly relies on
two essential elements: the definition of objective function and
a given set of constraints that each solution shall respects.
Therefore, applying the metaheuristic algorithms, the tool
researches the solutions by evaluating the defined objective
function that was presented in (7). Every research step has to
respect the constraints presented in (5) and (6).

As to the granularity of element for the distribution, a
preparation step is involved in order to minimize the inter
connection between the cores. For doing this, the tool deter-
mines the dependencies between runnables based on the results
obtained by dependency analysis step such as the communi-
cation between runnables or the chains of event, etc. Then the
tool groups runnables according to the level of dependency
between clusters. AUTOSAR SWC is the atomic element that
is not allowed to be divided into multiple partitions, thus,
all the runnables in the same SWC shall be mapped into
the same partition. Respecting this constraint, the tool then
gathers again certain clusters into groups. By doing this, we
obtain the atomic elements to distribute into cores. These
elements are referred as CpuEntities. Then the tool distributes
the runnables, or more precisely the CpuEntities, into cores. It
also distributes the variables to the different memories. To do
this, the tool applies the selected metaheuristic algorithms to
find the optimal combination for runnables and cores.

The output of this tool will provide the designer a set of
distribution solutions. Each solution is represented as a vector
in which each element presents the position for runnables
or variables. The designer can then analyze the subset of
near-optimal solutions to finally select the best distribution
according to non-formalized criteria (designer experience,
reusability, management...). For these reasons, we developed
our partitioning tool as a decision guide environment. Thus, the
expected behaviour of the underlying optimisation heuristics is
not to provide only the optimal solution but also the subset of
near-optimal solutions.

C. Configuration of the executive layer

This step contains the configuration of RTE, OS and other
BSW stacks. The partition solutions that provide the allocation
information on each core update the configuration of RTE
and OS. The configuration of RTE consists in the mapping
of runnables into tasks. The configuration of OS includes the
terms of priority definition for tasks, tasks partition, allocation
of resources, communication and synchronization between
tasks. After that, embedded source code of the solution is
generated, compiled and downloaded on the target architecture
for the final validation of both the real-time and the functional
exigencies.



V. EXPERIMENTAL RESULTS

We now describe the experiments leaded to determine the
optimization method the best adapted to our context and to
validate the explored solutions.

A. Results of dependency analysis

The method has been evaluated with three application
descriptions. The first one labeled as App 1 is composed of
a small amount of components. This application is built in a
random way and the exploration space for this application is
exhaustive thanks to its small quantity. Besides, this application
contains 3 context cases for the execution time. We have other
two applications (labeled as App 2 and App 3) correspond to
bigger real industrial use-cases which represent a portion of a
full application of engine control. For these two application,
we consider only one running execution mode, therefore there
is only one context case:

• App 1 contains 15 SWCs with 32 runnables. After
analyzing this application, the tool generates 6 CpuEn-
tities with 7 variables;

• App 2 contains 25 SWCs and 208 runnables, the tool
generates 14 CpuEntities with about 493 variables;

• App 3 contains 68 SWCs and 562 runnables, the tool
generates 21 CpuEntities with about 1358 variables.

The tool also analyzes the transitions information for each
application and classifies these transitions according to the
different level of dependency. The results for the three tests
are shown in Table IV.

B. Results of distribution exploration

The next step consists in distributing the application into
a specific multi-core architecture. Our targeted multi-core
architecture contains 3 cores, a shared memory and each core
is assigned to a local memory. In order to distribute these
CpuEntities into 3 cores and the variables into 4 memories,
the tool applies the selected metaheuristics: SA, TS and GA.
The small application allows us to obtain independently all
the possible combinations and to calculate their cost based
on (7). Thus we can identify the optimal solution with the
smallest cost values among all the potential solutions. The
distribution of cost values for all the partitioning solutions of
the first application (noted App 1) is illustrated in Figure 6.
The figure exposes the complexity of the problem even when
considering an AUTOSAR application composed of only 32
runnables. The number of feasible solutions exceed several
hundreds of thousands solutions (279888 exactly), and so the
optimal solution (with value of cost at the left side in Figure
6) only represents 0, 0357% of the landscape.

We then apply each algorithm 10 times on application
app 1. The cost bands of solutions found by each algorithm are

Table IV. APPLICATION ANALYSIS RESULTS

Application Number Number Number Number
of SWC of runnables of transitions of CpuEntities

App 1 15 32 27 6
App 2 25 208 1558 14
App 3 68 562 6826 21

Table V. OPTIMIZATION RESULTS FOR APPLICATION APP 1 BY GA,
SA AND TS METAHEURISTICS. ONLY GA WORKS ON A POPULATION SIZE

OF 10. SA AND TS ONLY EXPLORE 1 SOLUTION PER ITERATION.

Algorithms Deviation to Optimal solution Average Run Number of
best solution finding times/10 Time (ms) explored solutions

SA 0.0 4 243.52 1000000x1
GA 0.0 10 279362.09 100000x10
TS 1.97% 0 7467.08 1000000x1

compared to the previous distribution of cost values as shown
in Figure 6. The more precise results are shown in Table V.
GA (in red in Figure 6) always find the optimal solution. SA
also find the optimum and other solutions with a cost between
4, 02 and 4, 2. Finally TS never find the optimal solution,
but only solutions with costs between 4, 1 and 4, 25. From
these results, we can notice that GA can always find the best
solution in a longer running time. SA runs faster with a chance
less than 50% to find the optimal solution. Considering TS,
unfortunately, we never get the optimal solution, but solutions
very close to it.

For the two other applications, we considered real industrial
use-cases and focus on quantitative results. We applied only
SA and GA, as TS does not show its capability to find the
optimum for the small application. We remind that we consider
constraints of loads balancing for each solution, data for
inter-core communication are allocated in the shared memory,
and the cost function minimizes inter-core communication
overhead (using IOC). With the growth of the application
size, it becomes impossible to obtain all the solutions in the
exhaustive way as we did on the small application. So, the
optimal solution can not be exactly determined. Thus, we
used a different criteria to evaluate the quality criteria of the
optimization methods. We focused on the standard deviation
between the costs of solutions obtained by each algorithm and
the cost of the best solution it ever found. The results for the
two applications are shown in Table VI and Table VII. From
these results, GA can no longer find better solutions than SA.
Besides, the run time of GA is much longer. The average run
time for both algorithms increases with the size of application,
this is shown in Figure 7.

As previously explained, the goal of our partitioning tool
is not to still reach the optimum but rather to prune the design
space, and only present to the designer the most promising
solutions according to a specific objective function. Only the
designer can then identify feasible solutions and take the final
decision. Nevertheless, from the optimization point of view,

Figure 6. Distribution of the costs of all the partitioning solutions for
application app 1. The cost band on the left represent the subset of solutions
found by the GA, SA and TS methods.



these experiments allowed to identify the algorithm the best
adapted to this design problem, even if each of them could
be tuned to reach better results. Hence, for this use case, SA
shows its ability to provide both the optimal solution and a set
of other solutions approaching the optimal one. SA also seems
to better scale with the application complexity. The analysis
of performances metrics (cores loads, memory occupation,
execution time) then allows finer selection.

After the distribution phase, the embedded source code of
the solution is generated, compiled and downloaded on the
target architecture for the final validation of both the real-time
and the functional exigencies.

C. Results of the validation

The target hardware platform is a TC27x tri-core micro-
controller. There are two category of memories: the local
memories attached to each core and the global memories.
There are three cores in this architecture, two identical cores
TC1.6P and another core TC1.6E. All these three cores execute
the same set of instruction. There are two independent on-chip
buses in the tri-core architecture: Shared Resource Interconnect
(SRI) and System Peripheral Bus (SPB). The SRI is the
crossbar based high speed system bus for TC 1.6.x CPU based
devices. The SPB connects the TC1.6 CPUs and the general
purpose DMA module to the medium and low bandwidth
peripherals. More details can be seen in [16].

We deployed the application App 2 onto this multi-core
platform to measure the communication overheads and CPU
loads for several distributions. After starting the execution,
the trace information were obtained by the vendor tool -
Lauterbach Trace32. We present in this section the results
obtained for two specific solutions:

• initial solution: it is the first generated solution from

Figure 7. Scalability of the execution time of GA and SA optimization meth-
ods. The average run time is plotted according to the application complexity.
The figure specifies the average measured values.

Table VI. OPTIMIZATION RESULTS FOR APPLICATION APP 2 BY GA
AND SA METAHEURISTICS

Algorithms Deviation
to best

Best Average
Run

Number of

found solu-
tion

solution
found

Time (ms) explored
solutions

SA 0.12% 8 35305 1000000x1
GA 2.83% 7 663305.2 100000x10

Table VII. OPTIMIZATION RESULTS FOR APPLICATION APP 3 BY GA
AND SA METAHEURISTICS

Algorithms Deviation
to best

Best Average
Run

Number of

found solu-
tion

solution
found

Time (ms) explored
solutions

SA 21.23% 1 752202.4 1000000x1
GA 10.48% 0 14355693.8 100000x10

which the metaheuristic algorithms search the near-
optimal distributions;

• optimised solution: the best solution founded by SA
and GA. As shown in the section V-B, the two
algorithms could find the same optimised solution for
this App 2.

The source code of all the solutions found by the exploration
tool can be generated and associated to the code of the
embedded executive layers. Once compiled, the binary file
is downloaded onto the device. We aim at comparing the
estimated and real (measured) performances of the explored
solutions. The measured communication overhead for the two
solutions specifically studied in this paper are given in Table
VIII. Estimated values are given by considering the number of
data access per millisecond (taking into account the number of
fetches required to get data, i.e. the size of data). Measurements
are done onto the platform using Trace32 tool and provide the
exact amount of time used for intercore communication. It
appears in Table VIII as a percentage of the total application
execution time. The trace of execution are extracted and
analysed in a pseudo-automatic manner. We can for example
compute the average load per intercore communication func-
tions (called IOC), and per core by identifying the individual
IOC calls, and their execution time, during a period of time.

By comparing real values with estimated values, we can
observe that the optimization done by the tool is confirmed by
the experiments despite an estimation error. More precisely,

• Table VIII represents the intercore communication
cost for each source core (executing the producers of
data)

• Table IX shows the associated core loads,

both for the initial and optimised solutions. More precisely,
we present in Table VIII the following results of the intercore
communications for both solutions:

• the transition counts represent the number of transi-
tions between cores. Each transition is related to 2
IOC functions: send and receive;

• the estimated overhead considers the number of data
access per millisecond (taking into account the number
of fetches required to get data, i.e. the size of data);

• the measured overhead is the load of IOC functions
measured on the target. We can observe in this table
that measured overhead is correlated with both transi-
tion counts and estimated overhead.

These results show a systematic reduction of the commu-
nication and the load metrics, and allow to evaluate the error
of estimation.



Table VIII. ESTIMATION AND VALIDATION RESULTS OF THE
COMMUNICATION OVERHEAD ON THE AURIX TRICORE TARGET.

Initial Solution Optimized Solution

Cores transition
counts

estimated
overhead

measured
overhead

transition
counts

estimated
overhead

measured
overhead

Core 0 144 26,25 3,25% 114 26,03 2,0%
Core 1 99 37,20 3,23% 67 22,68 0,94%
Core 2 110 23,50 1,37% 78 15,00 1,2%
Total 353 86,95 7,85% 259 63,71 4,14%
Gain 26,63% 26,73% 47,26%

Firstly, according to the Table VIII, the optimized solutions
are better, about 26% more efficient from the partitioning
tool point of view, and about 47% in the real platform. It
corresponds to about 26% of minimization of the number of in-
tercore transitions. Even if communications are not represented
with the same unit in Table VIII we can observe a difference in
the global gain. This error of estimation is not very surprising.
Performance estimation is currently computed only from the
amount of data exchanged between cores. In fact, the count
of transitions impacts also the communication overhead. This
explains why in Table VIII the decrease of estimated overhead
does not necessarily improve the measured overhead while the
transition count is increased. Besides, additional features such
as the OS services and the memory protection unit (MPU)
increase the communication overhead. These overheads should
be modeled in the next version of the tool.
Moreover, the on-board profiling showed that, as a system call
is done each time the application needs an inter-core commu-
nication, it could be more efficient to have 2 data accesses
in one communication channel than having 2 communication
channels with 1 data access in each. This new optimization
will be added as a new type of move (section III-D) during
the exploration.

Table IX. ESTIMATION RESULTS OF THE CPU LOADS ON THE AURIX
TRICORE TARGET

Cores Initial Solution
(estimated)

Initial Solution
(measured)

Optimised
Solution
(estimated)

Optimised
Solution
(measured)

Core 0 4.62% 21,8% 5.34% 20,0%
Core 1 6.51% 21.1% 4.66% 13.3%
Core 2 4.66% 14.4% 5.78% 15.6%
Total 15,79% 57,3% 15,78% 48,9%

Secondly, table IX shows the estimated CPU load for initial
and optimized solution. The partitioning tool considers the
CPU load balancing as one of the design constraints, and
ensures a global load balancing between cores (with a 2%
tolerated deviation). The results show that this constraint is
respected by the partitioning tool, since based on estimations.
The load of cores is measured with Trace32 using dedicated
scripts whereas we only consider the load generated by ap-
plicative runnables in the estimations. The loads of these
runnables were previously measured with Trace 32 onto a
single-core distribution (without intercore communication) and
back annotated into the application description file.

Thus, the other parts of code executed by the application,
such as BSW, OS and other stacks are not considered in the
estimations computed by the partitioning tool. On the other
hand, real CPU loads are obtained on-board by measuring
the time spent in the idle task, and by subtracting the load
dedicated to the BSW tasks (main functions). If the current

measure provides a best precision compared to high-level
estimations, it can still be improved since OS features and other
modules are counted in the application load. This explains the
differences in the results presented in Table IX. Precisely, we
can observe a constant global load according to estimations
whereas measures point out the consequences of the distri-
bution onto the core load, due to OS and communication
overheads. The execution time of the functional code of the
runnables only represents 30% of the global load of this
automotive system.

We are now working on adding an intermediate fast vali-
dation phase between the distribution and the validation phase
to improve the quality of our estimations during exploration.
We are developing a SystemC transactional simulator of the
multicore software distribution. Besides, similarities between
the SystemC language and AUTOSAR have already been
demonstrated [17]. At this level, the hardware architecture
can be essentially abstracted. The concurrency is modeled
at the core level, the goal being to reduce the estimation
error on communication costs, to explore more accurately the
scheduling of tasks, and to identify in the early phase of the
design the conflict of resources. This new simulation step will
allow short and long validation cycles in the same multicore
design flow.

VI. CONCLUSION

We described in this paper the issues in the partition-
ing of engine control applications in multi-core automotive
systems. The proposed partitioning method is the first one
fully compatible with the constraints imposed by the AU-
TOSAR architecture both in terms of software architecture
and design process. The corresponding partitioning tool can
thus be integrated in a seamless AUTOSAR design flow, from
application description to software deployment onto multi-core
architectures. Hence, classical optimization methods have been
adapted to the automotive context and its specific real-time
constraints in an efficient exploration tool. The entire working
process has been validated onto real world applications from
the AUTOSAR descriptions to the on-board profiling.
The results obtained on complex motor control applications
show the benefits of the optimization phase. A 47 % gain
has been obtained by minimizing the intercore communication.
These first results, obtained on the recent intercore release of
AUTOSAR, also point out an increase of the core load when
migrating from a monocore to a multicore deployment.

After having proposed a pseudo-automatic top-down refine-
ment process in this paper, we aim at recovering the results
obtained by real measurements up to the partioning tool in
order to improve the precision of the performance estimations.
Moreover, thanks to a multi-criteria formulation of the future
version of the cost function, we will be able to take into
account several criteria to evaluate multicore distributions such
as OS overhead, memory usage, resource conflicts, safety...
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Abstract 
We present a methodology for the common 
development of combustion engine control Software 
between TIER-1 supplier and OEM. The classical 
approach of shared development used in single core 
projects has to be adapted to the new challenges of 
integration and protection, in the multi-core context. 
New integration and protection constraints are 
specified at design time, which are considered at 
integration and protection time. A common 
integration step is defined, where interfaces and 
constraints at the border are agreed. After that, each 
part can be modified and protected independently, 
enabling parallel developments by the partners. 

 
1. Introduction 

 
In the automotive domain, the body controller and chassis 
systems markets are driven by the integration of new 
innovative features, resulting in an increase of ECUs in 
the car, e.g. in an AUDI A8 with up to 80 ECUs. In this 
context, the multi-core technology is seen as an 
opportunity to slow-down the inflation of ECUs in the 
car, by enabling the integration of loosely coupled 
functions in one same ECU, as a kind of fusion process. 
 
On the other side, the combustion engine market is driven 
by an increase of engine throughput, a reduction of 
consumption (CO2), and a reduction of emissions. This 
results in more complex systems with tighter real time 
constraints, and finally in SW sizes above 1.5 million of 
lines of code. Such increase of computation power can 
only be achieved by the use of multi-core platforms (Fig. 
1). The challenge is then in this case to distribute a highly 
cohesive system on different cores, as a kind of fission 
process. 
 

 

Fig. 1: Quota of deliveries based on multi-core CPU at 
VW/AUDI 

In [1], it has been previously described how this challenge 
can be handled. We want now to focus on the common 

work between Continental Automotive, as TIER-1 
(supplier), and Volkswagen Automotive Group, as OEM. 
In an engine management system, a part of the functions 
is provided by the OEM, and another part is provided by 
the TIER-1, resulting in a complex integration of highly 
coupled SW modules and runnables. In addition, the 
reduction of time-to-market requires parallel development 
of these parts, on TIER-1 side and OEM side. 
 
This paper describes the process developed between 
Continental and VAG to support an integrated shared 
development in a multi-core legacy (non AUTOSAR) 
SW, and is based on real project experience. The paper is 
organized as follows: 
 
In a first chapter, we describe the context of engine 
control SW. We particularly elaborate on the high 
coupling of underlying modules, and the hard real time 
requirements of functions. The iterative development 
process and the need for parallel development between 
the parties are also explained. 
In a second chapter, the general integration challenge is 
described. We introduce the concepts developed and in 
use internally, as well as across partners. We explain that 
an important step in the integration is the elaboration of a 
precise and exhaustive cartography of the SW. 
In a third chapter, the data protection topic is addressed. 
We show the importance of this topic, in regard to the 
high coupling / data flow characteristic to engine systems. 
The basic mechanisms are developed, from the 
specification of protection requirements, until the 
implementation. We finally provide a comparison of 2 
basic methods of intervention. 
The fourth chapter describes the context of shared 
development and the different use cases. The need of 
defining a common architecture, a common integration 
frame, and the necessary adaptations of the integration 
and protection processes are explained. 
Finally, in a last chapter, we provide the state of the art on 
these topics, as known from us. We draw a comparison of 
the standards AMALTHEA, AUTOSAR, and ASAM-
MDX, which are the state of the art in the automotive 
domain. In particular, we point some weaknesses related 
to the shared development, and to the multi-core aspects, 
requiring evolutions of the standard. 
 

2. Multi-core challenges at engine systems 
 

Technical context 
 
The importance of integration and data protection in 
engine systems context is due to the high coupling of 
combustion control functions, a unique situation in 



automotive domain. Most of these functions control the 
same highly dynamic phenomena: the complet
thermodynamic process from beginning of air intake till 
the end of exhaust pipe. The different sensors and 
actuators interact physically with each other, and 
therefore the corresponding SW control algorithms 
permanently exchange information signals. 
 
A rough measurement of this coupling can be based on 
the number of exchanged signals (SW connectors in 
AUTOSAR language) (Fig. 2). In most of the cases, t
exchange concerns 2 modules. This means one to one 
coupling (high coupling). In the other side of the spectra, 
some signals (e.g. engine rotation speed, air 
temperature…) are needed in many control laws, and 
therefore exchanged all over the SW. This mea
coupling, with n greater than 100 (i.e. 10% of the 
complete application).  
 

Fig. 2 : Number of modules sharing data

Finally, these signals are data implemented as simple 
scalars, complex structures, or arrays. For performanc
reasons, global variables are used. 
But this module-to-module coupling gives only an 
overview of the static facet of the SW. These SW modules 
are based on several c-functions (executable entities in 
AUTOSAR language) executed at different rates: for one 
module, several executable entities might be necessary. 
Only in 10% of the cases, a single module ends
single executable. 
 
Therefore, ahead to the data flow between modules, a data 
flow between executables can be measured (
which gives a first idea of race conditions we have to 
tackle with. 
 

Fig. 3 : Number of executables sharing data
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Finally, these signals are data implemented as simple 
scalars, complex structures, or arrays. For performance 

module coupling gives only an 
overview of the static facet of the SW. These SW modules 

functions (executable entities in 
AUTOSAR language) executed at different rates: for one 
module, several executable entities might be necessary. 
Only in 10% of the cases, a single module ends-up in one 

Therefore, ahead to the data flow between modules, a data 
flow between executables can be measured (Fig. 3), 
which gives a first idea of race conditions we have to 

 

: Number of executables sharing data 

Such estimation gives a similar picture tha
component level, but with a higher level of flow: While 
70% of the data are encapsulated inside a module, only 
30% of them are encapsulated inside one executable.
 
Finally, the full picture on the data is as follows:
- 1/3 are local to one executable
- 1/3 are exchanged between executables, but local to 

a module (“inter-runnable variables”)
- 1/3 are exchanged between executables of different 

modules (“sender-receiver”) 
 
As these executables (8.000) are scheduled from more 
than 60 operating system tasks (ran
mixing timing and angular frequencies, distributed on 
different cores), a significant part of the data flow is 
subject to race conditions in our multi
 

Fig. 4 : Number of dynamic artifacts for integration in 
different domains

Of course, on the static aspect, the mentioned coupling is 
reduced using SW composition, to allow a platform/reuse 
approach. But this has no effect on the race conditions.
 

Challenges 
 
Therefore, the introduction of multi
systems is a challenging task. 
 
On the scheduling and integration side, new constraints 
are adding complexity: The number of integration 
containers (tasks) increases, the relation between them is 
more complex (parallelization, chaining...), new types of 
constraints show up (affinities...), as well as new 
distribution strategies (all SW on one core, time
dependant SW on one core, safety
core...), and the different partners (OEM, TIER
party...) may have different views/constraints on how to 
utilize the different cores. 
On the protection side, a SW running previously in a 
protected single core cooperative environment (a.k.a. 
fixed priority with deferred preemption scheduling 
FPDS) has now to support parallel execution. In 
particular, to achieve a maximum flexibility of the SW 
distribution, which is motivated by the high variability of 
project configurations, the module designs have to be 
independent of any core consideration. For instanc
runnables of the same module might run on 2 different 
cores – or not – depending on the project reusing the 
module. The same module must even still be reusable on 
the single core projects still under development.
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Such estimation gives a similar picture than on 
component level, but with a higher level of flow: While 
70% of the data are encapsulated inside a module, only 
30% of them are encapsulated inside one executable. 

Finally, the full picture on the data is as follows: 
1/3 are local to one executable 

3 are exchanged between executables, but local to 
runnable variables”) 

1/3 are exchanged between executables of different 

As these executables (8.000) are scheduled from more 
than 60 operating system tasks (ranging from 1ms to 1 s, 
mixing timing and angular frequencies, distributed on 
different cores), a significant part of the data flow is 
subject to race conditions in our multi-core environment. 

 

: Number of dynamic artifacts for integration in 
different domains 

Of course, on the static aspect, the mentioned coupling is 
reduced using SW composition, to allow a platform/reuse 
approach. But this has no effect on the race conditions. 

 

refore, the introduction of multi-core in engine 

On the scheduling and integration side, new constraints 
are adding complexity: The number of integration 
containers (tasks) increases, the relation between them is 

x (parallelization, chaining...), new types of 
constraints show up (affinities...), as well as new 
distribution strategies (all SW on one core, time-
dependant SW on one core, safety-related SW on one 
core...), and the different partners (OEM, TIER-1, 3rd 
arty...) may have different views/constraints on how to 

On the protection side, a SW running previously in a 
protected single core cooperative environment (a.k.a. 
fixed priority with deferred preemption scheduling – 

ow to support parallel execution. In 
particular, to achieve a maximum flexibility of the SW 
distribution, which is motivated by the high variability of 
project configurations, the module designs have to be 
independent of any core consideration. For instance, 2 
runnables of the same module might run on 2 different 

depending on the project reusing the 
module. The same module must even still be reusable on 
the single core projects still under development. 

660

204

60
13

137

4033

Engine 
Management 

System

Double Clutch 
Transmission

HEV Controller



 Page 3/12 

Finally, due to the tight economic constraints, a complete 
rework of the existing SW is not affordable. Therefore the 
methodology has to cover the legacy SW not designed for 
multi-core. 
 

3. Integration process 
 

General 
 
The topic of integration in this context covers the 
integration of one or more runnables of a software 
component or composition into one or more tasks of the 
complete software system, performed by an integrator. In 
this phase the correct position of the runnable in the 
sequence shall be determined and the necessary protection 
of data against concurrent access shall be generated, to 
ensure the stability or coherency of the data used by the 
runnable. It is further on assumed that the provider of the 
runnables and the integrator are time-wise and location-
wise separated from each other as a consequence of 
worldwide software development of large scale software 
project. 
 

Dynamic requirements for runnables: 
 
For the correct real time behavior of the software 
functions in the target application, it is necessary to 
describe unambiguously the dynamic requirements for the 
integration of the runnables into existing tasks (“dynamic 
integration”). This is true for runnables of the supplier in 
context of a platform development and especially for 
runnables of the OEM, when looking on integration use 
cases in different applications of the same or even of 
different suppliers. 
Due to this different use cases it is important to describe 
rather the requirements than a given solution. Describing 
the solution might be sufficient for one project but would 
manifest many design constraints to other projects, 
especially when looking across multiple suppliers using 
different architectures. 
 
The minimum requirement on dynamic integration is the 
description of the point in time, when the runnable shall 
be executed. In the Continental PowerSAR architecture 
the available points in time (“rates”) are standardized in a 
Reference Architecture and are called SystemEvents. 
They are characterized by different attributes like required 
minimum and maximum period, guaranteed deadline, and 
more. For each Runnable to be integrated, a so-called 
RunnableEvent is created, which specifies the integration 
constraint of this runnable by referring to an existing 
SystemEvent. This RunnableEvent should not be 
confused with the AUTOSAR RteEvent, which defines 
more an integration solution than a requirement. 
Still missing are requirements concerning the relation 
between runnables using the same SystemEvent. For the 
description of requirements for a sequence one could 
either describe a relation to one or more runnables by 
name, the so called “Execution Order Constraint” (EOC) 
or use a requirement concerning the allowed age of a data, 
which is consumed, named “Data Age Constraint” (DAC) 
(Fig. 5). 
 

The type of constraint to be used depends on the area of 
responsibility for a part of the software. Within a software 
composition where the responsibility is at a single person 
or small group of developers, EOC might be quite 
efficient, as giving the order of executables of the own 
composition combines a lot of refined requirements 
concerning the data flow and allows an easier description 
of the sequence requirements. On the other hand most of 
those execution orders are needed because of the data 
flow of some “important” data, which contribute to the 
dynamic behavior of a complete event chain. With EOC 
this information might get lost and in case of 
repartitioning or renaming of the software: the EOC might 
become invalid. 

 

  

Fig. 5 : Solving Sequence of runnables using 
Constraints 

When using a DAC, one is working on the interface of the 
runnables and does not depend on runnable names. In a 
model where only data which are consumed by a runnable 
are described with a DAC the requirement doesn’t 
become invalid in case of a repartition of the runnables. If 
the data use is changed, this attribute has to be considered 
as well. This is especially helpful in a shared development 
context as the interfaces are the subject of discussion 
when defining the interaction of OEM and supplier 
software e.g. in Sequencing Workshops (See Fig. 6). 
 

 

Fig. 6 : Effect of position in the sequence on the data 
flow between supplier and OEM runnables 

Due to the complex coupling and data flow inherent to 
engine systems, an exhaustive analysis and resolution of 
data precedence problem is not possible: the problem has 
not always one solution. Therefore, the principle of the 
DAC approach is to identify, among all possible flows, 
the few ones which have a real impact on the system. For 
instance, low dynamic information, like the air 
temperature might have one – or more – recurrences of 
delay without big impact on most of the functionalities. 
At the opposite, having the wrong value for a cylinder 
index can be dramatic for the injection controller. 
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Today this information is exchanged via non formal 
requirement specification in a textual way due to the fact 
that MDX V1.2 [2] doesn’t offer means for a formal 
description and most OEMs didn’t migrate up to now to 
AUTOSAR, where the timing extensions would offer a 
possibility to describe a RTE Event and in addition 
runnable sequence needs or a DAC. 
 
In addition to these two types of constraints, EOC and 
DAC, another concept can be used: the phase concept [3]. 
It consists in partitioning the time domain according to 
standard features in automatism. As example, logically, 
the runnables dealing with acquisition and diagnoses need 
to be executed before the runnables dealing with output 
commands. Therefore, a phase is associated to a given 
runnable, according to its inner functionality, and 
therefore is valid independently of the integration 
environment. This leads to a fully reusable and 
independent integration constraint. This method has been 
introduced at Conti since 3 years now, and used 
internally. Nevertheless, its extension on shared 
development with external partners is more difficult. 
 

SW Cartography 
 
For a correct integration and protection of the SW, it is 
necessary to know the whole structure of the code and the 
data accesses for read and write performed throughout the 
whole call graph of the application. No grey area shall be 
left over, as it can have severe consequences. As precise 
the cartography will be, as precise the protection and 
integration will be. 
Verifying a DAC is only possible if the full data and 
control flow of the relevant sequence is known.  The same 
applies to EOC, where the involved runnables are not 
mandatorily those directly integrated in the sequence. 
Depending on the type of the SW which has to be 
integrated, this cartography can be established based on 
C-code, MDX description, or ARXML SW-components, 
a mixture of these use cases needs to be supported. 
 

4. Protection process 
 

Structuring the problem 
 
In terms of data protection against race conditions, two 
types of problems are taking special importance in multi-
core context: data stability and data coherency. 
 
Stability: As soon as runnables can execute in parallel, 
and exchange data, it becomes very probable, that a data 
is modified while it is used on another core. If the data is 
scalar, and atomic, each individual read access cannot be 
corrupted by a write access on another core. The read 
access point will get the newest or the old value. But, if 
there are several read accesses, or if the same value of the 
data is expected across 2 successive runnables, then the 
stability of the data might be corrupted. In some cases, 
this might be acceptable, because for instance, the same 
data is used in different decoupled parts of the algorithm, 
and/or because the data has a low dynamics and only a 
small change of its value is possible. But in other cases, 
like for instance for booleans or state machines, the 
impact of a change during an algorithm can be severe. 

 
Coherency: The modification of an elaborated data 
(structure, array, a set of atomic data…) on one core while 
it is accessed on the other core can have severe 
consequences, too. For instance, 2 exclusive information 
(a flag and its complement…) need to be written and read 
in a coherent manner. The reading of the data set might be 
“interrupted” by the writing of these data on this other 
core. Or on the opposite, the writing of the data-set might 
be “interrupted” by the reading on the other core.  Even 
both cases can happen. Here again, this does not concern 
all variables of the SW, but only sub-sets. For instance, in 
one given algorithm, it is often the case that variables 
from different rates are used, and therefore cannot be 
coherent, by essence. 
 

Consistency needs 
 
Considering the huge data flow across runnables and 
tasks, as depicted in chapter 2, our approach is to be 
selective on the data and runnables to be protected. Ahead 
of limiting the HW resources consumption, this limits the 
protection cases that may have negative functional 
impacts. 
 

 

Fig. 7 : Ensuring data protection using Stability and 
Coherency Needs 

Therefore, functional consistency needs are specified at 
design phase by function experts: stability of certain data 
accessed by distinct but coupled executables, and 
coherency for sub-sets of coupled data in certain 
executable. The function experts are responsible to 
specify the stability and coherency needs where required, 
and only there. In this way, the learning and development 
effort related to multi-core is minimized, and the function 
experts can concentrate on their core competence: physics 
and control laws. They have to concentrate on the “what” 
(to protect) and not on the “how” (to solve the protection). 
 
It has to be noted that the initial AUTOSAR approach 
(“implicit communication”), where protection was applied 
everywhere, has been modified in AUTOSAR 4.1.1[4] 
(and in ASAM-MDX 1.3 [5]), with the introduction of 
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Data Stability and Data Coherency Needs. But this 
represents a significant evolution in the RTE (explicit and 
implicit) communication paradigms. 
 
At integration and protection step, the requirements for 
data consistency are analyzed and checked against the 
project architecture (task configuration) and cartography 
(data flow). In case a consistency is required, a race 
condition is requested, and the SW is ready to be 
protected, then the protection of the relevant data is 
established in the relevant executables. 
 

 

Fig. 8 : Data consistency buffer evaluation 

To cover the simple cases where consistency is 
systematically required, and to reduce the effort of needs 
specification, complementary automatic strategies are 
used. For instance, coherency of non atomic (64 bits) data 
and stability of multiple accesses of same data inside an 
executable do not need to be specified. 
 

Protection by buffering 
 
The protection of data against race condition is mostly 
(but not uniquely) ensured by a buffering mechanism. It 

consists in copying the data in a task-local buffer, and 
using the buffer instead of the original variable in the 
algorithm. Fill and flush routines are inserted in the 
program flow (task bodies) in order to copy the variable 
into the buffer, and vice versa. 
In the AUTOSAR implicit communication, the copies are 
done at beginning/end of task, resulting in long “buffering 
segments”, and high resource consumption. In classical 
approaches, the copy is done at beginning/end inside each 
runnable, which is resource consuming too, but in 
addition does not ensure consistency across runnables. 
In our case, the copies are done along the task to avoid 
these drawbacks. For instance, the filling of the data into 
the buffer is done at the latest possible position in the task 
(“as late as possible”), in order to benefit from the latest 
available value in the global system. 
 

Access Modification in executable 
 
For modifying the data access to a buffer access in a 
legacy SW, 2 basic techniques are available: 
 
The Data Reference Modification (DRM) [6] consists in 
changing the address of the original data by the address of 
a buffer in the binary ELF file. Here the integration of 
object code sets some limits in terms of protection. For 
instance, in case of multi rate executables the function 
design has to be modified as the DRM process allows data 
protection in only one context (variable address 
substituted in binary by buffer address). In this particular 
case of multi-rate executables, the resulting re-design 
might have other drawbacks like e.g. code duplication.  
 

 
 DAM (source code modification) DRM (binary code modification) 
Need of source 
migration 

Yes: Accessers (GET/SET) have to be added to 
the code. 
But, a migration can be done by a tool; and code 
generators can be adapted, in the MBD case. 
Finally, a similar migration is required for 
AUTOSAR introduction. 

No. 
But, redesign of the functions might be required in 
special cases. 

Source code 
exchange 

Yes. 
But some TIER-1 and OEMs are used to work with 
obfuscated code. In some cases, the OEM 
functions are even coded by the TIER-1. Finally, 
AUTOSAR process might need source code 
exchange, in context of engine systems. 

No: object code is the standard for IPP, in legacy 
context. 

Verification and 
validation 

Early: Modification of accessers can easily be 
checked at compile time. 

Late: Need to compile and link before having the 
modification. 

Compiler chain 
independence 

Yes: Accessers modified on source code level. No: Same configuration of the compiler chain 
across all partners. Furthermore, the chain has to 
support DRM technique. 

Openness to 
complex cases 

Yes: Step by step, new use cases are supported, 
which need a more complex redirection of the 
Accesser, than a simple address modification (e.g. 
multi-rate cases). Furthermore, the addressing 
mode to the buffer can be different than the one to 
the original data, to gain performance. 

No: Only address modification can be done, 
limiting the possible intervention. 

Coherency 
cartography vs. 
intervention 

Yes: the cartography of the SW and the 
intervention (accesser modification) are based on 
the same model: The SW-code. This guaranties 
the global coherency. 

No: Unless the cartography is based on the obj. 
code, which is late in the process, there might be a 
gap between the cartography and the real 
implementation in the binary leading to severe 
mismatches on the protection. 

Table 1: Comparison of Data Reference Modification and Data Accesser Modification 
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The Data Accesser Modification (DAM) consists in 
modifying the source code. Standardized APIs (data 
“accessers”) are used in the code, and can be redirected - 
or not - to the buffer, using an include file. This 
technique, which is similar to AUTOSAR, gives more 
flexibility and optimization potential. For instance, it 
allows runtime context dependant accessers. On the other 
hand, the different development parties like to protect 
their IP and are reluctant to share source code, which is 
necessary for the DAM process. 
In Table 1, we provide a non-exhaustive list of pros and 
cons of each technique. 
 

5. Shared development 
 

Development process 
 
One additional dimension of the SW development for 
engine systems is the increasing integration, and therefore 
mixture of SW-components coming from different 
sources, and often provided with different formats (Fig. 
9). It becomes a classical use case, for instance, to 
integrate SW functions from the OEM in the TIER-1 
ECU, as well as components from 3rd party. In extreme 
cases, the TIER-1 has to integrate SW modules from 
different OEMs (engine co-developments), or even from 
own competitors. The amount of external SW may be 
high (“box-business” model, where the TIER-1 only 
provides the ECU plus the BSW), or on the opposite, null 
(“full turn-key” programs). In between these two extreme 
cases, the SW-part from the OEM to integrate might be 
provided as models, C-code, or object-code. It might 
comply with AUTOSAR standard, or simply be legacy 
SW. 
 

 

Fig. 9 : Percentage of OEM part in total program code 

Of course, this “OEM plug-in” (monolithic or not) has to 
be integrated in the existing task system, as easily as the 
rest of the SW. Integration constraints are therefore 
discussed between the parties. Constraints on the needed 
SystemEvents are defined, as well as sequencing 
constraints or event chains. The core distribution is finally 
derived from all those requirements. The used protection 
methodology has to give a maximum of flexibility in 
order to meet all use cases. The OEM plug-in has to be 
protected against race conditions, like the TIER-1 SW, 
using the same principles, but with DRM instead of DAM 
due to IPP reasons. 
 

In total, a complete project lasts in average 24 to 36 
months, during which several synchronizations are done 
between TIER-1 and OEM: releases of the OEM plug-in 
to the TIER-1; and releases of the complete integrated SW 
from the TIER-1 to the OEM. Similarly to the TIER-1 
functions, the OEM plug-in integrated in the ECU follows 
a development cycle, and is updated several times during 
the project life-time. To shorten the development loops, 
the OEM needs to be able, “at home”, to further develop, 
re-integrate, and validate his functions. Therefore he must 
be able to build again the system. This kind of process 
was a market standard in single core engine systems, 
where the TIER-1 SW is delivered as object code, and the 
OEM plug-in is modified, re-integrated, and re-compiled 
on OEM side without intervention of the supplier. Thanks 
to cooperative scheduling, a policy extensively used at 
Continental, there was no need of special mean to ensure 
data consistency. 
 
Now, as the OEM wants to distribute his SW over 
different cores, and as the protection of the SW requires a 
particular analysis and treatment, a segregation of the SW 
is done, between OEM and Supplier. The TIER-1 part is 
frozen, protected, and compiled at TIER-1 side, with a 
first version of the OEM part. Library files are released to 
the OEM, with a build environment. Starting from this 
point, the OEM part can be modified, and re-protected at 
OEM side. This means that independent buffering 
strategies are applied on the different parts. 
 
At the end, the shared development process can be seen as 
an alternative or a complement to Rapid Prototyping, 
enabling short development loops between TIER-1 and 
OEM. 
 

Common architecture 
 
In this code sharing context, a common understanding of 
the basic system behaviour is essential to be reached. 
Right in the beginning, a definition of the features 
provided by the Operating System has to be negotiated 
and agreed: a common dynamic architecture. This 
common architecture has to enable an efficient protection, 
an easy integration, and it has to support simulation and 
validation of the scheduling. 
 
First (and already known from single core systems) a set 
of common SystemEvents, as defined in chapter 3, has to 
be defined. It might be a subset of the complete set 
needed by the TIER-1, plus some extensions. Then, these 
SystemEvents are implemented as tasks, which have a 
priority and pre-emption behaviour, and a core allocation. 
In an engine management system typically we have a 
mixture of time based system events (from 1ms to 
1000ms) and angle based system events (crankshaft and 
camshaft synchronous). Typically, different system events 
with a same angular period, but different phasing relative 
to the Top Dead Centre might be required. 
But, in addition to periodic system events, sporadic 
initialization events, such as ECU start-up, ignition key 
transitions or failure memory clearing have to be 
specified. Here mainly, the precise position of the event, 
and its system meaning have to be clear to all parties. 
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The principle of initialization events is inspired from the 
object orientation concepts of constructors and 
destructors, and allows having a coherent system 
initialization across the complete SW. This concept, used 
in single core projects, has been enhanced in the scope of 
multi-core context, as it is important that all cores 
“toggle” get initialized synchronously and coherently. 
 
Finally, with the step-wise deployment of AUTOSAR, it 
becomes important to fix also some basis on the use of the 
RTE, as there are different interpretation/use between 
partners can cause severe incompatibilities at integration 
time. Therefore, in the definition of this common 
architecture, the AUTOSAR configuration has also to be 
addressed, in particular if the OEM wants to integrate 
AUTOSAR SW and therefore fixes some implementation 
choices in its SW-Component descriptions. 
 
For an OEM like VAG the challenge is to find a system 
setup which is similar in all TIER-1 ECUs, and which is 
proven to work in a multi-core context. For the above 
named SystemEvents, this is possible across all ECU 
suppliers. But the SystemEvents abstract implementation  
details like OS configuration of priority and pre-emption, 
core allocation, task chaining and handling of sporadic 
system transitions (synchronized or not). With multi-core, 
a new complexity is added to the system. 
For a TIER-1 supplier like Continental, the challenge is to 
find a setup which fits to its generic functions, as far as 
generic functions are integrated in the project. In effect, in 
front of the TIER-1, there is a high variability of OEMs, 
with different visions of the architecture. The TIER-1 
challenge is then to fill the gap between the different 
visions. 
 

Common integration frame 
 
With the ongoing change from single-core to multi-core 
systems the rising complexity of integration has a huge 
effect on the software development. It extends the high-
level goals of the classic software development, like high 
reusability, reliability and correctness, IPP. Additional 
methods are needed, to achieve a closer examination of 
the sw-architecture. The given heterogeneous tools for 
integration and protection on the different TIER-1-side 
must be enabled through standardized general description 
of integration and protection needs on the OEM side. 
Additionally it is necessary to consider legacy software, 
because it is not divisible with further ado. Additional 
specification and in some cases refactoring is needed.  
 
The main challenge for efficient integration on multi-core 
systems is an independent partitioning of the software that 
can run in parallel. But for that it is necessary to find and 
describe the dependencies and avoid conflicts, to protect 
and minimize inter-core data-access. Since two years, 
Volkswagen, Continental and other TIER-1 work together 
on a model-based approach which resolves the following 
main question of shared development for multi-core: 
• What and how to specify and define the integration 

and protection needs? 
• On which architecture level should the specification 

be done? 

• What is additionally required in methodology and 
collaborative process? 
 

This model-based approach is a continuous roundtrip 
from specification until verification [7]. As Fig. 10 
illustrates, this roundtrip includes all needed steps in the 
shared context, considering the typical iterative 
engineering process in automotive industry, where the 
software is developed in several iterations of the V-Model 
and with this has several different releases with different 
maturity and quality. In a first step to generate the basic 
element for all considerations in shared context – the 
system model – a model consolidation combines system 
descriptions including hardware, operating system and 
TIER-1-software information given in the  
AMALTHEA format with the software description 
including the OEM-software information and 
requirements in the MDX format. This basis element 
combines the required information. It is the fundament for 
shared methods, like the already introduced sequencing 
workshops. It extends the collaborative software 
development with new information to be exchanged in 
new or enhanced formats.  
 
With a consolidated system model, the software 
architecture can be visualised and graphically annotated 
with requirements, while analysing the data flow and 
signal paths. In this second step typically the TIER-1 is 
responsible to process the requirements and define the 
final system design. The system-model and defined 
requirements can be used with tool-support to find a 
pareto-optimal design, with efficient resource usage and 
requirement fulfilment.  In the third step the updated 
system design is checked up against the requirements with 
simulation of the dynamic behaviour in an early design 
phase, before final integration to take into account, that 
the design is executable and fulfils all requirements for 
the given target hardware. Finally in a last step after 
integration and measurement, the system is verified with 
evaluation of the requirements taking real software or 
hardware traces, which includes all system events on 
required call tree level for referenced elements in the 
requirements. 
 
In each step enhanced and complex tools are necessary 
which should interpret the information given from each 
partner in adequate and standardized exchange formats. 
 
The specification of integration and protection needs, like 
coherency groups or data ages should be done on an 
abstract level, considering the design rules of the SW 
architecture. On SW composition level the requirement 
engineering is feasible for legacy software and considers 
the existing development process and given static 
architecture, because SW compositions already 
encapsulate functional dependencies given from 
requirement and architecture engineering. It reduces the 
costs in development process because complexity and 
efforts are reduced to specify the integration and 
protection needs. For that different architecture views 
have been created, each one fitting best to the use case of 
requirement engineering.  
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A static architecture view visualises the logic hierarchical 
grouping of the static software structure and their 
interfaces. On this first view it is recommended to define, 
analyse and check the more static requirements, but also 
signal grouping for coherency needs are possible. 
A second view, the dynamic software architecture view 
shows more the design of tasks, runnable sequences and 
their data accesses and data flow. This view is typically 
used to discuss and analyse dynamic dependencies like 
execution order constraints, data ages and event chains on 
runnable level in sequencing workshops. 
A new developed view combines both worlds, the static 
and dynamic architecture: It shows the runnable groups in 
a SW composition grouped for their period. If it is 
defined, that this SW-composition specific runnable 
groups are indivisible (what means the scheduler should 
not interrupt this group), then it is recommended to define 
intra execution order constraints for this groups and use 
data ages for the inter execution order. 
 
Another aspect concerns the compatibility of the SW 
components to each other. For instance, in order to reach 
a similar level of parallelism, it would probably be useful 
to have a similar approach of developing SW components 
(e.g. rules, patterns) across the parties. Therefore, in a 
joint research project we look for patterns which are 
suitable to develop SW components utilizing a high 
degree of parallelism. These patterns shall be described in 
a kind of cook book which can be used by OEM 
developers as well as TIER-1 developers. 
 

 

Fig. 10: Continuous Roundtrip for shared model-
based system design in multi-core projects  

Then there is the topic of IP protection: even in a close 
collaboration the different partners need a good level of IP 
protection. The exchange of source code is maybe not the 
best solution to reach this goal, unless new technologies 
like remote build or obfuscated code are used. Object 
code can be used as exchange format, but with the other 
drawbacks already mentioned. Due to the permanently 
increase of inter-penetration of different parties in the 
final SW, this topic is gaining importance. In addition the 

exchanged information of the system- and software-
descriptions needs IP-protection. For this data it is 
necessary to obfuscate specified signals and runnable 
names for IP-parts of the software. But it is recommended 
to obfuscate only as much as really necessary but not 
more, otherwise needed information to analyze and 
specify dependencies and requirements for the interaction 
of the OEM- and TIER-1 software are lost and in effect 
the specification in this shared context isn’t possible. 
 

Common standard formalism 
 
In order to reach a smooth integration into the defined 
integration frame the SW description and the specified 
timing requirements have to be exchanged between the 
parties. This exchange has to be based on a machine 
readable standard format, as integration and simulation 
processes of such complex system are only possible with 
tool support.  Further on the use of a standard helps to 
define a common understanding of system features and 
forces the usage of a common wording. As each standard 
has some space for interpretation, the harmonization of 
semantics and used tags is necessary.   
In cooperation between OEM and TIER-1 the ASAM 
MDX file format is currently widely used for SW sharing 
in non-AUTOSAR context. In those projects MDX is 
used to deliver information necessary for integration 
purposes to the integrator of a SW component.  
 
The MDX standard is well defined for data definition 
purposes, as well as for the exchange of SW features 
information. Also variant handling can be described via 
system constant definition and settings. Basic scheduling 
information can be transferred to the integrating party. 
As described above, in projects using multi-core CPUs 
there is the need to exchange further information: 
- Data flow information – this currently possible with 

the existing MDX standard V1.2, but  the data 
access frequency (access multiplicity) has to be 
added for a more detailed view on the real SW. 

- Data stability needs – not defined in V1.2 
- Data coherency needs – not defined in V1.2 
- Data Age Constraints – not defined in V1.2 
- Scheduling requirements for runnables – already 

possible with V1.2 
- Scheduling dependencies between SW components – 

not defined in V1.2 
A new version of the MDX standard has been defined to 
address the missing topics: the V1.3 released since June 
2015. 
Data stability groups can be specified as well as data 
coherency groups using new tags in the SW collection 
area. 
Data Age Constraints and access multiplicity in one 
executable can be specified on data access elements in 
SW services (runnables). 
With these extensions a SW component provider is able to 
exchange the defined timing requirements and constraints 
of its SW components to the integrating party as discussed 
above.  
 
As there is a lot of legacy code at VW/AUDI this way has 
been chosen to bring these SW components to the new 
multi-core world, limiting the effort of reengineering. 
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After defining this step in exchange format, the focus now 
changes to: 
- implementing of MDX V1.3 in development tools 
- gathering all the requirements and constraints to be 

transported via MDX V1.3 
- training the teams to this new process 

In the near future the new features of the MDX standard 
will be used in practice.  
 

The contract = Interface freeze 
 
Freezing of interfaces consists of mainly two steps. The 
first step happens at the end of interface and sequencing 
workshops when the interface is agreed between the 
involved parties and fixed in terms of mapping of content, 
names, ranges, resolution, DAC and EOC constraints. 
The second step is performed, when the interface 
adaptation is implemented at the TIER1 and the OEM 
receives software for the parallel development. To 
manifest and freeze the contract, the software has to be 
prepared in a certain way.  
 
Protection adaptation: Part Management 
When integrating TIER-1 and OEM SW parts, all 
integration and protection Needs are collected. Each 
artifact in the project (data, runnable, module…) is 
allocated to one of the three parts: TIER-1, or OEM part. 
This allows applying different buffering policies on the 
different parts: For instance, if the OEM has not a proper 
description of the protection Needs (stability, coherency), 
then an automatic strategy can be applied, which are not 
necessary on TIER-1 side. 
Also, this partitioning allows to select between different 
formats for the input (C-code, ARXML, MDX), but also 
for the output (DAM, DRM). 
 
Finally, the final goal of a clear partitioning of the SW is 
to minimize the interactions between the parts (or at least 
to concentrate them in an adaptation part) and to enable a 
partitioning of the protection process. For instance, 
dedicated buffers, dedicated copy routines, dedicated task 
sections can be defined and fixed for one part, while the 
other part is updated. It allows an independent build of the 
SW at OEM side: The TIER-1 SW is built (protected, 
compiled, validated) at TIER-1 side, while the OEM SW 
is re-built as many times as requested, at OEM side. 
 

  

Fig. 11 : Stability Needs apply to different parts 

In Fig. 12, we show the resulting buffering for a concrete 
example. The TIER-1 and OEM runnables are identified 
by their respective colour. Different buffers are used in 
the TIER-1 area, which are not reused in the OEM area. 
The OEM area can then be modified independently of the 
TIER-1 area, and re-built. 
 

Parallel development / Parallel builds 
 
Having a frozen interface allows starting a parallel 
development in various stages depending in the amount of 
changes and the timing requirements of the developed 
solution. Each partner (OEM, TIER-1) can modify its part 
without impacting the other one. 
When doing only small changes, a parallel development 
using a tooling for internal bypassing (e.g. eHooks) is 
appropriate. The limitation of the internal bypass is 
mainly due to the tight internal resources (RAM, ROM) 
of the controller. 
If the changes grow, or completely new functions are 
developed, the use of an external bypass system can be 
useful. With this, an existing function is cut out of the 
sequencing and replaced by a calculation in an external 
CPU. The communication to this external ECU is done at 
defined points before and after the existing function. So 
the new function gets the same timing environment than 
the existing one. The communication via separate data 
buffers to the external CPU ensures stability by default for 
the external calculated functionality. When using 
additional variables in the external calculation a 
coherency need might be not fulfilled. 
 

 

Fig. 12 : Partitionning of runnables and Buffers in 
shared context 

In both cases of external and internal bypassing, if race 
conditions are modified, the buffering configuration is not 
anymore valid, due to the modified cartography. It might 
be that a change in a bypassed function generates a 
change of buffering in a non modified & stable function. 
For instance, changing a write access to a read access, or 
changing the multiplicity of a read access might have 
impacts on the buffering status elsewhere. Therefore, the 
type of modifications that can be applied on an algorithm 
w/o impact on the race condition is very limited, in multi-
core context.  
In addition, if the required change affects tight integration 
requirements (e.g. working on a 100µs task in an 
electrical engine controller), or connection to HW features 
(e.g. special ASICs), that cannot be fulfilled by rapid 
prototyping, external and internal bypassing are also no 
options. 
 
In this case, the solution developed by Continental is the 
only alternative to the re-delivery of parts between OEM 
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and TIER-1 (with the consequences it has). As mentioned 
earlier, a high flexibility is provided to the OEM as long 
as the interface (= integration of the adaptation runnables) 
is unchanged. It is even possible for the OEM to change 
its own integration, and in particular investigate different 
core distributions of his SW. 
 
All the ways to evolve the functionality of the SW system 
will exist in future. Depending on the need for flexibility 
and the type of modification, the internal bypass will be a 
perfect solution for a rapid development. But due to its 
limitations other solution are needed. On the other hand, 
the parallel build gives full data protection and guarantees 
exact real time behaviour, but with the drawback of 
comparably long turnaround times due to build and flash 
times. 
 

6. Related works / State of the art 
 
For the discussed topics of shared development of 
embedded automotive software, state of the art are three 
quasi industry standards, depending on the use case and 
target platform in the given project context. The public 
promoted research project AMALTHEA [8] is of higher 
interest for software engineering of future multi- and 
many core software-systems. Parts of the pre-released 
results with a well-defined data-model from this project 
are already in use for software architecture specification 
and description. Currently in usage for exchange more 
present in the automotive embedded context are the 
working groups of ASAM MDX [5] and AUTOSAR 
[4][9] . Unified exchange and interoperability for software 
description are supported; all data models have equivalent 
core data.   
All these three standards enable software architecture 
engineering and exchange of relevant information. 
Depending on the use case, they are more or less suitable. 
In Table 2, the coverage of the different description 
context for all discussed use cases is compared for this 
three standards, where “x” means full support, “(x)” 
means partly supported and “-“ means currently not 
supported. In this comparison there where considered the 
latest versions with the highest coverage of information. 
  

About MDX 
 
The MDX description as an ASAM standard is used for 
single-core projects and with additions since version 1.3 
[10]. Also, software description for multi-core projects are 
supported with the mayor basic multi-core features, like 
basic timing requirements, data consistency needs and 
scheduling requirements from the OEM point of view. 
Complete system description with hardware- and 
operating system features are not supported. For the use 
case to describe and exchange the integration needs of the 
OEM application software it is suitable. 
 

About AUTOSAR 
 
Advanced description and new concepts like Application 
partitioning and more static architecture support is given 
with AUTOSAR from version 4.2, which includes the 
integration- and protection needs and further timing- and 
architecture description. It is the most established format 

in the automotive industry, has the most support from 
architecture and analysis tools and on this reason highly 
recommended. Nevertheless, the support of consistency 
needs (“groups”) on RTE side is still an open point. 
 

 About AMALTHEA 
 
Finally the AMALTHEA format from version 1.1.1 
[11][12], as the newest possibility in these cases, adds 
features and more support for the dynamic description of 
the software. It extends the architecture and timing 
requirements and gives possibilities to describe more 
technical design properties, for example of the target 
platform with its hardware or the operating system. For 
use cases like software simulation and partitioning of the 
software in multi-core context, this is recommendable 
[12]. This format is suitable for the exchange of complete 
system description typically generated from the TIER-1 
side, which is responsible for the integration. 
 

AMALTHEA (v1.1.1) 
AUTOSAR (v4.2)  

ASAM-MDX (v1.3)   
Software    
 Runnable level    
  Data access (i.e. interfaces) x x x 
  Access occurrences x - x 
  Runtime x x - 
 Process level    
  Activation (periodic, sporadic, single) x x - 
  Call sequence of runnables x - x 
  Hierarchical call sequences x - x 
  Logic grouping of runnables x - - 
 Signals    
  Data description (x) x x 
 Requirements    
  Execution Order Constraint x x x 
  Execution Order Constraint (hierarchical) - x x 
  Data Stability Needs x x x 
  Data Coherency Needs x x - 
  Data Age Constraints (time based) x x x 
  Data Age Constraints (cycle based) x x x 
Hardware    
 Cores (frequency, instruction per cycle, 
topology) 

x x - 

 Core features (lock-step, peripherals) x (x) - 
 Memory topology (bus, crossbar, caches, 
access times) (x) (x) - 

Operating System    
 Scheduling (algorithm, core resources) x (x) - 
 Process configuration x x - 

Table 2: Comparison of Standards currently in use in 
Automotive domain 

 
About the automotive domain 

 
The engine systems domain is the first one in automotive 
requiring an introduction of multi-core processors due to a 
lack of computing power (with the exception of 
multimedia). This is the domain where the deployment of 
multi-core is most advanced, and which has the tightest 
constraints as mentioned in chapter 2. 
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About other industrial domains 
 
To our knowledge, there is no other industrial domain 
where the development of embedded multi-core SW has 
similar constraints. In aeronautics, space and defense, the 
time to market, and target system price are not on the 
same magnitude, like security and safety requirements. As 
example, the following article shows the growth of 
automotive embedded SW with the aeronautic case [13]. 
In particular, in the aeronautic domain, the main focus is 
on the scheduling topic: due to safety issues, offline 
scheduling is widely used, which requires a safe 
estimation of the Worst Case Execution Times (highly 
impacted by new multi-core architectures). As example, 
in [14], the authors consider the access to shared 
resources only in the point of view of timing impact.  In 
Automotive, domain, offline scheduling is not so often 
used, as the mostly used OS is AUTOSAR OS or OSEK 
OS. This is even more true in the engine systems domain, 
where half of the SW is executed at angular (i.e. time 
variable) rates. Concerning data protection, some studies 
are conducted, which concern the detection of race 
conditions, but in our case, we aim not only to identify 
them, but also to protect them automatically. Furthermore, 
the shared resource topic is addressed under the view 
point of impact on timing and WCET. Also, the 
integration topic is also very specific to engine systems 
context, as mentioned in the chapter 2 about coupling.  
 

About ARAMIS and ARTEMIS ECSEL EMC2 
 
ARAMIS: 
In [15][16], the authors address the integration topic, but 
on a vehicle level, and on a basis of distribution of 
functions across ECUs. Multi-core is seen as an 
opportunity to reduce the number of ECUs in the car but 
requires a good distribution of the functions on the cores 
[17]. In [18], the particularity of engine systems is 
recognized as it is qualified as a central ECU. 
Several papers [19] address the topic of scheduling, of the 
verification of timing properties. But in general, 
individual components are considered, designed 
independently of any framework (reference architecture). 
Other papers [20][21][22] address the topic of detecting 
race conditions, but once again, our purpose is not limited 
to detection. 
ARTEMIS ECSEL EMC2: 
The project EMC2 is dedicated to multi-core mixed 
criticality systems, dynamically reconfigurable.  The 
objectives of this project have no relationship to our 
purpose, as the mix of OEM vs. TIER-1 Sw is not 
organized on a criticality basis (e.g. TOER-1 Sw low 
critical and OEM-SW high critical), but rather on a 
functional basis. Also, the critical/safety aspects are not 
part of this paper. Concerning the dynamic configuration, 
and/or reallocation of functions is not seen as a short term 
option, in regard to the tight coupling and real time 
requirements in the engine control area. One interesting 
paper [23] concerns the migration of legacy SW to multi-
core platforms, but the approach is different than the one 
chosen on our side, as a redesign of the functions is 
requested, according to a pre-established core allocation 
(which is part of the design itself). In our case, our clear 

goal is an independence of the design from the 
integration, which can change from project to project. 
 

7. Conclusion 
 
The formal requirement engineering on dynamic aspects 
has a relevant impact on the development process and 
artifacts to be handled. New templates, guidelines and 
trainings have been set up to cope with these challenges. 
New design rules are necessary, which will facilitate the 
parallelization of the control algorithms, but at the same 
time have to minimize the re-design effort: on OEM side, 
like on TIER-1 side, the design of the functions have to be 
prepared for multi-core, but have to be independent of any 
core and memory distribution, a choice which is highly 
project specific. It is also not possible to fix core 
distribution for a function for the next 10 years. To reach 
this goal of flexibility, it is therefore essential that the 
function development focuses on the original requirement 
(protection and integration needs), rather than on any 
implementation (e.g. using of double buffering). 
 
The introduced model based approach needs long term 
establishment, but in prototype projects the first 
experiences confirm significant easement, better system 
understanding for each party in collaborative process and 
in conclusion a key enabler to reach the multi-core 
challenges for SW development. Step by step the process 
and tools are adapted. 
 
Finally new technologies will arise, which will influence 
the design of the functions. For instance, dynamic 
scheduling / allocation to cores, different partitions in the 
ECU… Also, the increase of computation power linked to 
multi-core will certainly motivate higher integration of 
systems, going towards mixed domains ECUs. We can 
think of course about integration of Transmission Control 
Unit and Engine Control Unit, PowerTrain Controllers. 
But it is to be expected that functions out of the 
PowerTrain domain start to be integrated, leading to an 
even higher variability, and therefore needs for partial 
reprogramming, for instance. 
At the end, it is doubtless, that the multi-core introduction 
is at the origin of a big evolution of architectures, and the 
presented shared development process will be a key 
enabler. 
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Abstract— An important acceptance criteria for electric 

mobility is the capability to efficiently use the energy stored in the 

cells of a battery over the vehicle lifetime. The BMS (Battery 

Management System) plays a central role by estimating the state 

of charge (current energy available) and state of health 

(degradation due to ageing effects) of the cells. Improvement of 

the estimation quality has a direct impact on the battery and thus 

vehicle range.  It is the target of the INCOBAT project to 

improve the BMS system by means of new electronic components, 

new control strategies and new development methods in order to 

achieve cost reduction and performance (driving range) increase. 

In this context, the introduction of multi-core computing 

platforms aim at providing more computing resources and 

additional interfaces to answer the needs of new automotive 

control strategies with respect to computing performances and 

connectivity (e.g., connected vehicle, hybrid powertrains). At the 

same time, the parallel execution, resulting resources and timing 

conflicts require a paradigm change for the embedded software. 

Consequently, efficient migration of legacy software on multi-core 

platform, while guaranteeing at least the same level of integrity 

and performance as for single cores, is challenging. In this paper, 

the lessons learnt during the migration of the BMS control 

strategies to the INCOBAT BMS computing platform will be 

presented. 

Index Terms—Multi Core, Electric Vehicle, Battery 

Management Systems 

I. INTRODUCTION 

N recent years, electric mobility has been promoted as the 

clean and cost-efficient alternative to combustion engines. 

Although there are already solutions on the market, mass take-

up has not yet taken place. There are different challenges that 

hinder this process from an end user point of view such as 

costs of the vehicle, driving range, or infrastructure support. 

Several of these challenges are directly connected to the 

battery, the central element of the full electric vehicle (FEV). 

The costs of the battery sum up to 40% of the total costs of a 

FEV, and the driving range of a FEV is strongly reduced in 

comparison to the combustion engine.  

The aim of INCOBAT
1
 (INnovative COst efficient 

management system for next generation high voltage 

BATteries, started in October 2013) is to provide innovative 

and cost efficient battery management systems for next 

generation HV-batteries. To that end, INCOBAT proposes a 

platform concept in order to achieve cost reduction, reduced 

complexity, increased reliability as well as flexibility and 

higher energy efficiency. Moore’s law [1], stating the doubling 

of the computer capacity every 2 years, is still a strong enabler 

for this fast function increase and at the same time cost-per 

function decrease. The current development trend for 

computing platforms has moved from increasing the frequency 

of single cores to increasing the parallelism (increasing the 

number of cores on the same die) to limit the power dissipation 

while improving the performance. Multi-core and many-core 

technologies have strong potential to further support the 

different technology domains, but at the same time present new 

challenges. 

Hence, the automotive industry is facing a growing gap 

between the technologies and required level of expertise to 

make best use of them. The computing platforms are becoming 

more and more high-performance with concurrent computing 

capabilities, larger embedded memories as well as increasing 

number of integrated peripherals. Low-level mechanisms (e.g., 

memory protection, diagnostics) typically provided by the 

basic software or operating system are now being moved into 

the microcontroller. The complexity of these computing 

platforms is very high, the related user guides is made of 

several of thousands of pages. Regarding automotive operating 

systems and low-level basic software (BSW), the AUTOSAR 

approach is following a similar trend by standardizing several 

tens of BSW modules in several tens of thousands pages of 

specification. Similarly for the application software (ASW, 

e.g., control strategy for hybrid powertrains), the complexity is 

already very high and still growing by the introduction of new 

applications such as advanced driver assistance systems 

(ADAS) or predictive energy management strategies. 

 
1
 http://www.incobat-project.eu/  
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Additionally, the functional integration of the control strategies 

(e.g., transmission with combustion engine and e-drive) further 

raises the complexity of the resulting application. 

The automotive industry is confronted to the central question 

how to migrate, optimize, and validate a given application (or 

set of applications) on a given computing platform with a 

given operating system. A knowledge transfer is required to 

take over the role of control system integrator and identify the 

application requirements (both functional and non-functional) 

and to perform a mapping to the SW and HW architecture. 

The quality of this mapping has a direct impact on the 

performance of the control system, and thus of the entire 

mechatronic system. 

Main contribution of this paper is to summarize the lessons 

learnt during the migration of the existing BMS control 

strategy to the INCOBAT BMS platform based on multi core 

technology. The paper is organized as follow: Section 2 

introduces the INCOBAT project as well as the BMS platform 

based on Infineon AURIX
TM

 CPU. Section 3 will present the 

AVL BMS core functions (state of charge SoC, state of health 

SoH and State of Function SoF estimation) and the adaptation 

at the functional level that were performed to take advantage 

of the multi-core platform as well as to enable migration. 

Section 4 discusses the migration at software integration level 

and summarizes performance increase achieved. Finally, 

Section 5 concludes this work. 

II. THE INCOBAT PROJECT – AN OVERVIEW 

 

The aim of INCOBAT is to provide innovative and cost 

efficient battery management systems for next generation HV-

batteries. To that end, INCOBAT proposes a platform concept 

in order to achieve cost reduction, reduced complexity, 

increased reliability as well as flexibility and higher energy 

efficiency [2]. 

The targeted outcomes of the project are: 

 Very tight control of the cell function leading to an 

increase of the driving range  

 Radical cost reduction of battery management system  

 Development of modular concepts for system architecture 

and partitioning, safety, security, reliability as well as 

verification and validation, thus enabling efficient 

integration into different vehicle platforms. 

To achieve these ambitious targets, the technical approach 

chosen in INCOBAT primarily relies on the following 12 

technical innovations (TI) regrouped into four innovation 

groups (see Fig. 1): 

 Customer needs and integration aspects: ensures a 

correct identification of customer needs and enables an 

efficient integration into different platforms. This is 

supported by the use of mission profiles (TI-01) – in order 

to take into account the different driving styles of the 

customers, the different traffic conditions in the same 

scenarios and the different tracks – and by the integration 

into a demonstrator vehicle (TI-12) 

 Transversal innovation: consistent concept and 

specification. This second group targets the optimization of 

the system architecture and its consistent description over 

the technologies and over the system hierarchies. This 

aspect aims at providing a consolidated basis in order to 

simplify later industrialization of the proposed technologies. 

This includes the TI-02 “Model-based systems engineering” 

to improve correctness / completeness / consistency of 

system specification, the TI-03 “System architecture - 

efficient partitioning of the functionalities” for system 

optimization at BMS or even vehicle level and the TI-04 

“Integration of multiple functionalities” to reduce the 

number of electronic control units (and thus related costs) in 

the vehicle. 

 Technology innovation: E/E control system: This third 

group aims at improving the components of the E/E control 

system. Regarding the electronic parts, it consists of TI-05 

“Multicore computing platform for additional computing 

resources” and the TI-06 “Smart and integrated module 

management unit”. From the software part, this is achieved 

by the TI-07 “Modular SW platform” and by TI-08 

“Improved BMS control algorithms” 

 Transversal innovation: improving system maturity: This 

last group targets the evidences related to the trust on the 

technical solutions with respect to correct operation (TI-10 

“Design and validation plan including reliability 

consideration”), functional safety and security (TI-09 

“Definition and integration of safety and security concept”) 

as well as reliability (TI-11 “Reliability and robustness 

validation”). This group of technical innovations is an 

indicator for the maturity of the proposed technology and 

further provides information on the efforts required for 

proper integration and validation of the system.   

 

Customer needs and integration aspect

1
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12
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Figure 1: Technical innovations within INCOBAT 

 

The INCOBAT BMS CCU (see Figure 2) is based on the 

Infineon multicore processor AURIX TC275 with an 

innovative multicore architecture [3]. This device supports the 

concurrent execution of mixed ASIL functions up to ASIL-D 

[4]. It offers a rich set of peripherals such as A/D converters 

and timers for data capturing and it has a reasonable number of 

IOs to support BMS applications. In conjunction with the 

specific power-supply ASIC TLF35584 it is possible to supply 

the CCU and support ISO26262 requirements with a minimum 

number of components.  

 

Figure 2: INCOBAT BMS CCU Prototype Hardware 

Regarding the SW developments in INCOBAT, a modular 

development platform is required. Hence, the control strategy 

and the application software in general are expected to come 

from different providers and to require different levels of 

criticality. The activities of SW architect – to define the SW 

blocks as well as their interfaces – and the activities of SW 

integrator – integrating the different SW modules and ensuring 

correct operation of the entire control system – are especially 

challenging in the context of automotive supply chain with 

constraints related to functional safety (ISO 26262 [5]). A 

modular platform is required to enable the distributed 

development and flexible deployment of different control 

strategies and applications in an efficient way. 

For the SW developments in INCOBAT, the proposed 

common, modular software development platform consist of: 

 a layered SW architecture, consisting of several layers 

and components as well as their interfaces, providing access 

for the applications to the underlying HW capabilities, 

 a suitable SW development tool chain, which supports the 

application SW developers by means of an effective and 

consistent development process to seamlessly integrate their 

particular applications to an overall BMS. 

III. FUNCTIONAL MIGRATION OF THE BMS CONTROL 

STRATEGY  

A. Model-based battery state estimation 

1) Introduction 

Accurate estimation of battery parameters such as SoC, SoF 

and SoH requires model-based estimation methods in which a 

representative model of the battery is utilized as part of the 

algorithm. Incorporation of a battery model enables many 

possibilities including: 

 Capturing expected behavior, to be compared with actual 

measurements for inference of parameters causing the 

deviation, 

 Ability of algorithms to handle different operating 

conditions and usage scenarios, 

 Generation of a “prediction error” signal that is necessary 

for modern estimation methods such as Kalman Filters, or 

other similar types of Observers. 

 Ability of the algorithms to be adapted to different cell 

types, and cell chemistries via only adapting the 

incorporated battery model 

 Possibility of making predictions of various battery 

behaviors as well as battery condition 

Model based approach to battery state and parameter 

estimation, therefore has many advantages.  

An overview of how a battery model may be used as part of 

the algorithms is given in Figure 3. This architecture uses the 

output of the battery model for the prediction step of the 

estimation method, and compares it with the actual 

measurement to generate an “error” signal. This error signal is 

then utilized as part of the algorithm to calculate important 

signals such as SoC and eventually to update the model and 

adapt it to the actual battery and operation conditions. This 

architecture is what enables adaptation to various operating 

conditions and handles situations where the model may not 

represent battery behavior accurately.  

Battery Model

internal states:
SOC
States corresponding to the over-voltage

predicted
voltage

current

reference 
temperature

measured
voltage

-

 

Figure 3: Overview of Model Based Estimation for Battery States 

The battery model has to be constructed and parameterized in 

accordance with the type of cell used in the target application 

since there are large differences of behavior between various 

types. The model parameterization requires test data that 

captures the behavior of the cell (e.g. terminal voltage 

response, surface temperature) under various operation 

conditions in terms of ambient temperature and usage (i.e. load 

current). 

However, there are certain drawbacks included with usage of 

model based estimation techniques, such as relatively high 

computation power demand, necessity of a high quality 

parameterization to obtain satisfactory performance and the 

necessity to ensure stable behavior over all possible operating 

conditions.  
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2) SoC Estimation 

The State-of-Charge is defined as the percentage of the 

maximum possible charge that is present in the battery. The 

SoC can’t be measured directly, but an accurate SoC on pack 

and on cell level is mandatory for the energy management 

control system (State of Function Calculation). Several 

methods have been developed in the past: 

 Coulomb counting (Ampere-Hour Counting) 

 Open circuit voltage 

 Neural Networks 

 Heuristic interpretation of measurements, Fuzzy Logic 

 Model-based estimation methods 

o Kalman Filter for battery SoC determination 

o Luenberger Observer 

 Sliding-Mode Observer 

 LPV Observer 

A detailed description of available methods for SoC estimation 

is given in [6]. Furthermore, common algorithms for State-of-

Health (SoH), State-of-Function (SoF), Remaining useful Life 

(RUL) are introduced. 

Nowadays, the most widely used SoC-estimation algorithms 

are Kalman-filtering techniques. They are based on an 

equivalent circuit model (ECM) of the battery. 

The ordinary KF can be used for linear models. Since the 

battery is a highly nonlinear system, a Kalman filter is 

necessary, which permits the use of nonlinear models. The 

Extended Kalman Filter has  the ability to handle such kinds of 

models. A big advantage of a KF is that it considers 

measurement and process noise due to voltage sensor 

inaccuracy, temperature fluctuations etc. to estimate the states 

of the battery. 

One of the first use of an EKF (Extended Kalman Filter) for 

SoC estimation of lithium-batteries is published in [7], [8] and 

[9]. These papers describe the mathematical background, the 

modeling of the battery with its identification requirements and 

the final implementation of the EKF for SoC estimation. 

Additionally, an algorithm for SoH estimation is presented. 

The publications [10] and [11] describes a modified KF. The 

Sigma-Point Kalman filter is a more accurate estimation 

approach, although the computational demand is of the same 

order as EKF. A comparison between SPKF and EKF show an 

improvement of the estimation. Moreover, an advanced 

algorithm is presented, where state and parameter estimation is 

done simultaneously. A summary of the mentioned algorithms 

is presented in [12]. 

A slightly modified Kalman filter with lower computational 

demand is used for SoC estimation as part of INCOBAT. The 

algorithm runs on module level.  

The SOC-function estimates: 

 Module States: States of the battery model (model has 6 

states, including SoC of the battery) 

 Module State of Charge 

 Module OCV: Open circuit voltage of the module 

The relatively high computational demand makes it very 

challenging to run the KF on cell-level with state-of-the-art 

battery management systems (BMS), especially for battery 

packs intended for high voltage applications. That is why 

SOC-estimation is done on module level. 

3) SoH Estimation 

The State-of-Health is a measure of the condition of the 

battery compared to the fresh battery. It is characterized in the 

loss in capacity and the increase in resistance.  

To assure correct SoF and SoH estimation of a battery pack, it 

is necessary to have information of the cell-SoC and the cell-

resistance as well. An algorithm to estimate these values is 

described in [13]. The basic mathematical background of the 

estimation approach is described in the next sections. 

The cell observer is used to determine the deviation of each 

cell compared to the mean module state already estimated as 

part of the SoC function and the module resistance observer. 

The aim is to utilize a much simpler linear algorithm for 

computational efficiency.  

The used model is a linearized model that describes the 

deviation of each cell from the module mean rather than full 

cell dynamics. The algorithm is a modified version of the 

Recursive Least Squares, a well-established algorithm 

commonly used in state and parameter estimation problems. 

4) SoF Estimation 

The State-of-Function consists of measures for the ability to 

fulfill the application specific function of the battery. The 

BMS has to calculate current and voltage limitations such that 

the battery is operated in a safe operating mode and the 

performance and lifetime targets are met. 

Start

i = 1

i ≤  Number of 
Cells in Pack

 ChaLim(i) = Maximum charge 
current/power of cell

 DChaLim(i) = Maximum discharge 
current/power of cell

True

i = i+1

 ChaMax = min(ChaLim)
 DChaMax = min(DChaLim)

False

End

 

Figure 4: State of Function Flow Chart 

State of Function calculation is responsible for determining 

available functionality of the battery, which would be either 

current or power that can be supplied to the powertrain, 

considering the maximum allowable cell voltage and the 

maximum allowable operating current. The SoF calculation is 

based on a prediction of future cell voltages for a calibrated 

prediction time with an electrical model. 

Basically, the limits are calculated for each cell, as it is shown 

in Figure 4. The flowchart shows an iteration over the 

maximum number of cells in the battery pack. For SoF limits, 
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the results of the ‘worst’ cell (e.g. highest inner resistance) are 

taken into account. In more detail, the calculation estimates a 

current limit, based on the average cell voltage in a module. 

Afterwards, the limits are corrected by the worst cell in a 

module. The worst cell is identified by the calculated dSoC 

and dR values. 

The algorithm provides the maximum charge and discharge 

current limits, as well as the maximum charge and discharge 

power. The power limitations can be calculated by a 

multiplication of the current and voltage limits. 

5) Function inter-dependencies 

Figure 5 provides an overview how the algorithms for SoC, 

SoH and SoF estimations are implemented. SoC and SoH 

estimations run on module-level due to the high computational 

demand, whereas the SOF are calculated per cell. The battery 

pack SoC is simply the average of the estimated Cell SoC 

values. To get a plausible SoH of the module resistances of the 

battery pack, delta SoC and delta R should be considered. 

 

Figure 5: Information flow of estimation algorithms 

6) Functional migration to parallel computing scheme 

From the point of view of the model-based battery state 

estimation, the main focus is on the analysis of the existing 

algorithms (currently running on single core computing 

platform) in order to identify possible improvements with 

respect to SoX estimation accuracy while making use of the 

additional computing power of a multicore processor. The 

main target is to improve the accuracy of the estimations from 

a group of cells (e.g. a module) down to single cell level. In 

our case, the sensor platform already provides the information 

required to measure the cells. The challenging factor here is to 

run a dedicated instance of the existing model estimation 

algorithm for each single cell instead of one instance for a 

group of cells. The required computing power (number of 

algorithm instances running in parallel) is therefore directly 

dependent on the modelling accuracy (reduction of the number 

of cells taken into consideration for one algorithm instance). A 

higher modelling accuracy provide more accurate information 

on the status of the cells, thus moving the limits for the use of 

each single cell (and therefore of the entire battery at the end) 

from a conservative boundary to a more real limit. 

Consequently, it can be assumed that the range of the vehicle 

and cycle life of the battery can be increased due to the precise 

estimation approach. 

B. Electrochemical Impedance Spectroscopy (EIS) 

1) Introduction to EIS 

This methodology measures dielectric properties of a medium 

as a function of frequency. In particular, as applied to the 

battery cells, the goal of the EIS is to determine the impedance 

parameters, and the state of health (SoH) of the cells as a 

function of the impedance. In order to successfully determine 

the EIS spectrum it is necessary to take into account certain 

inherent problems in the method and the component under test.  

The EIS analysis is based on the following prerequisites:  

a) the system must be linear 

b) the system parameters should not vary over time  

c) the system must be single input, single output (SISO) 

The lithium battery is not generally satisfying these 

requirements: therefore, additional assumptions have to be 

made. 

First, the characteristic of a battery is not linear: To calculate 

the impedance it is therefore necessary to proceed to a 

linearization. The used technique is to identify a working point 

on the electrical characteristic and to generate a small 

perturbation of it. Analyzing a small enough portion of a cell's 

current versus the voltage curve, it is considered to be linear. 

Therefore, in normal EIS practice, a small (1 to 10 mV) AC 

signal is applied to the cell: this is small enough to confine the 

test into a pseudo-linear segment of the cell's current versus 

voltage curve. 

Second, the battery parameters are not constant: in general, 

even with open battery-terminals (i.e. zero current), the battery 

voltage varies over time depending on the previous history. To 

allow the stabilization of the battery voltage it is necessary to 

wait for the conditions of electrochemical balance in the 

battery. The required time, also referred to as “settling time” or 

“relaxation time” depends on the temperature (ion mobility) 

and is estimated in the order of a few hours. A measurement 

made before reaching the equilibrium condition produces data 

with variations especially in the lower part of the spectrum. 

These variations are more or less evident depending on the 

imbalance inside the cell. 

Lastly, the voltage in a battery does not depend exclusively on 

the current flowing through it, but also on other parameters, in 

particular temperature and SoC. During each EIS 

measurement, these parameters must remain constant, in order 

not to influence the output voltage. In general, it must be 

ensured that the battery open circuit voltage does not vary 

within the range of the test, or this change will be computed in 

the spectrum of impedance. 

Based on the assumptions above, the stimulus signal needed 

for the EIS test shall have the following characteristics: 

 The spectrum of the stimulus shall adequately cover the 

whole frequency range that has to be analyzed (typically 

from 0.01 Hz to 1 kHz) 

 The signal amplitude shall be “small enough” to avoid 

triggering any nonlinear response in the battery 
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As a drawback, the smaller is the signal amplitude, the worse 

is the signal to noise ratio. For this reason, a dedicated HW 

solution is needed to obtain a good resolution in the acquired 

signal. In particular, the proposed solution is: 

 Amplify and adequately filter the signal, due to the small 

signal amplitude 

 Remove the OCV voltage, which is not useful for EIS 

measurements 

 Read each voltage value through a differential amplifier 

All of the above-mentioned features are implemented in a 

dedicated EIS daughterboard, working together with the CCU-

BMS board. Figure 6 below shows a functional block diagram 

of the daughterboard, integrating: 

 The EIS Command Generator: a  voltage DAC needed to 

generate the stimulus signal 

 12x EIS cell voltage measurement circuitry (differential 

amplifier + OCV cancelling + 4th order Bessel anti-

aliasing filter) 

 2x EIS current measurement circuitry (4th order Bessel anti-

aliasing filter) 

 

 

Figure 6: EIS daughterboard 

In particular, the OCV has to be measured before applying the 

stimulus signal, and then removed through the dedicated DAC; 

this is part of the features implemented in the EIS software. 

Finally, the stimulus signal generated by the daughterboard is a 

voltage signal; an external amplifier (in particular, a 

transconductance amplifier) is needed to drive the current that 

is injected into the cells. The chosen signal, used as a current 

stimulus, is a sum of sinusoidal current waveforms with 

predefined frequencies, in the range 0.01 Hz to 1 kHz, with a 

selectable current amplitude. 

2) The resulting EIS algorithm 

The EIS algorithm (Figure 7) injects a known current stimulus 

into the battery cell, reading the resulting voltage. Due to the 

assumptions described previously, the EIS algorithm will run 

after a relaxation time, needed for the battery parameters to 

reach a steady condition. 

The measured signals from the battery shall then be analyzed, 

for each frequency, to determine the spectrum of the signal at 

that frequency. The idea is to correlate the measured signal to 

the input waveform, to obtain magnitude and phase 

information about the analyzed signal. 

The response waveform from the battery typically has a DC 

offset, harmonic distortion components, and noise components 

generated by the cell. Nevertheless, the element of the 

measured signal, which needs to be analyzed, is the one at the 

same frequency as the generator waveform. All of the spurious 

components of the measured signal need to be rejected so that 

accurate measurements of the fundamental signal at the 

generator frequency can be made. 

EIS algorithm

Input signal
generation

Battery
model

Heterodyne
(current)

Heterodyne
(voltage)

÷

Current I(t)

Voltage
V(t)

I(wi)

V(wi)

Z(wi)

 

Figure 7: EIS algorithm overview 

The measured system output is multiplied by both the sine and 

cosine of the test frequency ω. The results of the 

multiplications are then fed to two identical integrators, where 

they are averaged over T seconds. As the averaging time 

increases, the contribution of all unwanted frequency 

components go to zero and the integrator outputs become 

constant values which depend only on the gain and phase of 

the system transfer function at the test frequency. 

Harmonics are rejected by the correlation process, and noise is 

rejected by averaging the signal over a number of cycles; the 

averaging associated with the correlating frequency response 

analyzer acts as a band pass filter with center frequency ω. As 

the average time T increases the bandwidth of the filter 

becomes narrower, thus the corrupting influence of wide band 

noise is increasingly filtered out as the correlation time is 

increased. 

Averaging over a complete cycle avoids certain measurement 

errors associated with offsets on the system output; the 

performed simulations demonstrates that acquiring on a time 

window of three complete periods, we obtain an effective 

rejection of all frequencies above 0.1 Hz. Since the minimum 

frequency is 0.01 Hz, three complete periods corresponds to 

300 seconds. 

The result of the correlation process is made up of two 

components one of which is referred to as the Real (or in 

phase) component, the other is the Imaginary (or quadrature) 

component. By performing simple mathematical operations on 

these raw measurement results, it is possible to obtain the 

magnitude and phase of the impedance. 

3) EIS Software implementation 

The EIS Software consists of several SW components, using 

resources either directly from the Aurix microcontroller or 

through the EIS daughterboard 

In particular, the EIS consists of: 

 Complex Device Drivers (CDD): 
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o OCV removal: generates the signals needed to remove 

the OCV from the measured cell voltage; OCV shall 

be measured before applying the stimulus signal, and 

then canceled through a dedicated DAC signal. 

o EIS Command Generator: its purpose is to generate the 

EIS Command signal (voltage reference) representing 

the current stimulus to be forced into the battery pack 

 iLLD (Low-Level-Drivers from Infineon): mainly this will 

be used for the analog input signals acquisition and for the 

coherent measurement of: 

o Cell voltages - both DC and AC (useful EIS signal) - 

for each battery cell 

o EIS current flowing in the battery module/pack 

 Application 

o Data Processing System for the calculation of the EIS 

spectrum 

Start

T = 0

Coherent read of 
current and 

voltage

Heterodyne
(current)

Heterodyne
(voltage)

T = T+250us

T < 
300s

End

Impedance
computation

True

False

 

Figure 8: EIS application flowchart  
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Figure 9: EIS software architecture 

In particular, the application layer implements the EIS 

algorithm, as described above; the flowchart in Figure 8 shows 

an overview of the algorithm, that is executed for the whole 

time of the test (300 seconds), subsequently using then the last 

output from the integrators to compute the impedance. The 

resulting SW architecture is depicted in Figure 9. 

4) Functional migration to parallel computing scheme 

Since the EIS algorithm has been developed from scratch 

within the INCOBAT project, no specific migration from 

single core (sequential) to multi-core (parallel) computing 

scheme was required. The challenges are focused on the 

proper SW integration and resource managements. This will be 

discussed further in the next section.  

IV. SOFTWARE INTEGRATION ON MULTICORE PLATFORM 

A. Software development environment 

The large variety of use cases as well as business organization 

is leading to different requirements on the development 

framework and build environment: 

 Flexible configuration of source files, include files and 

directories for building code for each core. This targets 

increase in build efficiency as well as constructive 

integration [14] by the capability of updating a core 

independently from each other  

 To have a sufficient intellectual property (IP) protection 

linking of external pre-compiled objects / libraries to the 

main binary of each core shall be possible. This is 

especially required in case of distributed development – 

means different teams / company integrating their IP into 

a common computing platform 

 Adaptations to other compilers shall be possible with less 

effort.  

 Integration of additional tools shall possible with less effort. 

These two last items are related to the distributed 

development of the entire SW by different teams relying 

on different development processes and consequently 

different tools 

In the context of INCOBAT, the development environment 

shall be a low cost solution with capabilities to be deployed by 

each INCOBAT partner while minimizing the licensing costs. 

To meet all these requirements for the INCOBAT project a set 

of tools was used to establish the SW development framework. 

The basic configuration of the SW development environment 

consists of a standard set of make files and target rules, a 

common memory mapping and compiler associated make and 

linker files.  

To allow utilization of the ERIKA
2
 operating system from 

Evidence into the integration and build process, the command 

line interface (CLI) from RT Druid was integrated in the build 

environment in form of make target rules. The OS 

configuration, including the definition and core allocation of 

counters, alarms, task, spinlocks and resources is done via 

OSEK implementation language (OIL) file, which is feed in 

RT Druid for the generation of the OS Erika related code and 

header configuration files for each core.  

The build process is setup in such a manner that for each core 

a separate binary image is generated. This allows SW updates 

on one core without the need of rebuilding the other cores. Of 

course, this mechanism is only applicable if the applied 

changes do not affect the other’s core SW and if the SW of the 

different cores can access peripherals of the microcontroller 

only via one dedicated interface. The SW code allocation to 

the different cores is done statically via one manual 

configurable make file, in which for each core application 

 
2 http://www.evidence.eu.com/  
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source and include files or directories, pre-compiled objects 

and libraries can be setup. 

 

GNU Make Cygwin

.oil

.c/.h.c/.h.c/.h

OS ErikaBSW iLLD

.c/.h

ASW

Models

.hex .hex .hex

CPU0 CPU1 CPU2

Embedded   
Coder

.mk.awk .lsl

SW development framework

 

Figure 10: INCOBAT SW development framework 

The memory allocation is done aligned to the AUTOSAR 

memory mapping approach and configured memory sections in 

the linker script. Depending on the currently identified CPUx 

in generation, the linker performs allocation of code and data 

to predefined flash and core local data scratchpad RAM 

memory sections.  

The shared data of the cores is defined and allocated by the 

master core and placed into the local data scratchpad memory 

of that core which is the producer of the data element. The 

exchange of the memory information to the slave cores is done 

by dumping of master core’s binary shared memory sections 

and export to a separate shared sub linker file which is 

generated during the build of the master core. The sub-linker 

script is used in the later build phases of slave cores for 

address resolutions of the shared data elements. 

Another important aspect for the SW development 

environment was tool integration – in our case the mapping of 

the system information with the SW development framework. 

During the scope of the project, different tool interfaces for 

generating AUTOSAR aligned SW information where 

generated. The proposed tool interfaces mainly relies on four 

level of exchanges – all aligned with the AUTOSAR or OSEK 

standard. The first level (AUTOSAR tool-bridge) aims at 

describing the SW components (SW-C) and their interfaces – 

and serves proper integration of control strategies and 

application SW. The second level (RTE configuration) targets 

the description of the real-time environment for according 

configuration. The third level focuses on basic SW (BSW) 

configuration, while the fourth level aims at describing the 

operating system (tasks available in the system and their 

related options). More information is available in [15], [16] 

and [17]. 

B. Software architecture 

To ensure modularity and reusability the SW architecture was 

split in several layers aligned to AUTOSAR: 

 Infineon iLLD – similar to AUTOSAR MCAL, providing 

abstraction to HW I/O’s, other peripheral modules, and 

startup code for the cores 

 OS Erika – OSEK/VDX certified asymmetric operating 

system, where each core has its own copy of the OS 

instance 

 BSW including complex device drivers and other coded 

BSW services  

 ASW and ASWIL, to reduce the complexity of the system 

each ASW component is accessing its data via separate 

interfaces from the BSW or IOC module. During the 

execution of the function group, each core is using its 

local buffered data wherever possible to minimize 

execution time caused by inter-core accesses and remote 

blocking. 
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Figure 11: INCOBAT SW architecture 

For the multicore capabilities, several SW functionalities were 

used similar to the currently defined and supported 

AUTOSAR concepts: 

 Synchronized master slave startup and shutdown approach 

of the cores. During startup of master core 0 the other two 

slave cores are in idle. They startup with a 

synchronization barrier during startup of the OS. During 

shutdown, the reversed order is used and master core 

waits until synchronized shutdown of slave cores. 

 Functional based inter-core data exchange of single signals 

or groups similar to the AUTOSAR Inter-OS-Applicator 

communicator (IOC).  

 Usage of spinlocks to guarantee data consistency for core-

to-core data exchange. The spinlock mechanism was 

combined with immediate suspension of interrupts in 

order to reduce the time of remote blocking. Additionally, 

to prevent from deadlocks nested acquisition of spinlocks 

was avoided.   

C. Verification environment – mini-HiL 

An important target and basis for the proper SW development, 

verification and integration is the deployment of appropriate 

test environment. Hence, the test environment shall be flexible 
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enough to enable different kind of stimulation for the functions 

developed and realistic enough to accurately model the physics 

related to the system to control. In the context of INCOBAT, 

the simulation environment is playing an important role in 

different work-packages and tasks: 

 White box testing: verification of single SW function such 

as control strategy (e.g., battery state estimation), safety 

function (e.g., control of battery’s main relays) or basic 

SW (e.g., low-level drivers). Target is to provide the 

direct environment for these functions, therefore 

sometimes shortening the SW system by investigating 

only one function 

 Grey box testing: validation of SW system and especially 

correct integration of the functions into the control system 

as well as correctness of the interfaces 

 Black box testing: validation of the safety mechanisms – 

especially ensure correct reaction of the control system in 

case of hazardous situations 

In the context of INCOBAT, different approaches are used:  

 Model or SW in the loop (MiL / SIL): direct verification of 

single SW function  

 Hardware in the loop (HiL): verification and validation of 

set of functions up to SW system in a real control system 

 Vehicle demonstrator: prototyping validation in vehicle 
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Figure 12: HiL test environment 

While MiL and SiL are state of practice and will not be 

discussed any further, a dedicated mini-HIL platform for the 

efficient validation of the BMS (E/E system including satellite 

units and central controller) has been deployed. This platform 

is conjointly used for white, grey and black box testing – with 

different focuses as described previously, 

For a validation of the SW multicore integration approach and 

the battery SoX estimation algorithms following HiL test 

environment was setup, see Figure 12. 

 

In a first phase, the battery estimation algorithms were 

stimulated with battery cell data via CAN wrapper. For the 

stimulation of the battery load profiles the test and automation 

environment from NI Veristand was used in combination 

CompactRIO HW. With support of the XCP protocol, 

measurement and calibration access to each core’s local 

memory was established. 

D. Performances achieved and lessons learnt 

A first comparison of the battery state estimation, while 

moving the computation accuracy from module to cell level, is 

shown in the following. The red curves represent the results of 

the modified estimation approach. Figure 13 illustrates the 

minimum and maximum cell SoC, while the discharge current 

limits during the cycle is illustrated in. Figure 14. Especially at 

the end of the cycle (at 6000s), a higher difference between the 

estimation on cell-level (red curve) and the estimation on 

module-level (blue curve) can be recognized. It is important to 

note that the results achieved in SiL and MiL environment are 

highly coherent (SoC and SoH difference below 0.05%) 

therefore confirming the correct integration into the multi-core 

computing platform.  

 

Figure 13: SoC computation at module and cell level 

 

Figure 14: SoF computation at module and cell level 

Figure 15 is summarizing the computing resource usage (task 

execution time) for the current implementation. As stated in 

Section 4-B, an instance of the operating system ERIKA is 
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running on each core. Core 0 is managing the BSW and 

drivers, the battery state estimation algorithm is run on Core 1, 

and Core 2 is reserved for EIS. It can be noticed that the 

operating system task is consuming slightly more than 10% 

core time for this configuration. The computation of the SoX 

function at pack level requires less than 5% core time. By 

improving the computation accuracy to cell level, then a 

computation time of 15% of the core time is required. This 

illustrates the computing requirement (factor 3) in comparison 

to computation at module level. At the same time, it illustrates 

that integration of other functionalities into the AURIX 

platform (thus reducing the number of electronic control unit) 

is easily possible. 

 

Figure 15: Computing resource usage for the three cores 

It must be noted that at this stage of the project no particular 

approach was deployed for the systematic exploration of 

timing behavior and resource management. The decisions 

related to startup and shutdown sequences and handling, 

possible deadlocks, delays caused by remote blocking, 

memory allocation, as well as ASW functionality scheduling 

and partitioning were made based on expert knowledge. This 

step (scheduling analysis) will become essential to ensure an 

efficient and balanced functionality partitioning and 

scheduling and is part on ongoing work. 

V. CONCLUSION 

Accurate understanding and modeling of the physical 

behaviors of the cells’ chemistry is pre-requisite for proper and 

optimized control of the HV battery, thus moving the limits for 

use of each single cell (and therefore of the entire battery at the 

end) from a conservative boundary to a more real limit. 

Consequently, it can be assumed that the range of the vehicle 

and cycle life of the battery can be increased due to the precise 

estimation approach. 

The continuous advances in chip design (multi-core computing 

platforms for automotive applications) and embedded SW 

engineering (AUTOSAR) are providing important basis to 

deploy complex and accurate control strategies. At the same 

time, the competences and skills gap is growing apart between 

the different technologies. The seamless migration of an 

existing control strategy to a multi-core platform, while 

considering functional and non-functional requirements (e.g., 

performances, timeliness, safety), is not an easy task. During 

this paper, the migration of battery estimation functions (SoX) 

to an AURIX platform was presented. The migration has led to 

more accurate battery state estimation and illustrated that the 

proposed CPU provides enough performances for integration 

of further functionalities, thus providing the potential for 

reduction of number of discrete electronic control units within 

the vehicle. At the same time, an important lesson learnt was 

the need to proper analyze and manage startup and shutdown 

sequences, possible deadlocks, delays caused by remote 

blocking, memory allocation, as well as ASW functionality 

scheduling and partitioning. These aspects is already part of 

ongoing work.   
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Abstract

We present an extension of Astrée to concurrent C soft-
ware. Astrée is a sound static analyzer for run-time er-
rors previously limited to sequential C software. Our
extension employs a scalable abstraction which covers
all possible thread interleavings, and soundly reports all
run-time errors and data races: when the analyzer does
not report any alarm, the program is proven free from
those classes of errors. We show how this extension is
able to support a variety of operating systems (such as
POSIX threads, ARINC 653, OSEK/AUTOSAR) and
report on experimental results obtained on concurrent
software from different domains, including large indus-
trial software.

1 Introduction

Safety-critical embedded software has to satisfy strin-
gent quality requirements. All contemporary safety
standards require evidence that no data races and no
critical run-time errors occur, such as invalid pointer ac-
cesses, buffer overflows, or arithmetic overflows. Such
errors can cause software crashes, invalidate separation
mechanisms in mixed-criticality software, and are a fre-
quent cause of errors in concurrent and multi-core ap-
plications.

The last years have seen the emergence of semantics-
based static analysis tools able to detect run-time errors,
such as the Astrée analyzer [6]. However, such tools
cannot handle concurrent programs at all, or with the
same level of soundness, coverage, and automation as
sequential programs: they would not cover all potential
process interleavings, or require the user to enter manu-
ally the set and range of shared variables, or miss sup-
port for concurrency primitives (such as mutexes) or the
detection of concurrency-specific hazards (such as data
races). We present here an extension of Astrée to ana-

lyze soundly and automatically concurrent software.
The article is structured as follows: first, in Sec. 2, we

give an overview of sound static analysis and of Astrée.
In Sec. 3, we explain the key concepts underlying our
interleaving semantics, which makes it possible to ana-
lyze concurrent programs in a scalable and sound way,
and report all run-time errors and data races. Section 4
discusses our support for several standard operating sys-
tems, enabling the automated analysis of software run-
ning under these OS. Section 5 discusses our experi-
ments: the analysis of industrial avionic software, as
well as preliminary results on ongoing experiments on
OSEK software. Section 6 discusses related work. Sec-
tion 7 concludes.

2 Overview of Astrée

Sound static analysis. Astrée discovers errors by in-
specting the source code without running it. It traverses
the program control structure and interprets program in-
structions according to the language semantics to build
automatically a model of its executions. To ensure ef-
ficiency, the model must be approximated, but we take
care to always use over-approximations. Thus, in con-
trast to most other static analyzers, Astrée makes sure
that all possible program executions are taken into ac-
count: it achieves a full coverage of the whole control
and data space of the program. For this reason, it is
sound: whenever no error is reported, we are certain that
no error can exist in the actual program executions ei-
ther. Like all sound static analyzers, Astrée may report
false alarms (notifications about potential run-time er-
rors which do not occur in real program executions). An
important design goal of the analyzer, reached in 2003,
was to achieve zero false alarm on a significant class
of sequential software: large industrial avionics control-
command software [6].

1



Language. Astrée has been developed for safety-
critical C programs and is based on the C99 standard
[17]. It supports all C control structures and C datatypes,
provides a stubbed C library and even supports dynamic
memory allocation. The only notable limitations are
that recursive calls will be detected and reported as an
alarm without trying to analyze the recursive invoca-
tions; moreover, long jumps are not supported. As a
recent extension, Astrée supports concurrency features,
such as threads and locks (Sec. 3) and can analyze soft-
ware running on top of operating systems implement-
ing common standards (e.g., POSIX, ARINC 653 [4],
OSEK/AUTOSAR [1], see Sec. 4).

Semantics. The semantics of programs used by
Astrée is based on the C99 standard [17]. How-
ever, the standard provides a high-level and abstract
semantics, leaving many aspects of program behav-
iors implementation-defined, unspecified, or undefined.
Implementation-defined features, such as the bitsize of
integers can be configured. Moreover, Astrée employs a
low-level memory semantics, which is aware of the bit-
level representation of objects, that can be configured as
well [21] (cf. also Sec. 3). This gives a semantics to un-
defined behaviors, such as type punning or wrap-around
after signed arithmetic overflow, often used in low-level
embedded code, and allows Astrée to analyze such pro-
grams correctly and precisely. This low-level semantics
also frees Astrée from the reliance on static type infor-
mation, so that it can handle the common case where an
unstructured array of bytes is dynamically reinterpreted
as a structure of some type. Astrée can also handle
multi-dimensional arrays encoded explicitly in a single
array using index arithmetic. Floating-point numbers
are modelled faithfully according to the IEEE 754 norm
[15], including special numbers (infinities and NaN) as
well as rounding.

Error checking. Astrée signals all potential runtime
errors and further critical program defects. It reports
program defects caused by unspecified and undefined
behaviors according to the C99 standard [17], program
defects caused by invalid concurrent behavior, viola-
tions of user-specified programming guidelines, and
computes program properties relevant for functional
safety. Astrée raises alarms for operations resulting in
unpredictable program behaviors, such as invalid array
and pointer accesses. Alarms are also raised for invalid
operations triggering exceptions, such as divisions by
zero or floating-point overflows, and for dangerous op-
erations whose result, although well-defined either in
the C99 standard or in Astrée’s more refined semantic,
may be unexpected, for instance wrap-around after un-
signed or signed arithmetic overflow. Astrée does not
stop at the first error, but strives to continue the anal-
ysis with a reasonable result. This is useful to handle,
e.g., programs with intended wrap-around, and prevents

a benign error from masking a subsequent, more serious
one. Astrée also permits users to specify their own func-
tional properties to be checked with an assertion mech-
anism (similar to C’s assert command), and will report
any violation. Finally, Astrée includes a rule checker
that supports MISRA C:2004 [26] and MISRA C:2012
[27] and can be extended for customer-specific rule sets.

Abstraction. Astrée is based on abstract interpreta-
tion [7]: it uses abstractions to represent and manipu-
late efficiently over-approximations of program states.
One simple example of abstraction used pervasively in
Astrée is to consider only the bounds of a numeric
variable, forgetting the exact set of possible values
within these bounds. However, more complex, but also
more costly, abstractions can also be necessary, such as
tracking linear relationships between numeric variables
(which is useful for the precise analysis of loops). As no
single abstraction is sufficient to obtain sufficiently pre-
cise results, Astrée is actually built by combining a large
set of efficient abstractions (e.g., the octagon domain
[22]). Some of them, such as abstractions of digital fil-
ters [10], have been developed specifically to analyze
control-command software as these constitute an impor-
tant share of safety-critical embedded software. In addi-
tion to numeric properties, Astrée contains abstractions
to reason about pointers, pointer arithmetics (abstract-
ing offsets as numeric variables), structures, arrays (in a
field-sensitive or field-insensitive way). Finally, to en-
sure precision, Astrée keeps a precise representation of
the control flow, by performing a fully context-sensitive,
flow-sensitive (and even partially path-sensitive) inter-
procedural analysis.

Analysis options allow fine-tuning the analysis pre-
cision, either with global parameters or with local di-
rectives focusing precision on some program parts and
some variables. All Astrée directives, e.g., for specify-
ing range information for inputs or adapting the preci-
sion of the analyzer can be specified in the formal lan-
guage AAL [3] by locating them in the abstract syn-
tax tree without modifying the source code — a prereq-
uisite for analyzing automatically generated code. To
deal with evolving software Astrée provides a mecha-
nism to detect whether annotations are still placed at the
intended location after structural code changes [19].

Analysis output. In addition to the list and location
of alarms, Astrée makes the semantic information com-
puted during the analysis available to the user. For in-
stance, Astrée constructs, based on its analysis of func-
tion pointers, a control-flow graph, which can be visu-
alized graphically and interactively explored after the
analysis. Furthermore, the range computed for each
variable, at each location and for each call context, can
be looked-up. This provides additional useful informa-
tion about the program: it can be used, beyond run-time
error checking, to verify design specifications. It is also
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Figure 1: Astrée call graph visualization (a) and variable range (b) visualization.

useful for alarm investigation, to understand the origin
of run-time errors and spurious alarms. Astrée also re-
ports unreachable code and non-terminating loops.

3 Concurrent Program Analysis

Astrée has been recently extended [23] to support
concurrency-related constructions, with a specific focus
on concurrency features for embedded C software. Tra-
ditionally (prior to the C11 standard, which includes
concurrency into the C language, but even after), con-
currency is provided to a C implementation through
additional libraries, with varying, incompatible seman-
tics. To solve this issue, Astrée provides universal low-
level building blocks for concurrency features, on top of
which realistic models of actual concurrency libraries
can be programmed. This section focuses on the se-
mantics and analysis of the low-level concurrent seman-
tics, while concurrency library modelling is discussed in
Sec. 4.

Threading model. Astrée’s low-level concurrency se-
mantics is based on POSIX-style threads [16]. Each
thread is a fully preemptable execution unit with inde-
pendent control and local variables, but shared global
memory. A program execution is then an interleaving of
thread executions. Thus Astrée threads can be used to
model POSIX threads, but also ARINC 653 processes,
OSEK/AUTOSAR tasks, interrupts, etc. Depending
on the concurrency model, threads may be declared in
an external configuration file (such as OSEK tasks) or
programmatically (as in POSIX threads). Astrée sup-
ports both models, but assumes in the latter case that
threads cannot be created arbitrarily during program ex-
ecution. Instead, program execution is decomposed into
two separate phases: an initialization phase that exe-
cutes arbitrary sequential C code and can create, but

not execute, threads; and a second phase where all
threads execute concurrently but new threads cannot be
created. This limitation matches the current practice
(and sometimes the OS limitations) in embedded soft-
ware. It is exploited to achieve a simpler and more
precise analysis. The set of threads created program-
matically is discovered during the analysis fully auto-
matically. Additionally, Astrée supports the concept of
thread instances, i.e., multiple creations of threads with
the same entry point. The thread-modular abstraction
used in Astrée, described below, reduces the analysis of
the program to that of a single instance of each thread.
Hence, Astrée naturally supports unbounded instances
of threads, which is useful to analyze parameterized sys-
tems, i.e., systems where the number of instances of a
thread is an unknown constant.

Shared memory. Following the POSIX thread model,
Astrée assumes that all the threads can access all the
global variables, i.e., the global variables are implic-
itly shared. By analyzing the threads, Astrée then in-
fers automatically which variables are actually shared
and reports precisely which part of each variable is ac-
cessed by each thread and the access mode (read, write
or read/write). While it is possible for one thread to ac-
cess the local variables of another thread (e.g., sharing
a pointer to a local variable through a global variable)
this is a dangerous practice as the local variables can
be deallocated by the time the other thread accesses it.
Astrée thus detects and reports such usages as errors.
Similarly, while Astrée supports dynamic memory allo-
cation (e.g., with malloc), it is an error (reported to
the user) for one thread to access the memory allocated
by another thread.

Synchronization. Astrée has built-in support for
thread synchronization. In particular, Astrée has a no-
tion of mutual exclusion locks, so-called mutexes, with



the property that a given mutex can be locked by at most
one thread at a time. Astrée’s mutexes are very simple
non-recursive variants of POSIX’s mutexes: if a thread
locks a mutex that is locked by anther thread, it enters
a waiting state until the other thread unlocks the mu-
tex; locking again a mutex that is already locked by
the same thread, or unlocking a mutex that the thread
has not locked, has no effect. More complex locking
mechanisms can be programmed on top of such sim-
ple mutexes to model the semantics of realistic concur-
rency libraries (such as recursive mutexes that feature
a lock counter, or mutexes that fail when locked again
by the same thread). In Astrée, mutexes are identified
by 32-bit integers and need not be created a priory. It
is the responsibility of the OS modelling (Sec. 4) to al-
locate such integers, either statically (e.g., associate a
mutex to each resource in an OSEK program) or pro-
grammatically (e.g., use a counter to allocate at run-time
unique mutex identifiers when a new mutex is created by
a POSIX thread system call).

Astrée tracks which part of each thread is protected by
each mutex, and discovers automatically regions that are
in mutual exclusion. This information is combined with
the inference of shared memory locations, so that Astrée
can report all data races (both read/write and write/write
data races). In case of a data race, Astrée continues
the analysis by considering the possible values steam-
ing from all possible interleavings.

producer consumer

for (i=0;i<100000;i++)
{
lock(1);
x=x+1;
if (x>100) x=100;
unlock(1);

}

for (j=0;j<100000;j++)
{
lock(1);
if (x>0) x=x-1;
unlock(1);

}

Figure 2: Producer and consumer threads protected by a
mutex.

Example. Figure 2 gives an example program composed
of one or several instances of a producer thread and one
or several instances of a consumer thread, where the re-
source is abstracted as a counter variable x. In this ex-
ample, Astrée will be able to discover that x is shared
and that there is no data race, as all the accesses to x
are correctly protected by mutex 1. Additionally, Astrée
reports that x is always in the range [0,100], except just
after x=x+1, where it can be 101. Failure to use a mutex
would cause Astrée to report a data race at each access
to x. It would also cause the range of x to grow beyond
101 as several producer instances can now concurrently
increase x before the test if (x>100) x=100.

Astrée does not currently detect deadlocks caused
by improperly nesting of mutex locks by concurrent
threads. This is not an inherent limitation of our method,
but a limitation of the tool, and this detection is planned
for future work, by leveraging the automatic detection
of which mutexes are locked by each thread at each

program point. Additionally, Astrée has a prelimi-
nary support for additional synchronization primitives:
read/write locks, signals, and barriers, which are cur-
rently handled in a sound but sometimes imprecise way,
and future work to improve their support is planned.

high priority low priority

for (i=0;i<100000;i++)
{
if (!islocked(1))
{
x=x+1;
if (x>100) x=100;

}
yield();

}

for (j=0;j<100000;j++)
{
lock(1);
if (x>0) x=x-1;
unlock(1);

}

Figure 3: Priority-based producer-consumer example.

Real-time scheduling. Astrée is sound with respect
to all possible interleavings of threads, which would
correspond to a fully preemptive and non-deterministic
scheduler. However, embedded programs often employ
specific real-time schedulers that partially restrict thread
interleavings. Notably, each thread is given a prior-
ity, and higher priority threads cannot be preempted by
lower priority ones, unless they stop explicitly by is-
suing a blocking system call, such as locking a mutex
or waiting for an external event. Astrée takes prior-
ity information into account, when available, to detect
portions of threads in mutual exclusion due to priority
scheduling, and it uses this information to remove spu-
rious thread interactions and data races.
Example. Figure 3 presents a variant of Fig. 2 using pri-
orities. After testing whether the mutex is unlocked, the
high priority thread can assume that the low level prior-
ity thread is not in its critical section; it can then safely
test and modify x atomically, without fear of being in-
terrupted by the low priority thread. The effect is thus
the same as in the program of Fig. 2. Astrée proves the
absence of data race and provides precise bounds for x.

Note that, at the end of its critical section, the high
priority thread explicitly yields to allow the lower pri-
ority thread to run. The semantics of the yeild prim-
itive is that of a non-deterministic wait, which is useful
to model waiting for an external event or for a delay
(as Astrée does not keep track of execution time). As
a consequence of this non-determinism, the high prior-
ity thread may interrupt the lower priority thread at any
point during its execution. This highlights the fact that,
despite a deterministic, priority-based scheduling, em-
bedded programs often feature a large possible number
of thread interleavings. Unlike previous works on em-
bedded real-time applications [11], Astrée is not limited
to collaborative threads, nor discrete sets of preemption
points, which would not soundly account for all possi-
ble executions. Note that, to ensure scalability, Astrée
employs possibly imprecise abstractions of thread pri-
orities and real-time scheduling. For instance, threads



with dynamically changing priorities are supported, but
considered to be preemptable by all threads at any point
(i.e., their exact priority relative to other threads is not
tracked), which is sound but imprecise. To improve pre-
cision we are currently implementing the priority ceil-
ing protocol which is the standard scheduling scheme in
OSEK systems. When unable to use priorities to reduce
the interleaving space, Astrée reverts to unrestricted pre-
emption, which ensures a coverage of all concurrency
models.

Thread-modular analysis. On sequential programs,
Astrée employs a fully flow-sensitive and context-
sensitive analysis: an abstraction of the possible mem-
ory states is propagated along the program control flow
graph, and abstract states are merged at control-flow
joins (such as the end of an if-then-else or a loop iter-
ation). Flow-sensitivity, i.e., the ability to distinguish
the value of a variable at different control points, is
often necessary to achieve a degree of precision suffi-
cient to prove the absence of run-time error. Concurrent
programs, however, feature a far more complex control
structure than sequential ones, which makes it unpracti-
cal to consider a fully flow-sensitive analysis. There is a
combinatorial explosion of the number interleaved exe-
cution paths and it would be too costly to distinguish the
value of a variable at each combination of thread control
locations.

For concurrent programs, Astrée thus employs in-
stead a thread-modular analysis. In a nutshell, each in-
dividual thread of the program is analyzed separately,
as would be a sequential program. In addition to po-
tential run-time errors, each thread analysis collects the
effect it can have on the global memory. The threads
are then reanalyzed, but now taking into account the ef-
fect from other threads as gathered at the previous anal-
ysis. As this new analysis may expose new behaviors
of threads, and so, more effects, it triggers a reanalysis
of the threads. The analysis thus proceeds in rounds,
starting from an empty set of thread interactions, and
reanalyzing the threads with an increasing interaction
set, until stabilization. A standard abstract interpretation
technique, iteration extrapolation with widening, is used
to ensure that this process terminates after a finite, small
number of iterations (experiences point towards around
6 iterations, independently from the program size and
number of threads). A theoretical result [23] states that,
after stabilization, the thread-modular analysis has ex-
plored an over-approximation of all the possible inter-
leavings; it is thus sound.
Example. Consider again the producer-consumer exam-
ple from Fig. 2. The first analysis round, considering
each thread in isolation, will deduce that, at the end of
the producer loop, x necessarily equals 100 while, at the
end of the consumer loop, x necessarily equals 0, which
is obviously inconsistent. However, the analysis also
deduces that, during its execution, the producer stores

a value in [1;101] into x, and the consumer does not
modify x (yet). This information is used at the second
analysis round. In particular, now, when the consumer
performs x=x-1, this is understood as storing into x
the last value stored into x by the consumer minus 1, or
storing a value stored by the producer, i.e. [1;101], mi-
nus 1. The analysis of mutexes further deduces that the
value 101 is not actually visible by the consumer, hence
the second case stores a value in [1,100]− 1 = [0,99]
into x. At the end of the consumer loop, x would thus
read either a value in [0,99], when reading the last value
stored by the consumer, or a value in [1,100], if a write
from the producer was performed since that last write
by the consumer. A third analysis round, where the con-
sumer takes into account the values [0,99] stored by the
consumer, yields the same set of interferences, hence,
the analysis finishes and deduce that, at the end of the
program, x is in the range [0,100], which is the expected
result.

The benefit of this method is threefold. Firstly, it
provides a sweet spot between cost and precision: it is
nearly as efficient as a sequential program analysis and
maintains flow-sensitivity at the intra-thread level. Sec-
ondly, each thread analysis is but a sequential program
analysis, slightly modified to extract and apply interfer-
ences on the shared memory; thus, all the infrastruc-
ture present in sequential Astrée could be reused as is.
Thirdly, the analysis is parametric independently in the
abstraction chosen to abstract the memory and the ab-
straction chosen to abstract thread interferences. The
former exploits all the memory abstractions developed
for sequential Astrée. For the later, the above example
employs a simple and scalable, non-relational and flow-
insensitive abstraction: the range of values stored by a
thread into a variable, but recent work [24] has proposed
new abstractions that can improve the precision without
sacrificing the scalability by adding a small measure of
relationality or flow-sensitivity; Astrée is thus able to in-
fer that a thread modifies a variable in a monotonic way,
and to discover relational locks invariants.

Memory consistency. When several threads access a
shared memory, it is important to determine the un-
derlying consistency model ensured by the hardware
and compiler. The simplest model, sequentially con-
sistent memory [20], assumed implicitly in our exam-
ples above, states that, in an interleaving of thread exe-
cutions, each thread reads back from the shared mem-
ory the value stored by the last thread to write into
the memory. This is unfortunately not realistic: mod-
ern hardware introduce memory hierarchies, buffers and
cache, and compilers introduce optimizations that in-
validate this view, as several copies of a variable may
reside in the system. Modern language specifications,
such as C11, introduce weaker memory models to take
such effects into account. As weak memories feature
non sequentially consistent executions, an analysis tool



designed solely for sequential consistency is not sound
with respect to a weak memory model. In contrast,
Astrée is designed to be sound for a variety of mem-
ory models, based on the choice of which abstractions
are used for thread interferences. For instance, the flow-
insensitive non-relational abstraction used in the above
example has been proven [23] to be sound for very lax
memory models, while the soundness of the abstraction
able to infer the monotonicity of shared variables re-
quires a model such as total store ordering adopted by
several popular processors, such as x86 [32].

4 Operating System Support

Programs to be analyzed are seldom run in isolation;
they interact with an environment. In order to soundly
report all run-time errors, Astrée must take the effect of
the environment into account. In the simplest case (e.g.,
the most critical software), the sofware runs directly on
top of the hardware, in which case the environment is
limited to a set of volatile variables, i.e., program vari-
ables that can be modified by the environment concur-
rently, and for which a range can be provided to Astrée
by formal directives. More often, the program is run on
top of an operating system, which it can access through
function calls to a system library. When analyzing a
program using a library, one possible solution is to in-
clude the source code of the library with the program.
This is not always convenient (if the library is complex),
nor possible, if the library source is not available, or not
fully written in C, or ultimately relies on kernel services
(e.g., for system libraries). An alternative is to provide a
stub implementation, i.e., to write, for each library func-
tion, a specification of its possible effect on the program.

Library stubs. Astrée provides facilities to concisely
write stubs that model functions at an abstract level us-
ing C code with additional primitives, including non-
deterministic variable modifications and checked asser-
tions (using arbitrary C boolean expressions). A typi-
cal stub first checks the validity of its arguments (using
assertions), then performs necessary side-effects (such
as modifying an argument passed by reference) and
finally constructs a valid return value. For instance,
the sin stub function only checks that its argument
is a not a special floating-point number and returns a
non-deterministic value assumed only to be in [−1,1].
Astrée comes with a complete set of stubs for the C li-
brary, weighting 9 Klines. It is based on the C99 stan-
dard [17], not on a specific implementation; as a result,
the analysis results are sound whatever conforming C
library implementation is used.

Concurrency stubs. With the addition of concur-
rency, new libraries have been added, including POSIX

threads [16] and the ARINC 653 standard used in avion-
ics [4]. These leverage the low-level concurrency primi-
tives offered by Astrée and its internal notion of threads
and mutexes, but often need to wrap them into more
complex objects maintained in C arrays and structures.
For instance, a POSIX thread is an Astrée thread to-
gether with attributes and a state (such as a cleanup rou-
tine, a return value, etc.). Additionally, the core set of
Astrée objects is reused to model the wide variety of
objects offered by such systems; e.g., asynchronous sig-
nal handlers are assigned an Astrée thread, mutexes are
reused to implement read-write locks, etc. Around 3
Klines of the 9 Klines of C library are devoted to POSIX
concurrency primitives, while the model of ARINC 653
occupies 4 Klines. More details on these models are
available in [25].

OSEK/AUTOSAR support. Astrée has recently
added support for OSEK/AUTOSAR operating sys-
tems [1], a widely used standard in automotive. An
OSEK/AUTOSAR program consists of a set of tasks, a
set of interrupts (also called ISRs), a set of timers (also
called alarms), and schedule tables (a data-driven mech-
anism to activate tasks). Task scheduling and synchro-
nization is achieved through explicit task activation and
chaining, the use of priorities, orders to disable and en-
able interrupts, the use of resources objects (that act as
locks), and events (that act as signals).

We provide an OSEK/AUTOSAR library that handles
these mechanisms by mapping them to Astrée low-level
concurrency objects: tasks, ISRs, alarms and sched-
ule tables are mapped to Astrée threads; resources are
mapped to Astrée mutexes; events are mapped to Astrée
signals; moreover, Astrée natively supports the rele-
vant notions of priorities and offers built-in primitives
to achieve chaining, starting, and stopping. Note that,
due to the abstractions employed by Astrée to achieve
scalability, some aspects of scheduling are not currently
analyzed in a precise way. For instance, Astrée does not
currently track which threads are in a stopped or started
state, and assumes that every thread is possibly started
at any point. As a result, interrupts enable and disable
operations are not precisely handled. We plan to address
this limitation in future work by simply adding new ab-
stractions without changing the model.

The standard proposes several conformance classes,
with support for increasingly complex features (such as
extended tasks, fully preemptive scheduling, multiple
task activation, etc.). The model proposed in Astrée
supports the most general class, which guarantees that
all programs can be soundly analyzed.

A particularity of OSEK/AUTOSAR is that all sys-
tem resources, including tasks, are not created dynam-
ically at program startup. Instead they are hardcoded
into the system: a specific tool reads a configuration
file in OIL format describing these resources and gen-
erates a dedicated version of the system to be linked



Size Added Select. Time Mem.
2.1 M 5.2 K 99.94% 24 h 27 GB
1.9 M 2.4 K 99.56% 154 h 18 GB
2.2 M 2.3 K 99.52% 160 h 23 GB
31.8 K 2.2 K 97.28% 50 mn 0.6 GB
33.1 K 1.2 K 97.18% 35 h 2.5 GB

Figure 4: Avionics case studies from [25], with the orig-
inal size (in lines), the size (in lines) of added stubs, the
selectivity (percentage of lines proved correct), the anal-
ysis time and memory consumption.

against the application. Astrée supports a similar work-
flow. In the preprocessor stage it can read OIL files and
outputs a C file containing a table of the declared re-
sources, with their attributes (task priority, alarm peri-
odicity, etc.). The OIL file also assigns actions to be ex-
ecuted when an OSEK alarm expires, such as activating
a given task or event, or calling a call-back. The pre-
processor thus generates specific C functions to handle
the actions associated to OSEK alarms. A fixed set of
application-independent stubs, comprising 3 Klines of
C with Astrée directives, implements the 31 OSEK en-
try points. The fixed stub also contains a main analysis
entry point that creates Astrée threads and mutexes ac-
cording to the generated tables and enters parallel execu-
tion mode. Finally, it contains synthetic entry-points for
Astrée threads handling OSEK alarms, whose purpose
is to call, at non-deterministic intervals, the functions
generated by the preprocessor to implement the actions
associated to OSEK alarms. Combining the C sources
of the OSEK application, the fixed OSEK stub provided
with Astrée, and the C file automatically generated from
the OIL file, we get a stand-alone application, without
any undefined symbol, that can be analyzed with Astrée
and models faithfully the execution of the application in
an OSEK environment. This workflow enables a high
level of automation with minimal configuration when
analyzing OSEK applications.

The set of errors detected by Astrée includes run-
time errors and data-race, but also a new alarm cate-
gory invalid usage of OS service. As an example the
OSEK stub automatically checks that the application
calls OSEK services according to the specification. In
case of API errors the analysis of an OSEK application
will raise alarms from this new category, including: in-
valid task, alarm, or resource identifiers, calling a ser-
vice from an ISR with incorrect level, improper nesting
of resource acquisition and release (lock/unlock prob-
lems), or failure to release all the acquired resources be-
fore terminating a task.

5 Practical Experiments
The concurrency support built into Astrée has been
tested in a variety of analysis experiments.

Name Size Select. Time Mem.
HiTechnic 162 100% 0.4 s 11 MB
NXT GT 302 97% 1.2 s 20 MB
NXTway-GS 439 98% 4.1 s 20 MB
NXT Cesar 4500 95% 6 mn 435 MB

Figure 5: Preliminary OSEK experiments on nxtOSEK
samples [2, 14].

5.1 Avionics Software – ARINC 653

The support for ARINC 653 was first designed as a re-
search experiment extending Astrée to analyze medium-
sized to large concurrent industrial avionics C soft-
ware. Astrée was later extended with a subset of POSIX
threads, also used in avionics software. The results of
these experiments are reported in details in [25] and
summarized in Fig. 4. To sum-up, this study shows that
Astrée can handle complex, realistic concurrent pro-
grams with a sufficient level of precision (a selectiv-
ity near 100%, indicating that very few lines exhibit
an alarm) and adequate performance in the context of
software validation (where tests, the usual validation
method, can take weeks).

5.2 Automotive Software – OSEK

In the following we summarize experimental results ob-
tained on OSEK applications: some small C programs
designed for Lego Mindstorm NXT robots under the nx-
tOSEK system [2], and three real-life automotive ap-
plications. For reasons of confidentiality the results on
industrial automotive projects have been anonymized.
The results show that Astrée can be successfully applied
on real-life industrial software projects. Moreover, the
analysis runs on standard PC hardware and is reasonably
fast.

Lego Mindstorm. As a proof-of-concept, our initial
tests of the OSEK support in AstréeA were performed
on simple, freely available C programs designed for
the Lego Mindstorm OSEK platform. The results are
shown in Fig. 5. The first three programs, of a few
hundred lines, are sample programs included in the nx-
tOSEK distribution. The last program is the NXT Cesar
robot developed at the iCube laboratory [14]. This pro-
gram performs non-trivial floating-point computations,
on which Astrée reports possible overflows and invalid
operations; indeed the software elects to perform com-
putations without checking operator arguments, and fix
the result only after the computation, by replacing any
infinity and not-a-number with zero.

Automotive 1. The first real-life application is a small
project consisting of two tasks comprising 177 576 lines
of preprocessed C code (without blank lines and without



comments). The project is configured by an .oil file
automatically processed by Astrée. Astrée reports 698
alarm locations with alarms of the following type:

Alarm Category #Loc
Invalid range of pointers and arrays 17
Division or modulo by zero 58
Invalid ranges and overflows 617
Read/write data race 6

The analysis takes 38min with full precision and con-
sumes 7.5 GB RAM. It reaches 78% of the code. The 6
alarms about read/write data races were all confirmed to
be justified, there were no false alarms about data races.

Automotive 2. The second real-life application con-
sists of 358 335 lines of preprocessed C code (without
blank lines and without comments). The configuration
is given by an .oil file which can be automatically pro-
cessed by Astrée to produce all relevant data structures
and access functions. The project consists of 4 tasks, 30
ISRs (interrupts) and 3 alarms (timers). Astrée reports 1
796 code locations with alarms of the following types:

Alarm Category #Loc
Division or modulo by zero 58
Invalid usage of pointers or arrays 460
Invalid ranges and overflows 1 278

With reduced precision settings the analysis reaches
97% of the code, the analysis time is 7h13min, and
memory consumption 3.1GB. The resulting selectiv-
ity is above 99%; these alarms include run-time errors
caused by the effects of data races, e.g., overflows or in-
valid pointer accesses, but not the data races itself. This
distinction is reasonable since there may be data races
which do not actually induce erroneous behavior.

Furthermore Astrée reports 15 967 code locations
with alarms from the newly introduced concurrent alarm
categories:

Invalid Concurrent Behavior #Loc
Read/write data race 8 024
Write/write data race 7 941
Invalid usage of OS service 2

A data race alarm is produced for every access contribut-
ing to a race, i.e. for each shared variable subject to a
data race several alarms will be issued. This increases
the number of of alarms reported but helps users to
distinguish between correct accesses and accesses con-
tributing to a race. A further analysis of the data races
shows that in this project most of the synchronization
is done via explicit enable/disable interrupt calls. Cur-
rently such calls are not precisely handled, but dedicated
abstractions for them are under development. Also task

priorities have been exploited to optimize the applica-
tion: write operations are mostly done by the highest-
priority task which enables light-weight synchroniza-
tion mechanisms. As explained in Sec. 6 the support
of the priority ceiling protocol currently is in develop-
ment, too, so to enable a sound result, task priorities are
currently not taken into account. With both extensions
finished we expect the number of data race alarms to be
significantly reduced.

Automotive 3. The third real-life project is an OSEK
application with 1 655 384 lines of preprocessed C code
(without blank lines and without comments), again con-
figured by an .oil file. The project consists of 24
tasks, 34 ISRs and 12 alarms. Astrée reports 1 743 code
locations with alarms from the following categories:

Alarm Category #Loc
Division or modulo by zero 4
Uninitialized variables 27
Invalid usage of pointers and arrays 310
Invalid ranges and overflows 1 402

With reduced precision settings the analysis reaches
46% of the code, analysis time is 3h7min, the required
memory consumption is 5.4GB. The reason of the low
percentage of reached code is incomplete environment
information, and also the lack of some parts of the ap-
plication which have not been available to us.

In total the number of alarms about invalid concurrent
behavior is 5 759:

Invalid Concurrent Behavior #Loc
Read/write data race 3 152
Write/write data race 2 599
Invalid usage of OS service 8

Also this project uses enable/disable interrupt calls as
a synchronization mechanism and exploits task priori-
ties to implement lightweight synchronization. When
support for these mechanisms is finished we expect the
number of data race alarms to be significantly reduced.

6 Related work
Applying formal methods to the verification of con-
current programs and systems has a long history. We
will focus on recent work and refer the reader to [31]
for a survey and historical perspective. The theoretical
foundation of Astrée is based on the abstract interpre-
tation theory [7]. We refer the reader to [8] for an in-
depth comparison of abstract interpretation techniques
with other formal methods. Other tools based on ab-
stract interpretation include Polyspace [9] which can de-
tect shared variables and take task interleavings into ac-
count. However, to the extent of our knowledge, it does



not report data races nor lock/unlock defects and lacks a
direct support for OSEK applications so that users have
to manually specify the concurrency setup. By com-
parison, in addition to reporting all potential data races
and lock/unlock defects Astrée provides a complete and
automated support for OSEK, including a stub OS li-
brary, a toolchain allowing the analysis to be automati-
cally configured by an OIL file, the automatic detection
of the entry points of all the tasks and interrupts, as well
as the detection of critical sections. The modeling of
concurrent embedded operating systems for use in the
analysis of applications has been considered before in
[11]. We report in [25] the use of Astrée for avionics
application and detail the modeling of the ARINC 653
OS specification.

The thread-modular semantics employed to achieve
a scalable analysis of concurrent programs is inspired
from the rely-guarantee principle, introduced in proof
methods [18]. Note that, unlike proof-based verification
tools, Astrée automatically infers memory invariants as
well as interferences and does not rely on the program-
mer to provide them.

Another popular method to verify concurrent systems
is model checking. Model checking can suffer from the
state explosion problem, particularly acute when con-
sidering concurrent systems. It has been partially ad-
dressed by partial order reduction methods [12]. In
practice, the SPIN model checker has been used [13] to
check for data-races and deadlocks in concurrent code
from NASA. The analysis of C code was however lim-
ited to fragments of a few hundred lines. The study also
mentions that C code up to 45 KLoc could be handled
by analyzing a hand-crafted 1 Kloc model. By contrast,
Astrée scales to million-line codes. It does not require
building a model by hand, and can analyze directly full
C applications without the need to extract small, self-
contained parts, which is time-consuming and error-
prone. Another recent proposal to improve the scala-
bility of model-checking is to analyze a system only up
to a fixed, generally small number of context switches
[28]. While this method can be useful to find bugs, it is
unsound and only covers a small fraction of the possi-
ble behaviors, and is thus not adequate according to the
most stringent certification processes used in embedded
critical software (such as avionics software [30]). By
contrast, Astrée is sound and will find all run-time er-
rors and data-races.

Sequentialization [29] suggests a reduction from con-
current programs to equivalent sequential ones in order
to apply existing sequentialization verification methods.
The method has been applied in particular to the static
analysis by abstract interpretation of interrupt-driven
programs [33]. The method is however limited to spe-
cific scheduling policies, as a higher priority task must
complete before the control is returned to a lower pri-
ority task. Unlike Astrée, it does not permit arbitrary
preemption (as found for instance in ARINC or POSIX

threads), and is thus less general.
With the rise of multi-core applications, formal meth-

ods have been updated to take into account weakly
memory models. Astrée is also aware of weakly mem-
ory models, through a careful selection of which ab-
stractions are employed during the analysis. Similar re-
sults concerning the influence of the abstraction on the
soundness in weak memory models can be found in [5].

Future work. Future work on Astrée is planned to ad-
dress its current limitation. Firstly, we plan to add a
deadlock detector. Secondly, we plan to improve the
handling of thread priorities, including dynamic prior-
ities and the priority ceiling protocol implemented in
OSEK, to improve the precision. We plan to add a pre-
cise, flow-sensitive tracking of interrupt enable, which
will also improve the precision by removing spurious
interferences from disabled interrupts. Thirdly, we wish
to improve our support for multi-core applications since
our current support for multi-core requires, for sound-
ness, ignores the priority of threads and assuming arbi-
trary preemption. The focus on multi-core will also en-
courage us to seek more precise abstractions of weakly
consistent memory models.

7 Conclusion

Safety requirements mandate that critical software is ex-
empt from run-time errors. The rising predominance
of concurrent software architectures puts a strain on
classic validation methods, such as testing or code re-
views, that hardly cope with the non-deterministic na-
ture of concurrent programs, the huge number of in-
terleavings, and the difficulty to uncover errors in ex-
tremely rare but possible cases. We have presented
Astrée, a tried static analysis verification tool based on
abstract interpretation, and its recent extension to the
sound analysis of concurrent C programs, efficiently
covering all possible interleavings and uncovering all
run-time errors and data races. We have explained how
Astrée can support programs for various operating sys-
tems and concurrency libraries (POSIX threads, ARINC
653, OSEK/AUTOSAR) and presented encouraging ex-
perimental results. Ongoing work includes further ex-
perimentation (in particular on automotive applications
under the OSEK/AUTOSAR system), support for more
systems and concurrency models, as well as the design
of additional abstractions to improve both the precision
and the scalability of the analysis.
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[24] A. Miné. Relational thread-modular static value analysis
by abstract interpretation. In Proc. of VMCAI’14, volume
8318 of LNCS, pages 39–58. Springer, Jan. 2014.

[25] A. Miné and D. Delmas. Towards an Industrial Use of
Sound Static Analysis for the Verification of Concur-
rent Embedded Avionics Software. In Proc. of the 15th
International Conference on Embedded Software (EM-
SOFT’15), pages 65–74. IEEE CS Press, Oct. 2015.

[26] MISRA-C:2004 Guidelines for the use of the C language
in critical systems, Oct. 2004.

[27] MISRA-C:2012 Guidelines for the use of the C language
in critical systems, Mar. 2013.

[28] S. Qadeer and J. Rehof. Context-bounded model check-
ing of concurrent software. In Proc. of the 11th Int. Conf.
on Tools and Algorithms for the Construction and Analy-
sis of Systems (TACAS’05), volume 3440 of LNCS, pages
93–107. Springer, 2005.

[29] S. Qadeer and D. Wu. KISS: Keep it simple and sequen-
tial. In Proc. of the ACM SIGPLAN Conf. on Program-
ming Languages Design and Implementation (PLDI’04),
pages 14–24. ACM, June 2004.

[30] Radio Technical Commission for Aeronautics. RTCA
DO-178C. Software Considerations in Airborne Systems
and Equipment Certification, 2011.

[31] M. C. Rinard. Analysis of multithreaded programs. In
Proc. of the 8th Int. Symp. on Static Analysis (SAS’01),
volume 2126 of LNCS, pages 1–19. Springer, Jul 2001.

[32] P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, and
M. Myreen. x86-TSO: A rigorous and usable program-
mer’s model for x86 multiprocessors. Comm. ACM, 53,
2010.

[33] W. Wu, L. Chen, A. Miné, D. Dong, and J. Wang.
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Abstract 
Selecting a language in a safety critical application is often a choice dictated by                           
constraints beyond bare technical merits. Availability of tools or internal                   
resources at the time of decision is often critical. However, once such a choice is                             
made, it is extremely difficult to revert. This is very visible in domain such as                             
avionics or automotive where code bases are sometimes created and maintained                     
over decades. Rewriting software is just not an option.  
As such, many software teams live with technical choices that can’t be                       
questioned, or marginally. This is notably the case in the world of the C                           
programming language. Its defects are well documented and have been known                     
for many years. An entire sector of the tool industry is focused on developing                           
workarounds in the form of code analyzers, coding standards or autotesting                     
tools. Other languages and environments are known to provide results at lower                       
cost. However, the barrier of entry, software rewriting, is often beyond what is                         
industrially acceptable.  
In this paper, we will discuss one of these alternatives, the SPARK language. We                           
will describe a framework that allows to gain direct benefits from early investment                         
phases and we will discuss supporting tools currently under development. 
 

 

1. Introduction 
 
Programming languages are usually designed in terms of how well they can express                         
executable semantics and software architecture. They are seldom designed to optimize                     
behavior regarding specification and verification. This explains how difficult it is for a static                           
analysis tool to analyze a piece of C code without either reporting a lot of false alarms or                                   
missing a lot of problems. More modern languages such as Ada tend to exhibit better results                               
– although still not entirely satisfactory. 
The SPARK language [1] was designed the other way around – with static verification in                             
mind from the beginning. In order to avoid reinventing an entire development environment, it                           
was decided to use the syntax and the executable semantics of an existing language not too                               
far off the overall goal. In this case, the Ada 2012 language. However, all functionalities that                               
were not congruent with static analysis objectives have been removed. This includes in                         



particular so called access types (pointers) and exception handlers. To this foundation, static                         
semantics have been superposed to some of the existing language notations, notably                       
contracts and assertions. A number of additional annotations (pragmas and aspects) came                       
in to complete the picture. 
With the above in mind, a SPARK program can take advantage of stateoftheart proving                           
technologies (The Why3 program verification platform [2], SMTsolvers such as CVC4 [3],                       
Altergo [4] and Z3 [5], manual provers such as Isabelle [6] and Coq [7]) and be formally                                 
verified regarding various aspects such as data coupling, absence of runtime errors or                         
functional correctness. When formal methods are not usable, dynamic verification can still be                         
used to verify most of the SPARK annotations, through regular testing and assertion                         
checking. 
Taking full advantage of SPARK however requires making the choice of designing the                         
software with that language very early on. There are various examples in the recent history                             
of teams that have successfully done so, but such opportunities of rewrite are merely an                             
exception. In practice, most developments are done in full Ada or C, and this cannot be                               
changed after years of development, because of the high cost of rewriting existing code. So                             
many projects are stuck with a lessthanideal choice made at the very beginning of the                             
project, which can’t be changed. 
Another problem is that, in projects where a custom processor is used, C is often the only                                 
language for which a compiler is provided. 
There is a solution. In this paper, we describe two ways to make a project adopt SPARK in                                   
small steps, getting benefits for all investments. We also propose a solution for the case                             
where only a Ccompiler is available. 

2. Current Situation of Many Projects in the               
Industry 
The default programming language used in the high integrity embedded industry today is                         
and remains the C language. There are many reasons for that  C is a relatively simple                                 
language, the resulting code is fairly efficient, there is usually no abstraction layer between                           
the code generated from the compiler and the execution hardware, many libraries and                         
offtheshelf components are available, many trained developers can be found on the market                         
place, tools are fairly comprehensive and supported on almost every single hardware                       
platform. In many situations, it’s also the default choice, that is a choice that does not get                                 
questioned by management. 
Unfortunately, C is also a language with a large list of very well documented flaws and                               
vulnerabilities [8]. Various tools and techniques have been developed as an attempt to                         
workaround and get this flaws under control, from language subsets (such as MISRA) to a                             
wealth of static analysis and testing tools. The need to master these tools and techniques                             
however reduce some of the benefits mentioned before (in particular the availability of                         
trained developers).  
The predominance of C in the current industry is such that it is not reasonable to expect a                                   
shift in practice. The size and longevity of existing components is such that rewriting them is                               
not economically feasible. C is and will remain a strong actor no matter what. Interestingly,                             
the same is true for Ada. Many systems developed in the 80’ and 90’ were done in Ada, the                                     



default language for military applications at the time, since it was mandated by the DOD.                             
Although the attractiveness of the technology temporarily decreased at the turn of the                         
millennium, the user base in the A&D domain stayed strong and consistent. This is probably                             
thanks to the same mechanics and trends that it is possible today to find not only a strong                                   
Ada toolset and environment, but means to take advantage of it even in the context of a                                 
strongly Cbased culture. 
 
Another trend should also be emphasised: multilanguage programming. It’s now extremely                     
common to see projects developed using a multitude of different languages. In a single                           
executable, it’s not rare to find C linked with C++ or Ada, sometimes interacting with virtual                               
machines running Java, Python or C#. To a software architect, the preexistence of an                           
appropriate component often matters more than the language in which said component is                         
initially developped. Not to mention migration paths, where developers want to migrate from                         
X to Y technology, while keeping legacy components developed in X. In effect, it’s common                             
to only migrate new components while still taking advantage of years of previous                         
development. 
 
To summarize, if a different language such SPARK should be adopted, it must be able to                               
interoperate with existing languages, and in particular with the C language. 

3. Short Presentation of SPARK 
SPARK is more than a simple programming language  it is also a specification language                             
and a verification system. We will explain these aspects here, as they are essential to the                               
understanding of the remainder of the paper. 

3.1.  SPARK   the Programming Language 
 
SPARK is a programming language that has been designed from the beginning with safety,                           
maintainability and verifiability in mind. The new starting point was the Ada programming                         
language, from which a number of features have been removed which are considered                         
dangerous in safetycritical programming. The most important features that have been                     
removed are pointers and exception handling. However, a recent major redesign of the                         
language has been based on Ada 2012 [9], the latest version of the Ada language, which                               
contains many features that are particularly useful for safetycritiical programming, such as                       
contracts. 
Ada is a very rich language and SPARK inherits many of the powerful features of Ada. The                                 
rich type system allows to specify specify ranges for integer and floatingpoint variables,                         
which is much more precise than simply using the predefined word sizes. Array types are                             
much safer and more powerful. In particular, they do not require the use of pointers, and the                                 
length of an array can be queried from it. Common array operations such as initialization,                             
copying, slicing and concatenation are builtin. 



3.2. SPARK  the Specification Language 
 
However, SPARK is more than a programming language, it also includes a powerful and                           
expressive specification language, which allows to specify the behavior of the program. The                         
most common specifications are attached to functions and are able to describe the behavior                           
of the function in great detail: 

● The Global specification describes which global variables are accessed by this                     
function, and whether they are read, written, or both. The same property for                         
parameters is already covered by regular Ada syntax. 

● Pre and Postcondition (which already exist in Ada 2012) are boolean expressions                       
that must be true at the beginning and the end of the function, respectively. Together                             
they express what the function requires to work (the precondition) and what it                         
guarantees when returning. 

 
At a larger scale than a single function, other specification features exist, such as abstract                             
state, which allows to group together the state of some package into a single logical variable,                               
and elaboration/initialization properties, which allow to state the properties of data that is                         
setup only once at the beginning of the program. 
 
It should be noted that all specification features are completely optional. 

3.3. SPARK  The Verification System 
 
Ada (and SPARK) allows very easy checking of safety properties such as division by zero,                             
arithmetic overflow and buffer overflow, simply by providing runtime checks. For example,                       
for division by zero, before carrying out the division, it is checked that the divisor is different                                 
from zero. If not, the program stops and an error is reported. This feature can be enabled or                                   
disabled using a compiler switch, and it is already very useful to find silly errors during                               
testing. 
 
In a similar manner, most of the specification features of SPARK can be checked when the                               
program is run, e.g., during testing. For example, pre and postconditions are handled like                           
assertions; with a simple compiler switch, they can be compiled into the binary and will be                               
checked during the run of the program.  
 
In addition to this, the SPARK language comes with verification tools that take a SPARK                             
program with specifications and check it for errors statically (that is, without running the                           
program). There are a number of different individual verifications done by the tool. It checks                             
that: 

● All variables are properly initialized before they are used; 
● Every function only reads and writes the specified global variables and parameters; 
● No socalled runtime errors such as division by zero, arithmetic overflow or buffer                         

overflow can occur; 



● When an function is called, its precondition is true, so that the function is called in a                                 
valid state according to its specification; 

● When a function returns, its postcondition is true so that the function returns in a valid                               
state according to its specification. 

 
When applied fullscale, the verification of SPARK can guarantee that no errors of the above                             
kind appear in the program. 
 
The SPARK toolset is based internally on the Why3 verification platform, and various SMT                           
solvers such as CVC4, AltErgo and Z3. 
 
The remainder of this paper will argue that SPARK is useful even when not used everywhere                               
with full verification, but only one or two aspects of SPARK are integrated into the                             
development process. 

4. A mixed SPARKandC environment 
 
The SPARK language is designed to perform unit verification. In other words, it proves                           
correctness of a subprogram (function) according to its own specification and the one of its                             
dependencies (callees). One can prove a subprogram assuming its precondition, verify that                       
the precondition of its dependencies, assuming that the postcondition of its dependencies                       
holds, and finally proving the postcondition. There are two strong assumptions that need to                           
be verified – the subprogram precondition and the postconditions of the dependencies. In a                           
perfect world, all of those are also verified through formal methods, but this is not a                               
requirement of the language. Traditional testing can also be used as an alternate means of                             
verification. 
From a practical point of view, SPARK declarations (ideally with contracts, but this is not                             
strictly required) for all called functions are all that is needed for the SPARK tools to carry out                                   
full verification of a given SPARK function. For the called functions, other implementation                         
languages can be chosen, such as C. The SPARK verification results are correct, provided                           
that the other functions correspond to their specification. 
Several different use cases for this technique are possible. In many projects, legacy C code                             
exists and it would be undesirable to rewrite it; but new developments should happen in                             
some stricter and safer environment such as SPARK. Often, device drivers for some                         
component of the system are written in C. Or maybe only the most safetycritical component                             
of a system shall be written in SPARK, and other components implemented in C. Another                             
approach could be to progressively migrate the logic of the application in SPARK while                           
keeping standard components such as drivers, libraries and OS written in C. For any such                             
use case, using the above technique, it is possible to use SPARK as the implementation                             
language only for the components where this is desired. The full SPARK specification and                           
verification features can still be used on this part of the project. 
 

 



typedef struct { 
  void** data; 
  int pointer; 
  int len; 
  int capacity; 
} t_queue, *pqueue; 
 
pqueue init_queue(int capacity); 
 
void* queue_pop(pqueue q); 
 
void queue_enqueue (pqueue q, void* elt); 
 
bool queue_is_empty(pqueue q); 
 
int queue_length(pqueue q); 
 
void free_queue(pqueue q); 

Fig. 1: The C interface of a simple queue implemented using a ring buffer. 
 
 
Of course, the verification of the component(s) written in SPARK is only valid if the                             
assumptions on the other components, which have been used to complete the SPARK                         
verification, indeed implement their contract [10]. As the SPARK tools can only be applied                           
to SPARK programs, other verification methods must be applied. Thanks to executable                       
contracts, at least the contracts specified at the boundary between the SPARK and C                           
code can be very easily verified using testing. 
Overall, this approach provides a very pragmatic path to migration with quick return on                           
investment. As soon as one subprogram is converted, migrated and proven correct, the                         
overall safety of the application gets improved. 
 

5. SPARK as a language for C specification 
 
But the SPARK language can be useful even when the verification features and the                           
programming language are not used. Verification is always done according to a                       
specification, and the C language is very weak at expressing specifications. As such, and as                             
we have shown in the previous section, the SPARK language has a specification semantics                           
much richer than most programming languages, in particular compared to C. This includes                         
some wellknown Ada features (strong typing, parameter modes…) Ada 2012 additions                     
(pre/post conditions, quantifiers…) and SPARK complements (data coupling, states…). 
So one may want to use the SPARK specification language to specify C programs. This                             
sounds like a surprising idea at first, but it is entirely possible and useful, as we will show in                                     
this section. We will also show an example of this use case at work. 
 
 



type data_arr is array (int range <>) of Address;  
subtype data_arr_constr is data_arr (int range 0 .. int’last); 
type data_arr_access is access data_arr_constr; 
 
type t_queue is record 
   data : data_arr_access; 
   pointer : aliased int; 
   len : aliased int; 
   capacity : aliased int; 
end record; 
 
type pqueue is access all t_queue; 
 
function Is_Empty (Q : pqueue) return Boolean is (Q.len = 0); 
 
function To_Arr (Q : pqueue) return data_arr is 
 (if Q.pointer + Q.len <= Q.capacity then 
   Q.data (Q.pointer .. Q.pointer + Q.len - 1) 
  else 
   Q.data (Q.pointer .. Q.capacity - 1) & 
   Q.data (1 .. Q.len - (Q.capacity - Q.pointer))); 
 
function Pop (A : data_arr) return data_arr is (A (A'First + 1 ..  A'Last)); 
 
function First (A : data_arr) return Address is (A (A'First)); 
 
function init_queue (cap : int) return pqueue with 
  Post => 
   Is_Empty (init_queue'Result) and init_queue'Result.Capacity = cap; 
 
function queue_pop (Q : pqueue) return Address with 
  Pre  => not Is_Empty (Q), 
  Post => Q.len = Q.len'old - 1 and 
          Pop (To_Arr (Q)'Old) = To_Arr (Q) and 
          queue_pop'result = First (To_Arr (Q)'Old); 

Fig. 2: The corresponding SPARK interface with contracts. 
 
The key idea is add a SPARK wrapper to a C function, with identical parameter profile,                               
and redirect all calls to this C function in the program to call the wrapper instead. If the                                   
wrapper has SPARK contracts such as Pre and Postconditions, these contracts get                       
dynamically checked on every call. If the contracts are complete (i.e. capture most if not all                               
of the requirements), this provides a great way to check the requirements of the software                             
during testing in a very explicit yet convenient way. 
In fact, much of the mechanical part of this outlined procedure can be automated: the                             
fdumpadaspec option of gcc [11] can be used to generate a SPARK wrapper function                           
with an identical parameter list, and the usage of Import and Export pragmas can achieve                             
the rerouting of the calls. Compiling and linking everything together, and enabling                       
assertions when the SPARKpart is compiled, will achieve the desired contract checking. 
The idea here is to use C as the language for implementation, and SPARK as the                               
language for specification. Said otherwise, in this mode we only use the “specification                         
language” aspect of SPARK. 

 



Of course, in this case, it is not possible to formally verify a C implementation against a                                 
SPARK specification, although the integration with some existing C verification techniques                     
relying on similar technologies (integrated with Why3) could be envisioned at some point.                         
What we are focussing on here is the executable semantics of SPARK specification, which                           
can be checked at runtime. In other words, in this mode, it is possible to compile a hybrid                                   
C/SPARK application, and activate specification verification during execution. 
This can have various benefits. One is during unit tests, to identify inconsistent calls or                             
invariant breaches early on. It is also a great way to strengthen stubbing and verify that                               
stubs are called with the same constraints as actual code, thus reducing the number of                             
software to software integration errors. 
If carefully placed, it can also be kept in final deployment, as a way to protect a component                                   
from misuse. The executable specification then acts as a barrier to users, making sure that                             
invariants and assumptions are respected at run time. That is also a nice place to exhibit all                                 
the verification code that would otherwise end up being developed as defensive code. One                           
direct application of that can be to contribute to the argumentation of Freedom From                           
Interference [12] as required by ISO26262 [13]. 
We now proceed to the promised example. It stems from a small C program which is part of                                   
the Why3 platform. The code implements a simple queue with enqueue and pop functions                           
(see Fig. 1). The corresponding SPARK interface (see Fig. 2) has been generated with the                             
--fdump-ada-specswitch of gcc, and then manually modified later to improve the mapping.                         
For example we us a few tricks to use SPARK arrays instead of access types to represent                                 
the queue data. The SPARK contract uses a “model function” called To_Arrto map the                             
queue structure, which wraps around the array in the implementation, to a plain array with                             
elements in the right order for specification purposes. The contracts can are always                         
expressed on that plain array instead of the complex actual data structure, and can now be                               
expressed using straightforward SPARK array operations such as concatenation and slices.                     
For example, the queue_popfunction has a postcondition which states that the queue after                           
the pop (simply named Q), mapped to the plain array, gives the same result as mapping the                                 
queue before the pop (using the syntax Q’Old) to the plain array, and then removing the first                                 
element. Looking carefully at the contract of queue_pop, one can see that in fact the                             
complete desired functional behavior has been described using the contract. 
The reader might ask if the same cannot be achieved using simple assertions at the                             
beginning and end of the C function. But as the example below shows, such a complete                               
contract is difficult to express in C because of the lack of highlevel language features such                               
as array concatenation and slices. 
The enqueue function has not been specified, but this is not a problem, Using this                            
approach, one can selectively apply it to only the desired functionality of a package. 

6. Back to the C 
 
So far, we’ve assumed that the final application was a mixed of SPARK and C files compiled                                 
and linked together. This requires the availability of both an Ada 2012 compiler and a                             
compatible C compiler. While the number of platforms supporting Ada 2012 is quite large, it                             
is often the case that there is no compiler available for more very specific or custom targets.                                 



The absence of such technologies may render the whole discussion above futile for projects                           
targeting such platforms. However, virtually all platforms come with a Ccompiler. 
There is an alternative to this, which is to consider the C language as an intermediate                               
representation in the SPARK code generation chain. In other words, compile SPARK to C                           
with a “standard” toolchain, and then C to assembly with the specific target compiler, which                             
acts as a backend in this context. It is important to realize that generated C code is not                                   
intended to be readable or modifiable. Although MISRA properties can be enforced during                         
code generation as to ensure optimal portability and safety of the generated C layer, the                             
SPARK and C programming languages are too far to generate C that would look like                             
something written by a human being. In particular, the SPARK to C generator may go                             
through expansion or optimization phases, or make choices to translate highlevel SPARK                       
concepts into low level C concepts in a way that is not efficiently manageable by a                               
developer. But that is not a problem: just as one would not modify the assembly generated                               
from a compiler except in very specific cases, one should not worry about modifying this C                               
code – which in effect acts here as a universal assembly language. 
Going this route is more than just generating C. Of course, all the benefits of SPARK, such                                 
as strong typing, runtime checks, static analysis and formal verification are still present. 
Having a regular Ada cross compiler has still significant advantages over the SPARK to C                             
generation path. Among other things, it simplifies the integration with tools such as                         
debuggers and makes tool vendor validation easier. However, using the C language as an                           
intermediate language here allows to virtually provide a universal SPARK compiler. 
  

7. DO178C certification considerations 
 
The various tools and technologies presented so far still need to be properly articulated                           
around DO178C to be usable in certified avionics context. This implies both references to                           
the certification objectives that can be targeted and corresponding qualification or                     
certification material. 
Looking at the SPARK language, its contributions to certification credits start at the planning                           
phase on DO178, targeting activities such as 4.4.1.a “software development should be                       
chosen to reduce its potential risk to the software being developed”. SPARK is exempt of a                               
number of programming vulnerabilities without the need of any additional coding standard or                         
tooling. When looking at other potential credits, 6.3.4.f comes to mind  “accuracy and                           
consistency”. SPARK can help demonstrating absence of a number of problems identified                       
there, such as fixed point arithmetic overflow and resolution, floating point arithmetic, used of                           
uninitialized variable and unused variables. To achieve this specific objectives, the                     
verification toolchain associated with SPARK needs of course to be qualified TQL5. 
If data flow is specified in SPARK, the verification of its implementation as requested by                             
6.3.4.b can also be automatically verified by the TQL5 qualified verification chain. 
Going one step further, SPARK can be taken advantage of following methodologies                       
experimented by Airbus [14] and described in the formal proof supplement DO333. In this                           
case, formal proof can be used to replace some or all of the low level testing. This is                                   
assuming both a higher level of tool qualification (TQL4) together with an argument                         



demonstrating that the object code is indeed correctly translated from the source code (so                           
called “preservation of properties”). 
Regarding the last technology presented, the SPARKtoC compiler, it’s important once                     
again to realize that in this configuration, the C language is merely an intermediate step in                               
the compilation process. In other words, the generated C code should not be considered as                             
source code by DO178 definitions, but rather as an intermediate representation within a                         
toolchain. As a result, the source code is SPARK, and the aggregated {SPARKtoC,                         
Ctarget} compiler should follow the same recommendations and objectives as other                     
compiler. For example, element to stored in version control is the SPARK source code,                           
structural code coverage has to be achieved at the SPARK level, a source to object                             
traceability study has to be performed at level A, etc. 

8. Conclusion 

We’ve demonstrated in this paper that the entry barrier to technologies such as SPARK can 
be lowered significantly. SPARK interoperates well with C programs, so that usage of the 
SPARK language can easily be limited to new code or particularly critical code at first. Or 
one can add SPARK contracts to C code without any SPARK implementation, and still 
benefit from a powerful language to express requirements and runtime checking. Finally, 
thanks to the SPARKtoC technology, SPARK can be applied even in a context where no 
Ada2012Compiler is available for the selected target. 
 Technologies to support these methodologies are being developed. Others tools could have 
been mentioned as well and be described in other papers – notably the role of C or SPARK 
code generation from modeling languages such as Simulink. Overall, these tools and 
methodologies demonstrate not only the feasibility but the low risk associated to an iterative 
path of experiment and deployment. 
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Abstract: This article deals with the usage of Frama-
C to detect runtime-errors. As static analysis for 
runtime-error detection is not a novelty, we will 
present significant new usages in industrial contexts, 
which represent a change in the ways this kind of 
tool is employed. 

The main goal is to have a scalable methodology for 
using static analysis through the development 
process and by a development team. 

This goal is achieved by performing analysis on 
partial pieces of code, by using the ACSL language 
for interface definitions, by choosing a bottom-up 
strategy to process the code, and by enabling a well-
balanced definition of actors and skills. 

The methodology, designed during the research 
project U3CAT, has been applied in industrial 
contexts with good results as for the quality of 
verifications and for the performance in the industrial 
process. 

Keywords: Static analysis, abstract interpretation, 
safety critical software, embedded system, modular 
analysis, Frama-C, ACSL, runtime error 

1. Introduction 

Static analysis for runtime-error detection is not 
totally new; different tools have been proposed since 
fifteen years. Nevertheless, it is not a widespread 
practice even in critical software. Static analysis is 
commonly employed by specialists for independent 
verifications and after the development of the 
program. This activity is a good way of improving 
quality but it is often synonym of additional activity in 
the main process and additional costs. 
In order to facilitate the usage of static analysis, we 
conducted during the research project U3CAT, 
methodological studies and tooling development. 
The main objectives were: good coverage of 
runtime-errors, scalability, predictable costs, and a 
good integration in the development cycle. 
We largely succeeded in this endeavour: this article 
reports on the main difficulties encountered, the 
technical and methodological solutions adopted, and 
the benefits obtained. 

The produced methodology has been updated and 
used to answer to specific needs in industrial 
contexts and we report this industrial experience. 
Finally, we’ll conclude on new usages already 
identified, but not yet used in industrial context. 

2. Context 

The Frama-C source code analysis platform 

Frama-C is an Open-Source platform dedicated to 
the analysis of C programs. It differs from other code 
analysers as it provides a diverse set of formal tools, 
cooperating through code annotations written in the 
ACSL language. ACSL is a behavioural specification 
language that can express a wide range of functional 
properties, through partial or complete specifications. 
Analysers themselves may report results in terms of 
new ACSL properties asserted inside the source 
code. 

Frama-C [6] is built around a kernel that performs 
the parsing and type-checking of C code and 
accompanying ACSL [5] annotations if any, and 
maintains the state of the current analysis project. 
This includes in particular registering the validity 
status of all ACSL annotations. Analyses themselves 
are performed by various plugins that can validate 
annotations, but also emit hypotheses that may 
eventually be discharged by other plugins. This 
mechanism allows some form of collaboration 
between the various analysers.  

Two important analysis plugins are Value 
Analysis [7] and WP [8]. Value analysis is based on 
abstract interpretation, and computes an over-
approximation of the values that each memory 
location can take at each program point. When 
evaluating an expression, Value Analysis will check 
whether the abstraction obtained for the operand 
represents any value that would lead to a runtime 
error

1
. For instance, when dereferencing a pointer, 

                                                           
1
 Rutime errors include: division by 0, undefined logical 

shift, overflow, underflows on integers, use of non-

initialized variable, dangling pointer, invalid memory 

access , use of non-allocated pointers, problem of 

overlapping lvalue assignment, undefined side-effect in 

expressions, and invalid function pointer access. 
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the corresponding abstract set of location should not 
include NULL. If this is the case, Value Analysis 
emits an alarm, and attempts to reduce the abstract 
value. In our example, it will thus remove NULL from 
the remaining abstract state. The analysis is correct, 
in the sense that if no alarm is emitted, no runtime 
error can occur in a concrete execution. It is however 
incomplete, in the sense that some alarms might be 
due to the over-approximations that have been done 
and might not correspond to any concrete execution. 
Various settings can be selected to choose the 
appropriate trade-off between the precision and the 
cost of the analysis. While the most immediate use 
for Value Analysis is to check for the absence of 
runtime error, it will also attempt to evaluate any 
ACSL annotation it encounters during an abstract 
run. Such verification is however inherently limited to 
properties that fit within the abstract values 
manipulated by Value Analysis. Mainly, it is possible 
to check for assertions on bounds of variables at 
particular program points. 

 

WP is a deductive verification-based plugin. Contrary 
to Value Analysis, which performs a complete 
abstract execution from the given entry point, WP 
operates function by function, on a more modular 
basis. However, this requires that all functions of 
interest as well as their callees be given an 
appropriate ACSL contract. Similarly, all loops must 
have corresponding loop invariants. When this 
annotation work has been completed, WP can take a 
function contract and the corresponding 
implementation to generate a set of proof obligations 
– logic formulas whose validity entails the correction 
of the implementation with respect to the contract. 
WP then simplifies these formulas, and sends them 
to external automated theorem provers or interactive 
proof assistants to complete the verification. WP’s 
main task is thus to verify functional properties of 
programs, expressed as ACSL annotations. It is 
however also possible to use it to check that the pre-
conditions written for a given function f imply that no 
runtime error can occur during the execution of f. 

Frama-C is already used in this industrial context. 
First usage at Airbus is for an implementation of a 
coding rule checker called Taster [3] and a second 
one, Fan-C [4], targets verification of data and 
control flow based on semantic analysis. 

 

Main principles of a static analysis project  
 

One of the main principle of Value Analysis-based 
projects is that to computes values of variables for all 
possible program execution, either starting from the 
program’s ‘main’ function or another one expressed 
to the tool by an option on the command line. 

The Value Analysis handles the semantics of the C 
program, but not only. One strength of the tool is to 
be able to perform analyses on incomplete 
programs, that is, pieces of source code not 
containing all definitions of functions called. 

The user can define function contract in ACSL 
defining behaviour of the function and the tool is able 
to integrate, within its analysis, the semantic of the C 
program and the semantic of the ACSL. 

 

(nothing)

Side effects deduced 
from the prototype

ACSL

Side effects defined by 
ACSL

C callees +
annotations

Side effects defined by 
C code + annotation

SRC_PRJ

CALLER_STUBS

Refine calling context
(allocation, predefined values, …)

System under verification

Modeling behaviour
of external parts
(3 different ways)

 

Figure 1 : Topology of a static analysis project 

For a C function without C definition neither ACSL 
contract, the tool is able to consider a default 
behaviour deduced from its prototype. 

Finally, the user has three solutions for an external 
function : (1) nothing, (2) an ACSL contract, (3) a 
callee stub written in C language and which could 
use specific Frama-C builtin functions (see Figure 1 : 
Topology of a static analysis project). 

 

3. Modular analysis 

The modular analysis consists in using Value 
Analysis on small pieces of programs in a consistent 
manner. 
 
The ACSL language, by defining the behaviour of 
software interfaces, facilitates the analyses of 
independent parts of software. Properties defined in 
the interfaces can be used in two ways: for 
verification purpose on one hand and for hypothesis 
definition on the over hand. 
 
This small and trivial example can illustrate both 
usages: 
/*@ 

  requires \valid(p); 

  assigns *p; 

  ensures \initialized(p); 

  ensures 0<= *p <10;*/ 

extern void get_index(int* p); 

 

/*@ requires \initialized(&x); 

  assigns \nothing;*/ 

extern void bar(int x); 
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int foo(int p[10]) 

{ 

  int index ; 

  int status ; 

  get_index(&index); 

  bar(index); 

  return p[index]; 

} 

Figure 2 

The called functions get_index and bar are not 
defined by their source code, but by partial ACSL 
contracts.  
For get_index function: 

 For verification purpose at the calling context: 
o The requires clause is able to verify that 

pointer p is valid (referencing an allocated 
memory) 

 To introduce some hypothesis on the behaviour 
of the function 
o The ensures clauses define some 

hypothesis on the outputs: at the return of 
the function, the value pointed by b is 
initialized and in the range [0;10[. 

o The assigns clause specifies side-effects. It 
can be used to define side effects on other 
locations than those identified by the 
function parameters. 

For bar function 

 For verification purpose at the calling context:  
o The require clause check that the value of 

parameter x is initialized 

 To introduce some hypothesis on the behaviour 
of the function: 
o There is no side-effect defined by the 

assigns clause (pure function) 
 
In this way, the verification of the function foo can be 
performed on this function alone and under the 
hypothesis of the correct behaviour of the called 
functions defined by ACSL contract. Verifications are 
targeting the behaviour of the function itself and also 
the calling contexts of the called functions. The same 
contracts of the called functions will then be used in 
their proper analysis. 
Considering the above example, the verification of 
“foo” doesn’t need the source code of its callees 
(“get_index” and “bar”), as the ACSL contracts for 
both callees are sufficient for the analysis. Besides 
the verification reaches all contexts, including the 
function behaviour and the calling contexts of the 
callees, these ACSL contracts will be used lately 
during their corresponding analysis. 
In this way, the different functions i.e. the different 
subsets of software can be developed and analysed 
independently and consistently thanks to the 
function contracts in ACSL. 
 
ACSL contracts can be used not only in the 
detection of RunTime-Errors, but also on more 

specific objectives. For example, the verification of 
functional ranges of parameter values can be 
verified in this way.  
 
While this approach applies to Value Analysis, ACSL 
is also able to define functional properties that will be 
verified with WP using deductive proof techniques as 
stated in §2. 

4. The bottom-up strategy 

One of the main issues of static analysis tools in 
general is that they can produce many false alarms 
and/or take large amounts of time. The amount of 
effort necessary is thus difficult to evaluate before 
performing the analysis. These unpredictable costs 
and technical difficulties can dampen industrial 
applications and contractual commitment 
possibilities. 
 
The most trivial technique to analyse a software is to 
perform analysis of the whole program completed by 
a definition of the called libraries. This strategy can 
be a winning one in case of immediate success. But 
success is not guaranteed and engineers can be 
stucked by the number of false alarms and 
computation time. 
 
One alternative is to divide the program in smaller 
pieces, to add ACSL contracts in the subset 
interfaces and to conduct a modular analysis. This 
strategy can be a solution to obtain a good result, 
but defining ACSL contracts in a reverse engineering 
work can be a costly activity. 
 
Facing these difficulties, we defined a bottom-up 
methodology aiming at succeeding in the analysis of 
a whole class of programs and with predictable 
costs.  
 
This methodology is based on an exhaustive 
analysis of each function with a bottom-up 
progression. The lowest layer is analysed first and all 
issues are handled in order to make dispense of all 
warnings. Different actions are possible: correction in 
case of bug, fine-tuning of analysis parameters of 
the tool, or addition of ACSL clauses to help the tool 
in case of inaccuracy. Once the first layer is treated 
and all the analyses raise no alarm, each iteration 
will consist in the integration of sources of the upper 
layer in their analysis. These iterations will end when 
reaching the top of the program. This progressive 
approach has been successfully applied in several 
analyses. Two experienced uses cases are 
presented in the §5. 
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Figure 3: Bottom-Up Strategy applied on 40 C files 

 
By using such a bottom-up strategy, programs that 
were difficult to analyse as a whole can be analysed 
step by step up to the main or the entry function. 
 
The opposite strategy of the bottom-up strategy is 
the top-down strategy consisting in integrating all the 
source code and performing the analysis on the 
main function. This strategy can be successful if the 
whole program is entirely and quickly analysed, 
otherwise, it leads to the situation previously 
described and that we encountered where the user 
is stuck by a large amount of false alarms. 
 
 

5. Experience report 

We report the application of this Bottom-Up strategy 
on two subset of software. Both are aeronautical 
software in an intermediate stage of development. 
Complexity of these two subsets is presented in 
table below. 

 

Figure 4 

The size of these uses cases are 20 kloc for UC1 
and 55 kloc for UC2. UC2 contains complex types 
considering nested structures, pointers and arrays 
and with a lot of string manipulations. This higher 
degree of complexity of UC2 is confirmed by the 

cyclomatic complexity figures computed by Frama-C. 
95% of functions of UC1 have a complexity <15 
while 95% of functions of UC1 have a complexity 
<20. 
 
Objectives 
 
Verification objectives are not expressed in terms of 
static analysis techniques but by a need of detection 
of the following threats: 

 T1: usage of a non-initialized variable 

 T2: usage of a non-initialized pointer 

 T3: out of bound access of an array element 

 T4: uninitialized output value of a function 

 T5: usage of the address of a local value out of 
the scope of its declaring function 

 T6: string management 
 
Solution 
 
A dedicated methodology based on the use of 
Frama-C’s Value Analysis plugin has been proposed 
to handle all these objectives. Some of these threats 
are directly handled by usage of the plugin Frama-
C/Value. Some additional artefacts have been 
deployed in order to achieve other objectives. 
 
For example, some callers (as instrumented function 
on the verification project) have been generated in 
order to implement the verification of the complete 
initialisation of all output variables. This mechanism 
is illustrated for threat T4 in the example below: 
 
typedef struct { int a; int b;} S; 

 

void f(S * s1) 

{ 

  s1->a=0 ; 

  return ; // filed s1.b is not assigned 

} 

 

 

Source code to verify 
 

// validation function for f 

void caller_f(void) 

{ 

  S l_param1; 

 

  // call of f with parameters to an 

uninitialized state 

  f(&l_param1); 

 

  // verification that l_param1 i initialized 

  //@assert \initialized(&l_param1); 

} 

 

Caller generated 

Figure 5 

In this situation, the tool is able de detect that s1 
parameter is not fully assigned in the function f. 
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Application 
 
Following the bottom-up strategy, all functions have 
been individually analysed, starting from the lower 
layers. 
 
For each analysed file, the steps are the following 
1- Prepare the environment 

a. Define a caller for every analysed function 
b. Define a correct stub for each called function 

2- Launch a batch analysis on all functions of the 
files of the layer 

3- Analyse each generated warning  
a. In case of real warning,  

i. Mention the issue on a report file 
ii. Fix the issue 

b. In case of a false warning due to a tool 
inaccuracy 
i. Help the tool by adding some ACSL 

annotations in the source code or by 
using specific options 

c. In case of absence of warning, the analysis 
of the layer are finished, go the next file 

4- Without any warning, the process is finished for 
this layer, go to the upper layer. Launch a new 
analysis in case of remaining warnings (go to 
step 2). 

 
Notes: 

 Minor modifications of source code have been 
made to accelerate the analysis. These 
modifications concern almost reductions of array 
size. 

 The semantics of parallel execution of the 
multithread program are not handled  

 
As for the industrial organisation, the analysis has 
been conducted by a team with the support of an 
expert. Two persons have been involved in UC1 and 
three for UC2. Each person has been working on 
different files. The next files to be analysed were 
determined with the aid of a “module call graph” 
consolidated with the list of the already analysed 
source files and always following a bottom-up 
progression. All issues reported were checked by 
another team member and periodical technical 
meetings were organised. 
 
Results 
 
All source files have been analysed. The total 
number of all findings and their proportions 
compared to the number of lines of code is 
presented in the table below. 

 UC1 UC2 

Findings 54 232 

Kloc 17500 57500 

Findings / kloc 3,1 4,0 

Proportions of findings between both use cases are 
comparable. Number of warnings in proportion is 
normally higher for UC2 which is more complex and 
including string computation. 
 
A closer look reveals a coherent relation in both Use 
Cases of the medium number of findings per function 
depending on the cyclomatic complexity of the 
function. This repartition is quite linear in UC2 for 
complexity up to 20.  
 

 
 
Proportions of the different warning categories are 
presented in the diagram below. 
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Figure 6 

The great majority of findings are concerning array 
indexes. As the verification is done at a unitary level, 
these warnings are not meaning that there are as 
many real bugs detected. It means that indexes of 
arrays are not checked at each level of functions 
(this could be at most a lack of robustness, but 
definitively not necessarily a bug). 
 
Both use cases are diverging on full initialisation of 
output values: while it represents the second most 
important category of warnings on UC1, none of 
them are detected on UC2 thanks to some specific 
preventive actions conducted on this subset. No 
warning on string operations are detected on UC1 
because of the absence of strings in this subset. 
One of the most interesting lessons learnt is about 
the verification of string computation widely used in 
UC2. String computation is a hard point of 
verification by static analysis. This experience 
demonstrates that, under the assumption of some 
good coding practices (for example: strncpy instead 
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of strcpy) the software can be analysed with enough 
precision to limit the amount of false alarms.  
 

6. Feedback 

Feedback on the Modular analysis strategy 
 
The modular analysis strategy can be a solution for 
scaling up in the face of major difficulties with full 
program analysis. But the definition of ACSL 
contracts of the subset can be a costly activity if it is 
done in a reengineering process. Another drawback 
is that some implicit hypotheses that are taken for 
the analysis of the different modules and not always 
correct for the whole program. For example, the 
different locations referenced by pointer parameters 
of one function are considered as separated 
locations; that is not always the case. This can lead 
to an unsound analysis. 
 
On the other hand, if the modular analysis is applied 
early during development, just after the coding stage 
and if contracts are already defined as a part of the 
design, this becomes a good strategy for increasing 
rapidly software maturity. Each developed subset 
can benefit from this valued added approach without 
waiting for the development of all pieces of software. 
After software integration, the enhanced quality of 
the produced code will facilitate an analysis of the 
whole program that will provide the highest level of 
trust. 
 
A balance can also be made for stub definition 
between a solution based on ACSL contracts and a 
solution based on a full C language definition of 
stubs. The C language offers multiple ways to define 
a representative behavior of a called function. One 
advantage is to use only one language for the user 
and for the tool too. But as presented in §3, the 

same ACSL contract (ex: “ensures 0<= *p <10;”) 

used as a property of the called function on one 
hand is also used as a property to verify on the real 
implementation of the called function. This duality is 
not allowed by a C definition of a stub. 
 
 
Feedback on the Bottom-Up strategy 
 
At the provider side (Atos), who proposed the 
solution and applied it. The bottom-up approach 
enabled engineers to analyse the entire software 
cost efficiently and within their deadlines. This 
success can be explained mainly by the good 
scalability of this method and by the industrial 
organisation enabling several actors to work on the 
same software. 
 

At the side of the industrial customer (Airbus), 
requester of this analysis, all the verifications 
requested have been reached and with a very high 
degree of confidence due to the application of a 
static analysis by abstract interpretation solution. 
For UC2, a large part of findings are concerning a 
lack of robustness without safety consequences. 
Less than 10% have led to a correction in the source 
code. Very few issues are related to actual bugs with 
operational impact, which have all been also 
detected during a simultaneous test campaign. 
 
The results demonstrated the validity of the 
approach and the ability to detect threats very hard 
to debug during the software development phase. 
Considering the reported warnings and the 
verification capacity, the return on investment would 
have made it worth applying this strategy earlier in 
the process. An earlier detection of safety issues 
would have saved costs in validation efforts. 
 
Other considerations 
 
The main advantage of the bottom-up strategy lies in 
its scalability. But it is also a way to conduct 
dedicated verifications on each function that is not 
accessible through the analysis of the whole 
program in one shot. 
 
The need for this verification depends on the 
industrial development process. The user can be 
interested only in detecting runtime-errors that can 
really occur in its operational situation, with the 
whole code integrated. On the other hand, the user 
can be interested in verifying some properties that 
shall be assumed by each source function 
independently to address maintainability and 
portability concerns (that was the case of the 
reported UC in §5). 
 
For example, the situation presented in Figure 5 may 
not impact the program if the callers of these 
functions are not using the non-initialised field. This 
situation may not be detected during the analysis of 
the entire program. Considering this function 
specifically, returning an initialized value of each 
output operand in any situation can be something 
expected and required by the coding rules of the 
project. In this case, the bottom-up strategy is a way 
of verifying these properties for each function 
independently. 
 

Roles and development methodologies 
 
During the evaluation studies, we targeted an 
industrial process to gain maximum benefit of the 
usage of static analysis in an industrial process. We 
targeted the phase of the development process and 
not a terminal phase of an independent verification. 
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To the question “When?”, the answer is as early as 
possible in the development process. The analysis is 
best run during the coding phase and before the 
tests. The expected benefits are a quality 
assessment of the source code, a reduction of the 
costs of the tests and a better quality of the final 
product. 
 

design

Source code

Unit testing

Integration

Static analysis

 

Figure 7: Formal verification of the whole product 

 

design

Source code

Unit testing

Integration

Static analysis
 

Figure 8 : Formal verification integrated in the coding 

phase 

 
Another question is “Who is doing the analysis?”. 
Starting from a situation where analyses are 
conducted by experts (Figure 7: Formal verification of 

the whole product), we tried to integrate as far as 
possible the developer in the process of verification 
of code by static analysis. The idea was to obtain a 
continuous improvement of the source code and an 
availability of analysis produced in a short time. Real 
feedbacks indicated us that the lack of skills and 
experience in static analysis could be detrimental. 
Indeed, a beginner in static analysis could be stuck 
on a difficulty of understanding or a weakness of the 
tool and spent too much time trying to get unstuck ; 
at worst the developer can denigrate the solution. In 
reaction, we quickly focused to a solution mixing 
skills of developers and experts in static analysis. 
The best way to integrate experts in static analysis in 
the development team is to have them prepare the 
verification projects and to run the first analysis. 
Once the project is in place, it can be appropriated 
by the developers. Facing problems in the analysis, 
experts are able to quickly find a fine tuning of the 
tool, a fix or a workaround and thus keep in the 

productivity targets. Work of experts is synchronized 
with the team developments by using a version 
control tool. In this way, we are able to keep the 
benefits of an integrated process and the efficiency 
of specialized actors. 
 
Simultaneously to these methodological works, 
tooling works have been done to facilitate this 
application: automatic generation of stubs, module 
dependence analysis for retro design, makefile, and 
also integration in CDT Eclipse, Client/Server 
prototyping. 

6. Conclusion 

Static analysis is still a disruptive technique for 
verification, as it is not yet largely applied. We have 
demonstrated that methodological efforts can open 
new areas of applications. This article reports on 
how we applied the technique with a specific 
strategy and with actors that facilitated their usage in 
development projects. Another step would be to 
systematically apply these verifications during the 
coding stage and to capitalise on them during post-
development activities, in a fashion similar to testing. 
If we are considering the industrial organisation, 
including the industrial customers, subcontractors, 
near-shore and off-shore, and academic 
laboratories, sharing the analysis projects from the 
first developers to the end-users can be a solution to 
improve quality with an optimized cost. Finally, the 
use of static analysis for runtime-error detection can 
be a first step before employing other techniques as 
deductive proof for functional verification. 
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Abstract 

The aim of this paper is twofold. Firstly, it is intended to provide an overview of the goals, the concepts 

and the process of a new Model Based Systems Engineering methodology, called Property Model 

Methodology (PMM). The second aim is to provide a feedback on its application in the avionics domain. 

In this experiment, PMM has been used in order to develop a top level specification model regarding a 

textual specification of an avionics function, to validate the top level specification model, and according 

to PMM rules to develop (1) a design model of the function taking into account architectural constraints 

of an integrated avionics, (2) building block specification models and (3) building block design models. 

Building block specification models were validated regarding their encompassing system specification 

model and the selected system design model while the design models were integrated and verified, level 

by level up to the top level design model, regarding their specification model. This paper summarizes the 

lessons learnt during this process and some additional results related to safety issues. This paper, with 

others [1,2], proves the fundamental concepts of PMM and provides a starting point for further research 

on Model Based Systems Engineering of a wide range of engineered systems (discrete, hybrid, continuous 

and multi-physics systems), but also support additional systems engineering activities (e.g. safety-

reliability activities). 

Keywords 

Property-Based Requirement, Property-Model Methodology, Model-Based Systems Engineering, 

CONOPS, VHDL(-AMS), Modelica, Simulink, Validation, Verification. 

1 Introduction 

There is a general agreement on the idea that there is a crisis of the classical systems engineering [3], 

as well as there was a software engineering crisis starting from the nineties’s. Whether we consider 

energy, automotive and transportation or space engineering industries, the symptoms of this crisis remain 

the same: delivery delays, cost overruns and a lack of maturity during system’s infancy. According to 

Nam P. Suh’s vision of complexity [4], system development processes are generally too complex i.e the 

probability, they achieve their goals on time and for an objective cost, is too low. Among the numerous 

causes of this crisis we can list a cumbersome document centric approach, the technical challenges 

assigned to the systems under development, as well as the large, multicultural geographically dispersed 

teams through whom systems are developed. Although there is a shared understanding of the classical 

systems engineering crisis, the proposals for resolving it diverge. First, there are the pragmatists who will 

put forward minimum corrective actions to obtain the presumed greatest improvements. For example, the 

creation of best practice guides and templates is such a solution advocated by the pragmatists. Others will 

look into more agile methods in order to reduce misunderstandings that abound in development teams. 

We could designate them as inter-subjectivists (“people rather than processes
1
”). Finally, there are those 

                                                           
1 http:/www.agilemanifesto.org/sign/display.cgi?ms=000000309. 
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who see a solution in rigorous formal processes. Although we consider that each approach contains a 

grain of truth and deserves to be explored, we undeniably side with the last one. Indeed, we claim that a 

formal development process including validated specification models and verified design models could 

solve the classical systems engineering crisis, whose principle was designed decades ago [5], by limiting 

the number of possible misinterpretations [1]. In this paper, (1) we shall present the Property Model 

Methodology (PMM), then (2) we will offer some insights into its utilisation through the case of an 

avionics function. Lastly, (3) we will summarize the main lessons learnt in this experiment and we will 

identify the way to go before PMM can be deployed operationally. 

2 PMM: goals, processes and concepts. 

PMM is an innovative model-based systems engineering (MBSE) method [6] focusing on operational 

goals. It is a top-down approach that authorises the re-use of pre-existing blocks at any hierarchical level 

of a system model’s architecture. Another feature of PMM is that it complies with current industrial 

development standards, specifically ARP4754A [7] and EIA632 [8]. PMM is a method, derived from 

the scientific method [9, p 10-11] and applied for engineering systems, i.e. a sequence of operative 

rules, defined to build specification models and design models of engineered systems and expressed in a 

language. Finally, the third pillar of PMM is simulation, which is the primary means for validating 

specification models and verifying design models. The languages that can support directly PMM are 

simulation languages such as VHDL [10], VHDL-AMS [11], Modelica [12], Simulink [13] and the 

PMM concepts are directly mapped onto simulation language features to produce simulation models. 

Today, PMM has no connection with languages such as SysML [14] or Domain Specific Languages, 

while the OMG
2
 is currently analysing the need to model requirements more clearly in SysML

3,4
. 

Roughly described, for an innovative system, PMM usually starts just after the validation of a 

Concept of Operations [15] and is made up of 4 activities
5
:  

(1) The first activity, which is carried out at the system level, is the development of a goal oriented 
system specification model associated with simulation scenarios defined in order to validate the 

system specification model. First innovation of PMM: it supports an early validation process based 

on simulation, before starting a solution definition process. 

(2) Then, we continue with a recursive process that consists in breaking down the system into building 
blocks. Each building block is made up of a specification model and one or more design model 

alternatives. Thus, a collection of competing system’s architectures is considered, but only the 

preferred one is selected. The building blocks and their connections constitute the system’s 

architecture. At each hierarchical level, the building block specification models are validated 

together against higher level building block specification model from the system specification 

model to the lowest level. A building-block is qualified as elementary when it is not decomposed 

any further and when its behaviour, is completely defined by a Behavioural Design Model (BDM) 

[6, p 133]. Libraries store the building blocks that might be re-used in future developments. From 
the point of view of its acquirer, any building block that is picked from a pre-existing library is also 

considered as an elementary building block. The design process ends when all the elementary 

building blocks have been identified, and modelled or acquired. The PMM recursive design process 

                                                           
2
 OMG = Object Management Group : http://www.omg.org/ 

3
 http://www.omg.org/issues/issue17016.txt 

4
http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-roadmap:requirements_modeling_working_group 

5 It also includes recovery points to reengineer the system when a goal is not met.  
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is, by several aspects, a very classical process. It is acquainted with different design methods such 
as the Suh's Axiomatic Design method [16], the Abrial's B method [17]. 

(3) The third activity, after this top-down design process, is a bottom-up process that consists in 
recursively integrating the elementary building blocks and then the intermediate building blocks so 

as to finally end up with the complete system model. For each integration level, design models are 

integrated and verified against their own specification models. Second innovation of PMM: it 

supports a design verification process based on simulation before starting the physical 

implementation. 

(4) The final steps that deal with the production of the physical building blocks (Hardware and 
Software), their integration, and the final installation of the system in its environment are out of 

scope of this paper, but we encourage readers to read [6, chap. 11] for further details. 

 
Figure 1 PMM processes. 

2.1 PMM Specification Process and Specification Models. 

Engineered systems are goal oriented. If they are correctly developed, they embody the intent of their 

designers. This is the reason why system specification is the first activity in system development. PMM 

proposes a Goal Oriented Requirement Engineering approach such as KAOS [18]. The specification 

modelling sequence is the third innovation of PMM. This is a very unusual backward process from the 

effects to the causes: (1) first of all, the specification process starts with the identification and definition 

of system goals. Goals are modelled as outputs of the specification model. (2) Then the actualisation 

conditions of these goals are identified. These conditions are modelled either as observable states (a 

special kind of PMM outputs) or as expected inputs. (3) Finally, the result of the analysis is formalized 

as one or several PBRs [19]. Comes the fourth innovation of PMM: PBRs are predicates that link goals, 

observable states and inputs in order to specify the actualization conditions of system’s properties. The 

PBRs structure prevents introducing design biases at specification level. The same process applies for 

secondary
6
 (undesired) outputs such as system failures and inputs (expected or undesired). The PBR 

theory is based on the theory of properties [20] due to the Canadian epistemologist Mario A. Bunge. 
                                                           

6 According to a terminology due to Vladimir Hubka and Ernst Eder in [21] 
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The basic form of a PBR is as follows: 

PBR #n : when C → val(O.P) ∈ D 

This formal statement means: “when the condition C is true, the property P of the object O is actual 

and its value shall belong to the domain D” where C is a relevant condition for the system or its 

environment: a functioning mode, a system state, an (undesirable) event, a time delay or a combination of 

such features and where the domain D is a finite or infinite set such as {on, off} or  (possibly linked to 

a frame and a physical unit). 

The concept of a PBR can be implemented as a conditional assertion (Boolean function) with various 

simulation languages such as those mentioned above. 

Because they are outside the system’s developer control and only presumed, assumptions are specific 

PBRs limited to input properties. 

Based on Bunge’s property algebra, several PBRs can be combined thanks to the conjunction operator 

“∧” in order to build composite PBRs. In a dual way, the partial order relationships “≤” and “≥” enable 

analysts to compare two PBRs. Thus, the expression “PBR1 ∧ PBR2” is the conjunction of PBR1 and 

PBR2 and is itself a PBR. Moreover, the statement “PBR1 ≤ PBR2” means PBR1 is less constraining than 

PBR2. 

 

Figure 2 PMM Specification model 

A specification model is a formal model that includes (1) system requirements, (2) system interface 

requirements and (3) system assumptions. The expression of specification models into simulation models 

(VHDL-AMS, Modelica or Simulink) is a solution to make sure that specification models and interfaces 

are coherent. In addition, the simulation of a specification model linked with the corresponding equation 

design model (EDM) [6, p 139] provides analysts with various advantages. First, it is an assistance to 

guarantee the completeness and correctness of the top level system specification model for a given set of 

validation scenarios. Second, it provides also a visual means to assist stakeholders such as pilots, flight 

engineers, authorities in the validation of the top level system specification model before starting a design 

on the basis of a specification model presumed free of errors. Third, as we will explain, simulation 

provides also capabilities for validating building block specification models against higher level building 

block specification models up to the system specification model. This is also an innovation of the PMM 

process which leads us to the “Prime contractor theorem” described below. 

2.2 PMM Design Process, Design Models and PBR Derivation 

Once the system specification model is complete and correct, the second system development activity 

consists in developing a system design model. This is a design process very similar with the Suh’s 

Axiomatic Design “zigzagging process” between specification and design models. For a very simple 

system, the system design model is usually an EDM. However, for more complicated systems, Structural 

Design Models (SDMs) [6, p 145] are introduced. A SDM is a formal definition of a system’s architecture 

A that is made up of three elements: (1) building blocks; (2) an endo-structure linking together the 
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building blocks that belong to the system; and (3) an exo-structure linking together system building 

blocks with objects that belong to the environment, through its interfaces. 

For each candidate structural design model, the third system development activity consists in deriving 

the system requirements {PBRs} into building-block requirements {PBR1, …, PBRn}. To be valid, for a 

given system structural design model A and for a set of assumptions on properties own by objects that 

belong to the environment EA, the conjunction of the derived building-blocks PBR1, …, PBRn shall be 

more constraining than the system PBRs. This statement can be expressed formally as: 

Derivation (PBR): when A ⋀ EA → PBR ≤ PBR1 ⋀ ... ⋀ PBRn 

The PMM uses simulation as the main method to validate the derivation of system PBRs into a set of 

derived building block PBRs with respect to a set of validation scenarios (Fig. 3); The extend of the set 

depends on the level of validation rigor. 

This validity condition of PBR derivation leads to the “Prime contractor theorem”: 

“A sufficient condition for a system to comply with its PBRs is that its building blocks comply with the 

PBRs validly derived from the system PBRs, provided the design choices and assumptions made about the 

environment driving the derivation remain valid.” 

This result of PMM, shared
7
 with the B method, is a key point for a prime contractor to secure his 

subcontracting process. 

The design process – design, derivation, derivation validation – is applicable at any level within the 

system’s architecture, down to the lowest hierarchical level corresponding to the elementary building 

blocks. Lastly, the design verification is performed according to § 2 (3). 

 
 

Figure 3 Validation process of subsystem 

specification models 

Figure 4 Specification and design model roles 

during a verification process 

Simulation also provides capabilities for verifying design models. While the simulation is running, for 

all submitted simulation scenarios, Fig. 4 shows that the specification models monitor the interacting 

design models so as to check whether any requirement is violated. If there is no violation detected during 

the verification of a building block design model, then the building block design model may be presumed 

as free of design errors. 

To complete the picture, the PBRs theory provides us with a theorem of practical importance, the 

“Safety theorem”: 

“The introduction of any additional PBR at any building-block level of a system does not impair the 

safety of this system. It can impair its feasibility.” 

                                                           
7 However, keep in mind the differences between evidences provided by simulation and formal proofs. 
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Obviously, this theorem, established in the frame of the PBR theory, is wrong in the context of textual 

requirements. 

3 “Clearance Test Function” experiment 

The case study comes from the avionics domain and is based on an avionics function called “Clearance 

Test Function” (CTF). This is a limited experiment selected in order to prove the PMM concepts and to 

identify benefits, limitations and possibly improvements. The VHDL language was used as target 

simulation language. Specification and design models were written in VHDL and the ModelSim
®
 

simulator from Mentor Graphics was used. Note that a translation schema of PMM models in VHDL 

models is provided in [22].  

3.1 Experiment context 

The main goal of the “Clearance Test Function” is to provide the crew with a status of various systems 

and equipment installed inside the helicopter, before taking off. In conjunction with the MMEL
8
, it 

provides to the crew with an aid to clear or not the flight depending on the availability and the healthy 

status of systems and equipment such as sensors, actuators, control units, etc.. The “Clearance Test 

Function” is activated on ground when the helicopter is powered on. It includes several sequences of 

tests, triggered automatically or upon crew request. The function consists in the reporting of synthetized 

messages for the crew computed on the basis of PBITs, CBITs and IBIT
9
s produced by the systems and 

equipment involved and H/C or avionics states. The “Clearance Test Function” is a decision making aid 

for the crew. 

At the time of the experiment, this function was under development in the frame of a new avionics 

suite developed by Airbus Helicopters and called “Helionix
®
”. It is now installed on several in service 

helicopters such as the H175, H145. 

At the beginning of the experiment, (1) a specification including 200 textual requirements and (2) a 

preliminary Rotorcraft Flight Manual (RFM) describing pre-flight tests were available and were foreseen 

to be used as main inputs for the experiment. Additionally, functional and physical architectural choices 

of Helionix® avionics suite, were well known at this time. 

3.2 PMM application 

This paper describes the PMM application, but practical examples cannot be disclosed in this paper. 

Disclosable pieces of examples will be part of the conference presentation. 

Specification: 

After an initial learning phase of the input data, the first step of the experiment consisted in the 

establishment of the top level PMM specification model of CTF. With the objective to start from the 

operational need, the RFM was demonstrated to be a better source than textual requirements to produce 

the PMM specification model because it was really representative of operational need (as a CONOPS 

would represent this need).  

In order to build the top-level specification model, the messages indicated in RFM were inventoried 

and grouped depending on the progress in the test sequence. These groups were modeled as intended 

outputs of the specification model. The possible values for each output corresponded to a specific 

message displayed to the crew. 

                                                           
8 MMEL=Master Minimum Equipment List 
9 (P=power-up, C=continuous, I=initiated)BIT=Built-in Test 
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After this phase of identification of expected outputs, their actualization conditions were analyzed. For 

instance, the analysis provided us with the following conditions: the message “Pump xx failed” (intended 

output) shall be displayed to the crew 2 sec at most after a “Pump test” (modeled as observable state) 

request sent by the crew when the following conditions are fulfilled: the helicopter is on ground (modeled 

as observable state), one engine at least is started (modeled as observable state), and a Fail IBIT status 

from Pump xx” (modeled as input) is received by the avionics. 

The same analysis was performed for each specific message and for each group. Although somewhat 

tedious, it was easy to represent these conditions as PBRs or, what amounts to the same, as boolean 

functions. Translation errors were possible but would be detected during a sufficiently rigorous validation 

(obviously this event occurred). 

After each intended output associated with its PBRs, the same procedure was applied to the observable 

states in order to specify the actualization conditions of observable states. 

Finally, assumptions about the inputs (values, frequency, sequencing, ..) were also modeled as PBRs, 

completing a first version of the specification model of the CT function. 

This PMM specification model was made up of 14 property based requirements (PBR) prescribing 

completely the external reactions of the CTF function to handle about 200 external events coming from 

its environment and also few dozen internal events. It was not necessarily consistent with the real need, it 

could contain specification errors but it was formally coherent and formally complete, which is rarely the 

case for textual specifications. 

Validation: 

It is the responsibility of the validation process of showing that the specification is as exact as possible, 

that is to say, it characterizes the right system i.e, the expected system. Although tedious, in PMM, it is 

quite easy to build validation scenarios from the expression of PBRs and this should be largely 

automated. This ability to automatically generate validation cases is another feature of PMM validation 

process. We have built a simple scenario to validate the specification model. 

 
Figure. 5. PMM validation process of a specification model. 

The next step was to transform the CTF Specification Model into an Equation Design Model according 

to the PMM process. As expected, the experiment showed that this transformation was direct, but it was 

handmade for lack of available transformation tool. The CTF system model, comprising its top level 

Specification Model and its equation design model was embedded in a validation bench with a validation 

driver in order to perform the validation process of the CTF top level Specification Model by the means 
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of simulation (Fig. 5.). This validation process, performed with a moderate effort, showed that the CTF 

system model outcomes were in line (after some corrections) with the preliminary RFM. 

Quickly, the PMM specification model of CTF became a precise representation of the observable 

behavior of CTF, reflecting expected effects and their conditions of actualization as they were described 

in the RFM, while staying absolutely free from any design choices to implement the function. On the 

basis of this validation process, the CTF Specification Model was considered as validated (as exact as 

possible), i.e. in line with the right function. 

Fourteen property based requirements were defined to describe the complete expected behavior of 

CTF. However, more than the significant reduction of requirements, which is not, in itself, a good 

indicator, what should be noted is (1) the accuracy of PBRs, (2) their formal coherence and formal 

completeness, (3) their ability to be derived in cases and scenarios of validation and verification and (4) 

their lack of design bias. They allow very firmly separating what concerns the specification of which is 

within the design.  

Design and PBR derivation: 

The next step was to model a PMM Structural Design Model (SDM) of CTF consistent with the 

Helionix
®
 avionics system architecture in terms of behavioral and physical breakdown. The CTF SDM 

had to fit the Helionix
®
 integrated architecture, its hardware and software components and the space and 

time partitioning of its resources. This implementation was time consuming, it was not held back by any 

theoretical or practical issues, but by the hand-made and boring writing of the CTF models. This activity 

showed that it was possible to submerge CTF function design model in the avionics system design model, 

and to comply with the constraints of its architecture, respecting its breakdown and the allocation of 

resources according to the defined temporal scheduling. 

In the case, the derivation of PBR was not an issue; every component has been assigned a contribution 

to satisfy the mother PBR. Obviously these derived PBRs (in accordance with ARP4754A’s derived 

requirement definition) were not directly traceable from the mother PBR and depended on Helionix
®
’s 

architecture choices and would be very different in the context of a federated architecture, for example. 

As a first consequence of the use of a simulation language such as VHDL, the various configurations 

of models built during the development process were formally coherent and formally complete. In 

particular, the interfaces of all the building blocks composing each CTF system model configuration were 

coherent and complete. 

Verification: 

 
Figure. 6. PMM verification process of a design model. 
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As fourth step, the CTF system model, comprising its top level Specification Model and its SDM was 

embedded in a verification bench with a verification driver in order to perform the verification process of 

the CTF System Model by the means of simulation (Fig. 6.).This verification process, performed with a 

moderate effort, showed that the CTF design model was in line with its specification models (after several 

corrections). For the performed effort of verification, the SDM was deemed error free. Deadline 

requirements were satisfied by the temporal scheduling (with assumptions on worst case execution time). 

During this experiment, we found that it was possible to automatically generate simulation cases from the 

structure of PBRs depending on the level of criticality of the system considered. These simulation cases 

put together in simulation scenarios were used as validation scenarios for specification models and 

verification scenarios for design models. These simulations scenarios could also be re-used for the testing 

of physical products [6, p 162-167]. Thus, PMM allows, on the specification models basis, to size early 

testing effort which must be performed and almost automatically generate scenarios corresponding to the 

required effort. 

Safety considerations: 

The final step of the experiment consisted in specific investigations about safety requirement modeling 

and the verification of the efficiency of design mechanisms to prevent failures. The experiment allowed to 

verify whether a given architecture could tolerate faults or not, thanks to a special device of PMM, the 

RDM [6, p 207]. The Reliability Design Model (RDM) is a design model derived from a structural design 

model (SDM) that allows us to observe the behavior of a system model in the presence of single or 

combined faults. It has been shown that, for a moderate level of verification rigor, a system model 

considered in the experiment properly met the requirement “no single failure will result in a catastrophic 

condition” according to AC29-2C, F-17 [23]. 

4. Lessons learnt and conclusions 

The experiment described above was conceived as a proof of concept and it is not excessive to say that 

the Property Model Methodology concept has been validated beyond the initial expectations. Not only, all 

the expected confirmations concerning the relevance of PMM concepts and PMM methodological process 

have been obtained but further results were achieved. 

First of all, the experimentation established the suitability of the concept of PBR and showed that the 

process of specification associated therewith allows the production of Specification Models without 

design bias. Then, the experiment confirmed that the Equation Design Models allowed the validation of 

specification models and showed that the former could be produced automatically from the latter. It 

confirmed also that the validation and verification cases could be automatically generated from the 

structure of PBRs with a gradation depending on the level of rigor requested. 

The experiment showed that it was possible and quite easy to design a CTF solution that was 

consistent with architectural choices made for reasons (Helionix
®
 architectural principles) beyond the 

specific needs of the developed function. 

The last but not the least, the experimentation has highlighted several possible non-recurring cost 

(NRC) savings  in the development of a system: (1) a system model formally coherent from the top to the 

end building blocks and free of interface errors (2) specifications interpretable as little as possible while 

misinterpretations are source of errors and waste of time, (3) early requirement validation through 

simulation before any physical (hardware or software) realization of the products composing the system, 

(4) a design verification through simulation and, in particular, of failure prevention mechanisms, (5) 
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automatic generation of unit test cases, integration test cases for the physical system and its building 

blocks and installation test cases of the system into its environment. 

However, despite these results, the deployment of PMM is not immediately feasible. Indeed, during 

the experiment, the models were produced by hand by an engineer familiar with VHDL. This pre-

requisite is not acceptable if PMM is applied by engineers from different engineering disciplines. More, 

existing simulation tools are design oriented, bottom-up oriented and ignore specification aspects and, a 

fortiori, the theory of PBRs. So, a PMM front-end, hiding the underlying language for modeling PMM 

artifacts in a way acceptable by discipline engineers, and especially for modeling PBRs and for producing 

specification models, remains to be developed. This objective is at hand regarding simulation languages 

such as Modelica [2] and Simulink. It remains to be determined regarding VHDL and VHDL-AMS. An 

alternative way to this approach targeting a particular simulation language is of a PMM Modeler based on 

a pivot language and capable of generating models expressed in various simulation languages. This is the 

way that the Ellidiss company choses to explore thanks to its LMP technology [24]. 
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Abstract / Motivation 
Software Sharing in automotive embedded software development has continuously grown over the last 
decades and is still getting more importance and attention. Main advantages for Software Sharing, as 
seen by the OEM, are acceleration of development time and cycle as well as a full flexibility to customize 
the final product, with introduction of its own software. 
Although classic software sharing has shown its capabilities in practice, it shows some limitations and 
need to be extended in order to cover additional use cases. The concept of model sharing can help to 
address those use cases, the following paper outlines the use of ASAM-MDX and AUTOSAR standards 
with the model sharing to enhance customer cooperation. 
 
 

1. Introduction 
An increasing number of car manufacturers develop their own functionalities and/or their own software 
platform in order to communize functions across several control units supplied by different Tier 1 
companies. This happens in general as stub-software - already compiled - to be integrated in the final 
Software. This proven process in practice needs however to be improved and can thus be enhanced to 
increase development efficiency. 
In order to achieve such goals, OEMs need the ability to test enhanced or newly developed functions in 
a very early stage of development, those function checks need to be performed continuously along the 
V-Cycle development up to the final software. Model Based Design is a general accepted mean to do 
this and is becoming widespread in the automotive industry. 
Within the automotive industry, modeling-tools like Simulink® (together with Embedded Coder or 
TargetLink® as code generators) and ASCET are widely used by OEMs to verify their functions in an 
early phase using virtual and/or rapid prototyping methodologies. The so verified model together with 
the achieved data specification can then be exchanged with suppliers as executable specification for 
functions to be integrated in the ECU; this is one side of the medal of what is called “Model Sharing” at 
Bosch. The other side of the same medal consists of provision of a development environment for 
simulation as well as for software build, together with a set of common modeling guidelines and libraries 
and common data description standard for further development. 
This approach has a high degree of flexibility, since it provides a framework for OEMs starting from the 
scratch, but also allow to adapt the derived Process, Method and Tools to car manufacturers having 
their own approaches. Bosch has established with this approach a five-level classification for model 
Sharing between Tier1 and OEM, which starts from "Use of ECU virtualization environment” and goes 
up to “Joint Development”.  
Use of Standards for the data description (e.g. ASAM with -MDX, CDF …- and/or AUTOSAR with service 
libraries, methodology …) as well as standardized interfaces specifications (e.g. as published with 
AUTOSAR R4.x) can significantly increase the effectiveness of this approach; e.g. by easing labels data 
management and exchange between development partners through a database (e.g. Visu IT!-ADD), as 
well as exchange of models. 
The use of standard for data description with the approach described above raises following central 
questions that are subject to further analysis in this paper:  



- How can standards be used with ECU Software development tools?  
- What are the constraints on modelling pattern?  
- How can migration of models be handled/managed between different standards? 

In this paper we will present a rough description of benefits coming with the standards ASAM-MDX and 
AUTOSAR with respect to mutual development cooperation. Furthermore, we will focus also on their 
deployment with modeling tools; the technical aspect to ensure a seamless migration from MDX to 
AUTOSAR standard will be also described. Some of the results as well as benefits achieved with these 
standard in customer cooperation within series projects will also be presented.  
 
 

2. Model-Sharing 
Model-Sharing is a way of exchanging models and model artefacts in order to ease Software 
development and cooperation between two or several partners; it is part of our Model Based Software 
Development framework in the ECU development domain. It is also a way to allow rapid prototyping as 
well as simulation. 
Basically, motivations for Model Sharing in embedded SW development process are: 

- OEM focuses on physical modeling, simulation and rapid prototyping. The OEM can also, via 
model exchanges, take benefit from supplier physical modeling and simulation know-how. 

- The supplier is in charge of industrialization of provided models as well as code generation from 
these models.  

Provided models (In general in form of ASCET, Simulink® or TargetLink® models) by the OEM can be 
used as executable specifications for Software development by the supplier. Using a common tool with 
it a common language, and standardized files by the development partners for modeling leads to 
reduction of the amount of to be exchanged documents, and thus enhance the understanding of OEM 
requirements by the suppliers. This can significantly lead also to reduction of development effort and 
development time as well as delays in the development.  

Typical use cases for Model Sharing are described in the sections below. 

Use case 1: OEM describes the expected functionalities in customer specific functions developed by 
the supplier 

- the desired changes can be implemented directly in the model 
- Simulation/Rapid Prototyping can be carried out w/o waiting for an “official” SW release 

Use case 2: OEM develops its owns model and the supplier is in charge of the “so-called” 
industrialization of the code 

- This corresponds to the so-called “Commissioned Development” in Bosch process development 
- The code implementation is simplified if both partners are working with the same modeling 

environment (examples : ASCET, Simulink®, TargetLink®) 
- Functionalities can be tested with Rapid/virtual Prototyping before delivery to the supplier  
- corrected (enhanced) model can be delivered back to the OEM: This helps to avoid additional 

traceability documents and minimize risk of forgotten improvements  in own model 
 
Cooperation levels 
Since each customer has its own dedicated development process, it has therefore specific requirements 
for development cooperation with suppliers. On the other hand, suppliers need to classify the requests 
of OEM to find a common approach. Following this line of thought a five-level classification for model 
Sharing between Tier1 and OEM has been performed at Bosch: from "Use of ECU virtualization 
environment” up to “Joint Development” [3]. This build a base for discussions with OEMs before starting 
a new project and it provides a framework for development methodology and contracting. The 
cooperation usually contains aspects of different types of contracts like service or licensing contract. 
However, these aspects are typically covered by one agreement describing the complete scope of the 
cooperation. 
 



 
  Figure 1 - Different cooperation levels for model sharing 

The picture below illustrates those cooperation levels in a contracting and process flow view 
 

 

 
Figure 2 - Workflow for Model Sharing and contracting 

Some of the cooperation models will be shortly described hereafter to better understand the use cases 
which are addressed in this paper. 
 
Level 0: Virtual Prototyping 
Since several years, it can be observed that the trend for ECU software engineering is moving towards 
PC simulation in order to 

1) Save costs by increased development productivity and  
2) Manage complexity and apply holistic engineering approaches. 
3) Allow different development speed between HW, mechanics and SW 

And OEM are requesting from Tier1 supplier a stringent support of development cycle oriented use-
cases at OEM in a virtual manner. This requires to build a virtual test bench, which contains virtual 
engine ECU-Software (as it is running in the real ECU) as well as representative plant models in a virtual 
environment, which are real time capable. For the virtual test bench, PC-executable ECU-functions in a 
powerful simulation environment are then needed [1] [2]. 
 
Level 1: Processing of OEM Model 
This level of model based cooperation is the so called “Commissionedd Development” within the 
development process at Bosch; the OEM delivers a (simulatable) model that has to be processed by 
the Tier1 supplier to generate production code without any change on the model. Alternatively, the OEM 



can also deliver a specification (e.g. PDF-document) and the supplier creates a model according to this 
specification. This model will then be delivered to the OEM for further development. 
Using same modeling tool by the OEM and the Tier1 supplier helps to avoid converting the model to 
another modeling environment.  
 
Level 2: OEM Model Enhancement and Processing 
This model sharing cooperation level is also considered as part of the development process 
“Commissioned Development” at Bosch. 
The OEM delivers a model and the Tier1 supplier can introduce non-functional necessary modifications 
in the model for several purposes, such as: 

- optimisation for production code generation 
- model corrections in case of mistakes found during model implementation 
- specific interfaces e.g. for diagnostic 

In comparison to cooperation Level 1, the final model contains added value introduced by the Tier1 
supplier to the original the OEM model. Furthermore the development efficiency is getting enhanced, 
since the modified model by the supplier could be redelivered to the OEM and thus modifications done 
by the supplier are then available to the OEM and so risks of model discrepancies are reduced since 
the corrections are done at a single site. 
 
Level 3:  
Level 3a: Use of OEM Models in Cooperation 
The OEM owns a model and delivers it to the supplier who is then charged to industrialize the model 
and generate production code generation out of the model. Different to cooperation Level 2, the supplier 
can introduce functional modifications in the OEM model. The kind of Know-How added by the supplier 
can be for example specific calculations mechanisms such as special filters (e.g. replacement of PT1 
filter by a Butterworth filter to achieve certain goals). The modified models are delivered back to the 
OEM for further development. In general, for all cooperation levels, a CIL (Customer Interface Layer) is 
needed to combine OEM functions with Bosch functions.  
 
Level 3b: Use of Bosch Models in Cooperation 
The supplier provides its own models to the OEM who can then enhance the model by its own 
functionalities and Know-How. The OEM delivers back the modified model to the supplier who is then 
in charge of industrialisation and production code generation. The final responsibility for the model 
(physical Behaviour as well as code out of the model) remains with the supplier who should review the 
OEM functional modification for approval. The development time of OEM specific functions can be 
drastically reduced with this cooperation level since there is no need for the OEM to deliver any 
specification or schematic that would have to be analysed by the supplier and then interpreted in the 
model. 
 
Although Know-How/functionality is appended to the original model with this cooperation level, the 
ownership of the model remain with the original provider of the model; i.e. Ownership of model remain 
with OEM in case of cooperation level 3A and ownership of model remain with Bosch with cooperation 
level 3B. 
 
Level 4: Joint development 
The joint development deals with a common ownership of the models. The base model can be created 
at the start of the partnership or can be provided by one of the party. The level of contribution from the 
supplier and the OEM is comparable and the created Intellectual Properties are shared. It leads to 
accelerated development: a unique model can be continuously exchanged between the supplier and 
the OEM or modified by one party with the contribution of the other party. As a constraint, it is necessary 
to define clear responsibilities between the supplier and the OEM. 
 
 

3. Standards with Model-Sharing cooperation 
ASAM-MDX standard and AUTOSAR standards are being considered in this paper.  
The ASAM-MDX standard is an ASAM (Association for Standardisation of Automation and Measuring 

systems: http://www.asam.net) standard, and the signification of MDX is “Meta Data Exchange Format”. 

This format is often used with another ASAM standard called CDF (Calibration Data Format).  
AUTOSAR stands for “AUTomotive Open System ARchitecture“: http://www.autosar.org. This standard 
has been released by a consortium of car makers, software suppliers and tools suppliers. This standard 
describes also data specification for development collaboration.  



Both standards (ASAM-MDX as well as AUTOSAR) describe the interfaces and data definition used in 
the corresponding models within XML files. The AUTOSAR standard is more complete since it describes 
also the Basic Software as well as the interfaces between the Application Software and the Basic 
Software. Both standards can not be applied at the same time on a model:  the code can be either 
generated with a MDX target or with an AUTOSAR target. 
The most evident advantage of such standard remains in the fact that the data descriptions can be easily 
shared between OEM and suppliers at the same time as the models exchange. Since the format used 
is XML-language, these files can be processed more easily than Excel-like formats and are less 
sensitive to characters issues. Another advantage of these standards is that it helps to avoid developing 
specific tools or scripts as it is the case when using specific OEM or supplier formats. Development 
activities can then be performed with standard tools from the market without any deep customization. 
 
As generally known, a function design can be performed by using different modelling styles. Hence 
standards may have an impact on the modelling pattern. The cooperation between OEM and suppliers 
with models exchanges can be eased if both partners are using the same standard for their Model Based 
Development tool chain. Non-use of same standard can really impede model exchange, especially with 
regard to library blocks intended for simulation as well as for code generation; some library blocks may 
include memory states like for filters or flip-flop, and thus the memory states can be described with 
workspace elements in form of Simulink® objects or Matlab objects.  
 
With R2012B onwards, MathWorks has introduced with a PSP (= Pilot Support Package) in Simulink® 
a set of MDX objects (derived from Simulink® objects) which have been developed in cooperation with 
Bosch, intended for use in cooperation projects between Bosch and its customers. Together with this 
PSP, Bosch has developed a Simulink® library containing AUTOSAR services and other specific 
functions (e.g. BSW specific functions). In case of Simulink® model exchange containing these library 
blocks, a simulation can be performed since these objects are based on Simulink® objects; code 
generation will however require the use of the MDX package. If however the data specification on 
customer site are based on Matlab objects, simulation will be performed with default values but not with 
the specified version; a conversion will therefore be needed to have appropriate simulation. Furthermore, 
working with a standard for the data description avoids also to create its own specific data description 
rules. It then avoids to create its own scripts to generated the data description files during the code 
generation phase. 
 
From a modelling point of view, a standard like AUTOSAR provides also standardized interfaces with 
the Basic Software like diagnostic interfaces, and thus permits to connect easier Application Software 
functions to the Basic Software services. 
 
From an integration point of view, if the OEM provides Software Sharing code which has been generated 
with standardized interface, the integration of the Software Components in the supplier Software is made 
easier since the files can be processed with the standard supplier tool chain, thus avoiding usage of 
specific tools to generate adapter layers with specific interfaces mechanisms. 
One of the main objective of AUTOSAR as standard is to ensure portability of functions towards different 
platforms and thus ease integration of Software Components from different development partners. 
Therefore data descriptions are defined in an XML file, which can be processed by a tool during the 
software build phase to generate automatically the appropriate header and source code files for data 
declaration and definition. 
 
When sharing code with a supplier, the alignment of standard used at OEM side with standard used by 
the integrating supplier allows an enhanced efficiency in the continuous integration process; thus 
necessary software adaptations can be automatized more easily. 
 
Data consistency is a crucial element in the automotive embedded software development (especially 
when using pre-emptive and cooperative tasks in a single- or multicore context). Data specification 
information within standard files (MDX and AUTOSAR files) can be used to ensure the data consistency 
and thus these files can be directly be processed during the software build phase to take care on data 
consistency mechanism in the final software (hex-file). For MDX file, the so called tool MCOP (Message 
Copy OPtimizer) is used whereas for AUTOSAR files, the RTE generator ensures the data consistency 
mechanisms especially for Sender-Receiver implicit communication.  
The configuration of MDX objects for a Simulink® model is performed using the MDX explorer (derived 
from standard Simulink® model explorer) and is part of the data dictionary to be shared between 
development partners and the configuration of AUTOSAR objects is performed in the workspace (to 
create AUTOSAR objects) as well as with the AUTOSAR Mapping Editor for Simulink® to prepare the 



model for RTE configuration. Working with the same standard between OEM and supplier can reduce 
the effort of the model preparation at the supplier side for the code generation in case of Model Sharing 
Level 2 (or so-called Commissioned Development). 
 
With the Model Sharing level 0, the MDX or AUTOSAR standards are supported by tools used at Bosch 
to generate the artefacts for Virtual Prototyping, done with INTECRIO or EVE [1] [2]. Some tests have 
been done with Software Sharing code which are not using MDX or AUTOSAR. A non-negligible effort 
had been spent to adapt the tool and scripts to the code and some information were missing and the 
way to extract is not as reliable as with an MDX or ARXML file. 
 
 

4. The ASAM-MDX standard 
The ASAM-MDX standard is supported by the tool chains at Bosch DGS-EC for years and the MDX 
target is part of the Simulink® tool chain. The name of the MDX files is in form of *_mdx.xml. The 
structure of the MDX files is organized into several parts: 

- Data dictionary for the variables: it describes the implementation information such as the 
Datatype, the Compu Method, the Data Constraints, the Memory Location, the type of 
communication 

- Data dictionary for the parameters: it describes the implementation information of each variable 
and parameters such as the Datatype, the Compu Method, the Data Constraints, the Memory 
Location, the Record Layout 

- Description of the Compu Method 
- Description of the Data Constraints 
- The services: for each runnable, it describes the direction for each interface (READ, WRITE or 

READWRITE) and the type of access. The information provided in this part is very important for 
the tools which ensure the data consistency 

- A list of internal variables, interfaces, parameters and runnable defined in the Software 
Component 

- A list of interfaces and parameters which are exported by the Software Component 
- A list of interfaces and parameters which are imported by the Software Component 

The definition of the Compu Methods and the Data constraints can be done in self-containment or 
centrally defined. 
In addition to the MDX files, a CDF file can be used to define the default values for the parameters. 
 
The MDX and CDF files are generated by Simulink® with the AddOn MDX Exporter from MathWorks. It 
is necessary to create MDX elements in the Workspace such as MDX.Variable and MDX.CalPrm. Some 
information, which are not present in these Workspace elements like memory location or scope (import, 
local, export), are defined in the MDX Explorer. It is accessible from the Simulink® model and its content 
is embedded in the model. 
A primary role of the MDX files is to generate automatically the headers files for the data declaration 
during the software build phase. The headers are enriched with other information. It avoids to generate 
them during the code generation phase. Hence it permits to have a flexible configuration depending on 
each project. 
Another primary role is to be able to generate automatically an A2l file. The A2l is a standard file from 
ASAM association which contains the complete data description for the calibration tools like INCA. 
Without XML files like MDX file, it would be impossible to generate the A2l file with the c code and header 
file only since they do not contains the Compu Method description for example. 
 
Describing all the data and the scope of each interface in an XML file for every Software Components 
offers many other advantages, especially with self-containment. During the software build phase, it is 
indeed possible to do a check if there are open interfaces. The software build can be interrupted in an 
earlier phase than without this functionality and a log file that provides a list of the issues is generated. 
It is also possible the check the data definition incoherencies for the interfaces: for example a data type 
difference between an imported interface and the exported interface. 
 
With the new generation of microcontrollers with Multi-Core technology, the MDX standard provides 
further advantages for the integrating suppliers regarding the data consistency constraints. With Multi-
Core microcontroller, the runnable in the Application Software part can be distributed over several cores. 
The MDX standard introduces the concept of import and export messages. The data consistency 
between inputs and outputs communicating between two different cores has to be ensured. In the Bosch 
DGS-EC software build tool chain, this is done with the tool MCOP. It is a tool included in the DGS-EC 



software build tool chain and it uses the READ/WRITE access defined in the MDX files as input to 
determine which data has to be protected by doing a data consistency analysis. By using MCOP solution 
with MDX files, there is no need to implement data consistency features in the c code, since the 
consistency is implemented during the software build process. The consistency implementation is 
adapted to every software configuration (task distribution and functions scheduling).  
It is a mechanism similar to the implicit communication with the AUTOSAR sender-receiver interfaces. 
The main difference remains in the fact that the implementation of the data protection with MCOP and 
MDX files is done in the object code and the ELF file with the VARED mechanism during the compilation 
phase. With AUTOSAR, the data protection is implemented during the RTE generation, in an earlier 
phase of the software build process. 
 

 
Figure 3 – Bosch MCOP concept 

 
In a Model Sharing context, the support of the MDX standard is depending on the modelling tools and 
their configurations. With ASCET tool, the Bosch DGS-EC target includes a feature which permits the 
code generator to generate an XML file called PaVast which has a format and a semantic very similar 
to the MDX format. Both format are supported by the same tool chain during the software build process. 
If an OEM wants to exchange ASCET models with Bosch more easily, it is recommended to use a 
compatible target to avoid the use of a conversion tool. 
With the Simulink® tool, the MDX files can be generated with the MDX Exporter from MathWorks. It can 
be either configured in the OEM Simulink® environment or it is included in the Bosch DGS-EC Add-On 
which offers a complete code generation environment compatible with the Bosch DGS-EC code 
development rules. This Add-On can be delivered to any OEM in the framework of a cooperation contract. 
The cooperation between OEM and supplier when exchanging models can be eased when both 
development partners are using the same MDX standard for their Model Based Development tool chain. 
It can be a blocker when exchanging library blocks for the code generation. Some library blocks, like 
filters or flip-flop, may include memory states. For example, the memory states can be described with 
the Workspace elements MDX.Variable. If the user of a Simulink® model who need this library does not 
have the MathWorks MDX Exporter, he shall do with a script a conversion of MDX Workspace elements 
into Simulink® elements in order to be able to run a simulation. 
With a Model Sharing Level 1 or 2, if he OEM delivers Simulink® models without any MDX support, the 
MDX configuration can be added by the supplier. The adaptation is done in two steps. The first step is 
dealing with a conversion of the OEM data dictionary into MDX elements in the Workspace. The 
conversion task can be eased if the OEM is able to provide a data dictionary in MDX format. It can be 
more easily converted into MDX elements since the XML format can be processed more easily than 
Excel format and is less sensitive to issues with bad fields’ content with bad characters. 
 
The second step is dealing with information which are not present in these Workspace elements like 
memory location or scope (import, local, export). They shall be defined in the MDX Explorer which is 
accessible from the Simulink® model and these data are embedded in the model. The filling of the MDX 
Explorer can be done more easily if the OEM is able to provide a data dictionary in MDX format 
containing the useful information like the scope (import, local, export). The information can also be 
completed with Matlab scripts through specific API. 
 



 
Figure 4 – Simulink MDX Exporter 

With the use of XML files for the support of a standard like MDX, it is strongly recommended to use an 
automatic code generator. The MDX files contain in general hundreds of lines of code with tags. 
 
 

5. The AUTOSAR standard 
Bosch DGS-EC is working on an efficient use of the AUTOSAR standard in a scope of development for 
series. It is a more complete standard than the MDX standard since the Basic Software is standardized 
and clearly decoupled from the Application Software. It describes the concept of Virtual Functional Bus 
which is supported by the Run Time Environment (or RTE). In the same way as the MDX standard, the 
data are described in a XML file, it is called ARXML (AUTOSAR XML). It offers a much more complete 
semantic and is based on AR Packages and AUTOSAR element references. Contrary to the MDX 
standard, the infrastructure interfaces such as diagnostic, NVM, DCM interface are supported as 
standardized Basic Software interfaces. It is a main advantage in comparison with MDX since the BSW 
interfaces can be implemented in the models and described in the ARXML files. With Software Sharing 
context, it avoids using implementing Sender-Receiver interfaces in the Software Components and 
developing Customer Interface Layers to adapt these Sender-Receiver interfaces to the integrating 
supplier BSW specific interfaces. 
Another advantage of the AUTOSAR standard is dealing with standardized AUTOSAR service libraries. 
These service libraries have standardized names and argument names. Their algorithms are also 
precisely described so that they can be implemented by any integrating supplier. AUTOSAR service 
routines do not use AUTOSAR mechanisms: they can be used for developments with MDX standard as 
well as AUTOSAR. 
With the Simulink® tool chain, Bosch DGS-EC is able to deliver Simulink® library blocks supporting the 
AUTOSAR service libraries, since they are not all available with the native MathWorks blocks. 
 
AUTOSAR is supported by many tools from the market, this is an important advantage since the in-
house development of specific software development tools can be avoided. If an OEM is working with 
AUTOSAR, then there is no need for its integrating suppliers to develop specific tool. It would be very 
costly if every OEM and supplier had their own standard. AUTOSAR has changed the landscape of the 
manufacturer - supplier relationship. With this standard, it can much easier than ever to integrate the 
code of an OEM or a Third Party into an integrating supplier software. It is a mean to ease the Software 
Sharing and open new cooperation frameworks. The structure of the ARXML file is however not fixed 
as for MDX: the structure ordering is depending on the AR-Package structure and AR-Packages name. 
The AR-Packages can be spread over several ARXML files and a Software Component can be 



described by several ARXML files, for example one ARXML file for each AR-Package. The elements 
properties are not defined only by short name, but by reference to the AR-Packages. 
 
The main automotive modeling tools ASCET, TargetLink® or Simulink® are supporting AUTOSAR. With 
ASCET, the concept of AUTOSAR Model has been introduced in the tool. It is very similar to the non-
AUTOSAR models, especially regarding the modelling of the functionalities. From an architecture point 
of view, an atomic Software Component is represented by one ASCET module. A composition can be 
represented in the ASCET Project by an assembly of ASCET modules. 
 

 
Figure 5 – Composition in ASCET 

Instead of Import / export message blocks, there is a specific block available for the Sender/Receiver 
interfaces and the type of communication (explicit VS implicit) can be selected. 
 

 
Figure 6 – AUTOSAR ports modelling in ASCET 

An additional tab has been introduced to configure the runnable to events mapping. The naming 
convention for the AR-Package and many AUTOSAR elements are configured in an XML configuration 
file. 
 

 
Figure 7 – ASCET runnable to event mapping 

For the development of AUTOSAR Software Components, a cooperation between MathWorks and 
Bosch has been established within the framework of a strategic partnership in order to support 
AUTOSAR with Simulink® in an efficient way. At first glance, a Simulink® model for AUTOSAR looks 
like a model for MDX. There are three main differences. The first one affects the Workspace elements: 
it is necessary to create AUTOSAR elements such as AUTOSAR.Signal and AUTOSAR.Parameter. 
ARXML files can be imported through an API to load for example the Internal Behavior or central 
elements for the central definition of AUTOSAR elements such as base types or Compu Method. 
 
The second difference is dealing with the AUTOSAR Mapping Editor which contains two sheets: the 
ports, the interfaces (Sender/Receiver, Client/Server), the IRV and the runnables are defined in the first 
sheet. Their mappings to the models inports, outports and the function call is ensured in the second 
sheet. The content of the AUTOSAR Mapping Editor can be filled automatically with a script thanks to 



APIs. The script shall be configured to fit to the naming convention applied in the environment 
development. For example, a Receive Port could have a prefix “R_” or “RP_”. This automation is 
possible if the ports, interfaces and data elements share the same name root. This is a rule established 
at Bosch DGS-EC and it allows to do also an automation of the AUTOSAR composition, called 
“Autocomposition”. 
 

 
 

 
Figure 8 – Simulink AUTOSAR Mapping Editor 

The third difference is dealing with the accesses to the infrastructure: there are described with Client-
Server interfaces and many of them have standardized names. “Simulink® Function” and “Simulink® 
Caller” blocks can be used. 
 

 
 
Figure 9 – AUTOSAR FiM interface modelling in Simulink 

The software build process has to be adapted to an AUTOSAR project: in comparison with non-
AUTOSAR project, a tool called RTE Generator shall be invoked. It generates c and h files from the 
ARXML abstraction layer. It generate the RTE which ensure the communication. In most of the projects; 
there is a mix-mode with a part of the software in MDX or any other specific OEM standard. The 
implementation of Customer Interface Layers is required and is a drawback to a smooth transition to 



AUTOSAR in comparison to a “big bang” introduction. It requires then additional development effort and 
additional RAM consumption. There is also an impact on the OS scheduler: a pure AUTOSAR scheduler 
can not be implemented. The legacy OS scheduler references RTE task container tasks which are 
described in a configuration ARXML. 
 

 
 
Figure 10 – Bosch Software build Process 

The implicit Sender-Receiver communication is recommended to ensure the data consistency for the 
communication between two different cores in a Multi-Core microcontroller or between two different 
tasks with a pre-emptive Operating System (OS). Buffers are created during the RTE generation in the 
c and h files. This is done indeed before the compilation phase and it does not require specific tools as 
for MDX standard, since the protection mechanisms are described in the standard and supported by the 
RTE Generators. 
 
In a Model Sharing context, the tools ASCET, TargetLink® or Simulink® offer the possibility to develop 
AUTOSAR Software Components without spending so much time on the target configuration. With 
ASCET tool, an AUTOSAR target configuration is available and the AUTOSAR model can be quite 
easily exchanged between OEM and suppliers. It is however very important to keep in mind that some 
AUTOSAR features availability is depending on the AUTOSAR release. All the partners in a cooperation 
framework shall agree on the supported release before starting the development to avoid model 
incompatibilities. In the same way, it is very important for an OEM or a third party to agree on the 
AUTOSAR Release supported by the RTE Generator. They have to be sure that the required AUTOSAR 
features in the models are supported by the RTE Generation version in use for the project. 
With the Simulink® tool, the same precautions have to be taken regarding the AUTOSAR release 
compatibilities. As an example, the PRPortPrototype feature has been introduced AUTOSAR 4.1.1. If 
the development partners are working with different Simulink® versions, this feature may not be 
available in an older version and there would be an issue in the AUTOSAR Mapping Editor Content. 
With the same example, this feature could be generated in the ARXML but it is not sure whether the 
RTE Generator version in use at the integrating supplier side would support this feature. Developing an 
AUTOSAR Software Component has an impact on the modelling patterns. For example, multi-triggering 
on runnable level is not possible, since one runnable shall be mapped with only one event. The 
standardization of the BSW interfaces is a great enabler for Model Sharing. An obvious example are the 
DEM / FIM diagnostic interfaces. In comparison with MDX, every development partners can use the 
same service access and there is no need to develop customer specific services on the integrating 
supplier side. As a drawback it reduce the possibilities to bring innovations in these services and the 
OEM and suppliers have less levers to differentiate their technology from their competitors. 
 
Shared software development for electronic control units becoming more and more important. In order 
to cope with the complexity of the Software development for Engine Control, a strong and highly flexible 
Software architecture is required. The answer of Bosch to this challenge is the creation of the Software 
architecture VeMotionSARTM that strengthens the cooperation with the OEMs and that has been 
published in Internet (http://www.bosch-vemotionsar.com). One of the main benefits of this architecture 
is the modularity of the function description and the definition of the interfaces. It permits to describe 
individually the various specifications of the corresponding development partners’ functionalities in a 
highly modular architecture domain according to their resources / tools. 
 
 

6. Migration from legacy standard to MDX 
MDX standard is mature and in use at Bosch DGS-EC for years for series project. With the new Multi-
Core microcontrollers and the need of data consistency mechanisms, it can be a good alternative for 
the integrating suppliers who are using specific standards which are not supporting Multi-Core. It is 
therefore interesting to analyze the impacts and the constraints on Model Sharing cooperation’s when 



doing a migration to the MDX standard. AUTOSAR is a promising standard in the automotive embedded 
software and more and more control units have an AUTOSAR RTE with a partly or complete AUTOSAR 
Application Software. The description of migrations uses cases are focused on Simulink® tool in this 
chapter. 
 
For the conversion of Simulink® models to MDX, the main challenges are oriented to the migration of 
the Workspace elements and the configuration of the MDX Explorer. The Workspace elements can be 
easily converted to MDX elements with Matlab scripts. Some information contained in the Workspace 
elements could be lost if the original models are using Custom Storage Class. Depending on the features, 
they can either be taken into account in the MDX Explorer or may lead to some changes in the model. 
For example the attribute to know if a variable shall be stored in the Non Volatile Memory can be set in 
a Custom Storage Class. During the migration, this attribute shall be taken into account in the MDX 
Explorer by setting the memory location to a Non Volatile Memory location. This example demonstrates 
that the MDX Explorer content shall be updated at the same time as the Workspace elements. Since all 
the MDX Explorer attribute can be accessed with APIs, a m file for the MDX Explorer configuration can 
be created during the migration and running it will fill the MDX Explorer content. This is the solution 
chosen at Bosch for converter scripts. 
The migration to the MDX standard may have also an impact on the modeling pattern in a Simulink® 
model. A frequent issue is faced for inport which may uses the value of the outports in the same runnable. 
It is not possible to have the same name for the inport and the outport, the inport shall be removed and 
the signal shall be replaced by a Unit Delay block connected to the outport. It is more complicated to 
handle it if the same outport is also initialized in a separate initialization runnable. For this case, a specific 
UnitDelay block, which includes a memory state value defined in the Workspace as a MDX.Variable, 
has been created at Bosch DGS-EC. Another impact on the modelling patterns is dealing with the Multi-
Core constraints: it is not possible to keep the multi-triggering on runnable level. The functionality need 
to be refactored or the runnable content needs to be duplicated. The duplication may be complicated in 
case of state machine or any functions containing state values. 
 
 

7. Migration from legacy standard or MDX to AUTOSAR 
For the conversion of Simulink® models from legacy or MDX to AUTOSAR, the main challenges are 
oriented to the migration of the Workspace elements and the configuration of the AUTOSAR Mapping 
Editor. The most important challenge for developments with AUTOSAR is to be as efficient as the 
standard it is supposed to replace in a defined tool chain. For ECU Software development with its 
complexity, it is reasonable to consider that it would not lead to short-term cost reduction. However, it 
could avoid spending more efforts in long-term by reducing the development and maintenance effort of 
specific tools n case an OEM or a supplier is using its own standards . A migration to AUTOSAR makes 
sense if the tool chain is ready for efficient development with AUTOSAR from an economic point of view.  
 
The experience shows that it is necessary to write some scripts to reduce the manual effort and the risk 
of error. The advantage of Model Based Development lies in the fact that the AUTOSAR adaptation can 
be done directly in the model used for the code generation. Prior to the migration task, many clarifications 
with the OEM are necessary such as: 

- Architecture: one model = one atomic SW-C, or one model = one Runnable ? 
- AR-Package structure 
- Naming conventions for the AR elements short names 
- Restriction on the naming rules for the ports, interface and data elements to allow an 

autocomposition 
The Workspace elements can be converted into AUTOSAR elements with Matlab scripts. At Bosch 
DGS-EC, the measurement points are defined as Per Instance Memory (PIM) whereas they are 
Simulink.Signal or MDX.Variable with other targets where the inputs and outputs are also 
Simulink.Signal or MDX.Variable. The script shall detect the inputs and the outputs in the models in 
order to identify which Simulink.Signal or MDX.Variable shall be converted into AUTOSAR.Signal and 
the other into PIM. The AUTOSAR Mapping Editor can filled automatically with a script. 
There are also impacts on the modelling patterns: 

- The multi-triggering on runnable level is not compatible with AUTOSAR: with a Simulink® model, 
it is not possible to have a multi-triggering on the Function Call subsystems representing the 
runnable since one runnable shall be mapped to ne event. 

- The messages exchanged between runnable shall be converted as Inter Runnable Variables 
(IRV). 



- With Simulink, the measurement points are defined in MDX as global variable with a resolve 
signal to Workspace: in AUTOSAR they shall be defined as static memory or Per Instance 
Memory (PIM). 

- At Bosch DGS-EC, many legacy services can not be mapped one to one to AUTOSAR 
standardized client-server interfaces. In case of software sharing, these interfaces shall be 
replaced by Sender-Receiver interface and the integrating supplier shall map them to its 
equivalent services via an adapter. 

- the physical system constants are not supported by AUTOSAR, a work-around is necessary 
 
In order to prepare a seamless migration to AUTOSAR for mid or long term, some measures can be 
taken in the modelling pattern rules for the legacy models to ensure a compatibility with AUTOSAR. The 
modeling pattern shall define so that a model could converted automatically into AUTOSAR without any 
rework. 

- For the interpolation, it necessary to have blocks which support MDX and AUTOSAR at the 
same time. The Simulink® look-up table will support soon both MDX and AUTOSAR standard 
with AUTOSAR R4.x libraries Ifx and Ifl. 

- For the Dem and FiM interface in AUTOSAR, if similar services are available in legacy 
environment, it could be possible to create Simulink® blocks with some an automatic 
configuration inside, depending on the choice between the legacy or AUTOSAR target. 

- Legacy services which are not identical with the AUTOSAR similar service require to define 
modeling pattern adaptations. 

 
 

Summary 
Model Sharing is currently applied at Bosch for several serial projects and is leading to clear 
improvements in development efficiency. Use of Standards (e.g. ASAM (MDX, CDF …) AUTOSAR 
(service libraries, methodology …) as well as standardized interfaces specifications (e.g. as published 
with AUTOSAR R4.x) can significantly ease exchange of models. 

MDX standard is supported by the code generation tool chains for years at Bosch and permits to perform 
interfaces coherency check during the Software Build process as well as to provide information to build 
the A2l file. With the Multi-Core microcontrollers, the MDX files are used by the tool MCOP to ensure 
the data consistency. 

The AUTOSAR standard clearly defined a separation between the Basic Software and the Application 
Software and provides standardized interfaces with standardized mechanism. In comparison with MDX, 
the infrastructure interfaces with the Basic Software are standardized which is a lever to improve the 
model exchanges. For engine control unit software, the Process, Method and Tool for AUTOSAR 
developments are not yet as efficient as with MDX development. Bosch is working actively with the tool 
editors to reduce the gaps. On one side, Tier 1 need to know if the OEM want to base their future 
development with the AUTOSAR standard. On the other side, OEM want to know when the Tier 1 will 
be able to support AUTOSAR in an efficient way. The approach at Bosch has been to edit internal 
AUTOSAR coding guidelines. The current tasks are focused on the identification and the reduction of 
gaps between those guidelines and what is supported by the tools.  

It is possible to migrate a legacy Simulink model to MDX or AUTOSAR. Many migration tasks can be 
automatized with scripts. The modelling patterns are also impacted and if the migration to AUTOSAR is 
a long-term strategy, it is recommended to take into account this modelling constraints in the legacy 
models in short term. 
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Abstract— Throughout the design of automotive vehicle 

systems, modeling and simulation technologies have been widely 
used for supporting their conceptualization and evaluation. Due 
to the increasing complexity of such systems, the overall quality 
management and design process optimization are becoming more 
important. This in particular brings the necessity of integrating 
various domain-specific physical models that are traditionally 
based on different formalisms and isolated tools. In this paper, 
we present the initial concepts towards a model-driven and tool-
integration framework with automated managed simulation 
services in the system development. We exploit EAST-ADL and 
some other existing state-of-the-art modeling technologies as the 
reference frameworks for a formal system description, with the 
content including requirements, design solutions, extra-
functional constraints, and verification and validation cases. 
Given such a formal specification, dedicated co-simulation 
services will be developed to provide the support for automated 
configuration and execution of simulation tools.  

Keywords—Development, Simulation, System Design, Model-
driven, Tool-integration 

I.  INTRODUCTION  
Automotive vehicle systems have evolved continuously 

over the past decades with increasing functional and technical 
complexity. The development involves complex interactions of 
designers and stakeholders, [1]. Typically, an automotive 
vehicle can be divided into different parts with associated 
engineering tasks allocated to different work groups or 
companies. These groups often use specific domain-specific 
simulator tools to assist the specification, analysis and 
synthesis tasks. 

 For a whole vehicle, the overall system behaviors and 
other properties depend on the characteristics of its subsystems 
and components being composed. It is therefore important for 
system developers to conduct early system integration and 
thereby to understand the system behaviors and analyze system 
performance in the initial design phases.  

In current industrial practices, different CAD and CAE 
tools have been used for the development of vehicle 
subsystems and components, such as for requirement analysis, 
high level design, detailed level design, implementation, 
testing, etc. Since the subsystem designers often use their own 
tools to build models, it is a challenge for the system 
developers to integrate those detailed models and to predict the 
whole system performance. This calls for a complete 

integration framework for different models and tools while 
taking the process management perspective into consideration.  

This paper describes an initial version of, and work towards 
establishing, a model-driven and tool-integration design 
framework for whole vehicle systems in regard to the 
methodology and technical roadmap. In such a framework, a 
formal system description is provided to share information 
among various stakeholders, including project managers, 
system engineers, modeler, system designers and simulation 
testers. The content of system information being described and 
integrated includes requirements, function analysis, system 
design, parameter settings, interface contract of physical 
system models, and tool specific information for co-simulation. 
The framework integrates subsystem models in order to predict 
the whole vehicle performance. Also, parameters related to 
optimized simulation behaviors can be added.  

The paper has five main sections. Section 2 provides a brief 
introduction of simulation technologies and system modeling 
methods. Section 3 presents a problem analysis of an auto-
breaking system. Section 4 illustrates a model-driven and tool-
integration framework we provided. Section 5 demonstrates a 
co-simulation test case of a vehicle auto-breaking system. 
Section 6 and 7 discusses how Open Services for Lifecycle 
Collaboration (OSLC) can be integrated into our framework 
and future work. 

II. STATE OF THE ART 
Nowadays, computation design and simulation technology 

can help to improve design efficiency and decrease the time 
consumption and R&D cost [2]. In the vehicle conception 
design phase, model-based design is very important to predict 
the system performance in advance. Designers have used many 
types of modeling technologies and tools to finish their design 
jobs. For example, CAE and CAD tools, such as Solidworks, 
Catia, AMESim, Simplorer, Matlab\Simulink, are very widely 
used in the vehicle industries.  

However, there are still various challenges in the whole life 
cycle of vehicle design. Firstly, different CAD and CAE tools 
can help designers to build models for designing these 
subsystems or components to satisfy design requirements, 
however the whole system performance is very different (and 
more difficult) to predict, because the subsystem designers are 
often from other groups or companies and use different tools to 
build models. 



 

FIGURE 1 MODEL-DRIVEN AND TOOL-INTEGRATION FRAMEWORK FOR WHOLE VEHICLE SIMULATION

Sometimes because of the intellectual property, they even 
cannot provide the original models. That’s why it’s hard for 
integrated system department to integrate the detailed models 
to predict the whole system performance.  

Secondly, even though various PDM and PLM systems can 
help companies to manage information during vehicle design, 
such tool-based information management has a restricted 
scope. For example, if some subsystems are designed by 
different companies, it is no possible to push all the subsystem 
suppliers to use the same tool.  

Thirdly, nowadays documents still play a very important 
role in communication and information description, but it’s 
difficult to manage the changes in documents and releases of a 
huge document may delay the other parts of development. 
Consequently, a framework with formalized and graphical 
conception models for model-driven and tool-integration of co-
simulation is needed. Several technologies that may be used for 
such a framework are now briefly surveyed. 

A. Multi-domain Simulation Technologies 
In addition to commercial simulation platforms, several 

languages and standards are provided for multi-domain system 
simulation and analysis. 

1) Modelica 
Modelica language is a non-proprietary, object-oriented, 

equation based language to conveniently model complex 
physical systems [3]. Nowadays, Modelica language is widely 
used in automobile industries. 

2) Co-simulation  
Co-simulation is a technology which can solve the multi-

physics model integration. It represents a particular case of 
simulation scenarios in which there are at least two simulators 
to solve coupled algebraic equations and exchange the data 
with each other during simulation [2].The High-Level 
Architecture (HLA) is a technology for developing distributed 

simulation developed by the Simulation Interoperability 
Standards Organization (SISO) [4]. The Functional Mock-up 
Interface (FMI) standard was initiated through the Modelisar  
project. FMI is designed for commercial simulators to 
transform their models to a normative form [5].  The HLA is 
powerful in mastering the whole co-simulation process and 
control the data flow. FMI is better for interface design for 
simulator tools. 

B. System Modeling Approach 
From the perspective of system engineering, physical 

system models are not the unique concern. Though a lot of 
complex and completed model libraries and model 
management platforms already exist, it’s also different for 
system designers in each layer to understand the whole 
physical system model and share the model information with 
each other except for documents or reports. This leads to a 
need for an information model for information exchange and 
function descriptions. In this part, several system modeling 
languages, (e.g., SysML, EAST-ADL, etc.) are investigated.  

1) SysML 
SysML is a general-purpose modeling language for systems 

engineering with a subset of UML2 and additional extensions 
to satisfy the demands of the language description. SysML 
provides constructs for modeling systems engineering 
problems including requirements, structure, behavior, 
allocations, and constraints [6].  

2) EAST-ADL 
EAST-ADL is a language to describe automotive electrical 

and electronic systems; it relates closely to SysML and can be 
seen as a domain specific tailoring for automotive systems. It 
enables to capture detailed information for documentation, 
design, analysis and synthesis from the top level characteristics 
to tasks and interface &communication framework [7].  

3) ARCADIA 



Arcadia / Capella is a field-proven domain specific 
modeling solution for system  engineering. It has an open 
source framework to define operation, system, logic and 
physical system [8].  

III. PROBLEM ANALYSIS 
We provide a test case to show how co-simulation can be 

used in autobreaking system design. The verification purpose is 
to test if the new autobreaking controller can satisfy the ‘3-
second rule’, which is a measurement on the time interval for 
the vehicles to pass the same fixed point on road. If a vehicle 
reaches such a point within 3 seconds after its foregoing 
vehicle, then the following distance is too short. For icy or 
snow-covered road, the corresponding interval can be 7~8 sec.  

As Figure 2 shows, we define the Green zones, Red zones 
and Black zones for the autobreaking controller. X1 and X2 is 
the position in X direction of vehicle1’s and vehicle2’s 
geometric center. If the distance between V1 and V2 is not less 
than v1/1.2, vehicle2 need accelerate. When it’s in red zones, 
vehicle 2 need decelerate. When the distance between V1 and 
V2 is less than 1.2m, these two vehicles crashed. 

Vehicle2Vehicle1

Red Zones:
Vehicle2: Decrease Velocity

|x1-x2|<1.2(x1-x2)>=(dx1/dt)/1.2

Green Zones:
Vehicle2: Increase Velocity

Black Zones:
Crashed

X1 is Vehicle 1 position
X2 is Vehicle 2 position

Xgeometric center

 

FIGURE 2 CHECKING ZONES FOR AUTOBREAKING STRATEGY 

In this case, Carmaker, MWorks and Simulink were used 
for subsystem modeling and the whole system model is 
integrated in Simulink which represents the co-simulation 
process. As shown in Figure 3, the controller model was built 
by Modelica language in MWorks and was exported to a FMU. 
Then S-function for co-simulation with FMU and interface 
library for Carmaker have been used to connect with these two 
subsystem models with Simulink. 

 

FIGURE 3 TOOL-CHAIN DURING CO-SIMULATION 

When the co-simulation is running, Simulink Model, S-
function for FMU interface, co-simulation environment setting 
should be set by hand. And when the version of FMU or 
Carmaker model is changed, the simulation result should be 
dependence to the changing. That’s really difficult to manage 
the models and hard to configure the tool setting each time by 
hand. And simulation technology is used in whole life cycle. In 
[8], for example, simulation was used in different phases of ‘V’ 
model. So simulation information integration with different 

phase is also a big challenge for current environment without 
any tool or platform support. 

IV. MODEL-DRIVEN AND TOOL-INTEGRATION FRAMEWORK 
To solve the former challenge, we design a framework as 

shown in Figure 1. This framework is inspired by SPIT (Social 
layer, Process layer, Information layer and Technical layer) [9]. 
This framework is designed for tool-integration, data-
integration, MBSE technical integration and web deployment 
for the whole life cycle in product design. 

A. Social layer 
In the social layer, the social models of people’s behaviors, 

organizations, management views, social views and culture for 
MBSE (Model-based System Engineering) technology are 
created and describe relative engineering activity in the whole 
life cycle. From our research, we take an example of MBSE 
transitioning model as a social model in this layer to describe 
MBSE maturity level. 

This MBSE maturity level model describes enterprises or 
research teams from the traditional document-based system 
engineering approach to MBSE approach. In the technical 
aspect, we separately define transitioning of software and 
multi-domain system design. As Table 1, we define 
transitioning level of software and multi-domain system. And 
we will have an investigation of different effect factors 
including cultural aspect, stakeholder aspect and transitioning 
aspect.  

TABLE 1 MATURITY LEVEL OF MBSE 

Document-
based Design 

Software Multi-domain system 

 

Transitioning 

Component Design CAD-based Design 

Model-based 
Design 

Simulation-based design 
and analysis 

Model-integrated 
Engineering and analysis 

MBSE Model-driven Model-based development 

 

B. Business process layer (Process layer) 
In this layer, based on different stakeholders’ requirements, 
domain or industrial standards and simulation targets, project 
managers or team leaders can build different kinds of Business 
process model (BPM) to describe the process of projects as 
Figure 6. For the distributed simulation as an example, the 
IEEE Recommended Practice for Distributed Simulation 
Engineering and Execution Process (DSEEP) is a standard to 
define engineering activities for the Process of simulation. We 
can see, in Figure 8,the BPMN can be used to describe the 
process model in DESSP.  



Business Process Model

Task
Time plan
Human 
Resourse
...

Select Or

Requirement 

 

FIGURE 4 PROCESS LAYER 

 

FIGURE 5 BPMN DESCRIBING DSEEP 

C. Simulation description model layer (Information layer) 
System designers can use system models to describe 

simulation requirement, physical system feature, model 
function, model structure, data model, simulation behavior 
model including verification model, optimization model, and 
so on as shown in Figure 7. 

Requirement 
Model Feature 

Model
Functional

Model

Simulation Decription Model

Operation
Model Requirement

System description

Varification ...

Function...

Opitimization

System Demand
Share Information

Structure
Model

Data
Model

Simulation Target

Function1
Function2

component1
component2
component3

Test Case

Interface
Model

Interface Design
Test Case1

Test Case2

Data
Model1

Result Data
Model1

 

FIGURE 6 SIMULATION DESCRIPTION MODEL 

In Figure 7, System model can describe simulation includes 
requirement diagrams, feature diagrams, functional diagrams, 
structure diagrams, data diagrams, and behavior diagrams. 
Requirement diagrams can describe different stakeholders’ 
need including modeling purposes, simulation technologies, 
constrains of simulation target and etc. Then based on 
requirement we can select different feature model to describe 
design targets, simulation targets, optimization targets, system 
descriptions and simulation settings. System description 
diagrams can connect to different function model then extend 
to component diagrams of structure models. Each component 
block maps to the specified physical system model on the forth 
layer. Different simulation target and optimization target block 
can be achieved corresponding verification model and 
optimization model which are constructed by behaviors model. 
Each behavior model connects to the corresponding set of 
services to run the simulation process automatically. 
Simulation setting models in feature diagram can describe all 

the information during simulation including simulation type, 
tool selection, communicational time step point, solver type 
and so on. Each data model represents sets of parameter for the 
corresponding physical system model. 

D. Physical model and data model layer (Technology layer) 
In this paper, each sub-system component model can be 

uploaded into the library as a FMU or a component of co-
simulation model. A master engine should be designed to 
master the co-simulation procedure between different physical 
system models. Now the solver of Matlab\Simulink is used to 
control the co-simulation and S-function is designed as an 
interface. Each physical system model has its own connections 
to the component diagrams in the third layer [10]. 

E. Comparion with other modelling frameworks or projects 
1) C2WT Framework 
C2WT (Command and Control Wind Tunnel) is a model-

based multi-model integration platform which is from a project 
of American Air Force Research Laboratory. Actually, it’s a 
framework based on Run-Time Infrastructure (RTI) of HLA 
[11]. In [12], this framework can support RTI to control FMU 
to run the co-simulation. They have their domain specified 
language (DSL) to configure and control the simulation. 
However, the DSL can only describe the model structures and 
configuration which cannot satisfy the demand for information 
integration and MBSE approach.  

2) DESTECS Project 
DESTECS (Design Support and Tooling for Embedded 

Control Software) is an EU project developed for fault-tolerant 
embedded systems design. They have a co-simulation engine to 
control co-simulation process between 20-sim for continuous 
system model and Overture tools based on Vienna 
Development Method for discrete-event models. An integrated 
development environment has been developed to integrate such 
physical system models [13]. However, this project has 
limitation for embedded system and is short for information 
integration during the whole life cycle. 

3)  WSAF Project 
WSAF (Whole-of-System Analytical Framework) is a 

project running by Australia and New Zealand. In [14], the 
author introduces a model-based way to share contractual 
contents between acquirers and suppliers and provides several 
requirements for such technology. In this paper, only 
architectural model including requirements and functions has 
been used for information exchange. The physical system 
model has not been used for information exchange which 
means integrated system performance cannot be analyzed in 
the initial phase of the whole life cycle. 

4) ModelicaML  
ModelicaML is a UML profile and a language extension for 

Modelica. It’s a good way to connect requirements with 
physical system simulation by Modelica language to verify if 
the system can satisfy the requirements which are built by 
UML[15]. In general, based on several industrial 
investigations, many industrial firms like to choose the co-
simulation way for their model-integration rather than 
Modelica language. This is because time and financial 



consumption for training programs and model-rebuild. So this 
method has practice restrictions which will influence on its 
future application. 

5) CERTI  
CERTI is an HLA RTI developed since 1996 by ONERA, 

the French Aerospace Lab. It’s an open source project for HLA 
usage. There is no DSL support, but an open source RTI is 
provided in this project. 

6) CRYSTAL 
The ARTEMIS Joint Undertaking project CRYSTAL 

(CRitical sYSTem engineering AcceLeration) takes up the 
challenge to establish and push forward an Interoperability 
Specification (IOS) and a Reference Technology Platform 
(RTP) as a European standard for safety-critical systems[18].  

This project has some investigation to show tool-
integration’s consistency, the methodology of co-simulation 
was also covered to be tested and applied within the frame. 

From such projects, we can find such framework which can 
cover models and tool-integration is really needed for current 
industries. As we see, SPIT framework has a more clearly 
structures for MBSE technologies, data-integration, tool-
integration and service-oriented web deployments. 

V. USER CASE FOR PHYSICAL SYSTEM MODEL 
DESCRIPTION 

VVcaseStructure Model Interface 
Design

Meta-edit

Create Simulink Model and 
insert interface block of FMU

S-function for interface
, info of FMU

Set parameter for models 
and run simulation

Simulink 
Model

Environment configuration
Open Carmaker select 

carmaker model, configue FMU
Define task based on parameter 

setting and solver setting

Automatically run simulation based on tasks

Auto- generate

Run M-script

Co-simulation 
Execution Strategy

Configure the co-
simulation Environment

 

FIGURE 7 SIMULATION DESCRIPTION MODEL AND CO-SIMULATION 
EXECUTION 

We want to use a test case to understand the clear 
requirements for SPIT framework. So we use MetaEdit to build 
the SDL and use the code-generator in MetaEdit to produce the 
M-script in Matlab to run the co-simulation execution 
automatically. 

So we use the test case mentioned in Chapter 3 to build a 
Simulation Description Model to capture the information for 
co-simulation process as shown in Figure 9. Function design 
architecture diagram demostrated the structure of co-simulation 
model. Interface design diagram showed the interface for the 
assigned FMU. Co-simulation Strategy diagram was created to 
configure co-simulation environment and VVcase diagram 
presented the parameter setting and solver setting for each task 
in this scenarios. Then Meta-edit uses such diagram model to 
automatically produce the M-script to control the Co-
simulation. Function design architecture diagram produced the 
M-script to create Simulink models and insert the FMU block 
in Simulink. Interface design diagram produced the S-function 
for the assigned FMU and set the FMU block in Simulink. The 
M-Script which produced by Co-simulation strategy diagram 

was used to execute co-simulation environment configuration. 
VVcase diagram produced the M-Script for parameter setting 
in Simulink Model. 

A. Testcase for SDL in MetaEdit 
We have four models in MetaEdit as Figure 9 shows. In 

Figure 10, the model describes the co-simulation execution 
strategy as operation model. The information of FMUs, 
subsystem models and tools which will be used in this co-
simulation will be described and now we can fill such 
information by hand. 

 

FIGURE 8 MODELS IN META-EDIT 

As Figure 10 shows, the top structure model in Simulink 
for this autobreaking user case is built in MetaEdit. Each block 
describes a subsystem block in Simulink which has been put in 
the Simulink library. 

The VVcase model in Figure 10 describes different solver 
settings and parameters for the same co-simulation model. In 
each task, different solver and parameter configurations can be 
finished by the parameter blocks.  

In Figure 10, the interface model is used to describe to S-
function for FMUs which will be used for the autobreaking test 
case. It includes the methods for the S-functions and all the 
function codes in each method. We need to fill some 
information for the interface by hand to produce the s-function 
code automatically.  

 

FIGURE 9 INTERFACE MODEL FOR FMUS 



B. Automatic Execution for co-simulation 
We design the Code-generator in the MetaEdit. Based on 

the models we built in the Meta-Edit and the information we 
fill by hand, the M-script in Figure 9 will be produced. 

C. Physical system model in Simulink 
In Figure 11, a Simulink model has been automatically 

produced by M-script and block library which we built. 

Then we run the M-script produced by VVcase and co-
simulation task is running automatically. During co-simulation 
process, Carmaker model is running as Figure 12. A front-end 
window has been designed for verifying the simulation result 
online and simulation result data has been stored in .mat files 
as Figure 13. 

 

FIGURE 10 SIMULINK MODE FOR AUTOBREAKING TESTCASE 

 

FIGURE 11 CARMAKER MODELS 

 

FIGURE 12 FRONT-END FOR VERIFICATION FOR AUTOBREAKING CASE 

D. Result 
As Table 2 shows, we have three different tasks for 3 tests. 

Each test has different parameters for each models based on 
various situations. After co-simulation executions, results are 
shown as Figure 17. 

TABLE 2 TEST CASE FOR AUTOBREAKING CASE 

 

 

FIGURE 13 SIMULATION RESULT FOR 3 TESTS 

VI. DISCUSION 
In the whole lifecycle collaboration of the SPIT framework 

for MBSE, several sections, such as design space exploration, 
system validation, searching for models, will need model 
management, information exchange and data management. We 
take an example of scenarios which OSLC can be used for the 
whole SPIT framework. As Figure 18 as an example, if we use 
the web deployments to execute the design process for SOS by 
co-simulation, the information exchange, co-simulation trigger,  
and simulation result verification can be achieved by OSLC 
technology. 

SDL
RTI (HLA)

FMUs

FMUs

FMUs

Requirement
Descriptions

Execution of
co-

simulation

V&V test 
case

Web 
deployments

Trigger

Time 
management

Results

Data exchangeInformation 
Exchange

OSLC Job

 

FIGURE 14 SCENARIOS FOR OSLC JOBS 

VII. CONCLUSION AND FUTURE WORK 
From the test case, we can see Simulation Description 

Modeling Language can be used to describe the basis 



information for co-simulation. The structure model captures the 
components in top system model which connected with all the 
subsystem models. Integrated behavior model describes the 
procedure of co-simulation. VVcase shows a scenario for the 
autobreaking test case with parameter setting and simulation 
setting. Interface Design Model demonstrates the approach of 
interface design. That means graphical model can be used to 
describe the co-simulation process and control the simulation 
running automatically. In the future, we will improve our 
project from four aspects. Firstly, OSLC will be adapted in this 
framework in order to strength the capabilities for information 
exchange between different models and layers. Secondly, a 
special master (RTI) will be designed to control different 
FMUs and commercial software for co-simulation [11]. 
Thirdly, a domain specified modeling language will be 
designed to capture all the information for co-simulation. The 
last, requirements from business process model should be 
dependent to ones in simulation description model. 
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1 Context and Approach

In the software and systems modeling community, research on domain-specific
modeling languages (DSMLs) is focused on providing technologies for developing
languages and tools that allow domain experts to develop system solutions effi-
ciently. Unfortunately, the current lack of support for explicitly relating concepts
expressed in different DSMLs makes it very difficult for software and system en-
gineers to reason about information spread across models describing different
system aspects [4].

As a particular challenge, we investigate in this paper relationships between,
possibly heterogeneous, behavioral models to support their concurrent execu-
tion. This is achieved by following a modular executable metamodeling approach
for behavioral semantics understanding, reuse, variability and composability
[5]. This approach supports an explicit model of concurrency (MoCC) [6] and
domain-specific actions (DSA) [10] with a well-defined protocol between them
(incl., mapping, feedback and callback) reified through explicit domain-specific
events (DSE) [12]. The protocol is then used to infer a relevant behavioral lan-
guage interface for specifying coordination patterns to be applied on conforming
executable models [17].

All the tooling of the approach is gathered in the GEMOC studio, and out-
lined in the next section. Currently, the approach is experienced on a systems
engineering language provided by Thales, named Capella7. The goal and current
state of the case study are exposed in this paper.

7 Cf. https://www.polarsys.org/capella/



2 The GEMOC Studio

The GEMOC Studio is an eclipse package that contains components support-
ing the GEMOC methodology for building and composing executable Domain-
Specific Modeling Languages (DSMLs). It includes two workbenches: the GEMOC
Language Workbench and the GEMOC Modeling Workbench. The language work-
bench is intended to be used by language designers (aka domain experts), it
allows to build and compose new executable DSMLs. The Modeling Workbench
is intended to be used by domain designers, it allows to create and execute
heterogeneous models conforming to executable DSMLs.

The GEMOC Studio results in various integrated tools that belong into either
the language workbench or the modeling workbench. The language workbench
put together the following tools seamlessly integrated to the Eclipse Modeling
Framework (EMF: https://eclipse.org/modeling/emf):

– Melange (http://melange-lang.org), a tool-supported meta-language to
modularly define executable modeling languages with execution functions
and data, and to extend (EMF-based) existing modeling languages [10].

– MoCCML, a tool-supported meta-language dedicated to the specification of
a Model of Concurrency and Communication (MoCC) and its mapping to a
specific abstract syntax of a modeling language [6].

– GEL, a tool-supported meta-language dedicated to the specification of the
protocol between the execution functions and the MoCC to support feedback
of the runtime data and to support the callback of other expected execution
functions [12].

– BCOoL (http://timesquare.inria.fr/BCOoL), a tool-supported meta-language
dedicated to the specification of language coordination patterns, to automat-
ically coordinates the execution of, possibly heterogeneous, models [17].

– Sirius Animator, an extension to the model graphical syntax designer Sir-
ius (http://www.eclipse.org/sirius) to create graphical animators for
executable modeling languages8.

The different concerns of an executable modeling language as defined with the
tools of the language workbench are automatically deployed into the modeling
workbench that provides the following tools:

– A Java-based execution engine (parameterized with the specification of the
execution functions), possibly coupled with TimeSquare (http://timesquare.
inria.fr) [9] (parameterized with the MoCC), to support the concurrent
execution and analysis of any conforming models.

– A model animator parameterized by the graphical representation defined
with Sirius Animator to animate executable models.

– A generic trace manager, which allows system designers to visualize, save,
replay, and investigate different execution traces of their models.

8 For more details on Sirius Animator, we refer the reader to http://siriuslab.
github.io/talks/BreatheLifeInYourDesigner/slides



– A generic event manager, which provides a user interface for injecting ex-
ternal stimuli in the form of events during the simulation (e.g., to simulate
the environment).

– An heterogeneous coordination engine (parametrized with the specification
of the coordination in BCOoL), which provides runtime support to simulate
heterogeneous executable models.

The GEMOC studio is open-source and domain-independent. The studio is
available at http://gemoc.org/studio

3 Industrial Case Study: xCapella

Arcadia (https://www.polarsys.org/capella/arcadia.html) is a model-based
engineering method for systems, hardware and software architectural design.
It has been developed by Thales between 2005 and 2010 through an iterative
process involving operational architects from all the Thales business domains.
Arcadia promotes a viewpoint-driven approach (as described in ISO/IEC 42010
Systems and Software Engineering - Architecture Description [1]) and empha-
sizes a clear distinction between need and solution. The Capella modeling work-
bench is an Eclipse application implementing the ARCADIA method providing
both a DSML and a toolset which is dedicated to guidance, productivity and
quality. The Capella DSML aggregates a set of 20 metamodels and about 400
meta-classes involved in the five engineering phases (aka. Architecture level)
defined by ARCADIA. The Capella modeling workbench is based on Sirius in
order to define the graphical concrete syntax of the Capella DSML. Capella Stu-
dio provides a full-integrated development environment, which aims at assisting
the development of extensions for Capella modeling workbench. This studio is
based on Kitalpha incubated at Thales for several years before being recently re-
leased in open source as one of the PolarSys projects. Kitalpha allows viewpoint
designers to extend the Capella DSML. Despite the existence of behavioral mod-
els, the Capella modeling workbench does not provide any simulation capability.
The Capella behavioral models are limited to: modes and states, functional chain
data flows, and scenarios. Neither the behavioral semantics or the coordination
between these languages are defined.

3.1 Objectives and overcoming initial limitations

In order to support the execution of models, a dedicated executable concurrent
semantics is required. We started with two of the three behavioral languages
from the Capella DSML (i.e., data flows and mode automata).

In addition, to capture the interaction between the models conforming these
behavioral languages, we specified the behavioral coordination patterns between
them (Fig. 1).

Our study proposes to use the GEMOC studio to support system engineers
so they can tame system modeling activity and improve the confidence in the



Fig. 1. xCapella

specification of the system to be built. Our goal is to reduce the risks concerning
inconsistent functional requirements by providing a simulation environment of
the existing specification, suitable to understand/analyse the system behavior.

3.2 Current experimentation

This section presents our approach to design the concurrency-aware xDSMLs
of Capella. This experiment relies on the Capella metamodel (which is publicly
available9) augmented with a dedicated extension for mode automata. This mode
automata extension has been done by using Kitalpha, integrated to the Capella
studio.

The GEMOC language workbench

Definition of behavioral semantics: To provide a behavioral semantics, we defined
the semantics in two steps: (1) an extension of the metamodel with execution
function and execution data and (2) the concurrent control flow definition. In this
section, we focus on the definition of the mode automata semantics. The data
flows semantics is not shown in this article but is used in the coordination pattern
specification defined later in this paper. The mode automata DSML (Fig. 2 at
the left side) has been extended with kitAlpha in order to add classes, attributes,
references specifying the Execution Data (ED) (Fig. 2 at the right side). With
the Melange tooling support, the mode automata DSML is extended by the
definition of the execution functions, which define the sequential part of the
mode automata operational semantics. Melange weaves the additional operation
implementations specifying the execution functions (Fig. 2 at the bottom side).

9 https://www.polarsys.org/projects/polarsys.capella



Fig. 2. GEMOC-xCapella: Definition of execution functions and data

The execution functions are orchestrated by the definition of a data-independent
concurrent control flow (the data-dependent aspects of the control flow are en-
capsulated in the execution functions). In our approach, this control flow is
captured in the so called Model of Concurrency and Communication (MoCC).
The MoCC is a set of DSEs, specifying at the language level how, for a specific
model, the event structure defining its concurrent control flow is obtained. The
event structure represents all the possible execution paths of the model (includ-
ing all possible interleavings of events occurring concurrently). For the definition
of this control flow we used MoCCML [7] to specify our MoCC. MoCCML is a
declarative meta-language designed to express constraints between events. The
constraints can be capitalized into some libraries that are agnostic of any ab-
stract syntax. The MoCC is compiled to a Clock Constraint Specification Lan-
guage (CCSL) model interpreted by the TimeSquare tool [9]. The definition of
the DSEs is realized by using the Event Constraint Language (ECL [8]), an ex-
tension of OCL which allows the definition of DSE in the context of concepts
from the metamodel (see listing 1.1 where DSEs entering and leaving are de-
fined in the context of an AbstractMode). Finally, the behavioral semantics is
obtained by using a Communication Protocol which maps some of the DSEs
from the MoCC to the execution functions (see Listing 1.1 where the DSEs are
mapped to the execution functions onEnter() and onLeave() defined in the ex-
tension of Figure 2). This means that at the model level, when an event occurs,
it triggers the execution of the associated execution function on an element of
the model. Currently the implemented communication protocol is quite simple



but GEL [12] can be used to support more complex communication, for instance
to specify data-dependent control.

Listing 1.1. Partial ECL specification of the mode automata
package statemode
context AbstractMode
def : entering : Event = self.ownedExtensions ->select(E |

E.oclIsTypeOf(ModeRuntimeData))->first().
onEnter ()

def : leaving : Event = self.ownedExtensions ->select(E |
E.oclIsTypeOf(ModeRuntimeData))->first().
onLeave ()

Definition of the animation layer: We provide a new Sirius specification model
(animator.odesign) which defines how the model representations change during
the simulation. The animator is an extension of the concrete syntax definition
which is part of Capella contributing a xCapella animation layer(Fig. 3) which
customizes shape styles to highlight activated transition, add a decorator for the
current mode and declare actions to toggle breakpoints.

The Sirius Animator framework also bring an integration with the Eclipse
Debug user interface to inspect the runtime state of the execution, navigate to
the corresponding diagrams and control the execution step by step.

Fig. 3. GEMOC-xCapella animation layer

Definition of the coordination between xData-Flow and the xMode Automata:
Once both the xData-Flow and the xMode Automata have been independently
developed, it is of prime importance to specify the interactions of their mod-
els. This is realized by the specification of behavioural coordination pattern in
BCOoL (Behavioral Coordination Operator Language).

In our case, a mode is associated to some functional chains. The coordination
pattern must specify that a functional chain is activated (but not necessarily
started) when the mode automata is in a specific mode. Consequently, when a
mode automata is in a specific mode, the functional chains not associated to this
mode are deactivated.

The BCOoL behavioral pattern contains two parts:

– a matching, which defines a predicate based on the DSE context to identify
what are the events to coordinate in a specific model; and



– a MoCCML constraint, to specify how the matched events are coordinated.

In our BCOoL specification (see listing 1.2), the ModeEnteringActivateFunc-
tionalChain operator coordinates the action of entering and leaving a mode with
the activation of a functionalChain. Entering into a mode is identified by the
entering DSE defined in the context of an AbstractMode in the mode automa
behavior language interface (i.e., in modemachine.ecl). Instances of such DSE
have to be coordinated with instances of the activate DSE defined in the data
flow behavior language interface (i.e., CapellaDataflow.ecl). The matching spec-
ifies that the entering and leaving event from a mode are coordinated with the
activate event from the functional chain only if the functional chain is referenced
by the mode (in the availableFunctionalChains collection).

Listing 1.2. Heterogeneous coordination operator between the data flow and mode
automata languages
BCOoLSpec XCapellaDataFlow -xCapellaModeAutomata

ImportLib ’platform :/ plugin/org.gemoc.xcapella.coordination/constraint/
modeAutomata.moccml ’

ImportInterface ’platform :/ plugin/org.gemoc.xcapella.dataflow.dse/ecl/
CapellaDataflow.ecl ’ as dataflow

ImportInterface ’platform :/ plugin/com.thalesgroup.trt.mocc.modemachine.dse/
ecl/modemachine.ecl ’ as modeautomata

Operator ModeEnteringActivateFunctionalChain (enter: statemode ::entering,
leave: statemode :: leaving, activate: fa:: activate)
When:

enter.availableFunctionalChains ->exists(fc | fc = activate)
CoordinationRule:

enableElementWhenCurrentMode(activate , enter , leave)
end Operator;

The GEMOC-xCapella modeling workbench Once the xDSMLs imple-
mented with the aforementioned tools of the language workbench, they are au-
tomatically deployed into the original Capella modeling workbench (integrated
with the GEMOC modeling workbench). It results in an advanced modeling work-
bench integrated into the Eclipse debugger for model execution. The GEMOC-
xCapella modeling workbench (Fig. 4) offers an environment for system engineers
to understand/control the execution of their models with :

1. a graphical feedback of their model execution. For instance, in Figure 4, the
green arrow on initializeSystem state represents the current state.

2. a possibility to explore several execution traces with a graphical timeline that
supports step forward and step backward. The timeline and the concurrent
logical step decider can be used conjointly by a designer to choose the next
step in case of non determinism or concurrent events. For instance in the
timeline, each vertical list of bullets represents some possible futures at this
step. Also, at any time during the simulation, the designer can go back in
the past to explore an alternative future.

3. a possibility to add some breakpoints to pause the simulation when the
element carrying the breakpoint is touched (i.e., when an operation is called
on it).



Additionnaly, a designer can use the execution model, which represents the
causalities and synchronizations in the model (i.e., the timemodel file) to gen-
erate the state space of all possible execution traces from the concurrency point
of view.

Fig. 4. GEMOC-xCapella modeling workbench

4 Related Works

In the past few years, some approaches proposed to specify the execution se-
mantics of DSMLs by using fUML [14, 15]. While these approaches take good
care to separate the execution semantics from the abstract syntax of a language,
they specified the behavioral semantics as a whole by using fUML. In our ap-
proach, we use an explicit MoCC, execution functions and a protocol between
them. It allows reasoning explicitly on the concurrency aspect of a language
(data independently) but more important the protocol provides a natural lan-
guage interface on which coordination patterns can be specified to automatically
obtain coordinated simulation of heterogeneous models.

Ptolemy [11] and Modhel’x [3] also provide capabilities to simulate coor-
dinated heterogeneous models but compared to our approach, the associated
framework neither rely on a user defined abstract syntax nor on explicit coordi-
nation patterns, amenable to the easy customization of the coordination to fit
the domain of use.

Finally, when some models are coordinated with our approach, it relies on
both an explicit behavioral semantics and an explicit coordination. Making ex-
plicit the behavioral semantics and the coordination enables the comprehen-
sive incorporation of semantic adaptation between the heterogeneous compo-



nent. This is a major difference compared to existing approaches based on co-
simulation bus (e.g. where they use the FMI/FMU standard10) in which the
coordination is either done in the importing tool or by the manual writing of
a master on the bus [2, 13]. Co-simulation bus approaches are very complemen-
tary to our approach. We believe that our approach can be used earlier in the
development process, to allow, for instance synthesizing a bus master according
to the explicit specification of the coordination.

5 Conclusion and perspectives

The GEMOC methods and tools have been validated through the use of an ex-
perimental (Technology Readiness Level 3) integrated advanced simulation pro-
totype (Fig. 4). The experiment is focused on: the use of the GEMOC method-
ology and studio to define the behavioral semantics and coordination of mode
automata and data flow ; the customization of each language graphical notation
for animation. The GEMOC modeling workbench provides also a well-integrated
model debugging environment based on Eclipse, including advanced features for
graphical model animation and execution trace management (time line). Finally,
we have a proof of concept of the integration of the GEMOC execution engine
and the Sirius animator framework into the Capella legacy industrial engineering
workbench. The experiments result in a prototype named xCapella, an extension
of Capella that supports the execution and animation of behavioral models. For
now, even if the coordination pattern between data flows and mode automata
languages has been defined, the GEMOC heterogeneous coordination engine [16]
is not integrated to xCapella; this task is already started. Some longer terms
perspectives are the definition of the behavioral semantics of the Capella sce-
nario language and to the identification of xCapella main semantics variation
points. It is also planed to provide an export of an executable model in the
FMI2 standard11.
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Globalizing Modeling Languages. Computer pp. 68–71 (Jun 2014), http://hal.
inria.fr/hal-00994551

5. Combemale, B., Deantoni, J., Vara Larsen, M., Mallet, F., Barais, O., Baudry, B.,
France, R.: Reifying Concurrency for Executable Metamodeling. In: Martin Erwig,
R.F.P., van Wyk, E. (eds.) 6th International Conference on Software Language
Engineering (SLE 2013). Lecture Notes in Computer Science, Springer-Verlag, In-
dianapolis, ’Etats-Unis (2013), http://hal.inria.fr/hal-00850770

6. Deantoni, J., Issa Diallo, P., Teodorov, C., Champeau, J., Combemale, B.: Towards
a Meta-Language for the Concurrency Concern in DSLs. In: Design, Automation
and Test in Europe Conference and Exhibition (DATE). Grenoble, France (Mar
2015), https://hal.inria.fr/hal-01087442

7. Deantoni, J., Issa Diallo, P., Teodorov, C., Champeau, J., Combemale, B.: Towards
a Meta-Language for the Concurrency Concern in DSLs. In: Design, Automation
and Test in Europe Conference and Exhibition (DATE’15). Grenoble, France (Mar
2015), https://hal.inria.fr/hal-01087442

8. Deantoni, J., Mallet, F.: ECL: the Event Constraint Language, an Extension of
OCL with Events. Research Report RR-8031, INRIA (Jul 2012), https://hal.
inria.fr/hal-00721169

9. DeAntoni, J., Mallet, F.: TimeSquare: Treat your Models with Logical Time. In:
50th Int. Conf. on Objects, Models, Components, Patterns. LNCS, vol. 7304, pp.
34–41. Springer (2012)

10. Degueule, T., Combemale, B., Blouin, A., Barais, O., Jézéquel, J.M.: Melange: A
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In: Artho, C., Ölveczky, P.C. (eds.) Formal Techniques for Safety-Critical Sys-
tems, Communications in Computer and Information Science, vol. 476, pp.
189–205. Springer International Publishing (2015), http://dx.doi.org/10.1007/
978-3-319-17581-2_13

14. Mayerhofer, T., Langer, P., Wimmer, M., Kappel, G.: xMOF: Executable DSMLs
based on fUML. In: 6th Int. Conf. on Software Language Engineering. LNCS, vol.
8225, pp. 56–75. Springer (2013)
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 An ontology driven domain model approach for improving the fidelity of the simulation by developing 

models through the inclusion of simulation objectives for the system Verification & Validation activities 

(V&V) is presented. The system V&V by simulation ontology used to build this domain model is briefly 

outlined in the system teleological framework of Structure, Behavior, Function, Interface and Operation. The 

concept of operating mode is proposed and discussed with an example. The ontology approach is 

demonstrated with an aircraft nacelle anti-ice system presented in the experimental frame formalism. An 

example of using the inference and query capabilities of the domain model approach to identify and justify 

abstractions consistent with the test scenarios is illustrated with a failure mode case study for this application 

case. The relationship with formal behavioral approach through operating modes is briefly discussed at the 

end where some theoretical results on the behavioral compatibility of the experimental frame components 

with interface simulation distances are briefly presented. The paper concludes with a discussion on the 

benefits of this approach from an industrial perspective along with an overview of the challenges ahead and 

the future work. 

Keywords: Modeling & Simulation, Ontology, Domain Model, Fidelity, MBSE, Operating Mode 

 

1. INTRODUCTION 

In the development of complex engineering systems, Modeling and Simulation (M&S) is becoming a key 

capability to perform design and validation studies. However, in developing models to represent the system, often the 

difficulty is finding and implementing abstractions of the system being simulated, particularly with respect to the 

context under which it will be used. This not only leads to model validity problems identifiable only at the simulation 

runtime, but also results in over or under specification and sub optimal development of systems. These challenges in 

simulation model development necessitate a Model Based Systems Engineering (MBSE) approach which enables a 

common understanding by making domain assumptions explicit and separate domain knowledge from the 

operational knowledge. In addition, since modeling can be interpreted as a ‘reasoning’ problem i.e. inclusion of 

relevant information about the system being modeled, it is important to identify, relate and organize this information. 

However, this is often a tedious task which necessitates a domain model approach with reasoning and knowledge 

exploitation capabilities. Ontologies serve as a good candidate for building such a domain model approach due to 

their standardization in terms of OWL
1
 language, scalability, and availability of tools such as Protégé

2
 with 

SPARQL
3
 query capabilities. The flexibility of ontology in expressing different domain knowledge in a succinct and 

standard form could significantly improve the modeling activities by explicitly incorporating the model context of 

usage and thereby ensuring better simulation fidelity.  

1.1 STATE OF THE ART 

The interest of ontologies in the M&S domain has been discussed in [Fishwick,2004] and an ontology based 

dictionary of generic M&S terms has been given in [Oren,2011]. Similarly, an ontology for system V&V has been 

proposed in [Kezadri,2010] with various formalisms and techniques for the purpose of knowledge sharing between 

stakeholders. However, a holistic application of ontology in simulation model development for system validation has 

not been explored adequately to the best of our knowledge. This study envisages such an integrated approach which 

consolidates knowledge capture via domain model and exploitation techniques to build a modeling abstraction 

library and automated assembly of model for near seamless deployment. In addition, as remarked in [Wagner,2012], 

[Jenkins,2012], ontologies could be used in conjunction with industry standard SysML based MBSE and this will 

help engineers to capitalize on the graphical syntax of SysML and reasoning capabilities of ontology.  

                                                
1 http://owl.man.ac.uk/factplusplus/ 
2 http://protege.stanford.edu/ 
3 www.w3.org/TR/rdf-sparql-query/ 

 



The overall ontology based approach to simulation model development is discussed in section 2 and the system 

V&V by simulation ontology concepts are elaborated in section 3. The classical system teleological notions of 

Structure, Behavior, Function, Interface (SBFI) are given in [Goel,2009] [Garo,2004]. However, these notions could 

be restrictive in expressing the test scenarios in the V&V context and are extended with the concept of Operation into  

SBFIO ontology and implemented in the Protégé tool. The Operating Modes formalism proposed in this approach is 

similar to mode automata [Maraninchi,1998] but is more flexible and amenable to ascribe functional or system 

behaviour at higher levels of abstraction. In section 3.2, extending the concept of abstraction hierarchy defined over 

lattice in formal verification [Cousot,1992] and semantic annotation [Lickly,2011] to V&V domains, a distance 

notion is ascribed to the elements of lattice since an absolute lattice inclusion relation could be too restrictive. This 

relative distance approach improves the application of SPARQL query capabilities of the ontology approach to the 

simulation model assembly [Novk,2011]. This domain model approach is briefly discussed in a process oriented 

perspective in section 4. An example of using the inference and query capabilities of the domain model approach to 

identify and justify abstractions consistent with the test scenarios is illustrated with a failure mode case study in 

section 5. 

 In addition, the concept of operating modes could serve to bridge the existing gap between the rigorous 

behavioral abstraction frameworks such as bisimulation [Girard,2005] and less formal system engineering 

approaches [Retho,2013]. In this context, a brief discussion on using ontology-aided quantitative behavioral interface 

refinement [Ĉerny,2010] is given in section 5 followed by a brief description of the future work and conclusion. 

2. DESIGNED FIDELITY APPROACH 

In the classical simulation model development process, models are usually developed independently of their 

context of usage and this bottom up approach often results in over or under detailed models which are inadequate to 

perform V&V activities. Instead of this ‘measured fidelity’ approach, a ‘designed fidelity’ approach is proposed 

where fidelity needs are incorporated apriori in the model development process. This necessitates collection of 

knowledge about the system to be modeled and scenarios under which it will be operated called System Description 

(SD) knowledge and Test Description (TD) knowledge respectively. In other words, SD defines the system 

capabilities whereas TD defines the context of usage and the expected outcomes. The system validation process 

normally involves interaction between system designers responsible for SD, testers i.e. simulation user responsible 

for TD and model developers. It is imperative for the model developer to understand and incorporate only the 

essential elements needed for the test and usually this set of model requirements MR is given by the model specialist. 

However, owing to the complexity of different domains of knowledge involved which are often implicit and 

incomplete, it is a tedious task to define this MR manually.  

The limitations of the manual approach in its inability to handle the complexity, error prone nature, lack of 

archival and reuse capabilities necessitates a domain model i.e. a predefined ‘template’. Such a template needs to 

cover the different perspectives of the knowledge description usually expressed in informal natural languages. Since 

a model can be interpreted as a set of concepts with some relationships between them, ontologies could be used to 

build such a template i.e. a domain model. This single domain model is instantiated by different actors such as the 

simulation user and system developer and this ontology serves as a basis for translating text based TD and SD into a 

standardized model to write MR. An additional advantage of ontologies is its reasoning i.e. ability to infer 

knowledge which is otherwise hidden or scattered. The existence of plug-in reasoners with Protégé tool such as 

Fact++, Hermit
4
 helps to draw inferences and check consistency. Reasoners infer this relationship by reification, a 

concept in logic where an instance of a relation is made the subject of another relation. The inferred ontology can be 

queried for specific needs with SPARQL, a query language which is used to retrieve and manipulate data stored as a 

Resource Description Framework, RDF, a standard for the semantic web. Queries are constructed in triple pattern of 

subject, predicate and object with conjunctions, disjunctions and optional patterns such as to filter, sort etc. In the 

next section this ontology is presented followed by some applications of using of queries over them. 

3. SYSTEM V&V BY SIMULATION ONTOLOGY: 

In developing a domain model it is important to incorporate different viewpoints in the system teleological 

perspective such as SBF ontology [Garo,2004]. This can be extended with notation of interface (I) and Operating 

mode (O) to describe interconnected system with different modes of operation. The SBFIO ontology presented in 

this paper has different such generic and domain specific concepts with a modest size of about 900 triples and a part 

of this ontology is illustrated below in figure 1.  

                                                
4 http://hermit-reasoner.com/ 



 

Figure 1: SBFIO Domain Model 

The key concepts of the SBFIO ontology covering such a perspective are briefly given as follows: 

Structure: In addition to classical architectural descriptions of how the system is built (eg: composition) 

[Ponnusamy,2015], spatial information is included in our domain model. Besides ensuring geometric consistency 

aspects, the spatial information could be related to the corresponding physical phenomenon and the interaction 

between the systems.  

Behavior: A system behavior is the temporal evolution of the system when subjected to some scenario and 

behavioral abstraction will be briefly discussed in section 5. 

Function: Function describes the system objectives and how they are achieved. A system’s function is essentially an 

energy flow manipulation and ascribing domain specific laws to such flow type the phenomenon can be modeled. 

For example: an aircraft actuator’s function is to move the control surface according to pilot’s command which 

involves electrical to mechanical energy conversion. Based on such abstract information the associated laws can be 

inferred from the library developed by the domain experts. 

Interface: Interface refers to how the systems interact among themselves (eg: I/O ports) or with the external user 

(eg:push button). Interface defines the system boundary and can have different attributes such as range, precision etc. 

It may also be seen as a manifestation of the observable behavior and is essential in ensuring the consistency at 

interconnection and composition.  

Operation: Operation generally refers to the concepts of operating modes and operating condition of the EF.  

Operating condition implies the conditions of environment of the SUT and is used to ascribe assumptions behind 

models especially at higher abstraction level. In other words it refers to the assumptions of the EF components and is 

used in succinctly expressing and identifying operational domains and dependencies. For example, an operating 

condition of a flight control system at ‘takeoff’ phase implies associated assumptions for the engine performance 

model at this phase. In the next section, one particular concept of the domain model, namely, operational modes are 

explained. In [Ponnusamy,2015] a brief description of other concepts in this ontology in the context of building a 

model abstraction library and automating extraction of relevant abstraction has been discussed.   

3.1 Operating Modes 

The Operating Modes (OM) proposed in this paper extends the classical notion of mode-charts [Jahanian,1994], 

and is akin to automata. Modes are essentially partition of a system’s state space and a system can have different 

possible modes (eg: Switch-On/off, Engine-Start/Stop). Then the OM definition is based on a simple causality 

relation for interconnected systems with interdependent modes (eg: Switch-On THEN Engine-Start). This definition 

is amenable to ascribe functional behaviour or a semantic behaviour vis à vis the system description. In contrary to 

the rigorous but less flexible formalisms such as mode automata [Maraninchi,1998], our definition refers to the 

operational manifestation of a model under a given scenario and eases the TD and SD at different levels of 

abstraction in a static perspective. In other words, the effects of a component’s mode on other components can be 

observed statically and this helps in better understanding the necessary elements to be modelled whose real dynamic 

behaviour will be analysed later using established formalisms such as mode automata. 

Let us denote a system component by 𝐶𝑖  having modes 𝑀𝑗
𝑖 ∊ 𝑀𝑖 where i and j refers to the component id and the 

corresponding mode respectively. The dependency between modes are given by mode inter-connection 𝐼𝑖
𝑘: 𝑀𝑗

𝑖 →

⋃ 𝑀𝑗
𝑘

𝑗  i.e. a mode of a component, 𝐶𝑖 may affect one or more modes of other component, 𝐶𝑘 such that 𝐼𝑖
𝑘 ⊆ {𝑀𝑖 ∪



𝑀𝑘}. The OM then becomes a tuple, 𝑂𝑀𝑖𝑘 =< 𝐶𝑖, 𝐼𝑖
𝑘 , 𝐶𝑘 > and the connected modes of 𝐶𝑖 are called guards i.e. 

causative and that of 𝐶𝑘 are called states i.e. resultant. Transitions between modes occur whenever the guard mode 

changes. For example, consider a system with four components, 𝐶𝑖=1..4 each having different modes. The 

dependencies in between them are shown as dotted lines below in figure 2, for example, the mode 𝑀1
1 affects 𝑀1

2 

which in turn affects 𝑀1
4 i.e. components 𝐶4 is dependent on 𝐶1. 

 

Figure 2:  Mode Dependency Example 

Such dependencies could be illustrated using OM in the following figure 3, which could be then reasoned and 

queried to find implicit information such as modes (un)affected by a particular mode or its attributes (e.g: type of 

system, associated designer etc). In practice the system designer need only gives the component and its dependent 

modes and the link between different such pairs are extracted automatically. This is useful since the designer usually 

knows the causality relation only few components upstream and downstream and it is thus important to relate 

between all such information to have holistic view before modelling the system. In other words, this helps in 

capturing each component’s operational environment assumptions in terms of modes. In the figure below, the 

causality relation in mode is denoted by solid arrow line and the transition between modes by dotted arrow lines. In 

addition, transition can be constrained, for example, once mode 𝑀3
1 is activated it cannot be switched to other modes 

of the component and hence the end state will always be 𝑀1
5. Thus the transitions can be primary i.e. affects other 

OM or secondary i.e. does not affect other OM e.g.: OM5. 

 

 

Figure 3: Operational Modes 

From such illustration queries can be made on the instantiated domain model for applications such as identification 

of the transitions between modes and the necessary dependencies to be modelled. For example, reachability notions 

such as the mode 𝑀1
4 can be reached from 𝑀2

1 by changing the mode to 𝑀1
1 can be queried. Similarly there are two 

ways of reaching 𝑀2
2 and associated (or the shortest) path can be queried.  

This description will also be useful in high level functional failure mode and effect analysis. A failure could be 

interpreted as the inability of the system mode to transit in response to its associated causality conditional i.e. guards 

change. Consider a TD stating simulate 𝐶2 failure and this requirement necessitates inclusion of components 

associated to 𝐶2 such that any mode change in upstream component i.e. guards does not have effect on 𝐶2 since it is 

already failed and effect of downstream components i.e. states with respect to it. From SDD it is known that 𝐶2 can 

fail at 𝑀1
2 or 𝑀2

2 and in case of failure at 𝑀1
2 it can be easily infered that 𝑀2

1 will not have any effect and it must be 

included to check the effect. In addition, OM4 can be abstracted for simulation of OM5 since it does not have any 

transition associated. Similarly recovery procedures such as in case of 𝑀1
2 failure to respond to transition 𝑀2

1, 𝑀2
2 can 



be reached through OM5 if there exists a transition i.e. guard change 𝑀3
1 to 𝑀2

1 can be seen. It may be reminded that 

all such inferences are static i.e. from instantiated domain model through queries and this helps in inclusion of 

necessary abstractions to be implemented for a given test requirement before dynamically simulating. 

In the next section, notions of hierarchy between concepts of the domain model to build inheritance relations 

are discussed. These inheritance relations are then exploited to identify necessary abstractions.  

3.2 ABSTRACTION HIERARCHY 

In general, a system can be modeled at different levels of abstraction which could be related to each other by a 

binary relation (≼). This hierarchical notion of simulation preorder represented as a lattice has been widely studied in 

the field of formal verification [Cousot,1992]. An application of such approach to consistency checking of semantic 

annotation of models has been explored in [Lickly,2011]. Our study extends such property annotation to V&V 

domains and ascribes a distance notion to the elements of lattice. In other words, elements of lattice which are closer 

to the desired element than the others have relatively higher fidelity. For example, the lattice for the variable data 

type concept with elements boolean, int and float are ordered as boolean ≼ int ≼ float where ≼ refers to ‘is also‘ 

relation i.e. int is also a boolean but the reverse is not true. Assuming the TD demands a variable type float whereas 

SD offers only boolean or int, intuitively it can be seen that the abstract data type int is closer to concrete data type 

float than the other abstract data type boolean. Similarly inclusion relations could well be extended to other relevant 

annotations such as in domain specific laws (e.g. a geopotential model with spherical harmonics is also a flat earth 

model), model versions etc. These inclusion relations are useful to engineers who do not necessarily share the same 

domain expertise. Such annotations and inclusion relations are useful in mitigating redundant modeling effort, 

especially in modeling system derivatives where a combination of legacy and new models will be used in tandem for 

the V&V activities. A similar approach could be used to document assumptions behind models in a hierarchical 

manner which in turn could be exploited to find the simplest consistent model meeting the simulation requirements 

[Ponnusamy, 2015].  

3.2.1 Automated Model Assembly 

In addition to standardization of knowledge and exchange, query capabilities are exploited to select the model 

with consistent interfaces based on parameter matching using this distance notion. In addition, it is possible to assign 

weights to each attribute and the model whose interface having the closest consistency is chosen. In a component 

based design framework, the assembly of components is an important but often ignored aspect and many integration 

problems arise due to interface compatibility. In assembling i.e. connecting two models, compatible models are 

selected from a library of models by matching their input and output parameters of their interfaces. In [Novàk, 2011] 

this task is discussed via queries of ontology but the matching is exact i.e. two models are compatible only if the 

output of first model is same as the input of second model. This could be true for matching parameters, units etc. but 

for conditions such as matching data types etc. it could be stringent. Consider an example where a battery model 

(M1) modeling voltage is connected via an electrical circuit to an antenna model (Ant). The battery output datatype 

could be ‘int’ whereas the antenna model input datatype is ‘float’. A boolean type checking gives an error despite a 

float is also an int datatype. In our ontology, when such an instance occurs, the connection is deemed compatible as 

shown in figure 4(b), since in the datatype lattice described in section 4.2, Float ≼ Int. This is evaluated by simply 

measuring the length of its relative position in the lattice chain (e.g.: int is located lower than double hence it has 

higher length and only elements with lower length are chosen for input type compatibility). Let us consider an 

example where the engine model is connected to the accelerometer (Acc) model to measure the acceleration, a, 

induced by the thrust, F. The acceleration can be calculated either as function of force or mass or both and from the 

set of candidate models shown in Fig.4(d) it is evident that second model cannot be used here. From the two 

available models the first one is chosen for its higher precision if the output datatype is the same (or better). The 

associated pseudo-queries for this example are given in the appendix. Similar queries can be written to match or 

extract other system attributes. 

  

(a) Incompatible Assembly     (b) Compatible Assembly 



     

(c) System Assembly                  (d) Model Candidates 

Figure 4: Model Assembly  

4. PROCESS OVERVIEW  

In [Ponnusamy,2015], the utilisation of such a domain model to build a model abstraction library, and automate 

the model selection from the library using an algorithm in SysML activity diagram is presented. The overall process 

of the domain model development, building and exploitation of the model abstraction library is briefly discussed in 

this section with an illustration of the process [Thebault,2015].  In developing a domain model, an important aspect 

is to describe its integration or improvement of the existing M&S process in an end user operational context. It can 

be seen from figure 5 that the proposed approach replaces text with domain model concepts,  reasoning over implicit 

information to make them explicit and evaluate their consistency with respect to each other. This is followed by 

model selection process and the selected model is instantiated in a classical simulation tool such as Modelica etc. The 

phases of modeling and simulation along with the respective stakeholders can be seen from the figure below. The 

meta-model and selection algorithm [Ponnusamy,2015] are denoted in dotted ellipse.  

 
 

Figure 5: Operational View of M&S domain model 

 

   The meta-model instantiation by simulation users and system designers is reasoned by the simulation 

architect to find implicit data and evaluate its consistency to write the model requirements. In addition, the model 

developer documents his existing models in a library using the same meta-model, and based on the requirement from 

architect, a consistent abstraction is selected from this hierarchy of abstractions using the SysML algorithm and then 

composed with the other models. This assembled model is then deployed on a simulation platform and executed by 

the simulation user according to the defined V&V plan. An industrial perspective of such approach in the context of 

simulation fidelity is presented in [Thebault,2015]. This process can be integrated easily in the standard M&S 

process in industry and it can be seen that this is a non-intrusive method for the engineers since building and 

exploiting abstraction library is intended to be automated with minimal effort. However, as with any domain model 

approach in industry, initial effort will be high for tool development, workforce training, process management and 



deployment. But as several studies demonstrate MBSE is an important enabler in system development especially due 

to rapid and complex evolution of corpus of engineering knowledge in an organization and the need to capture 

systematically this engineering knowledge for standardization and exploitation. 

 

5. APPLICATION CASE: AIRCRAFT NACELLE ANTI-ICE SYSTEM: 

A generic description of the aircraft Nacelle Anti-Ice System (NAIS) is presented, followed by instantiation of 

the domain model built from the ontology defined in section 3. The NAIS is used to prevent ice accretion at the 

engine nacelle inlet by using hot gases from the engine exhaust. The system is comprised of controllers, valves, 

solenoids, ducts etc. and is connected to other aircraft systems. In order to perform tests on a component(s) (eg: 

controller of NAIS), the problem of selecting elements of NAIS and the associated systems (eg: Flight Management 

System), environment (eg: engine) with respect to this component(s) and the test scenario is outlined in the EF 

formalism. The following figure illustrates the environment representing the context under which the controller will 

be tested in the EF formalism. The general system interaction is shown by solid lines and the scenario specific 

observability of phenomenon (eg: pressure data from sensor) is denoted in dotted lines. Thus the EF helps in a lucid 

visualization of what is being tested and what is needed for the test in addition to how it is tested (controllability) and 

what is expected of the test (observability).  

 

Figure 6: Experimental Frame of NAIS Controller 

An application of the OM concept to the failure mode simulation of NAIS valve is illustrated in the following section 

similar to the example in section 3.1. 

5.1 NAIS Failure Simulation 

Let us consider a test scenario where TD requires the simulation of valve V2 failure at closed mode. The test 

request typically says at which conditions the failure is triggered, where and what are the expected outcomes. On the 

other hand, SD of NAIS describes all the possible behavior of system, in this case, dependency of valve V2 modes 

with the solenoid S2,3 modes (e.g. : valve is open when solenoid is energized & closed when solenoid de-energized). 

It then becomes imperative to identify the components and its associated modes causally affected by this failure 

condition. Inferring the instantiated OM concepts and querying over this knowledge, desired information such as 

dependent component or the components that can be abstracted can be obtained with ease. It alleviates the burden of 

the tedious and often error prone task of keeping track of disparately located but hidden information which is related 

to each other. Following the notation given in section 3, the SD then becomes 

𝐶1 = {𝑉2}   𝑀1
1 = open          𝑀2

1  = close           𝑀3
1 = regulating 

𝐶2 = {𝑆2}    𝑀1
2 = de-energised,     𝑀2

2 = energised 

𝐶3 = {𝑆3}  𝑀1
3 = de-energised,     𝑀2

3 = energised 

 

The OM is built from the mode data and is illustrated below, for the sake of clarity each OM is shown separately. 

 

   

Figure 7: Operating Modes of Valve and Solenoid 



Consider a test on the controller to validate its failure monitoring and reconfiguration of valves. It can be seen 

that, in order to simulate the valve failure when closed, it is imperative to simulate the solenoid S3 in de-energized 

mode to see it does not have any effect. However this information is not explicitly given in TD as it describes 

expectations on the system at higher levels of abstraction whereas SD describes all possible behaviors of the system. 

Thus it becomes important to identify only the necessary functions and associated systems to be modeled to avoid 

over or under detailing of models. 

In addition such an approach will help visualize and identify possible emergent behavior which may not have 

been modeled otherwise. For example, from the valve which is failed at the closed position, the regulating mode can 

be reached in two steps by having S3 de-energised and S2 energised. Similar extensions are possible and such 

information is usually not given explicitly either in SD or in TD, and this formalism helps the model specialist in 

writing a MR with autonomy. This particular example, though done manually, is found to increase the efficiency 

during test since provisions for failure triggering are explicitly identified and provided along with necessary 

functionalities to model the failure propagation. 

6. MAPPING TO BEHAVIOURAL FRAMEWORK 

The problem of quantitative transition systems and their abstraction has been widely studied by [Alfaro,2004], 

[Thrane,2009]. However, there exists a gap between the rigorous behavioral abstraction frameworks such as 

(bi)simulation relations and less formal system engineering approaches [Retho,2013]. The complexity of current 

engineering systems requires integration of different layers of abstraction and consistency between them. The 

concept of operating modes could serve as a connection between high level functional description through the 

domain model approach and low level behavioral description through quantitative transition system. Since OM are 

high level behavioral descriptions, this would lead to better identification and modeling of transitions to capture the 

low level behavior, especially during incremental model synthesis. Similarly, the notion of lattice distance leads 

naturally to behavioral distance quantification based on approximate bisimulation [Girard,2005] and simulation 

distances [Ĉerny,2010]. In addition, in the context of assume-guarantee contract based design [Benviste A,2012], 

behavioral refinement of models by extending the concept of interface with interface simulation distances 

[Ĉerny,2012] is also are being studied. However these studies are still in their infancy and future work includes 

developing the theory to bridge this behavioral approach with the semi-formal domain model approach to build a 

unified framework addressing the simulation needs capture from high level to low level model behavioral 

requirements definition.  

7. CONCLUSION & OUTLOOK 

This paper gives a preliminary version of domain model and the SBFIO ontology explained in this paper is 

being improved with other domain specific concepts in the industry and validated with stakeholders before its 

integration in the engineering process. The study is currently at the identification and experimentation of solutions 

phase and preliminary indications are encouraging. This study is also being used to assess and provide feedback to 

ongoing feasibility studies on using the Cappella tool based on the Arcadia framework [ARCADIA] for aircraft 

system architecture definition and simulation. Future work includes development of a user-friendly graphical 

interface for domain model instantiation, queries, and formalization of a centralized ontology management process 

which are all imperative for the utilization across the enterprise.  

The ontology driven domain model approach helps to ensure traceability between different abstraction layers 

and ensures viewpoint consistency and thus enables seamless integration of models and deployment. It helps the test 

team to optimize the test scenario through inclusion principles and the modularization of ontologies helps in test 

independence to reduce redundant test combinations. It alleviates the general difficulty of the lack of synchronization 

and standardization between system development and testing by incrementally and iteratively improving the systems 

design and testing knowledge along the program schedule. This not only helps in modeling knowledge archiving and 

reuse for streamlined development of system variants but also for better coordination and decision making in 

program development. 

However, it is often the case that not all abstractions are or can be documented through such a domain model as 

it is a time consuming and arduous task especially when multiple stakeholders are involved. This is also compounded 

by the fact that parsing of documents written in natural language into the domain model concepts described in 

section 3.2 is a complicated task in itself. Though there are some initial studies such as [Ileiva, 2005], this problem 

needs to be studied with cognitive techniques such as data analytics and deep mining based on iterative learning 

techniques for better usage of this domain model. 
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APPENDIX 

PREFIX mm:<http://instantiated model name .owl#> 

PREFIX nn:<http:// instantiated model name _infered.owl#> 

 

#sample code to compare three simulation models input interface with system model input interface. Two of the models have 

#same parameter (e.g.Force, F) but different datatypes (e.g: double, int) – first match the models having same parameters then list 

#lattice length 

#the query needs to be customized to suit the respective class, object and data properties respectively 

 

SELECT  DISTINCT ?iclist ?source ?dest ?system_var_out_name ?system_var_in_name ?sim_var_in_name ?sim_block 

(COUNT(DISTINCT ?sim_var_class) AS ?sim_var_class_no)  

WHERE 

{ 

 

#List all system Interconnection 

 ?iclist rdf:type mm:Block_InterConnection; 

        mm:connectsFrom ?source; 

        mm:connectsTo ?dest. 

 

#check Source Port and Destination Port have same variable names eg:F for force 

?source_port a mm:SourcePort;                      owl:sameAs ?system_port_out.?system_port_out mm:isAssociatedTo 

?system_param_out. ?system_param_out mm:representedBy ?system_var_out. ?system_var_out mm:hasVariableName 

?system_var_name. ?system_var_name mm:hasVariableNameString ?system_var_out_name. 

?dest_port a mm:DestinationPort;                      owl:sameAs ?system_port_in. 

?system_port_in mm:isAssociatedTo ?system_param_in.?system_param_in mm:representedBy ?system_var_in. ?system_var_in 

mm:hasVariableName ?system_var_name1. ?system_var_name1 mm:hasVariableNameString ?system_var_in_name. 

 

#check variable datatypes 

 

FILTER(CONTAINS(?system_var_out_name, ?system_var_in_name)) 

?sim_block mm:Simulates ?source;            mm:hasBlockParam ?q. 

 ?q a mm:InputParameter. ?q mm:representedBy ?b. ?b mm:hasVariableName ?d.  ?b mm:hasVariableDataType ?jj. ?ii 

rdfs:subClassOf* mm:VariableDataType. ?jj a ?sim_var_class. ?d mm:hasVariableNameString ?sim_var_in_name. 

 

FILTER(CONTAINS(?sim_var_in_name, ?system_var_in_name) ) 

?ii rdfs:subClassOf* mm:VariableDataType. 

?jj a ?sim_var_class. 

} 

 

GROUP BY ?sim_block ?iclist ?source ?dest ?system_var_out_name ?system_var_in_name ?sim_var_in_name 
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Abstract

Complexity of Embedded System (ES) development is
increasing due of several cumulative sources. Some
of them are directly related to constraints on the ESs
themselves, like computing power, resource constraints,
and multi- or many-core programming, while other are
related to the industrial context, like teamwork and
parallelisation of concurrent development. In this pa-
per we present CanHOE2, a Model-Driven Engineering
(MDE) tool that addresses two issues of ES develop-
ment: expression of parallelism by means of objects
and Hierachical State Machines (HSMs), and team-
work synchronisation.

1 Introduction

Embedded System (ES) development teams have to
cope with usual constraints of industrial organizations:
(1) End-to-End Engineering: the full development cy-
cle goes from requirement formalization to the final in-
tegration and assessment of the application on its plat-
form. (2) Incremental & collaborative development:
To organize efficiently the work of large teams, it is
critical to regularly distribute and integrate work, and
to measure progress towards the objectives. (3) More-
over, at any level, models should be executable and in-
strumented: executable to check them against require-
ments, and instrumented to get continuous qualitative
and/or quantitative feedback to drive engineering de-
cisions.

Another important factor of ES development effi-
ciency is the set of modeling and programming lan-
guages used in a project. Ideally, we would rely on
a single high-level modeling language that: (a) Can
model hardware as well as software; (b) Is not tied
to any hardware architecture like Field-Programmable

Gate Array (FPGA), Digital Signal Processor (DSP)
or General Purpose Processor (GPP); (c) Is parallel-
friendly; (d) Provides a clear path to generate efficient
code.

Lastly, the wide variety of modern platform pat-
terns like manycore platforms with distributed memory
based on Globally Asynchronous, Locally Synchronous
(GALS) and Network-on-Chip (NoC) are increasingly
heterogeneous and thus much more difficult to program
than classical shared memory architectures. For these
new architectures, parallelism has to be exposed; their
distributed architecture requires strong partitioning of
the code and calls for message-passing style of pro-
gramming. At the same time, modern embedded appli-
cations cannot be divided between data/computational
parts and control parts anymore. Instead, they are
made of a number of layers that include both parallel
computations on large data sets and data-dependent
control as well.

In this context, we developped a Model-Driven En-
gineering (MDE) approach named “Highly Hetero-
geneous, Object-Oriented, Efficient Engineering” or
〈HOE〉2 for short. The approach is made of:

• A method that provides modeling concepts nec-
essary to describe heterogeneous embedded sys-
tems. The 〈HOE〉2 method provides a set of re-
lated project management entities and metrics to
organize, track and report on the development ef-
forts [1, 2, 3].

• An action language that seamlessly combines
association-based data parallelism and operations
on compound data [4]. The 〈HOE〉2 language pre-
serves the expressiveness of Statecharts [5], and
captures a layout – and implementation – neutral
description of data organization, extends message
passing with an intuitive semantics for this addi-
tional parallelism and provides strong foundation
for array-based optimization techniques.

• A canonical tool named CanHOE2 that combines
textual and visual programming while enforcing
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the principles of 〈HOE〉2 for efficient management
of projects. It is canonical in the sense that it aims
at illustrating the main points of the method.

This paper is structured as follow. We review some
related works in Section 2. Section 3 introduces the
context of our approach. In Section 4, we present the
CanHOE2 tool, its main features, design choices and
implementation. Section 5 presents its application on
a specific case study, and we conclude in Section 6 with
perspectives and future work.

2 Related Work

Over the past years, many methods and tools were
proposed in order to model embedded systems [6, 7,
8].

ACCORD/UML is a model-based method proposed
to model real-time application models in the automa-
tive area [6, 7]. It is organized around waterfall life-
cyles and implies several stakeholders such as car and
parts manufacturers.

BIP (for Behavior, Interaction and Priority) is a
framework for composing hierarchical systems [8]. It
permits to build composite systems by hierarchically
assembling atomic components that are described in
terms of behavior and interactions. BIP defines an
activity-based process in which a few set of activities is
defined, for designing application models, integrating
platform’s constraints, generating code and for verify-
ing the system.

MopCom is a model-based development method for
designing ESs [7]. It proposes a top-down process di-
vided up into two flows for enhancing the development
parallelism, and several iterations to refine an appli-
cation model onto several abstraction layers of a plat-
form.

In all these methods, processes are defined along-
side generic or specific tools. Tools are used in order
to support both the language used for modeling ESs,
and the process with its different features (parallelism,
multi-roles, etc.). However, there are several draw-
backs. Tools are often generic and do not cover all the
activities of an ES process. Coupling several tools can
permit to cover the whole process, yet is inefficient for
modeling ESs. Using non-dedicated tools hinders the
development as they do not provide a global and co-
herent view of the developed system throughout the
whole process. Hence, they allow designers to digress
from the canonical process. In addition to that, they
do not integrate any project management features a
project manager could benefit from in order to have
a global understanding of a current development and
to monitor it. There is now a need of developing In-
tegrated Development Environments (IDEs) that ad-
dress all these issues in one go.

On the tool side, “IBM Rhapsody”, from
IBM/Rational, provides an IDE to develop UML
or SysML models that is widely deployed in the indus-
try [9]. The dynamic behavior of an object is captured

in a flavor of Finite-State Machine (FSM) where the
transitions’ actions are called by external libraries de-
veloped in a general-purpose language. The FSM can
be translated into C++ code, compiled and executed.
During development, this code calls back into the IDE
for debug and animation of the execution, e.g. with
sequence diagrams. Several Board-Support Packages
(BSPs) are also available such that the generated code
can be compiled, uploaded and executed on various
embedded platforms. Other tools from IBM, such
as “Rules Composer” permit to define specific code
generators from Rhapsody models [10]. The mixed
semantics of these tools, with FSM and C++ libraries,
do not allow for symbolic reasoning at the model level,
be it for optimization, correctness analysis or model
refinement. Although they do support MDE, they
main target is executable code production.

“Papyrus MDT” [11, 12] is a component of the
Eclipse Model Development Tools (MDT) project. It
is a complete solution for UML modeling and is fully
compliant with the latest versions of the UML stan-
dard. It supports the definition of profiles, and their
applications to tailor UML models to a particular do-
main. Papyrus provides some tools to customize the
whole modeling environment of Eclipse (i.e. editors,
palettes, the model explorer and the property panel)
according to the definition of the profile. Thus, de-
signers can design models in a dedicated environment
using specific profiles. However, the customization is
only performed regarding the dedicated language and
disregarding any process that could be combined to the
dedicated language. Hence, Papyrus could be tailored
to a specific language, but not to a specific method.
From the model execution side, Papyrus provides code
generation engines for C++ and Java. However, it fo-
cuses on structural elements and only provides a lim-
ited support for code generation from behavior models
through “Qompass Designer” [13]. That means, as the
authors state [14], Qompass Designer only supports
simple FSM models and it is currently not possible to
produce code from hierarchical FSM models.

3 Context

CanHOE2 supports and implements the 〈HOE〉2
method.

3.1 The 〈HOE〉2 Method

〈HOE〉2 stands for Highly Heterogeneous Object Ori-
ented Efficient Engineering. The 〈HOE〉2 method is
organized around four models and three refinements,
that defines a set of successive activities with clear in-
puts and outputs – See Fig. 1 [1, 2, 3]. These models
are built as follows: (A) The informal requirements
are formalized in the Requirement Model by means of
System, Actors, Use Cases and Scenarios; (B) This
requiement model is then refined into an executable,
platform independent, Analysis Model. This is done
by means of Hierarchical Opening of objects: replac-
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ing an object viewed as black box with several object
that represent a more detailed version of the orginal
object while collectively exhibiting the same apparent
behavior. This transformation can be applied recur-
sively to new objects. (C) The Platform is partially
introduced by declaring its Worlds – See (1) in Fig. 1.
A world is an abstraction of an execution domain that
can Hosts objects – like a set of processors and their
shared memory, a FPGA, or a dedicated hardware In-
tellectual Property (IP). Once the platforms’s worlds
are known, the Design Model is built. For this, each
object from the analysis model is split in smaller ob-
jects that are Distributed over the platform’s worlds.
(D) Further platform details are introduced into the
application: for each world, its Containers are pro-
vided. Each container embodies a set of coding rules,
with a trade-off, to implement an object semantics on
the target world. The Implementation Model is built
by Injecting each object of the design model into a
container.

In terms of associated process management, we de-
fine the following concepts:

• Task, Phase and Task Sheets: A task is an atomic
modeling activity: one of the three refinements
applied to a single objet. A phase is the set of
tasks that captures all the refinements that build
the phase’s model. A task sheet is an instance of
a task.

• Participant : A participant may be either a
Project Manager (PM) or a Developer. A PM
creates and drives the project by (a) defining and
assigning tasks to Developers, and (b) by integrat-
ing, or rejecting, the models they produce. A De-
veloper can modify models only according to a
task sheets provided by the PM.

• Project : A project contains its task sheets and the
four phases of the process. A project is led by a
single PM and built by several Developers.

• Iteration: An iteration is a collection of tasks. It
is the smallest entity of project management.

Table 1 illustrates an example of a consistent plan-
ning using the iterations as a diagram similar to a

Table 1: Consistent Planning of developments
RA SA SD SI

UC1 SN1
1 T 1

1 T 2
1 T 6

3

T 8
4

UC2 SN1
2

UC3
SN2

3

T 3
2

T 4
2

T 7
3

SN3
3

UC4 SN1
4

UC5

SN1
5

T 5
2

SE2
5

SE3
5

UC6 SN1
6

Figure 2: 〈HOE〉2 Action Language

Gantt where T i
j denotes the ith task of iteration j.

The same kind of planing can be declined for the de-
velopment of the platform. As can be seen, the itera-
tions form rectangles and squares in the table schedule:
Each iteration starts from a consistant state and ends
by a consistant state of the system. However, this kind
of representation does not illustrate the refinements
within a single iteration.

3.2 〈HOE〉2 – A New Action Language
for HSM

The 〈HOE〉2 language build on a number of concepts
from Unified Modeling Language (UML) such as ob-
jects and associations [4, 15]. 〈HOE〉2 Objects commu-
nicate through exchange of messages. Their behavior
is captured by Harel’s Statecharts [5, 15]. The 〈HOE〉2
language proposes a number of extensions to UML:

• A new Action language. The 〈HOE〉2 action lan-
guage separates actions into two sequentially or-
dered parts: First the parallel updates of associa-
tions, followed by a parallel sending of messages –
See Fig. 2.

• Using associations to define Iteration domains and
Indexes. 〈HOE〉2 introduces a syntax for the spec-
ification of parallel iteration domains for associa-
tions updates and sending actions.

• Indexed regions: Iteration domains can also be
used to enumerate parallel regions. Each region is
identified by its own index.

• Transaction: The concept of interface is extended
with the ordering and direction of messages ex-
changed.

These extensions are detailled by Llopard et al. [4].

4 The CanHOE2 Tool

As we explained previously, CanHOE2 serves to sup-
port the 〈HOE〉2 process and language. We choose to
develop our tool with the several Eclipse technologies
[16, 17, 18]. Eclipse offers a set of convenient user-
interface components in the context of meta-modeling
(Perspective Management, Common Navigator Frame-
work, Ecore Standard, etc.). It provides some tools to
easily display multieditors in the editor area, navigator
and views. CanHOE2 can create models and diagrams
associated to these models. Models are created using
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Figure 1: 〈HOE〉2 a Collaborative Top-Down Dev. Process for Embedded System Design: Application and
Platform Tracks

the Eclipse Modeling Framework (EMF) tool. It al-
lows to instantiate models by providing a meta-model
and save them in XML Metadata Interchange (XMI)
markup language. It is suitable for metamodels and
model exchanges. CanHOE2 also offers a textual edi-
tor for the 〈HOE〉2 language. In this section, we detail
the implementation choices, interface design and con-
tributions of our tool.

4.1 Tool Design

CanHOE2 provides four editors corresponding to the
four models described in the 〈HOE〉2 method (see
Fig. 1). Navigation in the models is based on the
logical ordering of refinements within models. The
project management tool supports consistent planning
and definition of iterations obeying the model refine-
ment dependencies. The iteration history is navigable.
The user interface is split into three areas at a mini-
mum (see Fig. 3):

• The Navigator Area, that allows the designer to
intuitively navigate inside a streamlined hierarchy
of 〈HOE〉2 artefacts.

• The Editor Area: where the developer can write
program using graphical elements or textual cod-
ing.

• The View Area, dedicated to project management
and teamwork tools. It implements dedicated
views to update information about the entities se-
lected in the active editor.

As illustrated in Fig. 4, the developer may either
write its program directly in 〈HOE〉2 textual language
or describe it graphically, assisted by a palette and a
property panel: a palette is displayed and the devel-
oper is able to drag and drop entities from it. Infor-
mation about graphical entities can be modified in the
graphical editor, or in a property panel. Graphic and
textual development can be complementary. Indeed,
the developer can mix user friendly textual and graph-
ics solutions, they will be automatically synchronized
to each backup (see Fig. 4). By double-clicking on any
graphical element, an embedded 〈HOE〉2 language edi-
tor open up and let the programmer modify the actual
code (see Fig. 5).

Figure 5: Embedded Editor for Transition

4.2 Tool Implementation
The first step is to derive a well-formatted Ecore meta-
model from our canonical one. This step is fundamen-
tal since we need to consider the Ecore and its asso-
ciated tool specificities. Once we have produced our
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Figure 3: The CanHOE2 Interface Dedicated to the 〈HOE〉2 Method and Language

Ecore metamodel, we defined the 〈HOE〉2 language
syntax using Xtext/Xtend technology from the above
defined Ecore model [17]. Xtext provides a set of tools
for the implementation of domain-specific languages.
From the 〈HOE〉2 metamodel, we derived a full con-
crete implementation of it. The compiler components
of our language are independent of Eclipse or OSGi
and can be used in any Java compliant environment.
Xtext automatically generates the parser, a type-safe
builder of our Abstract Syntax Tree (AST), the seri-
alizer and code formatter, the scoping framework and
the text editor. The editor integrates syntax highlight-
ing and error checking, among many other things. To
achieve graphical models, we rely on the Sirius frame-
work [18]. Sirius enables the visual design of complex
systems (software, business activities, physics, etc.)
and guarantees the consistency of the corresponding
data (architecture, component properties, etc.).

4.3 Support Tools for Project Manage-
ment in CanHOE2

CanHOE2 offers several tools to support project man-
agement. Indeed, it can manage the authentification
and collaborative work providing a global view on the
progress of the project.

Authentication. In a regular work environment,
an employee can only access the projects to which he
has been assigned. In CanHOE2, once authenticated,
the user accesses a personal dashboard that lists the
projects in which he is involved. From this dashboard,
he can also create new projects as a PM. According
to his role in the project, one of two perspectives is
opened: “Project Manager” or “Developer” perspec-
tive. A perspective is a window with adapted views
to the user. Eclipse RCP can easily manage these per-
spectives and allow us to show a proper layout of the
available views. The views in CanHOE2 are based on
Java SWT [19].

The user authentication process goes through
Lightweight Directory Access Protocol (LDAP). LDAP
is a network protocol for accessing an electronic direc-
tory where you can reference the users (name, login,
phone ...), machines or applications. Access to LDAP
server is done via Java Naming and Directory Interface
(JNDI) [20].

Collaborative development. Such a collabora-
tive environment needs a database to capture all the
artifacts manipulated and their evolution over time.
CanHOE2 uses centralized Git repositories to this end
that are accessed by CanHOE2 on behalf of each par-
ticipant [21]. CanHOE2 uses two types of repositories:

• A configuration Git repository contains the infor-
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Figure 4: CanHOE2 Synchronized Text and Graphical Editors

mation that CanHOE2 uses to connect to LDAP
and the list of all CanHOE2 active repositories.

• Several project-specific Git repositories, where we
store additional information about the project
(task sheets) and resulting patterns of the Can-
HOE2 application (model use cases, scenarios).

Project monitoring. In order to help the project
manager to monitor the project development and to
plan different iterations on it, we implement traditional
diagrams for project management such as GANTT and
PERT diagrams. Internalized project management re-
duces development time and provides a monitoring in-
terface to better manage the development team.

5 Case Study
In this section, we introduce a Face Tracker system.
The face tracker system consists of application for face
detection, which is hosted by an Oriented Camera plat-
form. This platform includes a general purpose pro-
cessing unit, a Passive InfraRed (PIR) sensor and a
bracket on which the camera is attached. Two servo-
motors orientate the bracket for pan and tilt.

Fig. 3 illustrates use cases diagram of the Face
Tracker application . Tables 2 and 3 show multiple use
cases and scenarios, respectively, that formalizes the
requirements. From these use cases and scenarios, we
can now define a task list and its corresponding order
of execution. We present hereafter a non-exhaustive
list of tasks that have to be performed:

• T 1: Refinement of UC 1 & 2

• T 2: Initiation of the system analysis

• T 3: Refinement of UC 3, 4, 5 & 6

• T 4: Refinement of the system analyis for UC 3 &
4

• T 5: Refinement of the system analyis for UC 5 &
6

• T 6: Initiation of the system design

Table 2: Usecases of the Face Detection Application
Id Causality Name

Description

1 Primary Detect presence
The actor wants to know when somebody enter the monitored
zone.

2 Primary Track faces
The actor wants to track faces of people entering the moni-
tored zone.

3 Secondary Toggle camera control
The actor wants to switch between manual and automatic
tracking modes

4 Secondary Query camera control mode
The actor wants to know the current tracking mode

5 Secondary Orientate camera
The actor set the camera’s orientation.

6 Secondary Query camera orientation
The actor wants to know the camera’s curent orientation.

• T 7: Refinement of the system design

• T 8: System implementation

Once this list is completed, we can define the execu-
tion priority of tasks and hence the list of our different
iterations.

• I1= T 1 + T 2 : Refinement of the use cases 1 & 2
and system analysis initiation

• I2= T 3 + T 4 + T 5: Refinement of requirements
and system analysis

• I3= T 6 + T 7 : System design

• I4= T 8 : System implementation

Table 1 illustrates our iterations planning. In what
follows, we will focus on I1 and I3 iterations. However,
before the beginning of the design phase (i.e. iteration
I3), the platform development team have to start to
work on it. We will call that iteration I ′1. We named
our platform, "The Oriented Camera platform".
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Table 3: Scenarios of the Face Detection Application
Id Nature Name

Description

1-1 Nominal Presence detected notification
The actor subscribes for updates of presence in the monitored
zone. The application notifies to the user when somebody
enters or exit the monitored zone. The actor unsubscribes
when he does not want updates anymore.

2-1 Nominal Face tracking notification
The actor subscribe to people’s faces and the position in the
monitored zone. The application notifies to the user with the
position of a face in the monitored zone every 2 s. The actor
unsubscribes when he does not want to track people faces
anymore.

3-1 Nominal Switching to automatic mode
The system is in manual mode. The user toggles it to auto-
matic mode.

3-2 Nominal Switching to manual mode
The system is in automatic mode. The user toggles it to
manual mode.

4-1 Nominal Querying control mode
The actor asks for the camera’s control mode. The system
answers wether the camera is in automatic or manual mode.

5-1 Nominal Manually orienting the camera
The system is in manual mode. The user wants to move the
camera relative to the curent position. The camera is moved
by the requested pan and tilt angles.

5-2 Error Manually orienting while in auto. mode
The system is in automatic mode. The user wants to move
the camera relative to the curent position. The system refuses
because the camera is in automatic mode.

5-3 Error Manually orienting the cam. hits a stop
The system is in manual mode. The user wants to move the
camera relative to the curent position. The camera is moved
by less than the requested pan and tilt angles as it hits a hard
stop.

6-1 Nominal Camera position query
The actor asks the system about the camera position. The
system answers with the position.

Iteration I1: Refinement of the use cases 1&2
and system analysis initiation

During this iteration, we can detail the use cases
identified but also initiate the analysis phase. Fig. 6
illustrates an analysis model of the Face Tracker sys-
tem : the system is composed by three objects (1) a
presence detector for detecting a presence in a specific
area, (2) a face detector for detecting a face and its po-
sition from a video stream and (3) a turret controller
for controlling the orientation of a camera a control-
lable turret two angles.

In this iteration we have also to model the behav-
ior of our application, and its response to exchanged
messages (See Fig. 7).

Iteration I ′1: Requirements and system anal-
ysis of the platform

Tables 4 and 5 gives a list of use cases and scenar-
ios of the platform. These lists can be completed and
refined with theirs corresponding diagrams.

To model the platform, we use the same diagram for

Figure 6: Face Tracker system opening diagram

Figure 7: Face Tracker system behavior diagram

modeling the application with a particular notation for
the different elements of the platform. Fig. 8 shows the
analysis model of the platform. This platform allows
the hosted application to control, via two engines, the
position of the camera by orientating it around two
axes. The model is composed by two worlds a Pro-
cessor and Microcontroller. They are provided with
resources in terms of computing and memory, and com-
munication. They also provide different containers al-
lowing access to the communication resources and to
the peripherals of the platform.

The technical choices for the platform design are:

• The Raspberry PI platform: It is adapted to the
field of image processing and allows installing and
uninstalling Python programs running one pro-
gram at a time. It allows also the update of time
and date settings.

• The turret control platform: This platform pro-
vides the use cases (1) subscribtion to presence
detection, and (2) turret orientation. The turret
can be used to support the sensors or actuators,
such as a camera, an ultrasonic radar, a projector,
etc.

• The Arduino UNO platform: It is a prototyping
platform for the control of sensors and, digital or
analog actuators.

From these three platforms we have designed the com-
position diagram (see Fig. 9). From this level of mod-
eling we can start the system design.

Iteration I3: System design
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Table 4: Use cases of the Oriented Camera platform
Id Causality Name

Description

1 Primary Install Firmware
The actor installs a new firmware in the platform.

2 Primary Toggle the application on/off
The actor turn on/off the application.

3 Primary Time & date settings update
The actor sets the time and date settings.

4 Secondary Time & date settings query
The actor gets the time and date settings.

5 Secondary Firmware version query
The actor gets the firmware version.

Table 5: Scenarios of the Oriented Camera platform
Id Nature Name

Description

1-1 Nominal Firmware installed
The actor installes a new firmware.

1-2 Error Firmware installation error
A firmware is already installed on the platform. The actor
wants to install the same version or an older version of the
firmware. The firmware cannot be installed.

2-1 Nominal Toggle the application on/off
The actor turn on the application. The application runs till
the actor decides to turn off the application. The application
is switched off.

3-1 Nominal Time & date settings updated
The actor sets the time & date. The platform reset its clock
to the entered time & date.

4-1 Nominal Time & date settings query
The actor asks the system about the time & date. The system
answers with its internal time & date.

5-1 Nominal Firmware version query
The actor asks the system about the firmware. The system
answers with the firmware version.

The I3 iteration initializes and starts the system de-
sign phase satisfying the separation of objects, into the
two worlds of the platform (See Fig. 10).

6 Conclusion & Perspectives

The 〈HOE〉2 method defines a single process used
to develop both applications and platforms. It de-
fines precisely what information is sent from the plat-
form model to the application model during develop-
ment. Its companion language suports parallelism and
is amendable to polyhedral analyses. It is made of (1)
a new action language limited to association updates
and sending of messages, (2) domains, iterators and
indexes based on associations.

In this paper, we presented CanHOE2, a modelling
and process management tool for the 〈HOE〉2 method
and its language. Its main contribution is that not
only does it supports the 〈HOE〉2 language, as any
modelling tool, but also the associated process. The

Figure 8: Oriented Camera Platform Analysis

Figure 9: Oriented Camera Platform Composition

Figure 10: Face Tracker system design

support of management and cooperation is deeply in-
tegrated with support of modeling.

In future work, we want to extend CanHOE2 with
more support for the method, in particular towards the
models simulation and 〈HOE〉2 model-to-model trans-
formations.
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Summary:  software projects using Simulink or Scade use in fact a subset of Simulink or Scade. The 
‘alignment’ of these two subsets gives rise to a new concept, the ‘Unified MBD’, interesting in two 
respects: on the academic side, it gives a simple semantics to our subset of Simulink, and on the 
industrial side, it permits at almost no cost the double-skill Scade/Simulink for software and system 
engineers. For the data-flow part, the unified subset is simply the ‘clockless’  part of the 
Scade/Simulink intersection. For the control-flow part, the unified subset is much more restricted, but 
the fundamental aspect is that it strictly conforms to a well-known paradigm called ‘mode-automatas’ . 

Keywords : Model-Based Software Engineering, Languages and Compilers, Scade, Simulink. 

1. The ‘Unified Model-Based Design’ concept 
Model-Based Design (‘MBD’) is today a major paradigm in the engineering of critical embedded 
software. Here we will focus on implementation models, from which code is automatically generated. 
The main actor is Simulink, but for certified systems (avionics [our context is DO178 DAL A], railway, 
nuclear), it has to share the cake with Scade. The simplest (but fuzzy) definition of the subject of this 
paper, the ‘Unified MBD’, is the intersection of Scade and Simulink. It is an answer to two problems. 

The first and principal problem is an industrial and human one. When the R&D team cannot choose 
between the two tools, this has unpleasant consequences. Here are the ones we want to address: 

• It potentially doubles training costs, and developers have a ‘cold start’ at each language 
commutation, 

• the choice of  the ‘right’ language for in-house libraries can be Cornelian, because it dictates 
the language for the related products. 

The second design driver is simply the main limitation of each tool (in the narrow context of software 
engineering): 

• Simulink’s DNA is development, certification was handled only recently: the Simulink subset 
we use has no formal semantics, contrary to Scade, and the tentative formal semantics are 
too sophisticated to be of any use in an industrial context ([HamonRushby2007]),  

• Scade’s DNA is certification, ease of development is perfectible: the Scade simulation 
environment is suitable for unit debugging, but integration and functional debugging is better 
done out of the tool, contrary to the seamless environment of Simulink. 

This very last point is one of the two keys of Unified MBD: our wish list to Scade contains today mainly 
tooling points, because the Scade language has reached a good expressivenes s level, almost 
sufficient to deal with most critical applications . To be completely clear, when we look at the C 
source of the application part of our critical avionics software currently under Model-Based 
development (the other parts are the Operating System and the Boot): 
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• A few percent come from manual coding, because datatypes are low-level (bitfield 
manipulations) or algorithms are low-level (sin, sqrt) or sequential (sorting an array, Gram-
Schmidt orthogonalization), 

• a few percent come from automated coding of state-machines (because our applications 
contains few moding and are mainly algorithmic; on cockpit or in railway, it could be very 
different), 

• and everything else comes from automated coding of dataflow diagrams. 

Independently of this dataflow/state-machine ratio (which is application-dependent), we make a 
different use of the dataflow features and of the state-machine features: 

• almost all dataflow constructions are used: they are very similar in Scade and Simulink, are 
very intuitive (well readable by system engineers, this is a key point for peer reviews). This will 
be illustrated in the next section; 

• almost none of the state-machine constructions are used: their semantics is often subtle and 
slightly different between Scade and Simulink, so this is directly conflicting with the first goal of 
Model-Based Design which is communication between engineers. This will be illustrated in the 
3rd section. 

Let’s call ‘Simple Scade’ the part of Scade mentioned above (almost complete dataflow + almost 
nothing of state-machines). The second of the two keys of Unified MBD is that Simple Scade is 
syntactically included into Simulink . What does it mean?  It means that without any semantic 
analysis, you can structurally translate (almost box to box and wire to wire) a Scade diagram into an 
‘equivalent’ Simulink diagram. Equivalent is put in quotation marks because without a formal 
semantics for Simulink, it cannot be proved, but it can be verified by test (as in [Caspi&Coll2003]) or by 
expert judgement. 

Let’s call ‘Simple Simulink’ the image of Simple Scade under the syntactic translation. Contrary to 
Simple Scade, which is a syntactic subset of Scade, checking that a Simulink model belongs to the 
Simple subset requires a semantic analysis (simple: the transposition of Scade typechecking into 
Simulink). But once you are in the Simple Simulink subset, you can again syntactically translate 
towards Simple Scade. 

Now we can give the definition of the Unified MBD: it is the ‘pack’ for med of Simple Scade, 
Simple Simulink and their two syntactic translation s. The two translations have been prototyped, 
to check the robustness of the concept (the translators are not qualified, and we don’t plan to reuse 
certification credits). This concept can be seen as a ‘simple industrial version’ of the academic works 
[Caspi&Coll2003] and [Scaife&Coll2004]. The knowledge of what is ‘useful’ was the key to keep things 
simple, and on this subset we claim to have the first ‘truly operational’ semantics of Simulink, usable in 
an engineering context. 

To be completely clear, we must emphasize two points: 

• The translators are really just proofs of concepts, and are far from being industrial tools. They 
have been quickly developed in MATLAB3 to take advantage of its Simulink API for reading / 
writing / checking models (Scade models are stored in XML, for which MATLAB has also an 
API). 

• The Unified MBD is not an Esperanto (i.e. a 3rd modeling language): it is more like a duo 
‘British Basic English4’ / ‘American Basic English’, and the translators mentioned above simply 
change some ‘s’ into ‘z’ or vice-versa. Projects still use Scade or Simulink, and the Unified 
MBD only appears as modeling rules. In this, it can be opposed for example to Synoptic 
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[Cortier&Coll2010], which proposes a new modeling language, but it cannot be opposed to the 
P project [PothonBordin2013], because the Pivot language is not a language for modeling but 
for communicating models between tools. 

2. The dataflow part 
Scade is not a pure data-flow language: it is a ‘synchronous’ data-flow language. It means that 
computation is not only driven by the values of the signals, but also (and firstly) by their ‘clocks’. It 
permits compilation (pure data-flow is not really compilable, excepted in asynchronous hardware). In 
practice, clocks are not used, even for multi-tasking applications, and when you need to suspend an 
operator, you ‘conditionally activate it on a value’ and not on a clock: this is illustrated in the next sub-
section. The reason is that it is conceptually simpler for engineers (the generated code is often the 
same), this is to be contrasted with the hundreds of academic papers on clock-calculi that have been 
published in the thirty past years. This is the main characteristic of the unified data-flow: to be 
clockless  (technically speaking, we should say ‘single clock’, but clockless is more meaningful). 

This section is structured according to the well-known equation ‘Algorithms + Data Structures = 
Programs’. 

2.1 Algorithms 
The syntactic translations are in general completely obvious (this is the very reason why the Unified 
concept makes sense). Here is a standard cyclic counter in Scade 

     

and its translation in Simulink: 

 

The not-completely-obvious aspects are with what Scade calls ‘higher order patterns’, typically the 
conditional activation or the map: in Scade they operate on a sub-block, whereas in Simulink they are 
in the sub-block (they ‘qualify’ it). Following the MBD motto (and long before, a famous French 



statesman), a small drawing is better than a long speech: here is the same counter, but with a 
conditional addition (to explicitly avoid overflow). 

     

The strange block with a downwards arrow means ‘either activate the sub-block ‘+’, or return -36’. The 
default value -36 is part of the top-level block and not of the sub-block. The sub-block is the standard 
‘+’, which doesn’t care about conditional activation or default result. 

The Simulink translation looks identical, but in fact it is not: 

 

The sub-block ‘_enabled__builtin_Sum’ is not the standard ‘+’: it contains an ‘Enable Port’ block and 
the default value -36 as a parameter of the output port ‘z’: 

 

The translation can be improved by using the ‘block parameters’ mechanism of Simulink: this way, the 
‘-36’ will appear in the top-level block, but there still will be a supplementary hierarchical level 
compared to Scade. The translation is syntactical (and reversible), but the structure is slightly 
changed. 

2.2 Data structures 
The only subtlety is the definition of vectors and arrays. 

On the one hand, Scade, like C or Ada, is completely rigorous about that: 



• a scalar is not a vector of dimension 1, 
• a matrix is a vector of vectors, 
• there is a unique ‘vector constructor’, which construct vector from scalars, matrices from 

vectors, etc… (same simplicity for ‘vector projector’), 
• the dimension of a vector is explicitly declared, and to permit generic algorithms (dot product 

for example, for any dimension), symbolic dimensional parameters ‘M’, ’N’, etc. can be used, 
with a subset of arithmetic. For example, the concatenation of two vectors of size ‘M’ and ‘N’ is 
a vector of size ‘M+N’. 

On the other hand, Simulink, like Matlab, tries to be user-friendly, but to make things more ‘interesting’, 
it is not user-friendly in exactly the same way that Matlab is: 

• a scalar is a vector of dimension 1 (in Matlab, it is a 1*1 matrix because vectors don’t exist 
[row and column matrices do the job]), and is often equivalent to a 1*1 matrix, 

• a matrix is not a vector of vectors, 
• you cannot use exactly the same built-in blocks (or the same configuration of …)  to 

construct/project vectors and matrices, 
• the dimension of a vector or a matrix need not to be explicitly declared (even if it has to be 

statically known for code generation purposes). 

The first consequence is that the Scade�Simulink translation is sometimes dimensionality-dependent, 
but hopefully this information is contained in the Scade diagrams: the translation is still syntactic. 

The second consequence is more critical: for the moment, generic vector/matrix algorithms cannot be 
syntactically translated from Simulink to Scade, we can only syntactically translate each instance 
separately. Type-checking vector/matrix generic algorithms is a complex problem (see 
[JoishaBanerjee2006] for MATLAB), but hopefully, academic research has always kept this subject on 
its radar screen. Historically, it had purely academic motivations like APL evolutions or compiler 
efficiency motivations for FORTRAN, but today there is a new boost driven by parallelism/many-cores, 
and the concept of ‘shape and dimension polymorphism’ is increasingly studied. Concerning our 
Simulink�Scade translation problem, the type inference mechanism implemented in the ‘Repa’ 
package of Haskell (‘Regular Parallel arrays’) is not far from our needs [Keller&Coll2010]. 

3. The state-machine part  
In term of ‘Scade-Simulink intersection’, state-machines are the exact opposite of the dataflow part: 
almost nothing can be unified (if you want to ensure the same look-and-feel and simple translations). 
In fact, as soon as you introduce hierarchy, the semantics differ. To try a simple explanation, in 
Simulink a sub-automaton is just a drawing artifact, whereas in Scade, a sub-automaton is a true 
state-machine. 

Hopefully, the state-machines we use are ridiculously simple compared to the expressiveness of both 
state-machine formalisms, and the small intersection (non-hierarchical) makes sense. We have 
interesting use-cases of (one-level) hierarchy, so the subject is not closed, but for the moment the 
unified subsets are non-hierarchical. 

3.1 The SCADE ‘Unified Modeling Style’ 
Scade designers have pushed the dataflow/state-machine integration to the extreme, we will illustrate 
this on the following operator which generates two integers ‘cpt’ and ‘cpt1’ such that: 

If cpt1>=0 then cpt = cpt1 



 

The state-machine <SM1> is not an operator (the operator is the whole figure): it is just an equation 
(i.e. a definition of variables), at the same level than the dataflow definition of ‘cpt’. It defines the two 
variables ‘rst_cpt’ and ‘cpt1’, and what is interesting is that ‘cpt1’ is defined by a dataflow INSIDE 
‘State2’. In fact, ‘State2’ is an operator, working ‘part time’ (in the figure it is at rest, hence the ‘n/a’s), 
which could contain itself another state-machine, etc. 

The underlying paradigm is extremely clean and elegant: instead of ‘state-machine’ (a dataflow  
containing a FBY [i.e. an 1/z] is also a state-machine, after all) we should speak of ‘mode-machine’ (or 
‘variant-machine’, ’schizophrenic-machine’, ‘Janus-machine’, etc.). The difference is that a state is just 
a value, whereas a mode is a behavior: a mode is simply an operator implementing one particular 
personality of many. The first data-flow embodiment of this paradigm were the ‘mode-automatas’ of 
[MaraninchiRémond1998]. 

The Scade implementation of this paradigm (see [Colaço&Coll2005] or the Scade Suite 
documentation) is rightly called the ‘Unified Modeling Style’ (not to be confused with our ‘Unified 
Model-Based Design’). And as many implementations, it is (substantially) more complex than its 
specification: to give an idea, let’s just say that none of the three authors has ever reached the end of 
the Scade Language ‘Tutorial’ [Esterel2011], which models mainly with state-machines a descendant 
of Gérard Berry’s stopwatch (published in [Berry1991], see also [Halbwachs1993] ; itself a descendant 
of Harel’s wristwatch [Harel84]). 

It would be too long to exhaustively enumerate all the limitations we impose on state-machines: 
weak/synchro/resume transitions, signals, ‘last’ operator, etc. In fact almost everything has been 
forbidden, and it is easier to explain what we kept. Let’s call a state-machine ‘simple’ when 

- the states are independent operators (no ‘last’: no sharing between states), restarted (and not 
resumed: inner states are re-initialized) at each entering transition, and contain only (a subset 
of) built-in operators, 

- transitions are ‘strong’, i.e. their conditions are the first thing computed, then the new state is 
determined and executed, 

- transitions have no actions, no events and combinatorial conditions (no temporal operator). 

So, this is a minimalist interpretation of the paradigm. To transpose the former operator into the unified 
subset, we have to: 

- replace the default value mechanism on ‘cpt1’ and ‘rst_cpt’ by an explicit definition in every 
state, 



- replace the two actions on transition by adequate initializations in the modes (transition 
actions are pushed inside the modes), 

- replace the ‘fby’ in the conditions by the elaboration of a new variable ‘cpt_m1’ (the ‘fby’ is 
pushed outside the state-machine). 

 

This last paragraph is a bit technical and can be skipped; it is just an illustration of the countless 
subtleties that occur with state-machines, which we consider to be inacceptable in a safety-critical 
design. If you observe only the outputs, the two previous diagrams are indistinguishable. But if you 
observe also the inner signal ‘rst_cpt’, there is a difference: it is false in the first diagram and true in 
the second (look at the upper-left corner of the diagrams). It occurs only during the first cycle (the 
initial start or ‘cold start’), and it is the reason why the first diagram is not accepted by our 
Scade�Simulink translator (the 2nd diagram is OK). More precisely, <SM1> in the first diagram is a 
state-machine, but is not a ‘mode-machine’, because ‘State1’ is not an operator: it behaves differently 
in the initial start (rst_cst  = false) and in a warm start (a restart in the middle of a run, coming from 
State2; in this case rst_cst = true). In other words, State1 has an ‘extra-sensory’ knowledge (not given 
by its inputs and state) of the fact that a start is an initial one or a warm one. Again in other words, if 
we had to translate this in the unified subset, we would have to add a supplementary input to State1 to 
give him this information. We consider that it is no more a syntactical translation, but more 
fundamentally we consider that such a subtle semantic point is not acceptable in a safety-critical 
design.  

3.2 Simulink: classicism 
State-machines in Simulink are built with a toolbox called ‘Stateflow’.  In terms of expression power 
and complexity, they are comparable to Scade, but they are ‘classic’ w.r.t. Harel’s ‘seminal synthesis’ 
[Harel1984]: the behavior of the states is sequential code.  

The search for semantic simplicity and the intersection with Scade have led to a very reduced subset, 
for example from the most general form of transition  

‘event_trigger[condition]{condition_action}/transition_action’ 

we keep only 

 ‘[condition]/transition_action’ 

with global constraints on the transition actions in order to ensure the ‘mode-machine’ aspect.  



3.3 The representation of the intersection 
Concerning the dataflow part, the specification of the translations is very simple, from ‘drawing’ to 
‘drawing’, and the implementation is just as easy, from ‘syntax tree’ to ‘syntax tree’. 

Concerning the state-machine part, things are different, and the need for an intermediate language 
was felt very quickly. The classical approach is to design a third language, and we could have used 
the ‘Pivot’ language of the ‘P’ research project of which we are partner ([PothonBordin2013]). But the 
aims of the P-project and of the Unified MBD are not the same, which explains why we have adopted 
another solution: 

• the P-project needs a pivot language for ensuring semantic correctness of transformations of 
models, nobody will never directly read or write P models, 

• the Unified MBD needs an operational, but also simple and readable way of specifying (for 
human end-users) subsets of Scade or Simulink. 

Our solution for the specification (and translation) of unified state-machines is a dataflow design-
pattern, consisting of (see also next figure): 

• a set of states (left-bottom part of the diagram), 
• a pure (stateless) function ‘transitions’ computing the next state and the restart order (middle 

of the diagram), 
• a pure (stateless) function ‘actions’ using this next state and restart order to compute the 

output(s) (right of the diagram). 

So, when we want to incorporate a new feature of, say, Stateflow, into the Unified MBD, we don’t have 
to check the simplicity of translation in Scade: we check the simplicity of translation in this design-
pattern. This is not a third language; this is a pivot design pattern inside the Unified dataflow: formal 
semantics of state-machines comes ‘for free’.  

 

4. The Standard Library, and conclusion 
A common in-house ‘standard’ library has been defined, with basic operators like matrix computations 
and filters. The Scade and Simulink version share their specification and their test-cases. This way, we 
claim to have unified the look-and-feel of our models and to permit at almost no cost the double-skill 
Scade/Simulink. 



The goal of this paper is to show that for critical software, the interesting subset of Scade/Simulink is 
not so big than that. But of course, the way forward is to continue to extend the two subsets, according 
to use-cases needed by development projects.  
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Abstract:  
Much more than just yet another modelling tool, Capella [1] is a model-based engineering solution that 

has been successfully deployed in a wide variety of industrial contexts. Based on a graphical modelling 

workbench, it provides systems, software and hardware architects with rich methodological guidance 

relying on ARCADIA, a comprehensive model-based engineering method. 

The ARCADIA/Capella DSML is inspired by UML/SysML and NAF standards, and shares many 

concepts with these languages. It is the result of an iterative definition process driven by systems and 

software architects working in a broad spectrum of business domains (transportation, avionics, space, 

radar, etc.). It enforces an approach structured on successive engineering phases which establishes 

clear separation between needs (operational need analysis and system need analysis) and solutions 

(logical and physical architectures), in accordance with the IEEE 1220 standard. 

In this paper, we will explain why a lot of industrial companies, such as Airbus, Airbus DS and Areva,  

are currently interested in using Capella and running modeling pilot projects with it. 

Introduction 
Much more than just yet another modelling tool, Capella is a model-based engineering solution that has 

been successfully deployed in a wide variety of industrial contexts. Based on a graphical modelling 

workbench, it provides systems, software and hardware architects with rich methodological guidance 

relying on ARCADIA, a comprehensive model-based engineering method: 

 Ensure engineering-wide collaboration by sharing the same reference architecture 

 Master the complexity of systems and architectures 

 Define the best optimal architectures through trade-off analysis 

 Master different engineering levels and traceability with automated transition and information 

refinement 

Referring to the well-known three pillars of MBSE, we could say that ARCADIA provides both a modeling 

language and a modeling approach, and that Capella knows perfectly the language and the method. 



 

Figure 1: The three pillars of MBSE with ARCADIA/Capella 

The ARCADIA Modeling Approach 
ARCADIA (ARChitecture Analysis and Design Integrated Approach) is a Model-Based engineering 

method for systems, hardware and software architectural design. It has been developed by Thales 

between 2005 and 2010 [2] through an iterative process involving operational architects from all the 

Thales business domains (transportation, avionics, space, radar, etc.).  

It enforces an approach structured on successive engineering phases which establishes clear 

separation between needs (operational need analysis and system need analysis) and solutions (logical 

and physical architectures), in accordance with the IEEE 1220 standard. 

ARCADIA recommends three mandatory interrelated activities, at the same level of importance: 

 Need Analysis and Modeling 

 Architecture Building and Validation 

 Requirements Engineering 

 

Figure 2: ARCADIA three mandatory interrelated activities 



Steps and activities of the method have been defined precisely and tested on real projects inside Thales 

for several years. To summarize briefly, the main messages are the following ones: 

 Besides requirement engineering, drive an operational need analysis, describing final user 

expectations, usage conditions, and realistic IVVQ conditions, and a system need analysis, 

describing both the requested behavior of the system under study and its external interfaces 

 Structure the system and build a logical architecture, by searching for the best compromise 

between design drivers and non-functional constraints. Each viewpoint deals with a specific 

concern such as functional consistency, interfaces, performances, real time, safety, security, 

integration, reuse, cost, risk, schedule, and the ease of adaptation 

 Secure development and IVVQ through a physical architecture which deals with technical and 

development issues, favoring separation of concerns, efficient and safe component interaction 

 

Figure 3: ARCADIA engineering levels 

Of course, these messages are very similar to the recommendations of the INCOSE SE Handbook [3]. 

The ARCADIA Domain Specific Modeling Language (DSML) 
The ARCADIA DSML is inspired by UML/SysML and NAF standards, and shares many concepts with 

these languages. But a Domain-Specific Modeling Language was preferred in order to ease 

appropriation by all stakeholders. ARCADIA is mostly based on functional analysis, and then allocation 

of the functions to components [4]. 

The richness of the ARCADIA DSML is comparable to SysML [5] with about ten different diagram types 

including data flow diagrams, scenario diagrams, states and modes diagrams, component breakdown 

diagrams, functional breakdown diagrams, etc. Let us give a few examples of concepts and diagrams 

proposed by ARCADIA at different levels on a simple case study in the meteorological domain: 

Operational Analysis 
A very important diagram at this level is called the Operational Architecture Blank diagram (OAB). It 

captures the allocation of Operational Activities to Operational Entities.  



 

Figure 4: Operational Architecture Blank diagram (OAB) example 

System Analysis 
Dataflow diagrams are available in all Arcadia engineering levels. They represent information 

dependency between functions. These diagrams provide rich mechanisms to manage complexity: 

Computed simplified links between high-level Functions, categorization of Exchanges, etc. Functional 

Chains can be displayed as highlighted paths. 

 

Figure 5: System Data Flow Blank diagram (SDFB) example 

Architecture diagrams are used in all Arcadia engineering phases. Their main goal is to show the 

allocation of Functions onto Components. Functional Chains can be displayed as highlighted paths. In 

System Need Analysis, these diagrams contain one box representing the System under study plus the 

Actors. 

 

Figure 6: System Architecture Blank diagram (SAB) example 



Logical Architecture 
To give an example of a different diagram type, let us switch to a Scenario Diagram.  

ARCADIA defines several kinds of scenario diagrams: Functional Scenarios (lifelines are Functions), 

Exchange Scenarios (lifelines are Components/Actors while sequence messages are Functional or 

Component Exchanges), Interface Scenarios (lifelines are Components/Actors while sequence 

messages are Exchange Items). Modes, States and Functions can also be displayed on these diagrams, 

which are also available at all engineering levels. 

 

Figure 7: Logical Exchange Scenario diagram (LES) example 

Physical Architecture 
At this level, we also use the preceding types of diagrams, but we will show different types once again. 

Tree diagrams represent breakdowns of either Functions or Components. 

 

Figure 8: Physical Functional Breakdown diagram (PFBD) example 

Matrix views are also available to display the different kinds of relationship between model elements. At 

each level, for example, two matrices are available showing the realization relationship to the upper 

level elements. 

 

Figure 9: System Functions / Operational Activities Matrix example 



To summarize, the ARCADIA DSML covers all aspects of standard architecture modelling in each 

engineering phase including:  

 Capability-driven model organization with scenarios and functional chains 

 Functional analysis and allocation to components and resources 

 Interfaces, bit-precise data models, behaviors, etc. 

An overview of the ARCADIA main concepts through the engineering levels is given by the next figure. 

Additional important concepts such as scenarios, states and modes, classes, capabilities, etc. are not 

shown but also available to the modeler. 

 

Figure 10: Summary of ARCADIA main concepts 

The Capella Modeling Tool 
The Capella workbench is an Eclipse application implementing the ARCADIA method providing both a 

Domain Specific Modeling Language (DSML) and a dedicated toolset. 

A very interesting feature of Capella consists in an embedded methodology browser, reminding 

ARCADIA principles to the user and providing efficient methodological guidance. This activity browser 

provides a methodological access to all key activities of Capella, and thus to the creation of all main 

diagrams, level by level. It is the main entry point to a model and is both meant for beginners and power 

users. 

 

Figure 11: Capella Methodological Activity Browser 



As graphical representations of elements play a key role in communication, Capella relies on a 

consistent color scheme. In particular, all function-related elements are green, and all component-

related elements are blue. This favors enhanced model readability for all stakeholders (architects, V&V 

practitioners, specialty engineers, managers, etc.).  

Another very useful feature of Capella is the capability to navigate inside the model elements 

(independently of the diagrams) through a contextual semantic browser. More practical than the 

standard hierarchical view of the model, the semantic browser instantaneously provides the context of 

model elements trough meaningful queries. It is the preferred way to navigate in models and diagrams 

and to quickly analyze the relationships between model elements. 

 

Figure 12: Capella Contextual Semantic Browser 

Capella can go further than traditional modeling tools thanks to its knowledge of ARCADIA. For instance, 

the tool will check that each model element at a given engineering level is realized by a similar element 

at the next engineering level. 

Capella organizes model checking rules in several categories: integrity, design, completeness, 

traceability, etc. Architects can define validation profiles focusing on different aspects. Whenever 

possible, quick fixes provide fact and automated solutions. 

 

Figure 13: Capella Model Checking results example 

As Capella was progressively specified and enhanced by using earlier versions of the tool on Thales 

internal projects, it contains a lot of very efficient features such as: 

 Automatic computation of graphical simplifications (for instance information exchanges between 

lower-level functions can be automatically displayed on higher-level functions) 

 Automated contextual diagrams: content is automatically updated according to preselected 

model elements and predefined semantic rules 

 Filters: enable the user to show simplified views of a given diagram by selecting display options 

and automatically hiding / showing specific model elements 



 

Another advanced feature of Capella is the ability to create reusable model elements, either simple ones 

like types and classes, or complex ones, such as complete physical components with ports, functions, 

etc. A Replicable Elements Collection (REC, for Record) is a definition of an element which can be 

reused in multiple contexts / models. A Replica (RPL, for Replay) is an instantiation of a REC. RECs 

can be packaged in external libraries, which can be shared between several projects. 

 

Figure 14: Capella Replicable Elements Mechanism 

To widen the perspective, Capella does not work in isolation, but on the contrary fits into a wider 

engineering landscape, as many bridges can be developed to: 

 Initialize Capella models from upstream engineering outputs (typically coming from 

Architecture Frameworks such as NAF) 

 Confront architecture models to specialty engineering tools (performance, safety, etc.) 

 Iteratively populate downstream engineering (subsystems, code generation, etc.) 

 

Figure 15: Capella “Big Picture” 

SysML with a tool vs ARCADIA / Capella: elements of comparison 
As we explained earlier, the ARCADIA DSML is inspired by UML/SysML and NAF standards, and shares 

many concepts with these languages. But a Domain-Specific Modeling Language was preferred in order 

to ease appropriation by all stakeholders, usually not familiar with general-purpose, generic languages 

such as UML or SysML. Previous experiments inside Thales proved that system engineers not coming 

from software were not at ease with the object-oriented concepts proposed by UML (and subsequently 



by SysML). So ARCADIA is mostly based on functional analysis, and then allocation of the functions to 

components. The vocabulary of the DSML has proven to be easily understood by system engineers. 

So, basically, ARCADIA was defined first in Thales, from the engineering problems encountered in real 

projects. Then came the need for a software tool enabling to create and manage ARCADIA models. The 

first experiments were done using existing UML tools such as Rational Software Modeler, Objecteering 

and Rhapsody, and defining UML profiles on top of them [2]. At the time of these first tries, the 

commercial tools were not easy at all to customize, and in particular it was difficult to remove unused 

commands or menus. So Thales people decided to create their own tool, dedicated to ARCADIA, 

encouraged by the emergence of enabling technologies based on the Eclipse platform. ARCADIA 

definition can really be seen as the specification of the Capella modeling tool. 

If we try to compare with another possible solution, namely use a standard modeling language, such as 

SysML, and an existing commercial tool, such as Rhapsody, we can spot several important differences. 

SysML and Rhapsody (as the other commercial SysML tools) are based on UML, which is a 

disadvantage for system engineers who have not been exposed to object-oriented concepts (notions of 

operation, generalization / specialization in block diagrams, and even of object flows and object nodes 

in the activity diagram). These object-oriented origins are clearly an obstacle to adoption by system 

engineers who are not familiar with the world of software development [6]. 

Another big problem is that SysML is only a language, and each company needs to elaborate an 

adapted modeling strategy. But then, how to teach the method to the modeling tool? Each commercial 

tool claims it offers an API to build specific add-ons, but this represents clearly a big amount of work. A 

prototype is provided by IBM with the Harmony for SE toolkit [7], but experiments in Thales proved that 

this toolkit is not more than a proof of concept and very difficult to use on real projects. For instance, 

the automated transitions between modeling phases were not iterative and incremental, as is the case 

with Capella, but merely one-shot. 

 

Figure 16: MBSE 3 pillars implementation: a comparison 

 



Conclusion 
The development of Capella (called Melody then) started in Thales in 2008 after a few years of 

experience with development of profile-based UML/SysML solutions. It is now widely deployed on 

operational projects in all Thales domains worldwide (defense, aerospace, space, transportation, 

identity and security, etc.). 

Growing a community of interest and of users is a major objective of the Capella open sourcing initiative 

[1]. The goal is to favor the emergence of an ecosystem of organizations, including industries that would 

drive the Capella roadmap according to operational needs, service and technology suppliers that would 

develop their business around the solution, and academics that would pave the future of the engineering 

ecosystem.  

The 3-years Clarity consortium [8] is dedicated to building this ecosystem. Since the start of the Clarity 

project, one year ago, such big industrial companies as Airbus, Airbus DS and Areva have already 

begun to experiment Capella internally. In the meantime, technology providers such as Artal, All4Tec, 

Scilab, have also begun to work in order to bridge Capella with simulation tools, safety engineering tools, 

etc. The rationale behind Clarity is that a strong adoption of this industrial solution will bring a major 

competitive advantage for industrial actors but also for technology and service providers. 
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Abstract— The development of real time embedded equipments is a challenging task that requires the elaboration of multiple 

models in several domains, notably system, electronics and software, spanning a large spectrum of multiple abstraction 

levels and viewpoints: structural, behavioral, dependability, etc. These models serve various purposes: specification, design, 

evaluation or verification and validation. Today, no single modeling language and environment covers all these aspects. 

While Capella – an open source modeling language and environment for system engineering developed by Thales – fits well 

to the most early stages of the development process, AADL – the Architecture Analysis and Design Language defined by the 

Society of Automotive Engineers – provides powerful capabilities to describe and analyze the design artifacts of the software 

point of view that appear during the latest phase of the design. This is why they have both been selected in the project 

INGEQUIP of IRT Saint Exupéry. While using different modeling languages for different purpose is perfectly acceptable 

in a development process, it is important to guarantee that information remain consistent across all models. This is why 

building a formalized bridge between Capella and AADL is an essential piece of INGEQUIP process. In this paper, after an 

introduction to the context of INGEQUIP, the high level semantics of Capella and AADL are compared. The mapping used 

in INGEQUIP between Capella physical models and AADL abstract models is then described. The whole approach is 

illustrated by some elements coming from the design of TwIRTee – the robotic demonstrator of INGEQUIP – before 

concluding. 

 

Keywords—Real time, Embedded systems, Model transformations, Performance evaluation, Constraints verification, Capella, 

AADL. 

I.  INTRODUCTION  

This work is achieved under the INGEQUIP project at the Toulouse Institut de Recherche Technologique (IRT) Saint-Exupéry. 

IRTs are new research structures established under the auspices of the French Agence Nationale de la Recherche (ANR). IRTs are 

aimed at favouring the transfer of innovation from laboratories to industries. Towards this goal, IRTs gather engineers coming from 

small to large companies from various industrial domains, and researchers from public universities and national research agencies. 

As an example, INGEQUIP covers the space, aeronautics and automotive systems domains.  

The goal of INGEQUIP is to study and propose solutions for supporting closely integrated development of the main technical 

domains involved in embedded equipment engineering – system, eleectronics and software engineering. A key element for reaching 

such goal is to ensure the continuity and consistency of information in the whole chain of activities. In INGEQUIP, the choice has 

been to obtain this property by relying on models and model transformations. The set of requirements regarding an equipment is 

usually divided into two categories: functional requirements and non functional requirements. Functional requirements include the 

system’s behavior, capabilities and characteristics as specified by stakeholders whereas non-functional properties or requirements 

define criteria that can be used to evaluate the operations of the system. In order to design the system and associate to the design 

elements the realized functional and non functional requirements, several modeling languages are available among which AADL 
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[1] – Architecture and Analysis Design Language, AUTOSAR [2], Capella [3], EAST-ADL [4], SysM [5] and UML [6]  have been 

considered. While Capella, EAST-ADL and SysML fit system engineering, AADL, AUTOSAR and UML are focused on software 

engineering. Finally the couple Capella/AADL has been chosen in INGEQUIP because they provide most viewpoints commonly 

used by designers of embedded equipment at system and software levels: functional breakdown, logical and physical architecture, 

software dynamic and static architecture, formal behavioral descriptions; they are supported by a number of tools widely available: 

Capella and OSATE for edition, formal behavioral analysis tools like FIACRE and Tina [7], Cheddar [8] and code generations like 

OCARINA [9]). They are also based on open technologies like the Eclipse Modeling Framework which allows to develop easily 

tools extensions.  

Consistently with the orientation of INGEQUIP, a transformation has then been defined and developed for ensuring a seamless 

transition from system engineering stage to software engineering stage. 

In this paper, we therefore begin in section 2 by introducing the state of the art of engineering models transformation. Then, section 

3 presents a first comparison between the semantics of Capella and AADL. The mapping of the transformation between Capella 

physical model and AADL abstract model is then described in section 4. The whole approach is illustrated by some elements coming 

from the design of TwIRTee – the robotic demonstrator of INGEQUIP – in section 5 before concluding in section 6. 

 

II. RELATED WORKS 

 

In order to achieve an early analysis of the specification, the verification of functional and non-functional properties of the system, 

and even code generation for the targeted hardware platform, several studies have proposed comparable transformations to AADL 

models.  

In [10], Brun et al. introduce an approach for translating UML/MARTE detailed design into AADL design. The proposed work 

focuses on the transformation of the thread execution and communication semantics and does not cover transformation of embedded 

system components, such as equipment parts. 

Turki et al. [11] propose a methodology for mapping MARTE model elements to AADL components. They focus on the issues 

related to modelling architectures. This transformation flow does not consider issues related to the mapping of MARTE properties 

to AADL property. The syntactic differences between MARTE and AADL are well handled by the transformation rules provided 

by ATL tool. 

In [12], AADL is used for modelling the properties of embedded  system architecture, including the application’s tasks, the hardware 

platform and the operating system services in order to characterize the energy overhead of embedded operating system . The authors 

propose an AADL model transformation in order to be exploited by a multiprocessor simulation tool named STORM (Simulation 

TOol for Real-time Multiprocessor scheduling). AADL provides hardware and software architectures together with the scheduling 

policy; STORM simulates the system behaviour using all the characteristics (task execution time, processor functioning conditions, 

etc.) in order to obtain the chronological track of all the scheduling events that occurred at run time, and compute various real-time 

metrics in order to analyse the system behaviour and performances from various point of views. Then, this work has been extended 

in [13] and a system design exploration methodology has been proposed to verify system requirements when allocating applicative 

tasks to the processors using a set of tools: RDALTE for the definition and analysis of system requirements and QAML for 

quantitative analysis. 

In this paper, the proposed approach for transformation of Capella to AADL models target to cover the various levels of abstraction 

when modeling systems. We take into account the system behavior and the hardware/software mapping. Next section will detail the 

transformation flow and how it exploits the complementarity of Capella and AADL in order to cover various embedded system 

aspects at high level modeling step. 

 

III. PROPOSED METHOD 

As Capella and AADL partially overlap, as shown in the diagram (Figure 1) below, the first question that has to be answered before 

defining the transformations from Capella to AADL is the level at which this transformation should be performed. Capella is clearly 

positioned on the most abstract part of the system development process with the Operational Analysis, focusing on the capture of 

stakeholders’ needs, and the System analysis, focusing on the functional definition of the system. As for AADL, it doesn’t offer 

support for such kind of analysis. As they deal with the system’s architecture, Capella’s logical and physical models share lots of 

concepts with AADL, in particular the capability to express structural refinement. AADL however goes further by providing not 

only system-oriented abstract components, but also explicit hardware components – device, processor, memory, bus – and explicit 

software components – process, thread, subprogram.  

Moreover, AADL proposes a formal models of communication and execution semantics that is a prerequisite for any low-level 

behavioral analysis (e.g., schedulability analysis). 



Capella provides system modeling capabilities at several layers of abstraction:  

 At operational level, the customer needs, the actors, the missions and the activities are described.  

 At system level, a Capella model defines how system can satisfy the former operational need. 

 Capella logical level modeling starts from functional and non-functional analysis and builds one or several decompositions 

of the system into logical components.  

 The building of logical components is performed at physical level: the “final” architecture of the system introducing 

architectural patterns, services and components, and it makes the logical architecture evolve according to implementation, 

constraints and choices.  

Figure 2 summarizes the relationship between functional, logical and physical architecture in a Capella model. In this work, we 

interest to parse the physical architecture of the Capella model as it includes functional, logical and physical components. 

Whatever the abstraction level of the considered components is, AADL also brings the capability to specify additional information 

compared to Capella, like functional or non-functional properties. Consequently, the simplest articulation between the two 

languages is at the levels of the logical or physical architectures. Considering that Capella is well adapted to describing the logical 

architecture and a first abstract level of physical architecture, and that it is a good practice to limit the risk of data duplication and 

inconsistency between Capella and AADL models, the best solution is to delay as far as possible the transfer of information. As 

shown in figure 3, the model transformation will therefore take as input the most detailed physical architecture in Capella, and the 

design process will go on in AADL. 
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Figure 3 - Capella/AADL data flow 

  

IV. THE CAPELLA TO AADL TRANSFORMATION 

A. Transformation definition 

To transform Capella to AADL models, we explore the contents of a Capella model and generate the appropriate AADL code 

following the Capella/AADL concepts analogy proposed in Table 1. The equivalent of an AADL processor, device are Capella 

node physical components with respectively a software execution unit and hardware kinds. A physical component with behavior 

nature and software application kind is considered as process in AADL. 

Physical buses components are not modeled in Capella meta-models. For this reason, using Capella ecore meta-models, we generate 

Capella EMF [14] code and exploit it using Java to extract physical buses from Capella model and map them to AADL buses. The 

determination of buses is elaborated by exploring the Capella physical components, the physical links which are the 

communication/transportation means linking node Physical components, and physical ports. As depicted in figure 4, the physical 

links connected by physical ports are gathered in “AllconnectedLinks” list. For each element of the list, a physical bus component, 

with a bus port, will be generated to bind the physical links. Then, as showed in Figure 5, buses are connected to external ports (tip 

ports) which are ports of physical components having no subcomponents. This established link is called BusLink. 

BusLinks are divided into segments that don't cross physical component boundaries. These segments represent synthetic links. 

Synthetic ports includes the tipports and new ports which are generated at each intersection between BusLinks and physical 

components. The algorithm describing buses extraction is detailed in algorithm 1. The output of this algorithm is the list of synthetic 

ports and links that will be mapped to AADL elements. 



In Capella, logical components are not stored in the physical components they are deployed on, but, in the physical system root, ,  

For rebuilding the AADL connection path, and as depicted in figure, a virtual physical component is created instead of each logical 

component, a connection is established between these virtual components, then as for the buses, we split this connection into parts 

and we generate new Capella ports with a new property: the direction. 

To transform Capella to AADL models, Accelo plugin [15] is used, it allows the generation of AADL code from input Capella 

graphic models. We exploit this plugin to explore the contents of a Capella model and generate the appropriate AADL code 

following the Capella/AADL concepts analogy proposed in Table 1.  
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Figure 6 – Capella component exchanges transformation  

 

 

 

 

     Algorithm 1 – Capella Bus generation algorithm 

 

1. Get the physical architecture from Project in Capella model. 

2. Extract the list of physical ports pps physical links pls and a cross reference between them. 

3. Determinate the list allConnectedLinks including the sets of pls connected by pps.  

4. for each element of allConnectedLinks 

a. Get the category of the link 

b. Create the list of external ports tipports 

c. Create a bus instance having the same name of category 

d. Associate the bus instances with tipports in a BiMap structure bus2TipPorts (key=bus instance, value=tipports). 

5. end for 

6. Initialize the list of synthetic ports with the tip ports and synthetic links. 

7. for each element of bus2TipPorts 

a. Search the closest common physical component ancestor PcCommonAncestor of tipPorts 

b. Create the Physical component that will model physically the bus instance: PCBus 

c. Add new properties to PCBus: isBus and Bustype property 

d. Add a port BusPort to the PCBus 

e. Add PCbus to PcCommonAncestor 

f. for each port p of bus2TipPorts 

i. Create a link from tip port p to BusPort 

ii. Divide this link into segments that don't cross Physical Component boundaries 

iii. Update the list of synthetic ports and links 

g. end for 

8. end for 



 

Case 
Capella 

Condition 
AADL 

A PhysicalComponent nature =PhysicaComponentNature::NODE and 

kind=PhysicalComponentKind::SOFTWARE_EXECUTION_UNIT 

Processor 

B PhysicalComponent nature =PhysicaComponentNature::NODE and 

kind=PhysicalComponentKind::HARDWARE 

Device 

C PhysicalComponent nature =PhysicaComponentNature::BEHAVIOR and 

kind=PhysicalComponentKind::SOFTWARE_APPLICATION 

Process 

D PhysicalComponent other than System 

E PhysicalPort See Bus extraction algorithm Requires bus access 

F PhysicalLink Bus access 

connection + Bus 

G ComponentPort kind=ComponentPortKind::FLOW and 

direction=OrientationPortKind::[IN|OUT|INOUT] 

See Feature connection extraction algorithm 

Feature 

H ComponentExchange See Feature connection extraction algorithm Feature connection 

I ComponentPortAllocation  Actual_connection 

binding_property on 

bus 

J Other metaclasses  N/A 

 

Table 1 – Mapping of Capella – AADL concepts 

V. APPLICATION TO THE TWIRTEE ROVER 

TwIRTee is a three-wheeled autonomous rover developed within the INGEQUIP project. Its operational role is very simple: move 

itself on some predefined tracks from a point A to a point B (a "mission") while avoiding other rovers. To achieve this mission, it 

is fitted with several sensors (camera, odometry sensors, global positioning,…) and two main actuators (motors). 

The development of the rover is not an objective per se. Indeed, TwIRTee is designed so as to cover the major topics addressed in 

the project namely: early validation, architecture exploration, performance prediction, and formal verification. Furthermore, it is 

aimed at covering issues, and functional and architectural elements specific to the three industrial domains. Accordingly, missions, 

functions and the architectural elements are determined so as to tackle or exercise one or several issues: for instance, “the 

localization” function relies partially on imaging so as to exercise hardware / software space exploration and co-design; the highly 

redundant architecture provides the experimental setup to perform early performance evaluations (including dependability), etc. 

The computing platform of TwIRTee is composed of 2 COM/MON channels that host the main “mission” functions and one channel 

dedicated to power supply generation and motor control. In order to cover issues related to the development of safety-critical Man 

Machine Interfaces, the system also contains a remote operator station. Figure 3 and Figure 4 show respectively elements of 

TwIRTee design in Capella and their corresponding elements in AADL. 

 



 

Figure 7 - Elements of TwIRTee design in Capella 



 

 

Figure 8 - Corresponding TwIRTee elements in AADL 

 

VI. CONCLUSION 

In this paper, we introduced a transformation from Capella physical architecture to a preliminary software architecture in AADL. 

The goal of this approach is to implement a seamless development process from system definition and design to software design 

and implementation. The approach has been applied and validated during the design of the TwIRTee rover demonstrator. The 

resulting physical model has been used to verify structural, performance (power and energy consumption), timeliness and 

dependability properties. 
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Abstract

The paper overviews a joint framework for validating
and exploring complex embedded systems. The frame-
work indeed combines AVATAR and SocLib. AVATAR
is a Model Driven Engineering approach relying on
SysML, and SoCLib is a virtual prototyping platform.

The main contribution lies in the new possibility
to map AVATAR SysML blocks onto hardware nodes,
within a newly conceived Deployment Diagram, and
then to transform the latter into SoCLib models. At
the AVATAR level, diagrams can be formally verified
and simulated in a functional way only, that is, with-
out considering any underlying hardware execution en-
vironment. On the contrary, the SocLib models can be
simulated taking into account hardware components in
an explicit way with a cycle-accurate bit accurate ap-
proach.

An automotive system is used to present the two ab-
straction levels, and their support by the TTool toolkit.

1. Introduction

The complexity of recent systems pushes current
design techniques to their limits. While model-oriented
design of complex embedded systems is nowadays a
current practice in software development for embed-
ded systems, the hardware aspects of such systems are
less frequently designed using this kind of approach.
Hardware is described on several abstraction levels,
that are rarely represented with graphical modeling for-
malisms: TLM-DT (Transaction level with distributed
time), CABA (Cycle/Bit Accurate), and RTL (Register
Transfer Level).

The models of software components of complex
embedded systems are generally tested/executed on the
local host, and integrated on the target once the latter is
available. Even if several virtual prototyping platforms

are available for to evaluate the software in a quite re-
alistic way before the target is available purpose, they
require to re-model software elements in a different in-
put format from the one used in models or programming
languages.

AVATAR is a SysML-based environment to model
the software components of complex embedded sys-
tems [1]. It is particularly adapted to these systems
because (i) it proposes new temporal operators to bet-
ter describe the temporal constraints of these systems
and (ii) its models are formally defined, that is, formal
simulations and verifications can be performed from
the models. From AVATAR models, it is also possible
to generate executable C/POSIX code that can be exe-
cuted either on the local development platform, or on a
target. In a former contribution, we already presented
how that code can also be executed in the SoCLib vir-
tual prototyping environment [2]. Yet, the joint use of
both AVATAR and SocLib was not well integrated since
the description of the hardware execution environment
could be done only in a textual form, that is, totally out-
side of the SysML models.

Thus, we now offer a fully integrated way to model
critical software components, to model the candidate
support hardware architectures, and then to evaluate
the execution of the former onto the latter using auto-
mated model-to-soclib transformation techniques. The
automation of this process in a toolkit (TTool) paves
the way for a easy-to-used model-based approach for
design space exploration at a low-level of abstraction
(e.g., CABA simulation). Figure 1 highlights the novel
contributions among the existing AVATAR framework.
These new contributions are displayed in red and within
a red dotted line.

Section 2 presents the related work. Section 3 de-
scribes our methodology. Section 4 presents the auto-
motive case study. Section 5 explains the details of our
approach, while Section 6 discusses its limitations. The
conclusions and perspective on future work is finally
presented in Section 7.
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Figure 1. Overview of model transformations for simulation, verification and code generation/exe-
cution. Bracktracing to models is not presented, but is effectively implemented in TTTool.

2. Related Work

There are several modeling environments target-
ing the evaluation/prototyping of functions mapped on
complex hardware architectures.

Ptolemy [3] proposes a modeling environment for
the integration of diverse execution models, in particu-
lar hardware and software components. If design space
exploration can be performed with Ptolemy, its first in-
tent is the simulation of the modeled systems.

In Polis [4], applications are described as a network
of state machines. Each element of the network can be
mapped on a hardware or a software node. This ap-
proach is more oriented towards application modeling,
even if hardware components are closely associated to
the mapping process. Metropolis [5] is an extension of
Polis. It targets heterogeneous systems and offers var-
ious execution models. Architectural and application
constraints are closely interwoven. Metropolis is based
on a meta-model of a network of concurrent objects,
with a formal semantics. Applications are described in
detail and simulated with the help of instruction set sim-
ulators (ISS).

In SPADE [6], applications are modeled as Kahn
processes [7], then mapped to hardware architectural
models before being precisely simulated. SPADE is es-
sentially based on RISC processor models.

Sesame [8] proposes modeling and simulation fea-
tures at several abstraction levels. Preexisting virtual
components are combined to form a complex hardware
architecture. In contrast to Metropolis, application and
architecture are clearly separated in the modeling pro-
cess. Models’ Semantics vary according to the lev-

els of abstraction, ranging from Kahn process networks
(KPN) for application modeling, to data flow for model
refinement, and to discrete events for simulation pur-
pose. Currently, Sesame is limited to the allocation of
processing resources to application processes. It neither
models memory mapping nor the choice of the commu-
nication architecture.

The ARTEMIS [9] project originates from hetero-
geneous platforms in the context of Philips research
It addresses multimedia applications in particular, thus
justifying the acronym (ARchitecTurEs and Methods
for embedded MedIa Systems). It is strongly based
on the Y-chart approach which has a long tradition at
Philips. Simulation is done with SPADE, Sesame or a
proprietary Philips tool named TSS (Tool for System
Simulation). Application and architecture are clearly
separated: the application produces an event trace in
a file at simulation time, which is then read in by the
architecture model. However, behaviors depending on
timers and interrupts cannot be taken into account.

MARTE [10] shares many commonalities with
our approach, in terms of the capacity to sepa-
rately model communications from the pair application-
architecture. For such a purpose, MARTE proposes
Behavior Scenarios- and Steps (Communication Steps).
However, these assets are designed for performance and
timing analysis, rather than DSE. Consequently, they
intrinsically lack a separation between control aspects
and message exchanges as we proposed in Activity
and Sequence Diagrams. Even if the UML profile for
MARTE adds capabilities to model Real Time and Em-
bedded Systems, it is not specifically targeting archi-
tectural exploration: it does not offer any methodology



for that purpose, nor selected models, nor model trans-
formation for simulation or formal verification. On the
contrary, this is one important goal of our approach.

Other works based on UML/MARTE such as GAS-
PARD [11] are dedicated to both hardware and soft-
ware synthesis relying on a refinement process based on
user interaction to progressively lower the level of ab-
straction of input models. However, such a refinement
does not completely separate the application (software
synthesis) or architecture (hardware synthesis) models
from communications.

MDGen from Sodius [12] starts from Rhapsody,
which can automatically generate software, but not
hardware descriptions from SysML. SysML in Rhap-
sody is untimed and sequential. Also, timing and hard-
ware specific artifacts such as clock/reset lines are gen-
erated automatically. Yet, this approach is probably
closest to our present contribution, apart from the lack
of hardware description.

The Architecture Analysis & Design Language
(AADL [13]) is a standard from the International So-
ciety of Automotive engineer (SAE). It allows the use
of formal methods for safety-critical real-time systems
in avionics, automotive among other domains. It com-
prises a textual and a graphical representation. It does
not a priori contain tool support for code generation.
The architecture is modeled in a similar way as we
do, e.g., the description of hardware components whose
interaction is modeled by connections. Similarly to
our environment, a processor model can have different
underlying implementations and its characteristics can
easily be changed at modeling stage. In the case of our
contribution, four components are defined: processors,
memories, devices, and buses. The Deployment Dia-
grams we present in this paper proposes a much larger
variety of hardware components. Moreover, the SoClib
library, already very rich in detailed models, can easily
be enriched by additional components, e.g. with spe-
cific coprocessors or other interconnects than a bus, al-
lowing for very detailed simulation with the desired de-
gree of specificity. It does not a priori contain tool sup-
port for code generation. An approach that generates
a system implementation from models using Simulink
has recently been presented [14].

Capella [15] is relying on Arcadia, a compre-
hensive model-based engineering method. Originat-
ing from Thales and widespread in the domains of de-
fense, space and transportation within the company, it
provides architecture diagrams allocating functions to
components, allocation of Behavioral Components onto
Implementation Components (typically hardware, but
not necessarily). The basic idea is to check the feasi-
bility of customer requirements, called needs, for very

large systems. On the contrary, TTool/Soclib is ori-
ented towards co-design for a given case, like the one
deonstrated in this paper. As in AVATAR, Capella
also provides sequence diagrams and state machines.
Capella also provides advanced mechanisms to model
bit-precise data structures and relate them to Functional
Exchanges, Component or Function Ports, Interfaces,
etc. In this sense, it goes further than AVATAR which
does not model data structures in such a precise way.

3. Methodology

The methodology of our approach is now better ex-
plained (see Figure 1). It can be seen as en extended
version with regards to the one presented in [2]. New
stages are denoted with a starting "*".

1. Requirements. Both safety and security require-
ments of the system are first captured with SysML
Requirements Diagrams.

2. Design. The general structure of the software com-
ponents is modeled with SysML block Diagrams.
The behavior of each block is described by a state
machine. That behavior can range from a quite ab-
stract, to a more precise one manipulating e.g. data
types.

3. Functional simulation and formal verification.
The press-button approach of TTool makes it pos-
sible to perform simulations with model anima-
tion. Safety and security formal proofs can also be
performed directly from the design models without
prior knowledge about underlying formal verifica-
tion techniques. Safety and security proofs rely on
UPPAAL [16] and on ProVerif [17], respectively.

4. Software code generation. TTool can generate
C/POSIX code from design models. The code can
then be compiled and executed either for the lo-
calhost or for a given target. This code generation
assumes a simple hardware system (One CPU, one
memory, etc.).

5. *Hardware architecture description and map-
ping. A deployment diagram can be used to define
and interconnect hardware nodes, e.g., processors,
memories, buses/interconnects, I/O, interrupts and
timers. The execution part of software components
can be mapped onto processors. The data part of
software components can be mapped onto memory
banks.

6. *Software and hardware code generation.
TTool can now generate the virtual prototyping



code from design and deployment models. The
code contains both a SoCLib hardware description
of the mapped platform and the software code (C/-
POSIX) to be executed on that platform.

7. *Prototyping with SoCLib. The SoCLib simu-
lator can be started and the code - generated and
compiled during previous step - is loaded and exe-
cuted like on real hardware. Debugging can be per-
formed at two levels using both the GNU debug-
ger, simulation traces directly displayed by TTool.

Simulation and formal proofs are meant to be executed
during the first iterations on the system model. On the
contrary, the prototyping of the system is expected to be
performed during the last iterations, that is, on more re-
fined models. In all cases (simulation, verification and
prototyping), results are directly displayed by TTool in
a SysML fashion, therefore facilitating the identifica-
tion of problems directly on SysML models.

Our environment is built upon two existing mod-
eling and simulation environments: AVATAR, a Model
Driven Engineering approach relying on SysML, and
SoCLib, a SystemC based virtual prototyping platform.

3.1. AVATAR

The AVATAR environment [1] is a model-oriented
solution for the analysis and design of embedded soft-
ware. AVATAR relies on SysML diagrams to describe
the software aspects of the system, as well as its safety
and security properties. AVATAR is fully supported by
the free software TTool [18]. With TTool, one can edit
AVATAR models, simulate or verify them formally in
a push-button approach. At last, just like in most UML
approaches, simulation and formal verification rely on a
purely timed functional model, i.e. without considering
any hardware target (CPU, bus, etc.).

TTool implements an AVATAR-to-C/POSIX model
transformation as shown in [2]. This code generation
permits to validate the software models, but it does
not offer any facility for Hardware/Software co-design
or design space exploration. Said differently, hard-
ware considerations cannot be captured in the original
AVATAR model.

3.2. SoCLib

SoCLib [19] is a public domain library of compo-
nent models written in SystemC. SoCLib targets shared-
memory multiprocessor-on-chip system (MP-SoC) ar-
chitectures based on the Virtual Component Intercon-
nect (VCI) protocol [20] which separates the compo-
nents’ functionality from communication. SoCLib al-

lows for timed TLM and cycle-accurate bit-accurate
(CABA) simulation, so that we have a very detailed
level of simulation, using instruction set simulators [21]
and modeling cache behavior.

Design space explorations are also addressed in
the scope of SoCLib, initially in the context of video
streaming and telecommunication applications [22].
Mapping of software objects to memory banks is very
fine-grained (stack, lock, buffers can be mapped sepa-
rately if required), which is a significant improvement
over tools like SPADE [6] where only functional tasks
can be explicitly mapped.

SoCLib top cells are either hand-written, which
is a cumbersome process, or generated from a Python
specification, which are complex to describe and de-
bug. Our approach combines both readability and ease
of use, taking the latter one step further by proposing
SysML/AVATAR as input format.

Figure 2. Block diagram of the Active Braking
Use Case

4. Automotive Case Study

The AVATAR methodology is illustrated here by
the same automotive embedded system designed in the
scope of the European EVITA project [23] that was
shown in [2]. Recent on-board Intelligent Transport
(IT) architectures comprise a very heterogeneous land-
scape of communication network technologies (e.g.,
LIN, CAN, MOST, and FlexRay) that interconnect in-
car Electronic Control Units (ECUs). The increasing
number of such equipments - sometimes more than a



hundred - triggers the development of novel applica-
tions that are commonly spread among several ECUs
to fulfill their goals.
The case study, an automatic braking application [24],
works basically as follows: an obstacle is detected by
another automotive system which broadcasts that infor-
mation to neighboring cars. A car receiving such an
information has to decide whether it is concerned with
this obstacle, or not. This verification includes a plau-
sibility check function that takes into account various
parameters, such as the direction and speed of the car,
and also information previously received from neigh-
boring cars. Once the decision to brake has been taken,
the braking order is forwarded to ECUs responsible for
performing the emergency braking. Also, the presence
of this obstacle is forwarded to other neighbor cars in
case they have not yet received that information. Safety
and security requirements were already given in [2].

Figure 2 represents the internal block diagram of
the active braking use case. This internal block diagram
comprises two kinds of blocks:

• Blocks dedicated to the modeling of the environ-
ment. They model messages received via wireless
connections, data received from sensors, and data
output to actuators. For instance, the block CarPo-
sitionSimulator models the car traffic around the
considered automotive system. This car traffic
generates location information to the system. The
GPSSensor regularly records the car position.

• Blocks dedicated to the modeling of the system
itself. Blocks are grouped within a parent block
whose name is the one of the modeled ECU. Basi-
cally, the system model contains four ECUs: Com-
munication ECU (receiving information, broad-
casting information), Chassis Safety Controller
ECU (CSCU), Braking Controller ECU (BCU),
and Power Train Controller ECU (PTC).

The DrivingPowerReductionStrategy block, part of the
Power Train Controller ECU (PTC), is not too com-
plex to be shown on the limited space of this paper, and
will serve as a running example. For our current experi-
mentation, the security-related functions specified in the
original application are left out, but not the safety ones,
obviously. Also, the simulation and formal verification
aspects have been presented in [2], which explains that
the present paper focuses only on prototyping aspects.

5. Contribution

5.1. The AVATAR deployment diagram

Again, our main contribution is to enhance
AVATAR with a hardware platform modeling capabil-
ity, including the mapping of tasks and channels onto
this platform. To do this, we rely on a newly defined
deployment diagram, containing a SysML represen-
tation of hardware components, their interconnection,
tasks and channels.

The AVATAR deployment diagram is this new
modeling facility that allows a design to capture its
hardware constraints. Figure 3 shows the main window
of TTool with the deployment diagram of our example,
the active braking application. We use a generic in-
terconnect, a VGMN (Virtual generic Micro Network),
along with five CPUs and one memory bank, which
is not so realistic with regards to the real architecture,
but far more convenient to explain the technical issues
on code transformations. Platforms can be modified in
a matter of minutes, for example by adding a second
RAM and mapping part of the channels onto it. A valid
platform must contain at least one CPU, one memory
bank and one TTY.

5.2. New Tool Chain

From the deployment diagram, and from the pre-
viously existing software component diagrams, a fully
executable SoCLib specification for a MPSoC can be
generated. A new tool chain has been defined in or-
der to support that model transformation (see Figure 4).
The main components of this model transformation are:

• libavatar Runtime for SoCLib, implements the
AVATAR operators.

• DDSyntaxChecker checks the syntax of the de-
ployment diagrams and identifies their elements.

• AVATAR2SOCLIB translates AVATAR blocks
(i.e., software components) into C POSIX tasks
and generates the main program.

• TopcellGenerator generates a SystemC top cell
for cycle accurate bit accurate simulation.

• LdscriptGenerator generates the linker script
taking into account the mapping specified in the
deployment diagram.

Note that the arc crossing over between
AVATARDDSpecification and AVATAR2SOCLIB is
necessary: information from the deployment diagram
is required to generate the application code.



Figure 3. Deployment Diagram of the Active Braking Application
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Figure 4. Tool chain

We now go through the main stages/elements in-
volved in the model transformation.

5.3. The AVATAR Runtime ("libavatar")

The AVATAR runtime is a library of functions which
capture the semantics of the AVATAR operators that
appear in the code of the tasks (delay, asyncRead,
etc.) and implements them using C/POSIX primitives.
MutekH [25] is a free portable operating system for em-

bedded platforms.
The AVATAR runtime more particularly focuses

on channels, since the interconnect latencies and cache
effects make the channels difficult to implement ef-
ficiently on a MPSoC platform. SoClib provides an
efficient implementation of asynchronous channels as
sowtware objects stored in on-chip memory, based on
the Kahn [7] model, that can be accessed by any num-
ber of hardware or software reader and writer tasks alike
[22]. Synchronous communications however require a
central manager to resolve conflicts. In order to run on
a SoCLib platform, instead of the local workstation, the
runtime had to be adapted. Of course, the main model
transformation issue is to maintain that precise seman-
tics after transformation.

5.4. Code Generation

AvatarDeploymentPanelTranslator traverses the
graphical elements of the DDiagram, extracts the data
in form of objects (example: AvatarCPU) and adds it to
a AvatarDDSpecification object.

5.4.1. Code Generation for AVATAR Blocks. Each
mapped block is translated into a C POSIX thread. As
an example, Figure 5 shows the state machine of the
DrivingPowerReductionStrategy block. On receiving
a signal getReducePowerOrder in the WaitForReduce-
PowerOrder state, a waiting time within a given interval
(minimum, maximum) is taken into consideration be-
fore the order is executed (state WaitForReducePower-
ToBePerformed). Figure 6 shows the generated code for



Figure 5. State Machine of the Block Driving-
PowerReductionStrategy

the DrivingPowerReductionStrategy block. The state
machine has three states, including the start state. State
WaitForReducePowerOrder awaits a synchronous mes-
sage, which has been enqueued in a list of pending re-
quests of the overall system by another block named
DangerAvoidanceStrategy (see lower left of Figure 2).
Then, WaitForReducePowerToBePerformed waits for a
delay randomly selected between 10 and 20 millisec-
onds. That delays corresponds to the actuators work to
really reduce the power.

# i n c l u d e " D r i v i n g P o w e r R e d u c t i o n S t r a t e g y . h "
s t a t i c u i n t 3 2 _ t _ge tReducePowerOrder ;

# d e f i n e STATE__START__STATE 0
# d e f i n e STATE__WaitForReducePowerToBePerformed 1
# d e f i n e STATE__WaitForReducePowerOrder 2
# d e f i n e STATE__STOP__STATE 3
. . .
vo id ∗m a i n F u n c _ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y ( vo i d ∗a r g ) {

i n t v a l u e = 0 ;
i n t minReducePowerTime = 1 0 ;
i n t maxReducePowerTime = 2 0 ;

i n t _ _ c u r r e n t S t a t e = STATE__START__STATE ;
. . .
p t h r e a d _ c o n d _ i n i t (&__myCond , NULL ) ;
f i l l L i s t O f R e q u e s t s (& _ _ l i s t , __myname , &__myCond , &__mainMutex ) ;

w h i l e ( _ _ c u r r e n t S t a t e != STATE__STOP__STATE ) {
s w i t c h ( _ _ c u r r e n t S t a t e ) {

c a s e STATE__START__STATE :
_ _ c u r r e n t S t a t e = STATE__WaitForReducePowerOrder ;
b r e a k ;

c a s e STATE__WaitForReducePowerOrder :
__params0 [ 0 ] = &v a l u e ;
makeNewRequest (& __req0 , 853 , RECEIVE_SYNC_REQUEST, 0 , 0 , 0 , 1 , __params0 ) ;
__req0 . syncChanne l = &_ _ D a n g e r A v o i d a n c e S t r a t e g y _ r e d u c e P o w e r \

_ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y _ g e t R e d u c e P o w e r O r d e r ;
_ _ r e t u r n R e q u e s t = e xe cu t eO ne Re q u es t (& _ _ l i s t , &__req0 ) ;
c l e a r L i s t O f R e q u e s t s (& _ _ l i s t ) ;
D r i v i n g P o w e r R e d u c t i o n S t r a t e g y _ _ a p p l y R e d u c e P o w e r ( v a l u e ) ;
_ _ c u r r e n t S t a t e = STATE__WaitForReducePowerToBePerformed ;
b r e a k ;

c a s e STATE__WaitForReducePowerToBePerformed :
w a i t F o r ( minReducePowerTime , maxReducePowerTime ) ;
D r i v i n g P o w e r R e d u c t i o n S t r a t e g y _ _ r e d u c e P o w e r D o n e ( ) ;
_ _ c u r r e n t S t a t e = STATE__WaitForReducePowerOrder ;
b r e a k ;

}
}
r e t u r n NULL;

}

Figure 6. Extract from the generated code for
the DrivingPowerReductionStrategy block

5.4.2. Main Program Generation. The main program
instanciates all necessary elements, e.g. the POSIX
threads of the AVATAR blocks, and the SoCLib chan-
nels translated as software objects stored in the on-chip
memory: these channels correspond to the AVATAR
channels. Threads, corresponding to an AVATAR
block each, are spawned from the main thread. Via
pthread_attr, they are forced onto the CPU indi-
cated in the Deployment Diagram. For example,
attr_t->cpucount=2 forces thread DrivingPowerReduc-
tionnStrategy onto CPU2. In order to map channels
to specific memory areas, we name a software object
whose mapping will be performed in the linker script
using the same identifier.

Figure 7 shows an extract from the main pro-
gram, focusing on our example block. First, the
POSIX threads are initialized. Next, the signals be-
longing to the channel are associated to their in-
put and output ports (for lack of space, we show
this only for the channel DrivingPowerReductionStrat-
egy_getReducePowerOrder). The threads are then cre-
ated, attributes set beforehand, for example attr_t-
>cpucount to force a thread upon CPU 2. Finally, all
threads are joined to wait for the program completion.

/∗ Synchronous c h a n n e l s ∗/
s y n c c h a n n e l _ _ D a n g e r A v o i d a n c e S t r a t e g y _ r e d u c e P o w e r \
_ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y _ g e t R e d u c e P o w e r O r d e r ;
. . .
i n t main ( i n t a rgc , c h a r ∗a rgv [ ] ) {

vo id ∗p t r ;
p t h r e a d _ b a r r i e r _ i n i t (& b a r r i e r , NULL, NB_PROC ) ;
p t h r e a d _ a t t r _ t ∗ a t t r _ t = ma l l o c ( s i z e o f ( p t h r e a d _ a t t r _ t ) ) ;
p t h r e a d _ a t t r _ i n i t ( a t t r _ t ) ;
p t h r e a d _ m u t e x _ i n i t (&__mainMutex , NULL ) ;

/∗ Synchronous c h a n n e l s ∗/
_ _ D a n g e r A v o i d a n c e S t r a t e g y _ r e d u c e P o w e r \

_ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y _ g e t R e d u c e P o w e r O r d e r . inname
=" ge tReducePowerOrder " ;

_ _ D a n g e r A v o i d a n c e S t r a t e g y _ r e d u c e P o w e r \
_ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y _ g e t R e d u c e P o w e r O r d e r . outname

=" reducePower " ;
. . .
/∗ Threads o f t a s k s ∗/
p t h r e a d _ t t h r e a d _ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y ;
. . .
p t r = m a l l oc ( s i z e o f ( p t h r e a d _ t ) ) ;
t h r e a d _ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y = ( p t h r e a d _ t ) p t r ;
a t t r _ t = ma l l o c ( s i z e o f ( p t h r e a d _ a t t r _ t ) ) ;
a t t r _ t −>c p u c o u n t = 2 ;

p t h r e a d _ c r e a t e (& t h r e a d _ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y , NULL,
m a i n F u n c _ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y , NULL ) ;

. . .
p t h r e a d _ j o i n ( t h r e a d _ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y , NULL ) ;
r e t u r n 0 ;

}

Figure 7. Extract from generated main program

5.5. Top Cell Generation

SoCLib is based on the shared memory paradigm,
where a target is identified by the most significant bits
of its address in a common memory space. The top cell
generator thus must determine, for each target compo-
nent, its unique target number associated to the segment



address. We opted for the generic platform described in
Figure 8: the platform considered in the case study has
been derived from this generic platform. The platform
features five PowerPC cores with integrated data and
instruction cache (Xcache), one TTY, and one memory
bank. Components are interconnected by a VGMN (see
Section 5.1). VCI target interfaces are depicted with
lighter arrows, initiators with darker arrows.

Some features must be explicitly captured in the
Deployment Diagram, like CPUs and memory banks,
as shown in Figure 3, while others are totally hidden
to the TTool user, e.g. the numbering of target seg-
ments. Moreover, a timer, ICU and simhelper contain-
ing some simulation support facilities are currently gen-
erated transparently for the user. In the same way, the
size of memory segments is given by a default value and
the starting addresses are calculated by the top cell gen-
erator tool. Specific use cases may need other formats
and must therefore modify the generated code.

The mapping of tasks to processors has no impact
on the top cell, the sections containing channels how-
ever have to be listed in the call to the loader, see upper
part of Figure 9.

The top cell generation takes as input the
AvatarDDSpecification object (see Figure 4), and pro-
ceeds as follows:

1. We generate all segment addresses transparently,
with exception of the segments containing chan-
nels which are visible in the Deployment Diagram.

2. All platforms use a flattened device tree (FDT)
stored in ROM and contain a simhelper component
for simulation support.

3. We systematically add a multi-timer and an inter-
rupt control unit (ICU) target, even if not used by
the application, and generate connection of all pos-
sible interrupt lines.

Figure 8. Generic SoCLib Platform

Top cell

d a t a _ l d r . l o a d _ f i l e ( s t d : : s t r i n g ( k e r n e l _ p )
+ " ; . d a t a ; . c h a n n e l 0 ; . . .

. c h a n n e l 1 4 ; . c p u d a t a ; . c o n t e x t d a t a " ) ;

Excerpt of the ldscript
Mapping channels on a single RAM:

. c h a n n e l 0 : { ∗ ( s e c t i o n _ c h a n n e l 0 ) } > mem_ram
. . .
. c h a n n e l 1 4 : { ∗ ( s e c t i o n _ c h a n n e l 1 4 ) } > mem_ram

Mapping on two RAMs:

. c h a n n e l 0 : { ∗ ( s e c t i o n _ c h a n n e l 0 ) } > mem_ram0
. . .
. c h a n n e l 1 4 : { ∗ ( s e c t i o n _ c h a n n e l 1 4 ) } > mem_ram1

Figure 9. Top cell (top) and ldscript (bottom)

5.6. The Linker Script Generator

Handling the mapping of channels is rather difficult
since it is related to the main program, the top cell and
the ldscript. The linker script (ldscript) is a file which
defines the memory layout; it associates each entry sec-
tion to an output section, which receives its address in
memory. It is generated by a tool developed in the con-
text of [2] and uses essentially the C preprocessor.

The mapping information of channels in AvatarDe-
ploymentPanelTranslator are then used to generate a
file deployinfo.h: the latter is meant to be included by
the ldscript generator. the lower part of Figure 9 shows
an excerpt from the generated ldscript for our example.
Thus, we first map all channels on one memory bank,
then on two different banks. The section .channel of

Figure 10. Menu for SoCLib code generation

the ldscript is made from section_channel which in turn
contains the software object specified in the main pro-
gram in order to represent the channel. Several channels
can be placed on the same memory bank. The loader in-
voked in the top cell (lower part of figure 9 then places
it on the RAM as specified in the Deployment Diagram.



5.7. Using TTool/SoCLib

The generation of the code, top cell and ldscript
has been integrated into TTool with a press-button ap-
proach. When checking the syntax of the deployment
diagram, TTool also now checks for related blocks, in-
terconnections between blocks, and state machines dia-
grams. Then, TTool displays the code generation dialog
window from which executable code can now be gener-
ated, as explained in previous section, for the SoCLib
platform. Figure 10 shows the code generation menu of
TTool. Figure 11 shows the resulting SoCLib simula-
tion. The application and main program code genera-

Figure 11. Using SoCLib from TTool

tion takes less than one second. The generation of the
SystemC executable takes around 30 seconds on a 64
bit 4 core Xeon 2 Gbyte RAM machine under scientific
Linux 64 bit (Table 1). Among others, CABA level sim-

top cell and main and block compilation soclib
ldscript code generation to application platform

generation executable compilation
0.31 s 1.14 s 14.61 s 28.74 s

Table 1. Performance results for the case study

ulation potentially allows to measure cache miss rates,
latency of each step of the individual cache miss, traf-
fic on the interconnect, latency of each transaction on
the interconnect, fill state of the buffers, knowing which
lock is taken/released and the cycle when this happens.
For example, the effect of a remapping of channels as
shown in the upper part of Figure 9, or a change to the
cache parameters can be analyzed in full detail.

6. Current Limitations

The approach is already available in TTool an ex-
perimental branch (-experimental option). Yet, it will

be publicly available before the ERTS’2016 edition (a
live demonstration will be performed).

From the model and translation point of view, syn-
chronous channels currently require the use of a cen-
tral manager, thus generating a significant overhead due
to synchronization traffic on the interconnect. Adding
a specific support for specific automotive interconnects
(CAN, flexray) is planned.

From the simulation perspective, we opted for a
prototyping environment with a low-level abstraction
level (CABA level). Thus, an obvious limitation is the
simulation speed. We need to get comparative results
and work on speeding up the simulation. The simula-
tion speed drawback is probably due to other factors.
Currently, we use a flat, generic interconnect, however
with contention and cache effects. Also, instead of a
detailed CABA model of the processor, we use a in-
struction set simulator [21] to speed up simulation. Due
to simulation complexity, we are still limited to some
dozen processors, yet, it should be enough for most em-
bedded applications.

A variety of low level performance measuring tools
exists for SoCLib, among others giving cycle level in-
formation on the channel fill state and latency on the
interconnect [26, 27]; these will have to be integrated,
opening the way to automated feedback of performance
results and, ultimately, Design Space Exploration.

7. Discussion and Future Work

The paper demonstrates the use of a recent exten-
sion to the TTool/AVATAR environment, by a larger
case study stemming from automotive systems. One
strength of our approach is that it offers a prototyping
and exploration solution for engineers from industry,
accustomed to the use of UML/SysML diagrams, while
maintaining precise simulation results in addition to for-
mal proofs, all in a joint framework. Our framework tar-
gets embedded systems with complex platforms, such
as the ones found in telecommunication and transporta-
tion applications, but also automotive [23] and avionics
providers, in particular those who already use AVATAR.

The next technical steps will consist in supporting
more hardware components (e.g., co-processor wrap-
pers, other types of interconnect, DMA), and more map-
ping capabilities (e.g., stacks, locks, see [22]). The sup-
port of synchronous channels requires a central request
manager as such a semantics is not natively supported
by SoCLib. Also, the current trade-off between simplic-
ity and functionality might be reconsidered w.r.t. the
usage of this new prototyping environment.

In TTool, the animation of the model in the proto-
typing phase is currently limited to a sequence diagram



displaying transactions between software components.
It would also be useful to provide information about
hardware nodes, e.g., the load of processors, the state
of buffers and the traffic on the interconnection network
during simulation. Last by not least, for the moment,
design space exploration is done by hand, The roadmap
of our project envisages to integrate the feedback from
detailed simulation such that it can be taken into ac-
count by the high level models.
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Abstract 

Today’s automotive industry must introduce advanced powertrain technologies as a consequence of the stringent 

environmental regulations and strong market expectations. This leads to the increase of vehicle variants and to 

the growth of the powertrain architectures complexity. Hence, the development of hardware and software can no 

longer be decoupled. Those activities have to run in parallel, starting from simulation and advanced engineering, 

continuing to the detailed engineering phase, and ending in validation and calibration. In the so-called Model-

Based Systems Engineering (MBSE) approach, simulation models including both hardware and control systems 

are used to first make decisions on possible architectures. This paper presents a new MBSE approach that allows 

powertrain hardware selection to occur early during the simulation stages. The process combines Model 

Predictive Control (MPC) for the control system with a physical modeling software package for the hardware. This 

combination of MPC and physical modeling addresses several practical difficulties that typically hinder attempts at 

MBSE for hardware selection.  

 

1. Introduction 

Context  

Today’s automotive powertrains must delight customers with performance, reliability, and low noise while 

simultaneously meeting increasingly stringent regulations on CO2 and other emissions, all at a competitive cost 

and fast time-to-market.  Embedded software, electronics, sensors and actuators play a critical role and acts as a 

“glue” to make combustion systems, boosting systems, cooling systems, exhaust after-treatment systems, 

batteries, and transmissions perfectly integrate for optimal vehicle performance. 

The development of the mechanical powertrain hardware and the software functions controlling them can no 

longer be performed independently. As a result, many automakers implement hardware selection processes 

where many powertrain variants are built. An electronic control system is then designed and calibrated for each 

variant. The variant that best meets system-level requirements moves to the next development stage. But this 

process is money and time-consuming and prevents manufacturers and suppliers to stay in the competition race.  

Given the financial incentives, most automotive companies have tried some form of Model-Based-System-

Engineering for hardware selection applying system simulation in particular. This implies to have access to the 

“right” models for both the hardware and the software.  

Difficulties frequently encountered with MBSE for hardware selection 

Models for the plant (engine, transmission, and vehicle) are generally available at the earlier stages of the product 

development process. Often generated during R&D and advanced projects, they are not necessarily well adapted 

to be applied for an innovative and efficient hardware selection process. In particular, the models generated in the 

with a powertrain subsystem design perspective are often too complex and slow to be combined efficiently with 



control tools. The present paper illustrates the requirements for getting the right modeling approach for plant 

model adapted to hardware selection and the implications for the deployment of models throughout the complete 

product development process.  

On the other hand, when models of the plant are available, obtaining the corresponding control models is always 

a more difficult task. One of two methods is usually employed: 

 Adaptation of existing production control approaches – This approach provides a path to the 

implementation on physical prototypes later in the process.  However, simulation time can be slow 

because the production strategy block diagrams often include tens of thousands of elements.  Personnel 

gaps are an even more serious issue.  Hardware designers are usually experts in boosting, 

transmissions, or system-level simulation tools, but have limited skills in complex control strategy 

diagrams. 

 

 Simplified custom controllers – A simplified control is created from scratch to cover the extra capabilities 

and degrees of freedom required for the new technology brick.  This approach offers fast simulation times 

and understandable control models.  But also come with disadvantages: the time and expertise required 

to build the controller from scratch is often substantial.  Also, since it is often built quickly, controller 

performance can often be substantially different from that of a well-tuned production controller.  As a 

result, controller tuning differences could be mistaken for hardware performance differences. Finally, the 

controller used in simulation is often a dead-end with no path to implementation on embedded computing 

platforms. 

Novelty of the proposed approach 

The process described in this paper improves on the second method by making it faster to develop custom 

controllers for new hardware:  The novelty is to use physical models with MPC (Model Predictive Control), a 

systematic, easy-to-use requirement based controller design methodology. The focus of the approach is put 

on ease.  Both Model Based controller Design (MBD) and optimal control are well established in the field of 

controls engineering but are under-applied in automotive due to the specialized knowledge required to apply 

them. A dedicated, easy-to-use MPC software package helps to overcome this difficulty and offers the benefits of 

model based and optimal control design to a larger community of engineers. 

The tool approach also offers the possibility to port MPC directly from numeric simulation to embedded software, 

which can actually run on physical hardware such as Electronic Control Units.  Finally, as MPC yields nearly 

optimal control, tuning is generally of good quality, making it less likely that control tuning choices will mask 

differences between mechanical hardware. 

Methodology 

This paper presents a new Model-Based Systems Engineering (MBSE) approach based on the application of 

existing tools interfaced in order to generate a fast and efficient workflow that allows powertrain hardware 

selection. The approach is structured around four main stages: 

 Development of a non-linear physical plant model for the studied system 

 Processing of the model in order collect linear models applied for the design of a MPC controller 

 Validation of the controller using a Model-In-the-Loop environment including the baseline plant model 

 Evaluation of the system potential using the plant with controller regarding relevant criteria 



The present paper illustrates how this combination of MPC and physical modeling addresses several practical 

difficulties that typically hinder attempts at MBSE for hardware selection. 

The application and benefits of the approach are illustrated on a use case from RENAULT with the benchmarking 

analysis of gasoline air path systems using a tool chain including LMS Imagine.Lab Amesim combined with the 

Honeywell OnRAMP Design Suite. 

2. Application of system simulation (Existing tool) 

Commercial CAE software is a critical lever toward the management of system complexity and limited 

development times. This is why it is widely deployed in automotive industry from the early stages of development 

to the final stages before SOP, where system simulation is applied to validate system integration.  

The hardware selection process in the early stages of an innovative product development process can take 

advantage of the existing deployment of CAE environments and more importantly, its usage for system 

simulation. The capability to evaluate numerous technical options in a limited time gives a competitive advantage 

compared to conventional iterative process with real prototypes.   

General requirements for system simulation 

The application of a simulation based decision process also raises three major challenges in terms of tooling 

capabilities: 

 Integration in a larger MBSE process 

System hardware selection is located early in the development process. In this so called system pre-

design phase all system component specifications have to be detailed. The system hardware selection 

process must be supported by models generated upstream in the V-cycle, which can include an 

additional level of complexity linked to the poor availability of data. The direct application of high fidelity 

plant modeling (1D software) is often not appropriate as this can jeopardize the trade-off between 

prediction capabilities and run times.   

 Diversity of hardware selection topics 

One of the challenges for the system simulation software is to offer the capability a high level of versatility 

to address different levels of modeling to fit with the variety of systems and sub-systems that must be 

investigated by car manufacturers. This is why a high level of flexibility and scalability is required from 

simulation software. For example in the selection of the right air path architecture for a given engine the 

details of the intake and exhaust flows and their impact on the combustion process have to be known in a 

precise way while the rest of the vehicle can be modeled in a simple way to study vehicle attributes like 

fuel consumption or performance. Another example is the development of a hybrid powertrain in which all 

related powertrain subsystems have to be detailed with high precision but in which the air path system 

can be described in a simple way. 

 

 Interfacing with control development environments 

Since hardware models must ultimately be combined with the software model, a common approach is to 

apply co-simulation technics. Most of the simulation tools offer this kind of interface with Simulink or even 

with C codes. The problem with co-simulation is that it often has an over-cost in terms of run times. That 

is also in favor of the application of 0D models compared to high fidelity 1D modeling approaches.  

 

 



Application with LMS Imagine.Lab Amesim 

The 0D models in the LMS Imagine.Lab Amesim (LMS Amesim) software package provide sufficient fidelity to be 

used in hardware development while remaining simple enough for its use in control design. The 0D lumped 

parameter approach, which is used in LMS Amesim, offers a good compromise between high level vehicle 

simulation tools, which are often too simple, and full 1D software that is often too complex. High level software are 

able to predict the full vehicle attributes over driving cycle but do not allow going deeper into sub-systems details. 

1D software is well-suited to engine design, but runs slowly when linked to control environments.  

Taking advantage of this flexibility of the LMS Amesim software, RENAULT has progressively adopted it as 

standard tool for system simulation and plant modeling. It is currently deployed for advanced engineering, vehicle 

planning phase and supports the full control development cycle from design to MIL to HIL. RENAULT’s large plant 

model database includes detailed engine models, transmissions, actuator models, and a full hybrid vehicle model, 

and is updated continuously with each new vehicle or powertrain program. RENAULT’s controls engineers use 

these models for system simulation and software validation and calibration 

LMS Amesim’s scripting capabilities and its ability to automatically produce a linearization of full plant models are 

of special interest for the hardware selection process described in this paper. Both features were used to 

establish a connection to the MPC control design suite HONEYWELL OnRAMP. On one hand, LMS Amesim is an 

open software that is delivered with scripting APIs (Matlab, Python…) that ease its integration in processes and 

application oriented workflows. Hence, scripts were developed in order to pilot remotely the LMS Amesim core, to 

get the plant model description (definition of I/O, units, ports…), to gather a linear model for a given operating 

point and to launch non-linear simulations to check the validity of the linear model and validate the designed 

control function. On the other hand, the 0D software package is able to extract from a physical non-linear model a 

linear model at a given operating point, which is possible thanks to the use of ordinary differential equations 

(ODE). Indeed, the numerical methods applied to solve physical equations in CFD1D or 3D software do not 

support this feature. The automatic creation of linear models from an existing non-linear 0D model is the inbuilt 

LMS Amesim core capability that made it possible to create the interface with the HONEYWELL MPC design 

software. 

3. User-friendly MPC control design tool (Existing tool) 

MPC (Model Predictive Controls) has been a preferred controls methodology in process industries for several 

decades thanks to its rapid, systematic approach.  Over the past decade, its use has significantly increased in the 

automotive controls community due to theoretical advances which reduce processing time, and due to the 

increased computing power of the ECUs themselves. At RENAULT several powertrain control innovation projects 

are already using MPC in a quasi-industrial context. Other automotive OEMs are also active applying MPC to 

automotive problems including traction control, vehicle stability control, and exhaust system control. 

For the MPC part of this work, RENAULT selected the HONEYWELL OnRAMP software toolset. OnRAMP™ 

Design Suite is a software tool for modelling and design of advanced control algorithms for a wide range of 

automotive applications. There are many aspects to consider when evaluating such a tool: certification, 

compatibility, controller performance, footprint in the ECUs, calibration and documentation. OnRAMP addresses 

these as a package. 

Advanced control toolboxes from academia or the commercial sector often offer significant flexibility and 

advanced features for MPC design. However they often require advanced knowledge from the user and offer 

limited support for wide spread deployment within an organization. OnRAMP offers a GUI-driven workflow and  

automatic tuning algorithms to facilitate the design, tuning and performance evaluation of the MPC controller. The 

OnRAMP workflow delivers C code that run on more than 15 OEM target environments.  



Thus, OnRAMP is targeted at automakers and suppliers who would like to benefit from MPC by making it fast and 

easy to use for a wide audience including engine calibrators, controls generalists, and MPC controls specialists.  

The tool proposes a systematic workflow and automates model building and tuning tasks, which are tedious, or 

that require specialized MPC knowledge.  

OnRAMP includes its own modeling libraries.  However, the present work seeks to leverage RENAULT’s large 

database of existing physical plant models in LMS Amesim format. 

4. Combining the MPC and system simulation tools into a new MBSE workflow 

Since the missing piece of MBSE for powertrain hardware selection is a fast, convenient controller synthesis, it 

seems natural to link a system simulation tool like LMS Amesim with a MPC control synthesis tool like OnRAMP. 

RENAULT engineers have championed this work because they believe that MPC can fill the controls gap in 

MBSE. 

As aforementioned, linking the two tools together is enabled by, first linearization capabilities and secondly by the 

scripting features of the Siemens PLM Software system simulation platform. The Figure below illustrates the 

process applied for the design up to the validation of the MPC controller. 

 

The first step of the process is to identify inputs, outputs, disturbances and scheduling variables to the controller. 

This is determined thanks to a modeling convention in LMS Amesim. In practice, the interface between the two 

tools is concretized by an interface block included in the plant model which defines the actual control I/O.  

The second step of the process is steady-state model analysis and feed-forward design. OnRAMP sends, through 

the API, actuator positions to the LMS Amesim model with the objective of controlling the plant to satisfactory 

steady state operating point. LMS Amesim responds with the plant’s steady state response, as well as with linear 

state space models (dx/dt = Ax + Bu, y = Cx + Du) that approximate the behavior of the plant at the proposed 

actuator positions. OnRAMP then adapts its proposed actuator positions, using information from the A, B, C and 

D matrices to search in the right direction. Consequently the feedforward actuator positions are found achieving 



desired set-points while respecting constraints. The non-linear model is then linearized at these feed-forward 

actuator positions by LMS Amesim. The generated linear models are then processed further in OnRAMP for 

scaling, order reduction and discretization.  

Furthermore the non-linear and linear 

models step responses are visualized and 

checked within OnRAMP. This is actually 

one of the key steps for successful design 

of MPC feedback control later. Figure on 

the right illustrates this. 

 

The third step is scheduled linear MPC 

feedback design. The standard MPC cost function consists of penalties for actuator movement, tracking error and 

soft constraints. This is outlined in the optimization problem shown in the equation below. 

 

Important part of feedback control design within OnRAMP is automatic tuning algorithm to achieve user defined 

requirements on robustness and bandwidth. This is an essential feature to enable generic design for a wide 

variety of plants. The user requirements are used to formulate the robust stability condition and OnRAMP then 

manipulates weighting matrices (e.g. for Q and R in the 

above) of the MPC cost function such that this condition is 

satisfied. The controller tuning then consists mainly of 

adjusting controller bandwidth, relative weights of controlled 

and manipulated variables and choice of prediction horizon.  

This leads together with earlier model checks to systematic 

and intuitive design and tuning of a MPC feedback control. 

Finally, the controller designed within OnRAMP is tested in 

a closed-loop environment, using co-simulation methods. 

Indeed, the OnRAMP tool can generate the C code for the 

control and the associated data that can be either exported 

in Simulink. At this stage, the MiL environment is define as 

a co-simulation between LMS Amesim and Simulink or can be set in the Siemens platform by importing the 

Simulink model directly into the LMS Amesim GUI. 

5. Application to hardware selection – engine air path systems 

RENAULT engine portfolio already includes gasoline engines that comply with the Euro 6 emissions standard. 

Engineers are already in the process of upgrading current engines to fit with the upcoming regulations involving 

new driving cycles like the Worldwide harmonized Light vehicles Test Procedures (WLTP) and Real Driving 

Emissions (RDE). An update of the control logic and calibration will not be sufficient to fulfill these requirements. 

As a consequence, new mechanical hardware must be selected.  

RENAULT selected a set of candidate suppliers for 10 candidate hardware components, or “technology bricks.” 

The standard implementation would require to build 10 prototypes and to run test programs to benchmark every 

component. The resulting costs and time would not be acceptable for RENAULT. 



As a consequence, RENAULT decided to apply MBSE and to build 10 virtual prototypes to determine the optimal 

combination of technology bricks while keeping the associated costs under control. This required building 10 

Model-In-the-Loop platforms coupling the plant models with their control models. This can be seen as a very 

complex, time-consuming task requiring highly skilled engineers for both the plant model and control model 

development or adaptation. Actually, the process applied by RENAULT does permit to tackle these challenges by 

taking advantage of: 

 LMS Amesim with its well-balanced 0D modeling approach, 

 OnRAMP with its fast and systematic control design workflow 

 The coupling of two software one for the design of the other for the controller design and the set-up of the 

MIL environment  

Illustration of the application of the tool chain 

The workflow detailed in the paper is illustrated on a simple use case related to the evaluation of hardware for a 

gasoline air path system. Indeed, downsized turbocharged gasoline engine attributes are strongly dependent on 

the air path and charging technologies and the associated control. Many different hardware and related 

architectures are proposed by suppliers, from the common waste-gated turbocharger, to electrical driven 

compressor and dual-stage devices and the engine manufacturer needs to evaluate their technical versus cost 

potential. 

As a starting point, the tool chain is applied to a standard air path configuration including a turbocharger with a 

waste-gate and a throttle valve. A physical model for this baseline engine is developed in the LMS Amesim 

platform, its inputs and outputs are properly set according to the control problem and for the interfacing with 

OnRAMP. In practice, since the purpose of this engineering task is to define the potential of the system for 

steady-state and transient operation, models for the actuators were also included in the model as below so as to 

get an accurate prediction of the real system time response. 

 

The control problem is expressed here in terms of tracked control inputs (sensor signals) – boost and charge 

pressure, outputs (actuator commands) – throttle and waste gate and constraints – turbocharger speed and 

exhaust temperature. The controller is evaluated by applying a given engine speed and boost and charge 

pressure setpoints and analyzing the results in terms of charging pressure and torque production.  

The design of feedback MPC controller consisted of 30 operating points and the controller was designed to 

heavily prioritize the charge pressure tracking for torque delivery.  



Some typical results generated using the MiL environment including the plant model and the MPC controller are 

given in the followings. The controller performance is good enough to match the charging pressure requirements 

using a combined control of the waste gate and throttle, and at the end, insures the right shaft torque production 

even during the highly transient phases of the ARTEMIS cycle. 

Since the final goal is the introduction of new technology bricks to address future emissions standards (Euro6c 

and Euro7), from the baseline configuration presented above, RENAULT introduced the electric supercharger 

technology (e-boost) to evaluate its potential for increasing the engine performance attributes during transient 

phase of the cycles in particular. Actually, the combined LMS Amesim-OnRAMP approach permitted to rapidly 

assess several engineering options: 

 Architecture: e-boost can be mounted upstream or downstream the main compressor, can be associated 

to an additional heat exchanger... 

 Sizing: power of the e-boost electric machine as a function of the engine performance requirements, e-

boost can be combined with an upgraded turbocharger... 

 Pollutants: impact on emissions (NOx, HC, CO) on driving cycle and three-way catalytic converter 

activation time... 

Starting from the baseline air path system, the plant model is upgraded including the e-boost machine.  

The e-boost device is added to LMS Amesim 

engine model upstream of the main 

turbocharger. The control problem is then 

changed to take into account this additional 

actuator and new constraints like the thermal 

state of the electrical machine or its maximum 

speed. 



  

 

The figure below shows some results given by the workflow evaluated on four hardware variants – with and 

without e-boost device and with two version of the turbocharger. This kind of analysis achieved in a couple of 

hours demonstrates the efficiency and the potential of the tool chain for the selection and pre-sizing of hardware. 

 

 

Thanks to this approach where MPC is coupled with the plant models, RENAULT is able to complete these 

numerical studies in a very short time and select the best settings for each project milestones. 

 

6. Conclusion 

Two complementary software suites, one for physical modeling and the other for MPC control design, were linked 

into a new workflow that supports automotive mechanical hardware selection.  The workflow allows engineers in 

charge of advanced engineering and pre-design to investigate in a very short time the potential benefit of a new 

sub-system--a significant step towards “design-right-the-first-time.”  

Looking ahead, the same systematic calibration approach and scalability that make MPC attractive for pre-

development hardware selection problems, should naturally lead to deployments in production ECUs.  RENAULT 

is currently leading several initiatives in this direction where Renault is evaluating MPC with the use of OnRAMP 

Design Suite to face scalability and maintainability concerns with production controllers. 

Renault is still analyzing how to use MPC on real hardware and industrial application of MPC in powertrain control 

at Renault remains an open question. Issues yet to be understood better are its impact on ECU metrics and the 

required changes of the industrial process. Nevertheless, MPC is about to be used for Model based system 

selection in advanced projects within the company. 
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Abstract

Microcontrollers are low-cost and energy efficient programmable integrated circuits, they are
used in a lot of common electronic devices but are quite difficult to program because of very
limited resources. Being particularly used for embedded system, they interact a lot with their
environment, and should react quickly to external stimuli. In this paper, we study different
models of concurrency for programming microcontrollers using a virtual machine approach for
safety as well as a higher-level model of programming. We then propose OCaLustre, the prototype
of a synchronous extension to OCaml suitable for concurrent programming on microcontrollers.

1 Introduction

Microcontrollers are small integrated circuits that can be considered as simple, albeit complete,
computers: they contain a processing core, multiple memory units (typically, nonvolatile mem-
ory for program code and volatile memory for data) as well as a set of input/output pins which
allow interactions with the surrounding environment of the chip by conducting electric current.
Being very small, affordable and energy efficient, microcontrollers are ubiquitous in embedded
systems: they can be found implanted in the electronics of common-life objects (such as do-
mestic appliances or toys), as well as in bigger, critical, machines (manufacturing robots, car
engines, aircraft systems, . . . ), on which they perform tasks of various nature and complexity.
Those efficiency advantages come with some drawbacks: microcontrollers typically offer limited
processing power and low memory resources, constraining programmers of microcontrollers to
use low level programming models in order to keep permanent control of the available hardware
resources, memory consumption in particular.

Due to simplicity and performance concerns, programs running on microcontrollers are com-
monly written in Basic, assembly or subsets of the C language. These programming languages
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often fail to provide the same level of hardware abstraction, safety, and expressiveness as higher-
level programming languages such as Python, Lisp, Java, or OCaml. From this observation, a few
virtual machines capable of interpreting the bytecode of such languages have been successfully
ported to microcontrollers. These solutions free developers from a lot of hardware considerations,
and allow the development of less error-prone and more complex software, providing levels of
hardware abstraction, increased safety and a more modern programming style overall.

Typically, embedded systems in which microcontrollers are operating are regularly interacting
with the outside world, often reacting to signals sent by various peripherals controlled or not
by humans (buttons, sensors, other controllers, etc.). In a lot of cases, all of those different
stimuli must be acknowledged and treated as they appear and in any particular order, leading
the programs running on microcontrollers to be inherently concurrent. Unfortunately, none of
traditional ways of programming microcontrollers (namely imperative low level languages), nor
the languages provided by virtual machine approaches are particularly suited for the handling
of concurrent tasks for such systems. We thus intend to expand the ways microcontrollers are
developed to better comply with the nature of embedded systems, and do so while keeping
the safety and expressivity of high-level programming languages as well as a small resources
consumption thanks to bytecode factorization and automatic memory management.

In this paper, we study the different ways to improve the programming of microcontrollers
with concurrent programming, using a particular virtual machine capable of handling bytecode
of the OCaml programming language. We especially focus on providing a high-level model of
concurrency adapted to embedded systems and with a low memory consumption in order to
comply with the limited resources of microcontrollers. Our different efforts, associated with the
development of the OCaPIC virtual machine, lead us to develop OCaLustre, a prototype of a
synchronous data-flow extension to OCaml.

2 A virtual machine approach for more powerful program-
ming languages

Resources on microcontrollers, especially memory space, can be very low. For example, the PIC
18 series of microcontrollers commercialized by the Microchip company can have at most only 4
kibi-bytes (KiB) of RAM and 128 KiB of program memory. These constraints usually drive the
style of programming for such devices to be very low level, with a manual handling of memory
usage. For this reason, most microcontrollers are programmed with a subset of C or assembly
languages, and programmers need to be knowledgeable about the precise architecture of the chip
they use. Not only being quite tedious, not portable, and lacking the richness of constructions
of higher-level languages, these approaches also lack important programming safeguards such as
static type checking at compile-time or automatic memory management at runtime, leading to
the apparition of unforeseen bugs and issues.

In order to free programmers from dealing with tedious tasks relating to the hardware, and to
help them develop safer programs, some ports of virtual machines capable of running the bytecode
of higher-level programming languages have been completed. These virtual machines, directly
implemented in the lower level languages traditionally used for microcontrollers’ programming,
allow a more portable code and a safer programming model while staying fast and efficient.

Among these various virtual machine approaches, we can mention the Darjeeling Virtual
Machine (DVM) [1], a port of the Java virtual machine on Atmel and ARM microcontrollers
capable of running a subset of this language. Similarly, the PICBIT [4] and PICOBIT [10]
systems allow to run Scheme programs on PIC microcontrollers with virtual stack machines.

Quite paradoxically, these virtual machines approaches can lead to a smaller resulting code
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(that includes the runtime library and virtual machine) than the corresponding native code
because of the more powerful and more complex instruction set of the virtual machines and
thanks to bytecode compression and cleaning tools.

OCaPIC: running OCaml bytecode on PIC microcontrollers

The OCaPIC project [11] is a virtual machine approach directed towards running bytecode of
the OCaml programming language on the very limited hardware of the PIC 18 microcontrollers.
This port of the ZINC Abstract Machine (ZAM) [6] (the original virtual machine of OCaml),
written in PIC assembly, allows programmers to use the various advantages of this language and
of its runtime on microcontrollers with very scarce resources.

OCaml is a high-level programming language belonging to the ML family of programming
languages. Descending from Caml and Caml-light, it was created and maintained at INRIA 1

since 1996. Being multi-paradigm, it implements functional, imperative, modular and object-
oriented traits and thus offers a rich expressiveness for writing programs of various nature for
embedded systems. Furthermore, OCaml provides a strong static type-checking at compile time,
with type inference, which insures the absence of dynamic type error and memory corruption, and
thus decreases the amount of possible bugs inside critical applications. Moreover, OCaml comes
with a garbage collector (GC) which makes possible an automatic handling of memory resources,
and frees programmers from such considerations while providing re-usability of memory. OCaPIC
implements two different algorithms of GC: stop-and-copy (by default) and mark-and-compact.

In addition to the port of most of the standard library of OCaml, OCaPIC offers a set of
primitives adapted to the handling of the input/output pins: for example, calling the function
set bit makes the microcontroller send an electric current on the pin passed in argument and
calling test bit reads and returns the state of a given pin.

The following code is an example of a program written with OCaPIC which makes a LED
connected to the pin named RB0 blink every second.

open Pic;; (* Module containing write_reg, set_bit, RB0, ... *)
write_reg TRISB 0x00; (* Configure the port B to be an output *)
while true do

set_bit RB0;
Sys.sleep 1000;
clear_bit RB0;
Sys.sleep 1000;

done

After compiling an OCaml program with the standard compiler (ocamlc), the resulting
bytecode is then cleaned by the provided OCamlClean tool which removes residual dead code.
This cleaning operation also has an interesting impact at runtime: the heap is cleaned from some
closures and unused global data, typically coming from unused parts of libraries. The resulting
bytecode is then compressed and linked with its interpreter into an hexadecimal file that can
finally be flashed on a PIC microcontroller. This workflow is depicted in the figure 1.

Finally, OCaPIC comes with two different simulators: the first one interprets the bytecode
and makes possible an easy debugging process using usual OCaml tools for correcting errors, such
as ocamldebug. The second simulator interprets the hexadecimal file produced by OCaPIC
and emulates the physical capacities of the microcontroller: it allows checking the native runtime
and the different kind of arithmetic and memory overflows. These simulators give a graphical
representation of the state of each pin of the microcontroller, in order to check the coherence of

1Institut National de Recherche en Informatique et en Automatique
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Figure 1: The OCaPIC compilation chain, from OCaml to PIC

the input and output of the programs. They are also able to simulate simple electronic boards
connected to the chip (LCD displays, buttons, . . . ) for testing purposes.

3 Models of concurrent programming

We engage in improving the virtual machine approach in order to better comply with the nature
of embedded programs. Because those systems are in constant interaction with the outside
world, for example reacting to button presses, impulses from sensors or signals emitted by other
computational devices, we focus on finding a model of concurrent programming adapted to the
scarce resources of microcontrollers that could run in the OCaPIC virtual machine.

Analysis of Models of Concurrent Programming

To achieve this goal, we experimented various models of concurrency and analyze their resources
consumption and expressiveness.

Firstly, preemptive threading approaches seems to be an ill-adapted model because our micro-
controllers do not run any operating system and thus do not provide any underlying scheduling
features capable of switching context between tasks depending on priority. Threads directly
scheduled by the VM could be conceivable, however they would be quite demanding on memory
resources. Moreover, this model of concurrency is not easily predictable and thus any kind of
static analysis capable of checking that programs do not go wrong is very difficult to achieve.

Cooperative threading is a far better candidate: letting each process explicitly hand control
to other threads does not need the presence of an operating system. We have been successful
when porting the core parts of the LWT cooperative thread library [12] into OCaPIC. Reacting
to environment stimuli can be done by frequently polling the value on each entry pin of the
microcontroller in a separate thread but handling the control points of programs is quite tedious
and a single process can block all the system if it does not yield control to the others.

We also managed to port the React functional reactive programming module2 to OCaPIC,
providing a model of concurrency using signals and events appearing and changing through time.
While appearing lightweight, this library makes a heavy use of memory allocation, and despite
our efforts, we were unable to keep memory use limited to the hardware restrictions.

Lastly, a port of the ReactiveML [7] synchronous language has been performed, but its heavy
use of OCaml functors creates a need for too much memory and prevents it for being a viable
solution for the concurrent programming of microcontrollers.

2See http://erratique.ch/software/react
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Nonetheless, the synchronous approach appears to be well-suited for our goal and we de-
cided to direct our work from the control-flow model of ReactiveML to a data-flow synchronous
concurrent model.

4 OCaLustre: a synchronous extension to OCaml

All of those experiments have exhibited some major drawbacks for the use of the aforementioned
concurrent programming models in real-life applications such as efficiency consideration as well
as expressiveness concerns. We thus propose OCaLustre, a synchronous extension to OCaml
based on the Lustre [3] dataflow synchronous programming language.

4.1 Syntax and Semantics of OCaLustre

An OCaLustre program is an OCaml program augmented with a construct stemming from Lustre:
the node. Nodes are synchronous functions operating on data flows which are considered as
being executed instantaneously, following the synchronous hypothesis. The body of each node
is equivalent to a system of equations that is solved between two “ticks” of the reactive system
and these equations, being solved all at once during the same instant, can represent concurrent
tasks. We believe that this model is well-adapted to microcontrollers’ programming because, at
any moment, each of the input/output pin of a chip is either holding an electrical current or not:
the absence or presence of current can thus be represented as a boolean data flow and treated by
such nodes in order to react “instantaneously” to environment stimuli. The complex algorithmic
and computational parts of programs are still handled by traditional OCaml functions that are
called inside nodes in order to keep the advantages of the expressiveness of high level constructs.

The syntax of OCaLustre nodes is very close to Lustre, and users familiar with the Lustre
style of programming will not really be surprised when using OCaLustre: for example, the code
of figure 2 declares a node called count pairs that computes the series of all natural numbers,
as well as all the even numbers. The complete syntax for OCaLustre nodes is given on figure 3.

let%node count_pairs () (n, m) =
m := n * 2;
n := 0 --> pre n + 1

Figure 2: An OCaLustre node

All of the OCaml boolean and arithmetic operators can be used inside OCaLustre declara-
tions, as well as the initialization (->) and memory (pre) operators of Lustre. Note however
that the operator ->, being already reserved by OCaml, has been replaced by --> to describe
the initialization of data flows. The when operator is not usable at this moment, because our
OCaLustre prototype doesn’t handle nodes running on different clocks (they all run on the de-
fault clock). Notice also that type annotations are not requested in OCaLustre, because it is
compiled into pure OCaml code that offers a type inference mechanism. In this regard, OCaLus-
tre nodes can handle polymorphic flows, as it is the case in the following code that declares a
node testing if the value of a flow f has changed between two instants.

let%node change (f) (changed) = changed := false --> f <> pre f

Adding a new behavior to an existing OCaLustre program is very straightforward: one just
have to write new equations providing the new behavior into the involved node(s). Figure 4
presents such a modification: a program waiting for two signals a and b and returning o only

5



< node > ::= let%node node id < flows sig > < flows sig > = < decl seq >

< flows sig > ::= (id[,id] ∗) | ()
< decl seq > ::= < declaration > | < decl seq >;< declaration >

< declaration > ::= < flow > := < expression >

< flow > ::= id | (id, id)

< infix op > ::= + | - | * | / |+. | -. | *. | /. | < | > | <= | >= | = | <> | && | ||
< prefix op > ::= not

< constant > ::= int | bool | float | ()
< parameters > ::= (< parameter >[, < parameter >] ∗) | ()
< parameter > ::= id | < constant >

< expression > ::= < constant > | id

| if < expression > then < expression > else < expression >

| < expression > < infix op > < expression >

| < expression > --> < expression >

| < prefix op > < expression > | pre < expression >

| call ocaml function id < parameters >

| node id < parameters > | (< expression >,< expression >)

Figure 3: The syntax of OCaLustre

when r is not present is easily expanded into a program waiting for the presence of a third signal
c. This process doesn’t lead to any explosion of memory usage when the resulting program is
executed, due to the lightweight model of compilation of Lustre.

let%node edge (x) (y) =
y = false --> x && not pre x

let%node abro (a,b,r) (o) =
o := edge (seenA && seenB);
seenA := false -->

not r && (a || pre seenA);
seenB := false -->

not r && (b || pre seenB)

let%node abcro (a, b, c, r) (o) =
o := edge (seenA && seenB &&

seenC);
seenA := false -->

not r && (a || pre seenA);
seenB := false -->

not r && (a || pre seenB);
seenC := false -->

not r && (c || pre seenC)

Figure 4: Adding a new behavior to an OCaLustre node

4.2 Compilation of OCaLustre

An OCaLustre program is compiled following the Lustre model of “simple-loop” compilation:
each node is converted into a sequential function, and the main node of the program is run inside
a single endless loop. Following this method, an OCaLustre program is compiled into a pure
OCaml program that can then be handled by OCaPIC as any other OCaml program (see figure
5). Note that, because these two steps are entirely independent, the OCaml code produced after
compilation of OCaLustre can also be used with any other OCaml interpreter or compiler: this
makes possible to use our extension with any kind of hardware target supported by OCaml.
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Figure 5: From OCaLustre to executable through pure sequential OCaml

During compilation, each node is replaced by an OCaml function by converting all of the
declarations contained inside its body into a sequence of assignations. In OCaLustre, the equation
order does not matter (we may use a flow before declaring it) but in OCaml this order matters
and a reordering of each declaration is completed at compile-time. This reordering corresponds
to a rescheduling of each task of our concurrent program. This process may fail when two flows
depend on each other at the same instant: this kind of behavior is invalid since it denotes a
causality loop inside the program and an error is then raised by the compiler.

Each usage of the memory operator “pre” is converted into an OCaml reference holding an
option type. At the first instant, all references hold the value None, and at instant i + 1, they
contain the value of its flow at instant i.

The --> initialization operator is converted into a simple conditional operator checking with
a simple boolean value init if the function is executed at the first instant or not.

In order to preserve the execution context of a node, a closure is returned by each instantiation
function corresponding to a synchronous node. This closure is bound to all of the registers of
the node. All of these compiling rules are depicted in the example of figure 6 which illustrates
code generation for the node count pair of figure 2.

let count_pairs () =
let init = ref true in
let pre_n = ref None in
let count_pairs_step () =

let n = if !init then 0 else Option.get (!pre_n) + 1 in
let m = n * 2 in
init := false; pre_n := Some n; (n, m) in

count_pairs_step

Figure 6: Compilation of an OCaLustre node

4.3 Benchmark analysis

The compilation model of OCaLustre is quite efficient and makes the resulting compiled pro-
grams very small. In order to compare the efficiency of OCaLustre with the various models
of concurrency that we had firstly considered, we developed a simple application in which two
different counters are concurrently displayed on an LCD screen. Four versions of this application
have been developed with OCaLustre as well as with three other models: cooperative threading
with LWT, functional reactive programming with React and a simple sequential program written
in pure OCaml. The size of the programs generated by OCaPIC after a cleaning pass by OCaml-
Clean (containing the runtime library, the virtual machine as well as the compressed bytecode)
allows us to assert that OCaLustre is a very lightweight solution, using about 1.5 times less
space than LWT and being more than three times smaller than the React solution. In fact, the
OCaLustre application is very close, in size, to the compiled sequential code. We executed the
programs on our microcontroller (a PIC 18F4620) and analyzed the dynamic memory allocation
of each tool when the program is loaded. We found again that OCaLustre is very low demanding
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in resources with React and LWT allocating respectfully 1668 and 1136 bytes while OCaLustre
only using 272 bytes of dynamic memory space:

Tool React LWT OCaLustre Sequential Code

Size of the program 23.8 KiB 11.7 KiB 7.8 KiB 6.8 KiB
Initial dynamic allocation 1668 B 1136 B 272 B 150 B

Using our OCaLustre prototype, we developed a program for a device capable of tempering
chocolate. This device receives inputs from a temperature sensor and from two buttons (labeled
“+” and “-”) used to set a desired temperature for the chocolate. Its outputs are an LCD
displaying the desired temperature, as well as the current temperature of the chocolate, and a set
of resistances capable of heating the preparation. The following OCaLustre program controls the
tempering machine by computing a value (prop) that represents the amount of time at which the
resistances need to be on, depending on the difference between the desired temperature (wtemp)
and the actual temperature (ctemp). The main node of the program receives at each instant
the value of the buttons as well as the current temperature, computes the value of the desired
temperature, the state of the device (on or off) and decides if the heating resistances must be
active based on all of these informations:

(* Temperature in celsius is (1033-ctemp)/11.67 *)
let%node update_prop (wtemp, ctemp) (prop) =

new_prop := 0 --> (min (100, max (0, pre new_prop + offset)));
delta := min (10, max (-10, ctemp - wtemp));
delta2 := if delta < 0 then -delta * delta else delta * delta;
offset := min (10, delta2);
prop := new_prop / 10

let%node timer (number) (alarm) =
time := 1 --> if pre time = 100 then 1 else pre time + 1;
alarm := time < number * 10

let%node heat (w, c) (h) =
prop := update_prop (w, c);
h := timer (prop)

let%node change_wtemp (state) (w) =
w := 654 --> if state = 1 then pre w - 1 else

if state = 2 then pre w + 1 else pre w

let%node thermo_on (state) (on) =
on := true --> if state = 3 then not (pre on) else pre on

let%node main (plus, minus, ctemp) (wtemp, on, heat) =
state := call (buttons_state plus minus);
on := thermo_on (state);
wtemp := if on then change_wtemp (state) else 0;
heat := if on then heat (wtemp, ctemp) else false;

An application displaying the same behavior was also developed in classic OCaml and used
in OCaPIC before the development of OCaLustre, so we are able to compare the size of our
OCaLustre chocolate tempering program versus the size of the OCaml one, as well as display the
significant size difference between the generated OCaml bytecode and the resulting compressed
OCaPIC program:

Language OCaml OCaLustre

Type Bytecode File PIC Program Bytecode File PIC Program
Size 268 KiB 27 KiB 258 KiB 27 KiB
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We conclude from these results that, after cleaning and compression, the PIC program is a lot
smaller than the original bytecode file. Judging by various experiments, this decrease by a factor
of about 10 is not uncommon. We show once again that the OCaLustre mode of compilation
keeps programs very lightweight and thus allow to run real world programs on devices with small
resources.

5 Conclusion

Our efforts dedicated at proposing a higher level of programming for microcontrollers seem
promising. In particular, OCaLustre, a synchronous extension to the multiparadigm OCaml
programming language, makes possible an easier development of concurrent programs aimed at
embedded systems. This extension, based on the data flow language Lustre is quite similar to
the Lucid Synchrone programming language [2] but our prototype offers a simpler model. It is
translated into pure OCaml and compiled into bytecode that can be lightened by OCamlClean.
This model makes the program written in OCaLustre smaller than the ones developed in the
richer Lucid language which unfortunately (and contrary to OCaLustre3) is not distributed with
an open source license, which was necessary for our early experiments with models of concurrency.

Real-time considerations for programs developed with OCaLustre are usual: Worst Case
Execution Time (WCET) of the synchronous parts of OCaLustre programs can be computed
using classical tools for synchronous programming. For the algorithmic part written in OCaml,
we need a guarantee that there is enough memory and to consider dynamic memory management
(garbage collector or GC) execution time for WCET analysis. These two notions are nested but
depend on the programming style of the algorithmic part and need to deal with dynamic memory
allocations (stack and heap) for recursive functions and dynamic data structures. One possibility
will be to use a real-time GC [5] but they have important costs (time and memory) and not really
adequate for the low resources of PIC micro-controllers. For that, we need to help the GC by
giving indications on liveness of objects. Some on-going works can use static region analysis for
a mini-ML. In this case freeing a region can be immediate or can allow to manually trigger the
garbage collector. The virtual machine approach is not detrimental to the real-time aspects,
actually it also makes possible the factorization of the WCET by measuring it directly on the
bytecode and then extrapolate it for different hardware.

Moreover, the use of a virtual machine facilitates the debugging and tracing of programs:
without modifying program sources the interpreter can be instrumented in order to offer useful
informations, allowing a non-intrusive structural code coverage like Zamcov project [13] for the
Ocaml Virtual Machine (ZAM). The association of functional languages with critical embedded
systems was not previously unseen and have already been used (with less hardware constraints)
for the development of various tools, in particular of code generators (like KCG, the code gener-
ator of the SCADE SUITETM [8]).

Using this virtual machine approach, we are able to produce lightweight and portable code
which offers higher-level guarantees thanks to the use of the OCaml programming language. The
different tools of code analysis are also factorized by the use of bytecode and can be adapted for
many different microcontrollers, offering more safety for embedded system applications. Finally,
our synchronous extension of OCaml offers a deterministic model of concurrence adapted to the
nature of embedded system and the analysis of the safety of programs and its association with
an OCaml virtual machine makes possible the development of richer and safer applications.

We aim for future works at improving the OCaLustre language and developing more serious
applications (for example in robotics or home automation) while trying to offer formal guaran-

3https://github.com/stevenvar/OCaLustre/
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tees for the execution of programs inside devices fitted with minimal memory and computing
resources. As for OCaPIC, a couple of similar projects aimed at porting the virtual machine of
OCaml for Atmel AVR and STM32 microcontrollers (respectively used in Arduino and Nucleo
platforms) have been instantiated.
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Abstract: Models in the railway industry are often based on synchronous                     
technologies such as Matlab or Scade. This is due to technical reasons, but                         
because of its concepts the abstraction level of synchronous models are very                       
low and very close to the implementation level. A serious gap is observed                         
between the requirements described in natural textual language and the                   
model which is basically an implementation. The increasing level of system                     
complexity, combining communicating subsystems, calls for a more abstract                 
model. This paper will first discuss why synchronous technologies have been                     
used in this type of systems, then an experiment of using an asynchronous                         
technologies on a real ERTMS case coming from SNCF is described, and                       
finally the paper will conclude on how an asynchronous modeling                   
technologies could make the link between the informal textual requirements                   
and the implementation of the system. 
 
Keywords: Modeling, Asynchronous, Synchronous, Matlab, Lustre, SDL,             
TTCN3, Railways, ERTMS 

 

Introduction 
When it comes to modeling two main questions have to be addressed. The first one is about positioning the 
model in the development cycle ; defining if the model is a requirement, a specification, or a design. The 
second one is about the modeling technology to use ; depending on what the model is aiming at. The lower 
is the model level, the more specialized is the modeling technology, and the narrower is the scope of the 
model. 
In [1] the technologies usually applied to model train systems are listed such as the B method, Scade, 
Simulink/Stateflow. In [2] and [3] the authors present how they have written a specific type of model in order 
to verify specific safety properties. The models are usually dedicated to the targeted model checking 
technology and can not be used for anything else.  
In [4] is presented the work done by SNCF to verify safety rules using The Mathworks tools. 
In [5] the author presents a tool that makes a link between a system level model written with Papyrus SysML 
modeler and a design level model written with SCADE Suite. 
In [6], following the ASSERT FP6 european project, the European Space Agency has been promoting the 
TASTE (The ASSERT Set of Tools for Engineering) framework. Because each technology is best suited for 
a part  of the overall system, TASTE framework aims at gathering the different technologies in a consistent 
framework. The top level model is an architecture model based on AADL and ASN.1. The different AADL 
architecture blocks are further developed with a dedicated technology such as Scade or SDL. When all 
models are validated a code generator automatically gathers the code generated by the different tools. 



In the above references, the choice of the modeling language is often driven by the possible verification 
associated to the technology. For that purpose models are based on low level modeling technologies that 
are very close to the implementation details.  
Attempts to raise up the modeling level have been done using a combination of languages. For that purpose 
the synchronous or asynchronous approaches are put at the same level and a third language is used as an 
overall model view (SysML or AADL). In this paper we are experimenting a different approach in which an 
asynchronous SDL model is used as a bridge between the requirements and a low level synchronous 
model. To demonstrate this, an existing Matlab model is taken as an example and translated to an SDL 
model. Using an SDL simulator and solver the system functions are then analyzed. Finally there will be a 
discussion on what the SDL model brings to a Matlab model.  

A natural synchronous approach 
In the old days, train systems were exchanging simple information such as “is the train present on that 
portion of track” , “are the doors open or not”. These information can be detected with simple electrical 
detectors along the tracks, on the platforms, or in the train itself. These detectors behave like electrical 
switches and the information can be extracted from the fact that the circuit is open or closed. From a 
software point of view, all this information can be represented by binary variables. The rationale is a logical 
combination of the different information gathered. It would be something like “if the train is not stopped at the 
platform, then the doors should be closed”. And this information would be verified every time some new 
information was received from the sensors. Each clock tick, the information from the sensors is gathered 
and given to a logical system that will compute all the entries and produce some outputs.  
That is the basic principle of a synchronous approach. All the entries are valid at the same time, some 
logical operators combine the inputs taking into consideration the previous values of the inputs, and 
produces some outputs. Each clock tick, the whole information is computed again and again. The fact that 
the system recomputes everything at every clock tick actually reduces the possible number of cases that 
might occur in the system. It is therefore much easier to verify properties at each clock tick and make sure 
the system behaves properly whatever happens, whatever the information read by the sensors. 

New approach for upcoming systems 
Train management systems are evolving, and in particular the European Rail Traffic Management System 
(ERTMS [7]), which was initiated in the 90’s by the European Union, aims at harmonizing and expanding the 
capabilities of train control systems over Europe so that a train crossing borders does not need a specific 
controller for each country it crosses. This standard covers specification of on board equipments, on the 
trackside equipments, as well as communication information systems. The information exchanged includes 
speed, acceleration and so on. It is more and more complex and is getting quite far from the original binary 
information. Furthermore all the equipments are not mechanically or electrically connected, they are now 
completely desynchronized from one another. The information is not that simple any more, it is complex and 
unpredictable. Using synchronous technologies might work on a local level but will definitely not be sufficient 
to describe new features that combine a lot of communication. In fact the higher is the level of the view, the 
less a synchronous description will fit. This is a known issue in systems where complexity is increasing. It 
has been theorized and discussed in several publication as the GALS (Globally Asynchronous Locally 
Synchronous [10]) theory of system description since the 80s. At that time, asynchronous descriptions were 
transformed to synchronous descriptions based on the theory that asynchronous models could be 
deconstructed to synchronous models and reconstructed back [11]. The point was to be able to use the 
existing and mature synchronous validation and verification technologies on the market at that time [12]. 
This works as long as the model is close to the implementation. This is not satisfying any more in complex 
communicating systems as the first thing to do when developing a new feature in a system is to verify its 



functionality before trying to implement it. That raises the need for asynchronous descriptions and 
verification techniques. 

An asynchronous description of existing models 
On one side the higher the abstraction level is, the more asynchronous are the relations among the 
elements in the system. On the other side in order to produce a relevant and verifiable dynamic description, 
the model needs to be executable. That means it should be statically and dynamically unambiguous from a 
semantic point of view.  
SDL [6] international standard that was initially designed to describe telecommunication protocols is a good 
candidate for this type of description. It is by nature asynchronous, it combines graphical views for 
architecture and state machines, and includes an action language with simple data types to describe a 
detailed behavior whenever needed in the description.  

 
Figure 1: A basic SDL architecture 

 
Figure 1 shows an SDL architecture with two blocks. Each block can be further decomposed in subblocks. 
At the lower level of the architecture one or several finite state machines describe the behavior of its 
container. The flow of information between the blocks is message based. Each state machine has its own 
implicit FIFO message queue.There is no clock based inputs in an SDL system. Only the sequence of 
events matters. 

 
Figure 2: A simple SDL state machine 



Figure 2 shows a simple SDL state machine. In the administration state, the state machine will read its 
message queue. If addUser message is received the instructions below the addUser input symbol are 
executed, an accepted message is sent to the sender of the addUser message, and the transition ends 
back in the idle state. If message deleteUser is received, the counter internal variable is set to 0, and the 
transition ends also in the idle state. 
The different state machines in an SDL model run in parallel. The main issue with this type of description is 
verification. Because of its asynchronous nature, events can occur at any time, independently from each 
other, and this creates a huge number of possible scenarios. Model checking tools can explore the possible 
combinations, but the number of cases is sometimes very difficult to handle making verification of properties 
on this type of system a real challenge. 
Since this type of description is well suited for a high level description it is naturally close to a functional 
description or a high level requirement. It is therefore quite interesting to analyze how the requirements 
could be translated into an asynchronous model and a synchronous model, and see if one could be 
translated to the other. This is what was done on a Radio Block Center from the ERTMS[7]. Figure 3 and 2 
show the architecture level using Matlab and using SDL. Even though both model contain the same blocks 
the main difference is the communication semantic. Information exchange is synchronous in Matlab and 
message based in SDL.  

 
Figure 3: Architecture described with Matlab 

 



 
Figure 4  Architecture in SDL with three state machines 

 
Matlab diagram in Figure 5 indicates the description of the block is done with a state machine. It lists all the 
inputs and outputs of the state machine. This is not necessary in SDL as a process behavior is always 
described with a state machine. 

 
Figure 5 : Connect and disconnect block is made of one synchronous state machine 

 
The Matlab state machine is described in Figure 6 and the SDL equivalent state machine is described in 
Figure 7. 



 
Figure 6 : Matlab synchronous state machine 

 

 
Figure 7 : SDL asynchronous state machine 



 
In the example described in Figure 6 & 7 the inputs are very similar. For example reception of msg155 event 
is done setting the boolean variable msg155_recu to true in Matlab, while it uses the message input symbol 
in SDL. The Matlab representation forces the modeler to make sure msg155_recu is set to false after being 
received because if not it might be taken into consideration again in another transition. Similarly to output 
some information from the state machine, the Matlab model sets boolean values to true or false. For 
example in the Session_etablie state, envoi_msg32 is set to true when entering the state, then set to false 
while in the state, and again set to false when exiting the state. In an event based language such as SDL, 
there is only one msg32 output when msg155 is received and that’s it. In that sense it makes things much 
clearer. 
 
The other example below, Deconnecter_selon_mode in Figure 8 & 9, shows how to disconnect the train 
depending on the mode in which it is. 

 
Figure 8  “Disconnect depending on the mode” Matlab state machine 

 



 
Figure 9  “Disconnect depending on the mode” SDL state machine 

 
In that example the main difference is on the inputs of the state machine. The Matlab model uses logical 
operators AND and OR to identify which input was received; the SDL model is just a list of inputs, and the 
star means any other input. 
 
In both examples the model is equivalent from a functional point of view, depending on the reader’s 
technical background one or the other might be easier to read and understand. 

Model verification 
The experiment included some simulation of the SDL model with small prototyping graphical user interface 
in order to verify the behavior was correct. Once the model was considered correct, PragmaDev symbolic 
resolution tool, result of PragmaList [8][9] common lab, has been experimented on the model. This 
technology combines the transitions from a symbolic point of view, and tries to solve each possible 
combination like it would do with an equation. If there is a solution to the equation the path is possible. The 
first objective with that technology was to automatically generate the minimum number of test cases with a 
maximum coverage. After a few trials the tool could not reach two transitions in the model. A manual 
analysis rapidly concluded this use case did not allow one of the generic functions in the model to return the 
values required to reach these two transitions. Once this was settled test generation out of the model was 



successfully experimented and 17 test cases covering all transitions were 
automatically generated. 
Five properties have been written to be verified on the model. As for the experiment, 
the properties were actual pieces of the state machine written with another 
language. For example the first property verifies that when in state 
Connexion_en_cours, when receiving msg159 the state machine goes to state 
Etablie and not any other. 
The symbolic resolution tool has been ran on the model with its properties for a few 
hours reaching a substantial depth of search, meaning a substantial number of 
transition combination. As a result, within this exploration perimeter the properties 
were satisfied. 

 

How to link asynchronous models to synchronous 
models 

During the experiment it has been established the SDL model was further away from the implementation 
than the Matlab one. Because of its asynchronous principles it was more of a functional view of the behavior 
and therefore closer to the requirements. This clearly validated the idea of having a high level asynchronous 
executable functional model to make sure the requirements are properly understood. The question was how 
to link this asynchronous approach to a synchronous one. It turned out an asynchronous model, including a 
test case, can easily be connected to a synchronous one. For example a synchronous input can be 
evaluated at each tick and when the value of the input changes it generates an asynchronous message 
(Figure 10). On the other way around an asynchronous message output can be converted to a clock based 
value.  

 
Figure 10: An synchronous change of value can be transformed to an asynchronous send 

 
This shows that it would be possible to generate code out of the asynchronous model and connect to a 
synchronous target, or to generate test cases out of the asynchronous model and run them against a 
synchronous implementation in order to check it is conform to the model. 

Conclusion & Future work 
The experiment on this real use case in the railway domain has demonstrated that an SDL executable 
asynchronous model could be functionally equivalent to a Matlab synchronous model. Because of its 



asynchronous nature the SDL model is closer to the requirements, where a Matlab model is closer to the 
implementation. An SDL model could therefore be used by stakeholders early in the development process to 
formalize requirements and to verify them from a functional point of view. A Matlab model would still be used 
later on for the implementation. And the SDL model would be the reference to verify functional properties, or 
to generate test cases to verify the final implementation is functionally conform to the initial requirements. 
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Abstract 

In this paper, we present the results of the past years of active development and use of a set of tools named                                           
TASTE[1], which is developed under the supervision of the European Space Agency (ESA) since 2008.                             
TASTE was created to facilitate the development of software using a combination of modern development                             
techniques including formal methods, domainspecific languages and graphical editors to offer a nice user                           
experience. Being free and favouring accessible APIs, TASTE is open and can be used in many areas,                                 
covering educational purposes as well as application on operational projects. We show how some of the                               
TASTE core technologies, based on wellestablished languages, are actually used for the development of                           
satellite instrument onboard software and documentation. As a technology demonstrator and lab                       
experimentation platform, TASTE enables the investigation and exploration of techniques that are not                         
commonly used in industry yet, such as functional programming, data and behavioural modelling, property                           
checking, multicore systems, etc. 

The objective is to make better software using a solid engineering approach that does not stay stuck to the                                     
traditional “Textbased requirements translated to C source code” which is still mostly applied when                           
developing embedded systems. But more than presenting a collection of technologies, this paper also                           
explains our strategy and why a technical organisation such as ESA is probably the right one to lead the                                     
development of such tools and ensure their longterm support. 

Keywords: SDL, ASN.1, AADL, MSC, VDM, Spark/Ada 

Introduction 

When creating software in the context of critical embedded systems, one of the first tasks is to set up a                                       
development plan with a clear strategy focusing on the priorities set by the customer and/or the end user of                                     
the system. 

Priorities have to take a number of elements into account, for example requirements related to: 

● Development schedule 
● System safety 
● System dependability 
● Quality assurance and documentation 
● Quality of the software code for performance, optimization 
● Quality of the software code for readability, maintainability 
● Reuse and automation 
● etc. 

In practice it is well known that all these requirements can not be covered at the same level of quality. Thus                                         
imposing a tight development schedule or low costs typically implies sacrificing some other aspects such as                               
system analysis, robustness, testing or documentation. The question is then to know if it is possible to                                 
overcome this sacrifice and at what price. Is there any technology, tool, science that can support a software                                   
development process in such a way that perhaps by putting more effort in some places, it could improve                                   



significantly the overall software lifecycle as a side effect? 

TASTE is a platform that was created with this goal in mind, and is used to explore and disseminate                                     
advanced software technologies in order to be ready for future space missions. 

What are the systems that we target? 

Today’s processes for the development of classical Earthorbiting spacecrafts are well mastered by our few                             
European large system integrators: development is vastly done manually, but based on years of experience                             
and reuse. The feedback we get is that each new satellite inherits from a lot of existing material and most of                                         
the time there is no need to change the approach while yet meeting most of the requirements seen above. It                                       
is therefore not these kind of wellestablished processes that are under focus: Europeanmade classical                           
satellites have simple, qualified software which need no major upgrade according to industry. 

On the other hand, new upcoming space missions such as formationflying systems, deepspace probes,                           
robotic systems and next generation launchers usually are much more challenging. For example, do we                             
know how to deal with distributed systems in space? Can we specify with lists of textual requirements all the                                     
complex scenarios to handle fault management? The companies that are involved in these new missions,                             
now that the European Space Agency is open to many new countries, are more diverse today than in the                                     
past, and some have little background in the space domain and little software items to reuse. There are                                   
many areas where projects could benefit from dedicated tools and languages to approach new problems                             
areas. For example, automatic code generation, which seemed underperforming and cumbersome a few                         
years ago, is now mature and efficient enough to deal with software production. We need to characterize                                 
properly our expectations and find places where we could save time by automating repetitive tasks in order                                 
to put effort on more creative work. 

TASTE provides means to achieve this goal. By looking at the needs first, the idea is to find and easily adopt                                         
a good combination of technologies to make concrete and quantifiable progress in a software development                             
lifecycle. By relying on solid, well matured technologies such as ASN.1, SDL and AADL, and by keeping the                                   
eyes open on various programming paradigms, with a longterm and opensource support in mind, TASTE is                               
making the synthesis of the past 20 years of work in the field of modelbased development, together with the                                     
recent trends in software programming using safer languages (VDM, Ada2012, Rust, F# and others). Of                             
course, the results are not limited to space applications. Indeed, a safe and modern software development                               
approach should in principle benefit all areas where the cost of a system malfunction is high and cannot be                                     
compensated by quick fixes after the deployment phase. 

What have we done so far? 

The development of TASTE started in 2008, and has been cofunded by ESA, industry, and universities.                               
Many partners have participated and brought a lot of knowledge and material in the toolset. The overall                                 
strategy, vision and work plan is established by ESA. 

In that context, a lot of work has already been achieved, and as a technology demonstrator, TASTE is                                   
already a fullfeatured set of tools, that goes very far in several areas of software development and                                 
deployment. The tool contains: 

● a userfriendly entry point, containing a graphical editor for capturing a system architecture using the                             
AADL language, and a state machine editor implementing partly the SDL language [3] 



 
Fig. 1  TASTE userfriendly GUIs 

 
● a full, commercialquality ASN.1 compiler dedicated to safetycritical systems, generating optimized                     

Ada and C code, but also customizable documentation using template files 
● technology to glue heterogeneous languages: user code can be written in C, Ada, Simulink, SDL,                             

VHDL 
● A custom integration of the Cheddar and Marzhin tools providing scheduling analysis of realtime                           

systems 
● a lot of other tools that ensure a correctbyconstruction approach, allows to run simulations,                           

perform regression testing and monitoring, create links to system databases, and much more. 
 
 
Technical insight 
 
Any complex system development requires the combination of many different disciplines to cover wide                           
ranges of requirements. In terms of software, it is common to make use of a large number of technologies to                                       
address various aspects of the same problem: 
 

● When coding manually, C and Ada are used to cover onboard software functionalities 
● Assembly language is sometimes used for lowlevel code and boot software 



● Script languages (Python, Tcl) are widely used to automate the testing of software 
● MatlabSimulink is frequently used by domain experts for the development and validation of control                           

laws (to manage the position and trajectory of spacecrafts and rockets) 
● VHDL or SystemC are used when hardware accelerators are needed (e.g. for image compression                           

or in general onboard processing of science data) 
● UML is sometimes used to draw informal sketches for documentation purposes 
● SDL to model state machines with precise semantics and syntax 
● etc. 

 
The TASTE philosophy is to let application domain specialists spend most of their effort on their area of                                   
expertise and let tools automate the tedious parts which are of little interest to the system engineers. This                                   
means taking the wide variety of technology needed in practice, and putting everything together using tools,                               
in order to ensure a system development that is correct by construction. It is not yet possible everywhere of                                     
course, but this is the goal we try to achieve. Correctness by construction covers different facets including                                 
this one: the provision of languages that are domainspecific allows to have one and only one way of                                   
addressing a problem  and rely on the research done in the area to prevent at the source the risk of a bad                                             
software implementation. To illustrate this facet, consider the following examples: 
 

● Embedded systems are fundamentally based on state machines. Systems react on their                       
environment and behave depending on their current mode of operation. Using a language such as                             
SDL [4] in TASTE gives the right syntax and the corresponding checkers to ensure by construction                               
that the application focuses on the state machine and nothing else. 

● Data types: rather than reasoning in terms of physical encoding (size of integers, endianness), think                             
about the range of values that are needed by the applications. 

 
Even if it will need to be quantified, we expect that the generalized use of dedicated languages combined                                   
with tools automating software production, on the long term, will save a lot of time that is today spent on                                       
developing manually recurrent software functionalities. 
 
User feedback 
 
TASTE as a whole is only used by few companies. As shown in the case study presented in the next                                       
chapter, some of the TASTE components have already reached a high level of quality and usability and                                 
have proven excellent applicability to reallife projects ; but in this chapter we will discuss the braking factors                                   
and way forward to make sure that in the future, TASTE will be better known and used by many. 
 
Taking the decision to adopt “unusual” technologies for a new project such as those present in TASTE                                 
(modelling tools, code generators, etc.)  is always raising a number of questions: 
 

 did anyone try them before in a similar context? 
 is the technology really mature? 
 what are the risks versus the benefits? 
 is there a community of users? 
 is there a commercial support available? 
 is the underlying technology going to be supported on the long run? 
 will someone be able to maintain the generated code in a satellite in 15 years? 
 and by the way do we really want to automate the repetitive tasks that we have been doing                                   

manually for 30 years? 
 
Even if some languages used in TASTE seem widely known in other domains of applications (e.g. ASN.1 or                                   
SDL are standard languages for telecommunication systems), they still represent small communities of                         
users, and experience in computer science shows that technology is fragile and so pillars can collapse                               
quickly. For example, UML that was called by many a “de facto standard” for modern software development                                 
is today declining fast and is abandoned by several tool vendors and users. From the point of view of                                     



nontechnical decision makers, it can be difficult to see the difference between fashionable technologies                           
which are designed for marketing purposes and technologies with solid grounds that can really help if used                                 
properly. 
 
When the decision is taken, there is of course a price to pay. One part of this price is related to the effort                                             
needed to make an efficient use of the selected technology. Assimilation of knowledge requires effort and                               
time. The techniques we are considering (state machines, abstract data types, model checking, etc.) are                             
scientifically sound and mature, but at the same time they are often not widely known or understood by                                   
industrial developers. As a consequence there are limited useful resources and user feedback available so it                               
is often perceived that the investment is risky due to little immediately visible benefits. 
 
It is relevant to note that in the past few years, a significant interest has raised in software communities                                     
towards the functional programming style (declarative style, immutability, recursion, monads, etc.) These                       
techniques are quite ancient but were never considered seriously for inclusion in mainstream, imperative                           
programming languages. And yet they got a sudden and apparently unexpected second life, and many of                               
these techniques are now included as firstclass citizens in many languages (e.g. lambda functions). This                             
simple example shows how software is a living and surprising area that is capable of evolving when                                 
technology proves an added value on real use cases. 
  
One of the reasons ESA is investing a lot in software development is because exploration is part of its core                                       
mission. Exploration of space requires as a first step, as well as a side effect, exploration of new technology                                     
that is also useful on Earth. As a nonprofit technical organization, ESA is not tight to any single tool,                                     
language or technology. ESA therefore has the freedom and the possibility to progress with a consistent and                                 
long term vision, taking the time to assess tools, make the right choices, and deliver results that do not                                     
depend on an immediate hit in market places. 
 
ESA is looking at many possible ways of improving software development and in addition to TASTE has                                 
created projects named: 
 

 SAVOIR  and OSRA (trying to establish “reference architectures” of systems) 
 COMPASS (exploring the fault detection mechanisms) 
 EDS (modelling device driver interfaces) 
 and a few others 

 
In order to help these technologies get a chance to be used in operational projects and fly on future                                     
missions, ESA is working together with the European space industry to harmonize research and                           
development initiatives and make communities talk together. Many technologies are driven by experts who                           
get stuck in their area due to difficulty to have a global picture of the end user needs, to the lack of networks,                                             
connections with other research areas, or simply resources. For example, scientists who create formal                           
methods usually have little time or interest in implementing end user interfaces that yet would be a key to                                     
make their results visible and usable by nonexperts. ESA is capable of creating these missing links,                               
animate working groups, experiment and disseminate tools, and that is the chosen direction, now that the                               
level of trust in what tools like TASTE can do allows to go a step further. 
 

Case Study  PROBA3 Coronagraph Instrument Software 

PROBA3 is a mission devoted to the inorbit demonstration of precise formation flying techniques and                             
technologies for future ESA missions. It will fly an instrument named ASPIICS (Association of Spacecraft for                               
Polarimetric and Imaging Investigation of the Corona of the Sun) as primary payload, making use of the                                 
formation flying technique to form a giant coronagraph capable of producing a nearly perfect eclipse, and                               
allowing to observe the sun corona closer to the rim than ever before. The coronagraph system is distributed                                   
over two satellites flying in formation (approx. 150 meters apart). The so called Coronagraph                           



Spacecraft(CSC) carries the camera and the so called Occulter Spacecraft(OSC) carries the sun occulter                           
disc. 

 

Fig.4   PROBA3 formation flying overview and orbit. 

The proposed PROBA3 Coronagraph System (ASPIICS) will be the first space coronagraph to cover the                             
range of radial distances between 1.08 and 3 solar radii where the magnetic field plays a crucial role in the                                       
coronal dynamics, thus providing continuous observational conditions very close to those during a total solar                             
eclipse, but without the effects of the Earth’s atmosphere. ASPIICS will combine observations of the corona                               
in white light and polarization brightness with images of prominences in the He I 5876 Å line. 

ASPIICS will provide novel solar observations to achieve the two major solar physics science objectives: to                               
understand physical processes that govern the quiescent solar corona, and to understand physical                         
processes that lead to coronal mass ejections and determine space weather ([6]). 

The PROBA3 coronagraph optical design follows the general principles of a classical externally occulted                           
Lyot coronagraph. The external occulter, hosted by the Occulter Spacecraft, blocks the light from the solar                               
disc while the coronal light passes through the circular entrance aperture of the Coronagraph Optical Box                               
(COB), accommodated on the Coronagraph Spacecraft (CSC). 

COB, its control devices, and some other mechanisms form the Coronagraph Instrument. Following case                           
study describes usage of some TASTE tools in development of Coronagraph Instrument Software (CISW). 

CISW main responsibility is to integrate and control other instrument’s subassemblies in order to achieve                             
some level of autonomy from spacecraft, including automatic execution of all observation related operations.                           
It is common that one of the most important part of software design is its interface, but in this situation                                       
(combining multiple subsystems into one single interface visible from main platform system) it is even more                               
crucial to ensure proper integration of CISW with satellite, by enforcing consistency of data definitions                             
between requirements, documentation and final implementation. 

TASTE addresses those issues using language for modelling of data called ASN.1. This language was                             
designed to ensure endtoend data consistency: from a single description of data structures, tools can                             
guarantee by constructions that semantically equivalent representations exist at any point in time in: 

● software code, 
● software documentation, 
● system databases,  
● test scripts. 

It is also a well known standard, used for years in telecommunications, with various other tools available. 



Requirement ID  Requirement Text  Verification 

REQID0101  CISWshall implement the PUS service 6,2 “LoadMemory using Absolute Address” to update data in                               
RAM and EEPROM. 

Test 

REQID0102  CISW shall implement the PUS service 6,5 “Dump Memory using Absolute Address” to dump data                             
from RAM, EEPROM and PROM. 

Test 

REQID0103  CISW shall implement the PUS service 6,9 “Check Memory using Absolute Address” to check data                             
in RAM, EEPROM and PROM. 

Test 

REQID0104  CISW shall implement the PUS service 8,1 “Perform Function”.  Test 

REQID0105  CISW shall implement the PUS service 17,1 “Perform a Link connection test”.  Test 

Fig. 5  Example of requirements for CISW TC. 

Using this language it was possible to easily translate communication data related CISW requirements, like                             
ones visible on Fig. 5 into ASN.1 model (Fig. 6). Such model is readable even by nonprogrammers and                                   
provides short step between textual requirements and verifiable model. 

 

Fig.6   ASN.1 description of some of the TC sent to CISW by the satellite platform 

Although this model provides information only on logical components of data, it can easily be extended to                                 
describe physical representation. ASN.1 itself contains some standard encoding rules, like GSER, PER etc.                           
It makes creation of data representation model very easy  just information about used encoding standards                               
for already provided ASN.1 data models is needed. Yet in some situations, like with CISW, when some                                 
enforced encoding rules are outside of ASN.1 scope, standard solutions are not enough. Fortunately TASTE                             
provides another language, ACN, which was designed for ESA with purpose of describing encoding rules for                               
ASN.1 defined structures [5]. 

 

Fig. 7   ACN encoding rules for TC described in ASN.1. 



Figure 7 shows, how previous ASN.1 model can be enhanced into complete data representation model by                               
including of ACN encoding rules. With that addition, model contains enough information to be a source for                                 
generated detailed documentation, or encoding and decoding procedures for production code. 

In CISW development the ASN.1 compiler named asn1scc [5] was used, which started as part of TASTE                                 
(and it is still included in it) but now it is a standalone tool. It is being used to ensure consistency between                                           
ASN.1 model (based on requirements), flight and testing code (some C functions generated from model),                             
and required software interface documentation (partially generated from model). Consistency is achieved by                         
treating ASN.1 and ACN model files as source code with asn1scc calls being included in build process.                                 
Same files are also used to generate documentation (Fig. 8), which will become part of Interface Control                                 
Document (ICD)  required document, which shall allow other components’ providers to interface with CISW.                             
ASN.1 and ACN files will be included in that document as attachments (together with generated C header                                 
files), allowing their reuse by document receivers. 

 

Fig. 8  Documentation (in HTML format) generated from ASN.1. 

This functionality alone proves usefulness of ASN.1 modelling with TASTE tools, but, as usual, it turns out                                 
that once model is prepared a lot of new possibilities of its usage appear. CISW developers decided to use                                     
asn1scc and other TASTE Data Modelling Tools (DMT) in their internal software verification process, to                             
ensure higher code quality. At first asn1scc was used to generate encoder and decoder unit tests based on                                   
data model. Those tests help achieve high code and functionality coverage with close to zero additional                               
development costs. Still, highly regarding code (product) quality, development team decided to invest some                           
time to create own test framework based on possibilities provided by TASTE. 

DMT allows to create Python and SQL (among many others) bindings for structures described in ASN.1. In                                 
CISW testing SQL bindings are mostly used to log and later analyze telemetry reported by working software.                                 
Each received message can be stored in database, in decoded form, allowing execution of complex queries                               
 for example to calculate statistic of reported housekeeping parameters. Work needed to enable SQL                             
bindings was minimal, assuming Python bindings already existed. With them many additional tools                         
(including analytical) can be used by developers. At this moment they’re used for manual tests, but probably,                                 
together with code development, some automatic integration tests will be created and connected to internal                             
verification test suite. 

Python bindings turned out to be an essential help in development process. Basic bindings come at zero                                 
costs, but embedding them in build process, providing some utility functions and glue code for additional                               
modules required some moderate amount of work, but at this moment it seems it was a justifiable invest. 



 

Fig. 9  Example of testing capabilities available via Python bindings. 

Figure 9 shows how simple testing complex capabilities of CISW becomes with tests written in Python. All                                 
encoding and decoding is done by bindings generated by TASTE. Only connection methods were                           
implemented by hand. Additional gain is that this test can be used with many different real connections                                    
starting from unit tests, where whole CISW is embedded inside tests executable (no real connection is                               
used), through connecting to simulator and ending with real serial connection to development board with                             
uploaded CISW. This way the same test can be used by developer on his/her machine and for integration                                   
tests with real hardware. Such capabilities greatly enhance both development speed and code quality, which                             
is a rare combination, worth additional work. 

Working with TASTE proved that one of its biggest advantages is that it is a completely open source project.                                     
For example, at some point it turned out, that C code generated by asn1scc produces some warnings in                                   
older versions of C compiler. Those warnings were superfluous and not present in newer versions of                               
compiler, but old version was required by CISW target platform toolset. As CISW team aims at warning free                                   
code, this could become an issue, yet it was easily fixed by making a simple change in asn1scc (renaming                                     
some generated variables names). Not only it was possible ad hoc due to open source nature of TASTE, it                                     
was also easy to provide that change back to community and current version has this issue already fixed. 

CISW is still being developed, so it is hard to predict how much impact TASTE will finally have on this                                       
project, but at this moment it proved to contain useful engineering tools, which can greatly help in assuring                                   
quality, safety and maintainability of code. Those tools are more than just technology demonstrator. Without                             
them development process could not be at the same level of advancement at this point in time and they                                     
became its crucial parts. 

 
Conclusion and future 
 
TASTE is continuously being developed; currently several areas are being  explored: 

● Cosimulation at system level 
● Hardwaresoftware codesign 
● Traceability and links to requirement engineering 
● Supporting multicore architectures 
● Scheduling analysis, measurement of worsecase execution time 
● Generation of Spark/Ada 2012 
● Model checking and verification of properties 
● Integration with formal methods such as VDM and the Overture toolset [2] 
● Work on other domains of applications such as robotics systems (compatibility with environments                         

such as ROS or ROCK) 



 
There are other efforts in industry to cover some of these areas. Tools for system engineering, user                                 
requirement notation, use case maps etc.,  are all of interest for the future of the TASTE approach. 
 

 

Fig. 10  Overture showing coverage information after a validation experiment 

 

TASTE was created with the objective to develop software with a more scientific mindset than the classical                                 
editcompiledebug approach. To go further in that direction, some work is being done for example with                               
formal methods, in particular the suite of VDM languages [2,7]. It offers a very powerful approach to                                 
specification and implementation of software; it is used in several industrial areas but is mostly unknown to                                 
the space community. In the spirit of functional languages, but not limited to that paradigm, it provides a rich                                     
and compact syntax to express complex requirements. It forms the basis for formal analysis as well as                                 
pragmatic support for testing and validation. On the other hand it offers interactive prototyping and testing,                               
proof support and model checking, which is well suited to the verification of properties when using                               
domainspecific languages. Combining all these technologies in a consistent way might help making a real                             
step forward in the quality of software. This approach to modelbased systems engineering tries to build                               
upon the results from the domain of cyberphysical systems of systems, as promoted by the DESTECS                               
INTOCPS project [8,9]. In this project, we couple abstract continuous time models of the environment,                             
specified in Bond graphs, with discrete event models of the controller (spacecraft) using VDM, which allows                               
validation of system properties very early in the lifecycle, for example by means of 3D visualisation, as is                                   
shown in Figure 11. Currently, an early prototype is available where SDL models in TASTE, specifying the                                 
reactive systems behavior in terms of state machines, are enriched with VDM models in Overture [2] to                                 
express the algorithmic parts of the system behavior, whereby ASN.1 is used as the vehicle to exchange                                 
data types between these formal techniques.  



 

Fig. 11  Multidomain cosimulation of a Mars rover using Overture, developed in DESTECS [8] 
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ABSTRACT
Introducing iterative user interface design methods into the
development processes of safety-critical software creates
technical and methodological challenges. This article de-
scribes a new programming paradigm aimed at addressing
some of these challenges: interaction-oriented programming.
In this paradigm any piece of software consists of a hierarchi-
cal collection of components that can interact among them-
selves and with their environment, and its execution con-
sists in propagating activation through interactions between
components. We first describe the principles of interaction-
oriented programming, and illustrate them by describing the
basic components provided by the djnn programming frame-
work to create interactive software. We then show how in-
teractive programming provides a basis for formulating and
checking properties that capture requirements on interactive
components. The rest of the article is dedicated to example
design and development scenarios that illustrate how develop-
ment environments could leverage interactive programming
in the future so as to jointly address the requirements of mod-
ern user interface design and safety-critical software develop-
ment.
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INTRODUCTION
There are well established methods for developing safety crit-
ical software, such as those prescribed in the DO178 stan-
dards. In some domains, solutions have been developed to
apply these methods to user interfaces as well. For instance,
in aeronautics the ARINC 661 standard defines a collection
of well known interactive components (or widgets), such as
lists and menus. The protocol of these components is defined
in such a way that they can be developed and certified indi-
vidually, then reused at will. Industrial tools have even been
introduced to assemble them graphically, then generate the
corresponding code.

However, with ongoing plans to introduce more modern user
interfaces in these safety critical settings, new questions ap-
pear. Not only are the envisaged interactive components often
more complex and more difficult to specify than their pre-
decessors, there is also a trend toward interface customiza-
tion. Each aircraft or car manufacturer wants to have its
own distinctive signature, in terms of interaction and not only
graphical appearance. Consequently, they expect equipment
providers to deliver products whose behavior and appearance
can be modified. This means that one cannot rely solely on
industry standards that define interactive components, and
that methods must be proposed for designing and develop-
ing custom components, usually as a collaboration between
an equipement provider and an integrator.

The user interface industry has developed and validated meth-
ods for designing custom interactive software, and recent
R&T projects have shown that they can be applied success-
fully by the aeronautics industry. However these methods
involve various actors, including human factors experts and
designers, and are iterative by nature. Integrating them in
industrial development processes brings new challenges, and
appropriate tool chains are not yet available to support this. In
addition, the state of the art in interactive software develop-
ment has not yet reached the same level of maturity as other
branches of computer science. Interactive software is still
complex and costly to produce [18, 19], and model driven
engineering methods are not yet widely used. This does not
provide a favorable context for developing and validating cus-
tom components on a repeated basis. In particular, validating
interactive software that contains code written in a traditional
programming language is very costly.

In this article, we propose a theoretical and practical contri-
bution towards the resolution of these two issues: the conver-
gence of user interface design methods and critical software
development processes, and the validation of custom interac-
tive software. This contribution consists of a software execu-
tion model and a software architecture, whose combination
provides the basis of what we call interaction-oriented pro-
gramming. This allows to organize interactive software as a
collection of components whose execution can be analyzed
and whose definition can be incrementally refined. The pro-
posed execution model and component architecture are im-
plemented in a development framework named djnn, that
has been used successfully in various projects.



We first analyze reasons why it is important to account for
interactive software design methods. Doing so, we outline
requirements for future design processes and tools that would
combine the needs of interactive and safety critical systems.
We then stress the key role of software architecture and exe-
cution models in fulfilling these requirements. After review-
ing the state of the art on these topics, we introduce a theoret-
ical framework for interactive components that defines a soft-
ware architecture and an execution model. We then describe
the djnn framework and use a simple aeronautical component
(a primary flight display) and a series of idealized develop-
ment scenarios to illustrate how new processes and tools for
designing interactive software can be derived from this work.

ANALYSIS: WHY IS INTERACTIVE SOFTWARE SPECIAL?

Managing hidden requirements
One of the keys to successfully developing complex systems
is the management of requirements. Gathering requirements,
analyzing them, and tracing them in products represent an im-
portant part of the development effort. Various development
methods and tools have been proposed for this purpose, and
for supporting certification processes. Unfortunately, user in-
terfaces suffer from a fatal flaw with this regard: requirements
are impossible to gather in advance. There are hidden re-
quirements that keep appearing during design and develop-
ment processes, or even during the use of the final systems.
As an example, consider an equipment in which two critical
information fields are shown side by side. The two graphi-
cal representations may work perfectly when tested indepen-
dently, and when using them together visual interferences or
perceived inconsistencies between them can lead users to er-
rors in reading them. It can also be discovered later that one
of these representations does not work well when users are
in particular mental conditions that had not been anticipated.
Some of these emerging requirements, when not caught early
enough, can be palliated by operational procedures or user
training. Others can lead to safety flaws, or to outright rejec-
tion of the system by its intended users.

A day might come when cognitive sciences provide us with
enough knowledge that requirements can actually be gathered
in advance, but this is at best a long time goal. Until then,
the best known solution for securing requirements is iterative
design, a flavor of agile methods developed specifically for
interactive software. Users are presented prototypes created
by designers and usability experts, new requirements emerge
from the confrontation, and new prototypes can be designed.
During this process, two collections are incrementally cre-
ated: a collection of design elements, and a collection of re-
quirements. It is only after a number of iterations that the two
collections can be considered sufficient.

This iterative process is not intrinsically incompatible with
the processes used in safety-critical developments. Neverthe-
less, not only does it require dedicated tools for the initial
phases of design, it also interferes with further development
phases. In theory, user interface design could be done prior
to actual software development, so that the two processes are
independent. In practice however, design generally continues

in parallel with development, if only because hidden require-
ments keep showing up. This means that solutions must be
proposed to manage how the two processes interact with each
other.

Architecture of interactive software
The above provides a first set of requirements for tools dedi-
cated to user interface design in critical systems: an architec-
ture that allows the incremental refinement of design elements
and their execution, as well as the incremental definition of
requirements and their checking. The desire to create cus-
tomizable user interfaces highlights additional requirements:
the ability to separately define the behaviors of given compo-
nents, and check that the resulting user interfaces still meets
the requirements.

Interoperability and interchangeability of software compo-
nents is actually a universal concern, and it is the essence of
software architecture. There are various situations in which
programmers need to change how components are combined
in their software. This includes early design phases, in which
prototypes are developed. And this also includes various
refactoring phases, whether during initial development or
when the software is reused to create new products. Each pro-
gramming paradigm provides support for the interoperability
of a certain type of components, and therefore for software
architecture. For instance, functional programming makes it
easier to refactor software that performs computations. Simi-
larly process algebra makes it easier to refactor software that
reacts to input.

However, interactive software brings its own class of refactor-
ing. There are many different ways to design a user interface
for a given task. Take for instance the single pressing of a
button to activate a function. The button can just change state
visually, for instance by changing color. This atomic change
can be expressed through an assignment, either of the color
itself or of a symbolic state of the button. Alternatively, the
button can change with an animation. This would require the
state assignment to be replaced with a process that repeatedly
modifies the visual state, and that can continues in parallel
with further interactions. These two options are profoundly
different in existing programming paradigms, and this makes
refactoring costly. To compound matters further, user inter-
faces can make use of various interaction modalities such as
graphics, sound, touch input, speech input, eye tracking, etc.
Not only is each modality different from the others, they can
also be combined in ways that require to manage interaction
state, time intervals, and other complex execution patterns.

Various architecture patterns have been proposed to support
the interoperability of components in interactive software. As
exemplified above, some situations are easily expressed by
simple constructs in existing programming languages, such as
function calls, assignments or loops. Others require specific
solutions such as events, data-flows, state machines. This di-
versity of control structures and component interconnection
mechanisms, if not derived from a reduced set of primitives,
hampers interoperability. It also limits the formulation of an
execution semantics for programs, and therefore the ability to
formulate and check properties on software components.



Another consequence is in the complexity for programmers.
Each individual solution alleviates one source of complexity,
for instance state machines make it easy to manage state de-
pendencies. But as soon as several solutions are mixed, new
sources of complexity appear. For instance, languages such
are QML must be combined with traditional languages such
as C++ to produce full applications, thus reintroducing in pro-
grams the traditional architecture patterns and control struc-
tures. Similarly, combining state machines with dataflows
can rarely be performed without writing additional code in
a traditional programming language. Programmers therefore
end up manipulating independent concepts that each describe
part of the program execution, and that do not have a clear
common base.

Therefore, defining a minimal set of primitives from which
the behavior of interactive software can be derived is required
both for raising interactive software to the same level of man-
ageability as other types of software, and for supporting de-
velopment processes that rely on software refactoring.

STATE OF THE ART

Complexity
Various methods have been proposed over the last decades
to make interactive software development less complex. The
initial approach, mostly in the 1980s and 1990s, consisted
in creating User Interface Management Systems and user in-
terface toolkits on top of traditional programming languages.
This approach evolved into two areas of research. On the
one hand were collections of reusable interactive components
such as dialogue boxes and buttons, that evolved into special-
ized languages and standards such as XAML, XUL, QML
and ARINC 661.

On the other hand were software patterns aimed at managing
the architecture requirements of interactive software, that dif-
fer significantly from those of computation-oriented software.
Some of these patterns were aimed at separating the inter-
active code from the computation-oriented and data-oriented
code. This includes the Seeheim and ARCH architecture, and
the MVC, PAC and MVVM patterns. Other patterns were
aimed at providing better support for the execution and con-
trol patterns encountered in interactive software. This starts
with callback functions and the Inversion of Control pattern
that account for the prevalence of external control in interac-
tive software. But this also includes more complex patterns to
support state management (state machines, hierarchical state
machines, Statecharts) and dataflow (one-way constraints,
functional reactive programming [11], dataflow bricks [6]).
However, as mentioned previously, these solutions provide
only local complexity relief: they make some parts of the be-
havior easier to formulate, but the overall complexity remains
high because of how heterogeneous constructs are combined.

Development process
Historically, two approaches have been taken to develop
graphical user interfaces. The first consists in giving a func-
tional specification to programmers, and rely on their graph-
ical skills. The second, used when visual quality is desir-
able, consists in asking graphical designers to produce visu-

als then asking programmers to reproduce them in their pro-
grams. Having programmers recode the graphics like this is
both a waste of time and a cause of errors.

In contrast with this, traditional programmers can split their
tasks and work in parallel, relying on well supported inte-
gration techniques such as separate compilation and linking.
Interactive software developers could take advantage of sim-
ilar solutions. First, they could to split their tasks and work
in parallel with graphical designers. Then, they could also
split tasks during iterative design phases with users and hu-
man factors specialists. Solutions have been proposed for
this, leveraging on the similarities between the visual and log-
ical structure of a user interface and the abstract syntax tree
in traditional programming [7]. Considering graphics and in-
teractive behaviors as nodes of a tree allows to produce them
independently, then build the tree during a loading phase at
compilation or execution time, and execute the resulting tree.
This has been shown to yield significant improvements both
in terms of effort and development time span[?]. However,
this is only feasible for those parts of the software that can
be consistently modeled as nodes in the execution tree. To be
fully operational, this approach requires that 1OO% of pro-
grams can be modeled in the same framework.

Another approach consists in applying model-driven engi-
neering methods to interactive software. In this approach,
domain experts produce an abstract model of the task to be
carried out by users, then all or part of the software is de-
rived from this abstract model. However this only work for
some classes of user activities, and the resulting user inter-
faces are stereotyped and of limited usability. More practical
variants of this approach have also been tested, where the user
interface is expressed using a theoretical model, but it is pro-
duced through a design process rather than generated from a
task model. This allows to take advantage of the benefits of
model-driven architectures without losing the interface qual-
ity brought by the design process. For instance in the Pet-
Shop system, applications are created by combining Object
Petri Net models with Java code [20]. However, like above
this approach will reach its full potential only when 100% of
the user interface can be expressed in the model.

Code verification
During the last decades, various methods dedicated to the
verification of interactive system properties have been pro-
posed. The widely used approach relies on the test of the
final system (or a prototype of it) where end-users accom-
plish selected tasks in a dedicated environment. Observations
and measurements performed during the execution are used
to assess whether the system fulfills the expected properties
or not. The main drawback of this approach lies in its lack of
exhaustivity because properties cannot be checked against all
possible executions of the system. Moreover, this approach
can only be used after the development (the system must be
available) which constitutes another negative point: bugs are
way more expensive to locate and correct at this development
stage.

Model-based methods have been proposed to minimize these
issues: at design time, a model of the future system is built



and properties are verified by studies performed on the model
rather than on the final system itself. The underlying logic
behind this approach is that if a property holds on the model,
and if the final system is built according to the model, then
the property holds on the final system. Model checking aims
at verifying properties on the state-transition structure built
during the simulation of the model [20]. This is very similar
to methods used for safety-critical software (eg. Esterel: [4],
Scade: [12]). Alternatively, proof-based methods consist in
mathematically proving the preservation of properties (invari-
ants, pre-conditions and / or post-conditions) during succes-
sive refinements of the model (VDM: [10], Z: [16] or B: [2]).

Although they have been shown to be very effective, such
model-checking approaches suffer from their impossibility to
encompass systems with infinite number of states or transi-
tions which is a major limitation in the context of interactive
systems. Moreover, the assumption that ”the final system is
built according to the model” is hard to reach for reasons ex-
plained previously: no available model describes 100% of a
user interface. To palliate this, some authors introduce a sim-
plified model called the abstract user interface, in which the
totality of a user interface can be described. Properties can
be checked on this model. However, the process of convert-
ing this into a concrete user interface by adding code to the
abstract user interface limits the benefits that can be obtained
from the model based approach.

Abstract interpretation ( [9]) is a verification method based
on static analysis of the software code. An abstract semantic
is extracted from the code and can be used to verify proper-
ties and perform optimisations 1. This approach has histor-
ically been used for the verification of various properties of
programs. For instance, the static analyzer Astrée is able to
prove the absence of some types of run time errors on C pro-
grams ( [5]), and has been used in safety-critical projects. For
interactive properties, [17] first proposed this approach with
the objective of providing a unification canvas for verifica-
tion techniques. [14] described the verification of interactive
Web pages through the static analysis of the user interface
with ergonomic rules, encoded in UsiXML. [21] proposed
to build and exploit a graph-oriented semantics of an inter-
active device to support the verification of properties. In this
work, an existing device was analyzed and modeled with a
graph whose arcs represent user actions and nodes observ-
able states. It was then possible to compute some interactive
properties on the graph that can be interpreted at the device
level.

Abstract interpretation is an efficient application of the model
checking approach: work is performed directly at the low-
est level, that is the code of a concrete user interface, and
therefore avoids the limitations of using an abstract model.
Paradoxically, its main drawback for interactive systems lies
in the impossibility to access to higher levels of description of

1Concrete semantics are mathematically well defined objects that
explicit the meaning and the possible behaviors of the program.
Concrete semantics are generally not computable, which makes all
non-trivial properties undecidable. To avoid this, abstract semantics
are introduced as computable approximations of concrete semantics
in which more properties are decidable.

the interface, such as those contained in the abstract user in-
terface, because they usually have disappeared during imple-
mentation and compilation. It becomes impossible to check
properties that would be expressed at these higher levels, such
as “is this rectangle red when this button is pressed?”. When
the software is built with languages that do not capture the
appropriate level of information (e.g. C ot Java), the miss-
ing information must be introduced by producing a model by
hand.

Analysis and positioning
Most limitations of the state of the art derive from the same
cause: the limited power of expression of the patterns, lan-
guages and models available. Each of the available solutions
for expressing parts of interactive software have focused on
a given requirement that was not fulfilled by traditional pro-
gramming languages: supporting external control, or provid-
ing reusable dialogue boxes, or managing state, etc. Each
alleviates one source of complexity in interactive software,
but none provides a complete solution like modern program-
ming languages do for computation-oriented software. This
has consequences on software complexity, on development
processes, and on the ability to verify code properties.

In this article, we describe an alternative solution that over-
comes these limitations using an approach similar to Lustre
or Esterel [15, 4]: adopting an execution model dedicated to
the category of software that is being developed, and using it
to develop the totality of the concerned software. Like Lus-
tre and Esterel, the proposed model represents concurrency
with the concept of process; it can be seen as a third point
of view on interactive systems, more adapted to the need of
user interfaces and making interaction its core concept. In
contrast with them, its design integrates software engineering
concerns and particularly the need of strong conceptual unifi-
cation so as to support flexible development processes. More-
over, our work extends the approach followed by SCADE
Display concerning the verification capabilities of interactive
applications: when SCADE adresses low-level related prop-
erties (related to the concrete user interface: graphics, code
design) our approach also encompasses upstream user inter-
face design phases.

THE DJNN FRAMEWORK
djnn (available at http://djnn.net) is a programming
framework that relies on a model of interactive software in
which any program can be described as a tree of interactive
components [7]. Basic components such as variables, con-
trol structures, and graphical objects are assembled to pro-
duce bigger components, themselves assembled until produc-
ing the desired application.

The execution of a program is described by the interactions
between its components, and between them and the external
environment: components react to events detected in their en-
vironment, and may themselves trigger events. For instance,
a simple “fire alarm” program can be described with three
components. The first is activated when the temperature is
higher than a threshold, the second produces a sound when



activated and the third binds the two others by propagating
the activation of the first one to the second one.

Such a component model applies to input and output devices.
This allows djnn to provide support for a wide range of de-
vices, thus fostering the exploration of wide design spaces.
But djnn has also the expressive potential of a general pro-
gramming language. This contrasts with most user interface
programming frameworks, which provide reusable compo-
nents and architecture patterns that programmers combine
with code written in a traditional programming language. Not
only does djnn aim at covering 100% of the user interface
code, it also has the potential of describing the functional core
as well, thus covering whole interactive applications.

Theoretical foundation: interactive processes
Like functional programming languages, the conceptual
model of djnn relies on a very reduced set of basic concepts
from which all other language concepts and programmer-
defined concepts are derived. In functional languages the ba-
sic concepts are functions, arguments and function calls, all
rooted in the theoretical concept of lambda term from lambda
calculus. In djnn the basic concepts are components, names
and activation, all rooted in the theoretical concept of process
from process algebras [3].

While computations can be described as the evaluation of
lambda expressions, interactions can be described as the acti-
vation of interconnected processes: activation signals, called
events, propagate from one process to another according to
how they are coupled, thus producing the reactive behavior
of the system. This concept of interaction differs from that of
communication used in most process algebras, but it is never-
theless possible to express formal models of component acti-
vation in existing process calculi.

Process-based theories are general enough to model both
interaction-oriented software and computation-oriented soft-
ware [13]. But they can also model hardware devices, and
more generally the environment in which software applica-
tions run. This allows to model both the software and its di-
rect environment using processes, so that no special provision
has to be made for those part of the software that interact with
the environment and the user. Whole interactive applications
can therefore be described in the same language.

Core interactive components
Components are man-made embodiment of processes: engi-
neers build systems by assembling components, and the the-
oretical model of the resulting systems can be deduced from
those of the individual components and how they are assem-
bled. Programmers create interactive programs by instanti-
ating and assembling software components, and connecting
them to hardware components. The djnn environment pro-
vides them with basic software components to this effect:

• input components represent input devices, sensors, or ele-
ments of the execution context. Their activation is coupled
to external events. For instance, a mouse is an input com-
ponent made of smaller input components such as a buttons

and a position tracker. The position tracker itself has two
smaller input components named X and Y.

• output components represent output devices or abstractions
used to manipulate output devices. Their activation is cou-
pled to actions performed by the output devices. For ex-
ample, a graphical object is an output component and any
activation of it or of its sub-components triggers changes
in the display.

• data components represent the computer memory. The
smaller data components are named properties, and corre-
spond to the basic types. Properties have sub-components
named READ and WRITE, but like in traditional lan-
guages the usual practice is to reserve their use to specific
components such as operations as assignments. The activa-
tion of the WRITE sub-component is the basis of dataflow:
modifying a value can be used to trigger actions such as
copying the value to another.

• operation components represent the operations provided by
the execution platform, usually the CPU.

• control structure components represent the various ways
in which the activation of components can be controlled.
A control structure is a component that creates couplings
between other components when it is activated. Control
structures are the key to supporting the diversity of con-
trol patterns used in interactive software. Standard control
structures range from the binding, which creates a simple
coupling when it is activated, or the connector, which cre-
ates a coupling between a source and a copy instruction, to
finite state machines and Statecharts. Other control struc-
tures can be created at will by combining existing compo-
nents.

Assembling components
Complete applications and reusable components can be cre-
ated from the basic components described above. Basic com-
ponents are assembled to create large components that imple-
ment small interactors. These interactors can be assembled to
create larger interactors, and so on.

A simple button, for example, can be built from few graphical
shapes (rectangles, gradient, color, text, etc.) associated with
a switch and a finite state machine that control the appearance
of the button on mouse or touch events.
component button (posX, posY, label) {

component click
switch sw {

component released {
color c1 (200, 200, 200)

}
component pressed {
color c2 (100, 100, 100)
}

}
rectangle rec (posX, posY, 60, 30)
text t (posX + 15, posY + 15, label)
FSM fsm {

state released
state pressed
transition (released, press, rec, "press", 0)
transition (press, released, rec, "release", click)

}
connector (fsm, "state", sw, "state")

}



The button can then be inserted in a more complex component
to trigger a specific process through a simple binding.
component alarm {

button b1 (50, 50, "alarm")
beep fire_alarm
binding (b1, "click", fire_alarm, "start")

}

Verifying properties
The djnn framework gives a central role to the tree structure
of programs. In particular, mimicking graphical scene graphs
introduced a few decades ago, the tree structure is used to
express execution control. As a consequence it becomes pos-
sible to evaluate some properties by a static analysis of the
tree through pattern matching techniques such as XPath re-
quests. For example, the position of a graphical object in
the tree tells its relative position to other graphical objects
in the same component. Thus, a component situated on the
right of another one in the tree will be displayed on top of it
if their coordinates overlap. In the same way, djnn imple-
ments a flavor of graphical scene graphs in which graphical
style components such as color, opacity and stroke width can
be placed in the tree and act as context modifiers that affect
all the shapes that follow see Figure 1).

Figure 1. The order in the tree determines the graphical result

Pattern matching over the tree structure also enables the ver-
ification of component signature. This is a strong require-
ment in the context of the parallel development of complex
graphical user interfaces where it is needed to ensure that
a component respect a contract. Suppose for example that
one creates a new widget for a WIMP toolkit. It must then
be checked that this widget has a width and a height chil-
dren to ensure that it will be possible to connect them to the
layout system. Such a verification can be made by check-
ing that the XPath expressions expr=(/widget/width) and
expr=(/widget/height) over the component do not return a
null result.

Finally, the combination of Xpath queries to select elements
and simple algorithms over their results allows to address
more complex case such as the verification of the control flow
connecting a sensor to an alarm through various computation
units [8].

The djnn platform
djnn is currently available as a collection of libraries and as
an interpreter. The core djnn library manages the execution
model and the component system. The other libraries each
bring a collection of components dedicated to an interaction
modality: graphics, input, gesture, sound, etc. Programmers
can use these libraries like they would use any programming
framework, by writing programs that use the djnn API to
create components. The main difference with programming

frameworks is that they can create entire applications with
component-creation instructions only.

The core djnn library also implements parsers for external
component formats, currently XML and Json. Therefore, it
can be turned into a component interpretor that reads com-
ponents from files and executes them. Components can be
stored in multiple files in order to support various software
engineering processes. In particular, user interface design
teams like to store their graphical components in separate
files, so that they can be managed independently by graph-
ical designers and merged with the rest of the application at
run time only.

APPLICATION SCENARIOS
As an example development process based on djnn, con-
sider an aircraft manufacturer who wants to add new inter-
action functionalities on a particular cockpit subsystem. This
translates into various engineering phases at growing technol-
ogy readiness levels, from initial exploration to final system
development and validation. At lower TRLs, the design pro-
cesses will ideally reflect the state of the art of user interface
design. At higher TRLs, they must reflect the state of the art
of requirements engineering and code validation.

In this section, we illustrate a proof of concept experiment
where, after observing current practices and gathering re-
quirements from various actors of the aeronautical industry,
we tested the role that djnn could play in supporting work
at both lower and higher TRLs. The proposed scenarios are
very simplified and exaggerated compared to the original in-
dustrial situations. Nevertheless, they serve well to illustrate
the benefits that could be expected from a unified architecture
and execution model such as djnn’s.

Figure 2. A primary flight display



We focus here on the design process of a primary flight dis-
play (PFD) i.e. the instrument that displays the basic param-
eters of the plane. The PFD consists of six parts, as shown in
Figure 2:

• Attitude indicator: also known as artificial horizon, it gives
information about the pitch (fore and aft tilt) and roll (side
to side tilt) of the aircraft (center of the PFD)

• Altitude indicator (right side).

• Airspeed indicator (left side).

• Heading display: displays the magnetic heading of the air-
craft (bottom).

• Source selector buttons: control the display of radio mag-
netic indicators on the heading display (bottom).

• Alerts: alert messages show at the top of the display.

In this prototype, the attitude component has an additional
interactive part. Besides displaying altitude of the plane, this
component gives an indication on the target altitude for an au-
topilot. However, while in traditional cockpits, the pilot sets
the target altitude with a physical button in a distant part of
the cockpit, here the team wants to explore the direct manip-
ulation on the PFD.

In the following scenarios, a group of designers work with
test pilots to build a prototype of the graphical appearance
and the behavior of a new PFD, then the prototype is sent to
the equipment provider. There, a team of developer codes the
component and runs automated checks to verify that it has
the same behavior as the prototype, while another team runs
checks to verify properties that the component needs for in-
clusion in the existing code-base. Later, the component is re-
turned to the manufacturer, who can run automated checks to
verify its conformance with the original prototype. Through
the examination of the design process of two components, we
show here how the djnn framework supports concurrent de-
velopment and enables the verification and validation of com-
ponents.

Increasing fidelity
In the cockpit, the PFD is part of a more complex system of
sensors and physical interactors. The team needs to simulate
these subsystems in order to test and refine the behavior of
the attitude component. At low TRL, the sensors do not have
to be realistic. Therefore, the developer chooses to connect
the attitude indicator to the best compatible sensor at hand:
the motion sensor of his laptop computer. This allows him to
perform very fast development iterations. When he is satis-
fied with his work, the developer needs to send the component
to the lead developer who is in charge of integrating several
components. He dumps the component to XML format and
sends the resulting file to her. The lead developer just has to
drag and drop the XML file to her project directory, where
it will sit with the other components she has received. Run-
ning the master PFD component will load all the components
from the directory and execute them. She can use her own
motion sensor for testing the result. When the component is
mature enough, it can undergo a review process to migrate to

a higher TRL. The team in charge of this must test the com-
ponent against a more realistic environment: a simulation en-
gine controlled by a joystick. They save the component to a
directory on the test machine with the proper equipment. The
component needs to be adapted to the joystick used for pitch
and roll. If necessary, this can be done with a simple rewiring;
no modification is required in the component itself. But here,
the original developer has added an adaptive behavior to the
component: when a joystick is detected, the rewiring is per-
formed automatically, and the component can be used as is.

Concurrent development
A programmer and a graphical designer are producing a com-
ponent that displays the heading of the plane. Using the ini-
tial specification of the component structure as a contract,
they can work in parallel. While the designer is creating the
graphical skin and layout of the component, the programmer
implements the behavior. Here, she uses temporary graphics
that the graphical designer has sent earlier (Figure 3a).

When the graphical designer produces graphics, he saves
them in SVG format, an XML-based markup language sup-
ported by all major vector graphics authoring tools. In this
form, the graphics are considered as djnn components and
can be manipulated like any other component. The developer
can add them to the component he is working on, address
them by their name, and connect them to other subcompo-
nents. The names of graphical components in the SVG file
are the implementation of the contract between the graphical
designer and the developer.

When the final graphics are ready (Figure 3b) the graphical
designer can send them to the developer. Replacing the tem-
porary graphics with the new ones is as simple as replacing
the SVG file in the appropriate directory and restarting the
component. In our case, the graphical designer is late and
the component has already been sent to the project manager
who gives a demo to visitors in a few minutes. This poses
no problem: the project manager saves the file, restarts the
component, and the demo is ready.

Figure 3. Heading display: (a) sketch (b) final graphics

Parallel design
The altitude component, besides displaying the altitude of the
plane, also gives an indication on the target altitude for an au-
topilot. In traditional cockpits, the pilot sets the target altitude
with a physical button in a distant part of the cockpit. For this
new design, the team wants to explore the direct manipulation
on the PFD. During design sessions, the team has identified
several interaction variants. One prototype is developed in or-
der to explore them further with final users. The first option



relies on sliding the element that represents the target altitude
(the blue element in Figure 4a). The second option is an indi-
rect interaction on a smartphone-like number picker (Figure
4b). Switching from one option to the other is just a matter
of loading one component or the other. Here, usability tests
highlight manipulation problems with the first option and pi-
lots validate the second one.

Figure 4. Altitude indicators: (a) direct manipulation and (b) indirect
interaction for setting the target altitude

Component verification and validation
The airspeed component is subcontracted to an external
provider, who delivers it through a web site. The project man-
ager can either download the component and copy it in the
component directory as described above or have it loaded dy-
namically by referencing the URL in the program. He needs
to verify that the component will work well with the rest of
the application. To do so he runs an automatic verification
against the specification of the component, made of a col-
lection of properties. This verification is made on the XML
form of the djnn component, using pattern-matching tech-
niques. In the first version of the component, the “ground
speed” property is missing and the verification process au-
tomatically notifies it. After notifying the subcontractor, the
verification is successful for the revised version received, and
the component is loaded.

After the integration of all sub-components to the PFD com-
ponent, the lead developer verifies that all the control flows
are well wired. For example, she needs to be sure that alarms
will be displayed when required. She uses a program that
checks the control flow. The program traces back the con-
trol chain from “alert terrain” up to the “altitude” property
and signals that it is not connected to any value. In the mean
time, the verification raises a warning on the attitude compo-
nent: two dataflow chains are connected to the same value.
Thanks to these warnings, she can deduce than the simulated
value of the altitude is connected by mistake to the attitude
property, correct it and be certain that the alert terrain alarm
will be displayed when needed.

CONCLUSION AND PERSPECTIVES

In this article, we proposed a general framework that pro-
vides a semantical unification of control mechanisms in in-
teractive software. This framework relies on a framework
whose basic elements are processes, names and events, from
which more complex control structures can be defined (trans-
fer of control, activation, interruption, transfer of data, de-
terministic choice, state machines, etc). On the top of these,
a large collection of components have been designed for im-
plementing the pragmatic aspects interaction: management of
display (graphics, text, color, ...), input management (mouse,
multi)touch), sound, interface with various external devices,
etc. djnn is the name of the proposed implementation of
this framework. It provides interaction designers and soft-
ware developers with a platform for developing new compo-
nents (through a dedicated language), assembling them and
running the resulting application.

One long term objective for djnn is to provide the indus-
try with a tool for development of interactive applications
adapted to their domains. For this purpose, two major axes
must be studied: for the moment, djnn is not supported by an
IDE (Integrated Development Environment) similar to Code-
block, Eclipse or TopCased. Such tools useful for djnn users
must be developed, especially a graphical editor for djnn
models. The question of certification also has to be tack-
led. In the context of aeronautic, if djnn is used to develop
and verify aircraft on-board applications, it must comply with
some normative requirements related to software tool qualifi-
cation (as specified in [1]).

The framework encompasses mechanisms dedicated to the
expression and the verification of properties specific to in-
teractive applications. Based on abstract interpretation, this
allows to directly check on the code various properties at
design- or system-level. Abstractions based on the compo-
nent graph as well as the control flow graph retrieved from
the code allow to address properties related not only to low
level abstraction (code) but also to higher level (user interac-
tion). As all necessary information describing the interaction
is available at code level, our approach does not suffer from
classical impossibilities related to absence of high level infor-
mation for verification. Even if promising results for verifica-
tion have already been obtained, a lot of research remain to be
done to explore all the possibilities enabled by this approach.
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Making Full use of Emerging ARM- based Heterogeneous Multicore SoCs 
 

Abstract 
 
The complexity and pace of heterogeneous SoC architectures is accelerating at blinding speed.   While 

these complex hardware architectures enable product vision, they also create new and difficult challenges 

for the system architect. Running and debugging an Operating System and application code on a single 

core is child’s play.  This is also true for running Synchronous Multiprocessing (SMP) capable Operating 

Systems on homogenous multicore processors.   

The modern day SoC combines asymmetric multiple cores, graphics processing units, offload engines and 

more on a single piece of silicon.  This paper will discuss opportunities for system partitioning and 

consolidation, and some of the key issues and challenges of architecting, developing and debugging 

software on these complex systems. 

Introduction 
 

Heterogeneous multicore systems combining two or more different types of microprocessors (MPUs) and 

microcontrollers (MCUs) are quickly becoming the de-facto architecture in the embedded industry today. 

The quick emergence of these systems can be attributed to a number of factors, with one of the main one 

being consolidation. Over the last few years, there have been explosion of adoption in embedded designs 

of ARM cores. One of the benefits of using ARM is the ease with which SoC hardware designers can 

efficiently solve computing problems using systems of heterogeneous cores. Designers are able to allocate 

the right amount of compute for a given problem at the point that compute power is needed. And while 

SMP operating systems provide the infrastructure required to balance application workload symmetrically 

or asymmetrically across multiple homogeneous cores present in a multiprocessing system, in order to 

leverage the compute bandwidth provided by the heterogeneous processors present in the system, AMP 

software architectures should be employed.  

AMP architectures typically entail a combination of dissimilar software environments such as Linux®, a 

real-time operating system (RTOS), or bare-metal running on homogeneous or heterogeneous processing 

cores present in the SoC – all working in concert to achieve the design goals of the end application. Typical 

designs involve a software context on a master core bringing up a remote software context on a remote 

core on a demand-driven basis to offload computation. The master, remote processors, and their 

associated software contexts (i.e., OS environments) could be homogeneous or heterogeneous in nature. 

In order to effectively deal with the complexities of managing life cycle of several different operating 

systems on possibly dissimilar processors, and to provide an enabling Inter Processor Communications 

(IPC) infrastructure for offloading compute workload, new and improved software capabilities and 

methods are required. 

To ensure that developers can efficiently solve compute problems with heterogeneous ARM SoCs, it is 

important to standardize some of the frameworks used to engineer various aspects of heterogeneous 

ARM systems. The Multicore Framework described in the paper is a software framework that provides 

two key capabilities to AMP system developers: 1) It provides the remoteproc component and API for life 

cycle management of remote processors and their associated software contexts; and 2) It provides rpmsg 



component and API for Inter-Processor Communications (IPC) between OS contexts in the AMP 

environment. The Framework hides the complexities of managing heterogeneous hardware and software 

environments providing a simplified application level interface to the user. 

Compliance to open standards and adoption by the open source Linux community are important 

considerations when choosing an appropriate API for the multicore framework outlined in the paper. 

With these considerations, we choose the remoteproc and rpmsg API present in the Linux 3.4.x kernel and 

newer. The Linux remoteproc and rpmsg infrastructure was originally conceived and committed to the 

Linux kernel by Texas Instruments. The infrastructure allows Linux OS on a master processor to manage 

life cycle and communications with remote software context on a remote processor. However, the Linux 

provided infrastructure has some caveats; Linux rpmsg implicitly assumes that Linux will always be the 

master operating system and does not support Linux as remote OS in an AMP configuration. Further, the 

remoteproc and rpmsg APIs are available from Linux kernel space only – there is no equivalent API or 

library usable with other OSs and run-times. We developed a standalone library written in C language that 

provides a clean room implementation of the remoteproc and rpmsg functionality usable with RTOS or 

Bare-metal software environments, with API level compatibility and functional symmetry to its Linux 

counterpart. 

 

In the framework we are providing workflows to package Linux as a remote OS, and the required run-time 

infrastructure to boot Linux as remote OS in AMP configurations. And some of the configurations outlined 

in the paper are provided on this diagram: 

  



The framework finds direct applications and is well suited for un-supervised Asymmetric Multi-processing 

(AMP) architectures - where the participating operating systems run natively on the processors present in 

the system. It provides a simple and effective architecture allowing application developers leverage 

available compute resources without the complexities and overhead associated with supervised AMP 

architectures that involve a Hypervisor. Of course for applications that require isolation, and virtualization 

between the OS environments, a Hypervisor based supervised AMP architecture is the best fit.  

In supervised architectures, the participating guest operating systems run on virtual machines managed 

and scheduled by a Hypervisor which provides isolation, and virtualization functions for the guest virtual 

machines. This framework finds application in supervised architectures as well. It can be used from either 

the guest OS context for un-supervised management of heterogeneous compute resources present in the 

system. Alternatively, it can be used from within the hypervisor for supervised management of 

heterogeneous compute resources, allowing the hypervisor to supervise interactions between guest 

operating systems and remote contexts on heterogeneous cores. 

The multicore framework finds applications in various scenarios. In general, it is well suited in situations 

requiring off-load of compute functions to specialized processing cores present on a multi-processing 

chip. In most cases, when the remote compute resource is not needed it can be kept in a low-power 

standby state, and can be brought up on a demand-driven basis allowing for optimal power usage in 

power constrained applications. It promotes and simplifies for consolidation of discrete embedded 

systems onto a single multi-processing SoC. It enables an easy migration path for legacy software on 

legacy uni-core silicon to easily inter-operate with enhanced system functionality developed on newer 

and more powerful multi-processing chips. It also enables fault tolerant architectures; a Safety certified 

RTOS handling critical system functionality can manage a Linux context handling non-critical functions 

using MEMF. On failure of Linux based sub-system, the RTOS can simply re-boot Linux using the features 

of the framework. 

Development of AMP systems poses a unique set of challenges. System developers typically find 

themselves in situations having to simultaneously debug several different OS environments deployed on 

dissimilar processors on heterogeneous SOCs. Having a unified debugging environment with awareness of 

operating systems involved will enhance the debug experience and improve productivity. We will point 

out and describe debug tools that provide a unified IDE with OS awareness for all OS environments and 

supports a multitude of debug options; JTAG based debug for Linux kernel space, RTOS and bare-metal 

contexts, GDB based debug for Linux user space, and RTOS based applications. 

Software profiling could be a valuable tool to gain insight into how various applications deployed on 

heterogeneous operating systems interact with each other system during an AMP system’s run-time. Each 

OS instance is typically based of an independent clock source, and any profiling data collected within a 

given OS instance will be based on a time base that is local to the OS. Graphically visualizing and analyzing 

trace data collected from disparate OS sources in a unified time reference is a very powerful tool and 

allows users to gain interesting insights into complex interactions occurring in the AMP system. 

 
Summary 

 
The initial implementation of the Multicore Framework described in this paper was open-sourced under 
the OpenAMP open-source project with support for the Zynq 7000 SOC. OpenAMP as an emerging API 
standard managed under the umbrella of Multicore Association. This project is jointly maintained by 



Mentor Graphics and Xilinx. A current reference implementation of the proposed OpenAMP standard is 
available at: https://github.com/OpenAMP/open-amp. Mentor Embedded Multicore Framework (MEMF) 
is a proprietary implementation of the OpenAMP standard. 
 
MEMF is tightly integrated with and readily supported by all Mentor provided OS run-times. It supports a 
diverse set of ARM based SOCs and platforms. Using MEMF with Mentor’s tools and operating systems 
obviates users from having to design their AMP system from scratch. i.e., perform tasks discussed under 
the System level considerations section. Users can focus on AMP application development with one of the 
pre-canned reference configurations and later customize the system configuration to fit their needs.  
 

Keywords 
 

Multicore SoC, Synchronous Multiprocessing, Asynchronous Multiprocessing, AMP, SMP, ARM, Mentor 
Embedded Multicore Framework, MEMF, OpenAMP 
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1. INTRODUCTION
The execution of software tasks within real-time systems

needs to be analysed with respect to both functional and non-
functional constraints. In particular, real-time systems require
strict timing evaluations of the tasks execution behavior, es-
pecially their Worst-Case Execution Time (WCET).

Safety-critical embedded systems exhibit execution time vari-
ability, although classical real-time modeling and analyses ac-
count only for the worst-case. The systemic complexity of real-
time systems comes from the hardware complexity (e.g., cur-
rent multi-core architectures, shared resources such as mem-
ory, and speculative mechanisms like cache memories and
pipelines [13, 23]), the software complexity (e.g., multiple em-
bedded functionalities, wide interoperability, co-existence of
functional and non-functional constraints), complex system
component interactions and dependences, and diverse envi-
ronments. All of them participate to the variability in the
temporal behavior of the tasks.

Regarding this systemic complexity, probabilistic approaches
are emerging as effective alternative to deterministic approaches
for WCETs estimate. Their objective is to characterize sys-
tem execution variabilities with probability distributions that
associate to multiple possible WCETs their probability of oc-
curence within a system execution trace, on contrary to de-
terministic approaches that provide a single WCET estimate.
The challenge is to ensure the predictability based on the prob-
abilities. So far, the probabilistic approaches are less costly
in modeling task execution behavior and more accuracy with
regard real-time systems average performances compared to
the deterministic approaches.

This paper focuses on Measurement-Based approaches for
Timing Analyses (MBPTA). MBPTA relies on both execu-
tion time measurements and the application of the Extreme
Value Theory (EVT). Thus an exact model of both hardware
and software is not required, contrary to deterministic ap-
proaches, as the measurement of the actual system behavior
is sufficient. The MBPTA provides probabilistic Worst-Case
Execution Time (pWCET) estimates1 [6, 18]. Currently, the
main problem of the MBPTA is the lack of mathematical ro-
bustness since EVT actual application relies on non systematic
statistical approaches.

Hardware systemic effects in real-time systems [33] make
EVT applicability difficult with regard to its required theo-
retical hypotheses. It is necessary then to ensure the appli-
cability of the EVT to realistic embedded systems (non time-
randomized embedded systems). Moreover, real-time systems
require strong guarantees on the pWCET estimates thus, diag-

1pWCETs are alternative to deterministic Worst-Case Execu-
tion Times as distributions with multiple extreme execution
times, each with a probability of happening.

nostic tests have to be introduced to check hypotheses for gen-
eralizing the EVT applicability to any embedded systems [37].

In this paper we propose the logical workflow that checks
the applicability of the EVT for the pWCET estimation prob-
lem. The proposed framework is a DIAGnostic tool for the
eXTReMe value theory, named diagXtrm. The tool applies
tests and makes a decision on the reliability of the resulting
pWCET estimate without human intervention. The objec-
tive is to establish a systematic and reproducible process for
estimating the pWCET which is able to cope with both per-
formance and safety of existing as well as future real-time
systems.
Organization of the paper. In Section 2 we relate the
WCET problem, especially for the MBPTA, by depicting ex-
isting approaches and stressing the novelty of the proposed
framework. In Section 3, we set the basics of the real-time
probabilistic modeling and focus on the theoretical aspects
of the EVT applicability. Section 4 presents the main steps
of the diagXtrm tool, and Section 5 develops the tests that
compose the tool. In Section 6 diagXtrm is applied to a re-
alistic hardware platform running a set of tasks. Section 7 is
for conclusions and future work.

2. RELATED WORK
Estimating the WCET of a task for hard real-time systems

has been addressed in many ways [40]; all differ depending on
the kind of hardware architecture.

Platforms are said to be deterministic whenever the execu-
tion time of a task is the same for the same input data. They
are said to be non deterministic instead, whenever the execu-
tion time varies for the same input data. The non determin-
ism comes from hardware components like cache memories,
pipelines, etc. [35].

Static deterministic timing analysis and measurement-based
deterministic timing analysis are effective for deterministic
platforms. Static approaches provide safe WCET estimates
as they are proved to be the worst. They rely either on an
exact modeling of the system and a complete exploration of all
its state or on a simplified version where some conditions are
respected or even enforced. Measurement-based approaches
provide timing behavior upper-bounds as distributions that
overcome most of the possibilities. That is the reason why
static approaches are preferred on measurement-based ones
to give high guarantees on the system constraints. Neverthe-
less, when it comes to non deterministic architectures, static
approaches produce pessimistic WCET estimates due to the
overall systemic complexity; the analytical modeling phase is
more and more difficult, the models confidence decreases, and
the resulting estimates deteriorate [7]. However, tools based
on the static modeling of both hardware and software aspects



are able to provide safe but pessimistic WCET estimates be-
cause they take into account the worst-case at every modeling
step. The estimates could be far from actual measurements
and hardware performances.

The non determinism resulting from enhanced performance
and the consequent execution time variability question the
deterministic approaches. Facing this new challenge, proba-
bilistic approaches tend to emerge: they can be either Static-
based [18, 9] or Measurement-Based Timing Analyses
(MBPTA). diagXtrm is a MBPTA approach and is able to
capture well the systemic effects together with the coherence
mechanisms between shared resources. As it relies on end-
to-end measurements of the task execution time, it does not
require a huge amount of information or exact hardware nor
software models. The probabilistic worst-case profiles are de-
rived on the basis of the set of execution time measurements.
Nevertheless, as MBPTA relies on measurements, the lack of
completeness of experimental conditions can lead to unsafe
pWCET estimates due to unobserved execution conditions.

2.1 MBPTA approaches

Probability

Execution
time
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Theoretical distribution

Minimal
measure-
ment

WCET
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surements

Safety
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Figure 1: Overview of the WCET problem. Example of a
timing probabilistic profile of a task.

The objective of MBPTA approaches is to derive probabilis-
tic profiling of the timing behavior of a task, like in Figure 1,
through a statistical modeling. Such a profile has to tend to
the true theoretical distribution of execution times. In partic-
ular, MBPTA approaches are interested in modeling extreme
execution times, for characterizing the worst-case, i.e. the val-
ues far from the average execution times, and potentially not
measured. The probabilistic theory that focuses on extreme
values and large deviations from the average values is the Ex-
treme Value Theory (EVT) [20].

The EVT is a probabilistic paradigm that aims at predicting
the improbable, i.e. it enables to derive the probability of rare
events without requiring too many simulations. The EVT for
estimating the WCET of a task in a scheduling analysis is
first used in [19] where the Gumbel distribution is applied for
modeling the distribution of execution times. A first algorithm
for applying the EVT appeared in [25]. It extracts values from
a sequence of execution time measurements according to the
block maxima paradigm2 and fits a Gumbel distribution to
the measurements. Then the fitted distribution is compared
to the measurements through a χ2-test to confirm the model,
otherwise the process is applied again for another number of
extracted values.

The EVT applicability for embedded systems is first ques-
tioned in [33] and in particular about the statistical indepen-
dence and the continuity of the execution time measurements.
Two directions emerged from those questions: 1) the random-
ization of the hardware for solving the independence problem.

2The sequence is divided into blocks of same size and only the
maximum value of each block is retained.

Within the PROARTIS project first and then the PROXIMA
project [1, 2], the EVT is applied to artificial (ad-hoc) random
systems (Random Replacement policies in cache memories),[4,
15, 17]; 2) the elaboration of a methodology for guarantee-
ing the applicability of the EVT from the strong fundamen-
tals of its mathematical hypotheses [5, 8, 31, 37] and derive
reliable pWCET estimates from any real-time system (time-
randomized as well as non time-randomized).

The approach proposed in the diagXtrm tool is a MBPTA
approach and aims at solving the problem of the EVT appli-
cability for real-time systems (both time-randomized and non
time-randomized systems) by pursuing the works in [19, 25,
33, 37]. It represents the first structured and formal approach
designed as a logical workflow that evaluates the EVT hy-
potheses for guaranteeing the MBPTA estimates. diagXtrm
applies tests proved to be efficient for the considered analy-
ses and an automatic parameter estimate process to provide
pWCET estimates with an associated confidence for the EVT
hypotheses.

3. PROBABILISTIC MODELING
The EVT relies on measurements of the system performance

parameters, here the execution time of a task τ , for estimating
extreme behaviors, where the worst-case should lie. The vari-
ability of the execution time of a task motivates its definition
as a random variable3, denoted by C, which picks different
possible values within the set4 Ω ⊆ N, i.e. the distribution
support of execution times the task τ can take to complete
with a certain probability. The definition of a random variable
stands for the uncertainty that lies on the uncertain systemic
effects that occur in real-time systems. Each measurement
Ci at discrete time instant i, is stored in a trace T such that
∀i, T (i) = Ci. The length of T is denoted by n.

Three equivalent representations are used for C, each is a
probability distribution function: for all possible execution
time c ∈ Ω, it exists i) the cumulative distribution function
(CDF) FC(c) = P (C ≤ c), ii) the complementary cumulative

distribution function function (CCDF) F C(c) = P (C > c) =
1−FC(c), and iii) the probability mass function fC(c) = P (C =
c) (for a continuous random variable it is fC(c) = d

dc
FC(c)).

The discrete random variable C, based on the execution time
measurements is said to be the Execution Time Profile5 (ETP)
of the task τ .

One key element about the pWCET relates to its theoretical
existence: the pWCET exists but cannot be observed since it is
the distribution of extreme execution times that are very hard
to measure and potentially impossible to observe. To measure
execution times with very low probability (e.g., 10−9), it would
require a large amount of simulations and well defined exper-
imental conditions. Moreover, the worst-case conditions have
to be guaranteed to be explored making such approach very
costly in terms of time and exploration conditions. The lack
of completeness of the experimental conditions cannot ensure
the existence of pWCET estimates directly from ETPs.

3A random variable is a variable whose value is subject to
variations due to chance, i.e. randomness, in a mathematical
sense. Generalizing, also non-variable execution time could be
represented as random variables, with only one value and the
probability of happening equal to 1. Since execution times
are from measurements, they results into empirical random
variables.
4Execution time can assume only discrete values as multiple
of the system clock.
5ETPs are discrete distributions since task execution times
can only be a multiple of the system clock.
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Figure 2: The pWCET estimate problem with the relationship
between exact pWCET and pWCET estimate. An example
of safe estimate Cλ with respect to the exact C∗.

For formally defining the exact pWCET, we introduce the
partial ordering of random variables by comparing their CCDF.
Thus a random variable Ci is greater than or equal to a Cj ,
Ci � Cj , iff P (Ci > c) ≥ P (Cj > c), for every c ∈ ΩCi ∩ ΩCj .
Thus, the exact pWCET is the least upper random variable
over all the ETPs for every execution condition. We denote
the exact pWCET of a task by the random variable C∗. Since
exact pWCETs are impossible to obtain, as for any timing
analysis approaches, we focus on pWCET estimates Cλ. A
pWCET estimate Cλ has to be safe i.e. has to be greater than
C∗, so Cλ � C∗ like in Figure 2. The statistical modeling
method from the EVT is the process we apply to achieve Cλ.

3.1 Reliable pWCET estimates
The EVT is a widely used theory for predicting the improb-

able, i.e. giving probabilities of occurrence to extreme behav-
iors.

Under the hypothesis of independent and identically dis-
tributed (iid) execution time measurements C1, . . . , Cn from
an average discrete cumulative distribution function FC . The
EVT ensures that the limit law of the maxima, i.e. the ex-
treme execution times, denoted by Mn = max (C1, . . . , Cn)
is a Generalized Extreme Value Distribution (GEV) Hξ un-
der norming constants such as the shape parameter ξ ∈ R,
the mean µ ∈ R > 0 and the variance σ2 ∈ R > 0 of the
extreme execution times, with the Fisher-Tippett-Gnedenko
theorem [20, 24].

This result implies that FC belongs to the Maximum Do-
main of Attraction of the GEV Hξ, denoted by
FC ∈ MDA(Hξ). Given C, whenever the iid hypothesis is
respected and under good norming constants, the GEV is an
appropriate distribution for the extreme execution times.

Depending on the value of ξ, the GEV can be either the
Frechet (ξ > 0), the Gumbel (ξ = 0), or the Weibull (ξ <
0) distribution. In previous works the pWCET distribution
has been assumed to be Gumbel, while here no assumption
is made about the resulting GEV distribution and so there is
no restriction on the values that ξ can take. The objective
of the study is to get reliable pWCET estimates so that the
distribution has to best-fit the measurements: the Gumbel
can result from the best-fit or it can be imposed afterwards.

Considering C and FC , the CDF of the peaks C − u above
the threshold u knowing C > u is

Fu(c) = P{C ≤ u+ c | C > u} = 1− 1− FC(u+ c)

1− FC(u)
. (1)

If FC ∈MDA(Hξ) then the limit law of the peaks is given by
the Pickands theorem [36]:

Theorem 3.1 (Pickands theorem). FC ∈ MDA(Hξ)
iff

lim
u→c0

sup
0≤c≤c0−u

|Fu(c)−GPDξ(c)| = 0, (2)

where c0 is the potential WCET of τ . GPDξ the Generalized
Pareto Distribution with the same shape parameter ξ as Hξ,
and Fu from Equation (1).

The Pickands Theorem states that for values above a thresh-
old, the nearest the threshold is to the actual WCET (which
is the task execution time right end-point for increasing val-
ues) the more the distribution of execution times tends to a
Generalized Pareto Distribution.

Definition 3.2 (Generalized Pareto Distribution).
The distribution function GPDξ is the Generalized Pareto
Distribution (GPD) defined as:

GPDξ(c) =

{
1− (1 + ξ × (c− u)/αu)−1/ξ if ξ 6= 0

1− exp(−(c− u)/αu) if ξ = 0,
(3)

with αu = µ−ξ(u−σ2), and defined on {c, 1+ξ(c−u)/αu > 0}.

This fixes the basis of the EVT POT approach which con-
sists in extracting the execution time measurements from T
above a threshold u and fitting the experimental CDF with the
continuous distribution function Pξ. By applying the POT ap-
proach to the trace of execution times, the pWCET estimate
which is the distribution of extreme execution times Cλ is a
GPD.

For applying the EVT, one needs i) independent and ii)
identically distributed execution time measurements from iii)
a distribution in the Maximum Domain of Attraction of a
GEV of shape parameter ξ. Those three elements are the
hypotheses to check for having reliable pWCET estimates.

In practice, the independence hypothesis is difficult to as-
sume because of history dependence in memory components
as explained in Section 2.1. Moreover, the true distribution
of the execution times is unknown and prevents from proving
that execution times are identically distributed from a distri-
bution in the Maximum Domain of Attraction of a GEV.

Further researches in the EVT domain proved the conver-
gence of the Fisher-Tippett-Gnedenko theorem for stationary
execution time measurements under two conditions [29, 30],
and so the applicability of the EVT in the more general sta-
tionary case. The conditions especially relax the strict inde-
pendence of the measurements and it is not necessary to know
precisely the probabilistic law of the execution times as soon
as they are stationary.

The strict hypotheses that prevented EVT applicability to
non time-randomized embedded systems (todays systems), no-
tably the independence, are so released allowing to apply the
EVT to the pWCET estimate problem for any real-time sys-
tem (both time-randomized and non time-randomized).

4. A DIAGNOSTIC TOOL FOR ESTIMATING
THE PWCET WITH THE EXTREME VALUE
THEORY

The main challenge of the MBPTA is the definition of a
systematic approach that provides reliable pWCET estimates
with the EVT. The reliability of a process comes from its
definition: it is crucial to well identify the hypotheses and to
choose both powerful tests and a proper parameter estimate
process. A test is said to be powerful if it is able to reject a
hypothesis when it is known to be false but also not reject it
when it is known to be true. The reliability of the pWCET
estimates holds if every hypothesis of the EVT is verified.
Making use of the well defined tests and a proper estimate of



the distribution parameters, here ξ and αu, the reliability can
be guaranteed.

The diagXtrm, by construction tends to reduce the sources
of uncertainty that lie on the execution time measurements to
fulfill the EVT hypotheses and the selection of the thresh-
old [38]; moreover it quantify the estimates confidence. In
that sense, the tool is a diagnostic of the stastical modeling
with the EVT.

The tool is designed as a logical workflow which checks the
applicability of the EVT with specific tests. For an input
trace of execution times, diagXtrm provides a pWCET es-
timate Cλ and an associated confidence with regard to the
EVT applicability hypotheses. The hypotheses to check on
the trace of execution time measurements are: 1) stationar-
ity, 2) short range dependence, 3) local independence of the
peaks, 4) empirical peaks over the threshold follow a GPD.
The four hypotheses define the hypothesis testing blocks in-
cludes in the main steps of the tool, described in Figure 3. In
this section the diagXtrm is presented at a high level; the
tests that compose it will be detailed in the following section.

Trace T

1) Stationarity

2) Short range
dependence

Threshold
selection

3) Local
dependence of

the peaks

Peaks over
the threshold
are iid from

a GPD

4) Matching Reliable

STOP

STOP

STOP Not reliable

yes

yes

no

yes

no

ξ, αu

no

no

yes

no

Figure 3: Decision diagram of the diagXtrm enlisting the
tests and actions applied.

4.1 Design of the tests
diagXtrm is mainly based on the hypothesis testing the-

ory that studies the rejection of a null hypothesis H0. If H0

is not rejected it is a necessary but not sufficient condition to
satisfy H0. The first step is to select an appropriate metric
that evaluates the possibility of rejecting H0, then the met-
ric is applied to the trace T of execution time measurements
returning a result through which making a decision about H0.

In the design phase of the test, training sets are used to
quantify the power of the metric for detecting H0. The focus
is on the conditional probability to reject H0 knowing that H0

is true p− value = P (H0|H0), which is the false positive rate
of the test. The arbitrary threshold to reject H0 is the value
α defining the confidence interval for the test, hence for the
hypothesis testing. A test may have a symmetric confidence
interval, a two-sided test, otherwise this is a one-sided test. If
the result of the applied metric to T is within the confidence
interval, then H0 is not rejected. Usually, α is chosen near
0 e.g., 0.01, 0.05 or 0.1, and corresponds to as many critical
values cvs like in the two-sided test illustrated in Figure 4. If
the result is in the darkest area, then H0 is rejected but one
has α× 100% of rejecting wrongly H0.

We consider the possibility to fulfill H0 [26], and use a fuzzy
logic approach to test hypotheses. As the possibility to ful-
fill H0 increases and so the confidence in H0, the necessity to

p − value = P (H0|H0) =
1

σ
√

2π
exp

(−x2

2σ2

)

result−cv 0 +cv

α

Figure 4: Hypothesis testing with a metric following a Gaus-
sian law. (cv: the associated critical value to the α false pos-
itive rate)

reject it decreases. Fuzzy logic is widely used to build deci-
sion making processes and is called robust statistics [12, 22,
26] when applied to statistics by quantifying the uncertainties
associated to classical statistical approaches.

For instance, instead of having or not a stationary trace of
ETs, fuzzy logic quantifies whether the trace is near or far
from the stationary model. The nearest it is the more confi-
dence there is in the EVT applicability. Instead of one α level,
4 values are selected so that it is possible to either reject H0

or accept H0 with low, medium, high and full confidence level,
corresponding to the p− values 0.01, 0.025, 0.05 and 0.1. To
resume, the approach we are formalizing for the pWCET esti-
mation with EVT defuzzifies the statistical test by associating
fuzzy p − values to human-understandable confidence levels,
depicted in Figure 5, and ease the decision making.

Confidence level cl

p − value|
result

0.01|
cv4

0.025|
cv3

0.05|
cv2

0.1|
cv1

1

2

3

4

Figure 5: The Defuzzification is a function from fuzzy p−
values (or equivalently their associated critical value (cv)) to
confidence levels in {0; 1; 2; 3; 4}. For increasing confidence
levels, H0 is rejected or H0 is accepted with low, medium,
high and full confidence.

4.2 Decision making process
Each hypothesis testing block, blocks 1), 2), 3) and 4) in

Figure 3, provides a result about the trace of execution times
and so a confidence level as in Figure 5. Those confidence
levels aims at reliable pWCET estimates with the EVT with
regard to its hypothses applicability. One purpose of the fuzzy
approach is to have a common scale for every test in order to
aggregate each confidence level and to get a final confidence
level on the pWCET estimate with the EVT. There exist many
ways to aggregate the confidence levels, but one requirement
is to have an aggregation in agreement with the tool speci-
fications. In particular, the reliability is ensured when every
hypothesis is guaranteed.

In the proposed process, there are four hypotheses to check:
1) the stationarity, 2) the short range dependence, 3) the lo-
cal dependence of the peaks and 4) the matching with a GPD
model. The final confidence level is denoted by clreliability as
a possibility metric to fulfill the whole process. Consequently,
the confidence levels associated to each hypothesis are: cl1,
cl2, cl3 and cl4. To statisfy the reliability requirement, if one
confidence level is zero then the reliability has to be zero too.
The confidence in the model is the barycenter of all the con-
fidence levels so that it leads to Algorithm 1.



Algorithm 1 Aggregation algorithm of the confidence lev-
els in the diagXtrm

1: confidence levels← [cl1, cl2, cl3, cl4] . Previous analyses
2: procedure Aggregation(confidence levels)
3: if min(confidence levels) ≥ 1 then . Reliability
4: clreliability ← (cl1 + cl2 + cl3 + cl4) /4 . Reliability

levels
5: else
6: clreliability ← 0
7: end if
8: end procedure

Let H0: the EVT is applicable to T be a null hypothesis,
then clreliability gives the confidence in fulfilling H0. With re-
gard to Algorithm 1, either H0 is rejected for a null clreliability,
or H0 is accepted and in this case the higher clreliability is, the
more confidence in the model there is and thus in the pWCET
estimates. The power of the tool to fulfill H0 and to provide
reliable pWCET estimates, depends also on the selected tests
for each hypothesis. The diagXtrm is a high level methodol-
ogy to provide reliable pWCET estimates, and one may easily
replace a selected test in its respective hypothesis testing block
by a better one thanks to new research works in time series
(trace) analysis.

5. TESTS DETAILS

5.1 Stationarity analysis
Stationarity is an essential property in statistical analyses

but it is usually assumed. The problem is even more diffcult
because there is no systematic way to study stationarity and
it often relies on subjective analyses [34].

Definition 5.1 (Strictly Stationary Trace). A
trace T = (C1, C2, . . .) is a strictly stationary trace if for all
j, k, l, the set of execution times Cj , . . . , Cj+k has the same
probabilistic law as the set Cl+j , . . . , Cl+j+k.

If the execution time measurements in T are such that they
respect Definition 5.1, then there is strong evidence that mea-
surements are identically distributed (id) from the same prob-
abilistic law (e.g., Gaussian, Gumbel, Weibull etc). As prob-
abilistic laws are continuous, the stationarity analysis also
addresses the problem of continuous execution times, even
though execution times are discrete variables (see footnote 4).
The stationarity analysis in the diagXtrm applies a test to
check Definition 5.1.

As in practice the law of the execution times is unknown,
we consider that a trace of execution times, at each discrete
time instant t, can be written as the sum of a deterministic
trend f(t), a random walk rt and a stationary residual εt [27]:

T (t) = f(t) + rt + εt. (4)

rt is a random walk and may be written rt = rt−1 + ut
where ut is a noise following a Gaussian distribution of mean 0
and unknown standard deviation σu. The Kwiatowski Philips
Schmidt Shin (KPSS) test [27] checks whether T has a null
deterministic trend and a null random walk for stating T . In
the case of a null deterministic trend, the KPSS test consists
in testing the null hypothesis H0 : σu = 0.

The KPSS test is applied to T and its confidence level is
evaluated on the basis of the KPSS result and the associated
p− values as in Section 4.1, of the test detailed in [27].

5.2 Independence analysis
The independence analysis focuses on the short range de-

pendence that refers to Berman’s condition, or condition D
in [29, 30]:

Condition 1 (D(un)). For any integers p,q and n: 1 ≤
i1 < . . . < ip < j1 < . . . < jp ≤ n such that j1 − jp ≥ l we
have

|P ({Ci, i ∈ A1 ∪A2} ≤ un)−
P ({Ci, i ∈ A1} ≤ un)P ({Ci, i ∈ A2} ≤ un) | ≤ αn,l, (5)

where A1 = {i1, . . . , ip}, A2 = {j1, . . . , jp} and αn,l → 0 as
n→∞ for some sequence l = ln = o(n).

For distant enough measurements, here l as the distance,
and with un a sequence in the Fisher-Tippett-Gnedenko the-
orem, Condition 1 assures that the limit law of the maxima is
still a GEV. In this view, blocks of execution time measure-
ments of length l are considered, and their degree of correla-
tion is evaluated with the Brock Dechert Scheinkman (BDS)
test [11]. By choosing different values of length l, the degree
of correlation varies and enables to identify particular pat-
terns within the trace of execution times; Condition 1 holds
for decorrelated blocks. The BDS test consists in testing the
null hypothesis H0 : T is an iid trace [11, 34] on the basis of
the correlation integral. It allows to evaluate the statistical re-
lationship between consecutive measurements (independence)
and if they belong to the same distribution (identical distri-
bution).

Definition 5.2 (Correlation Integral). The correla-
tion integral CIl,n(ε) at embedding dimension l for a distance
ε is

CIl,n(ε) =
1(
n
2

)
∑∑

1≤s<t≤n
χε(||Cls − Clt||). (6)

For an iid trace T :

∀ l, ε, CIl − CIl1 ' 0 for n→∞. (7)

The correlation integral measures the degree of correlation
between patterns (Cls and Clt) of different lengths l within
T depending the absolute distance ε and if it tends to the
correlation integral of 1-length patterns (CI1) to the power of
l then the short range dependence is accepted. The result of
the BDS test follows a Gaussian law of mean 0 and standard
deviation 1 giving the critical values [11] and so the associated
confidence levels as in Section 4.1. The BDS test is applied in
practice as in Algorithm 2.

Algorithm 2 Application of the BDS test [10]

1: procedure IndependenceAnalysis(T )
2: for ε ∈ { 1

2
sd(T ), sd(T ), 3

2
sd(T )} do . Correlation

distance
3: for l from 2 to length(T )

200
by 1 do . Embedding

dimension
4: results.append(Defuzzification

(BDS(T , ε, l))) . results is a list of the BDS test results
5: end for
6: cl2 ← sum(results)

length(results)
. Aggregation of the results

7: end for
8: end procedure



5.3 Extreme independence
The reliability of the statistical model of the extreme ex-

ecution time measurements depends on their independence.
The extreme independence analysis depends on the selected
threshold u like in Figure 3 that gives the peaks of execu-
tion time and stresses the presence of unreliable peaks that
directly impact the GPD law. For instance, if an extreme
burst of measurements occur, like many tasks running in par-
allel on different cores trying to access a memory unit at the
same time, then all the measurements in or close to the burst
depends on this same rare event. The peaks close to the burst
are dependent endangering the pWCET estimates reliability,
as formalized in condition D′ [29, 30]:

Condition 2 (D′(un)). The relation

lim
i→∞

lim sup
n→∞

n

[n/i]∑

j=1

P (C1 > un, Cj > un) = 0, (8)

has to be verified.

Condition 2 imposes that for one measurement over the
threshold then the probability the following execution times
are over the same threshold has to tend to zero. If the re-
lation holds for the trace of execution times then the peaks
over the threshold are independent i.e. there is no cluster of
extreme execution times. It is important to note that the
relation highly depends on the selected threshold.

The extreme index (EI) θ, θ ∈]0; 1] [20], indicates the degree
of clustering of the peaks over the threshold. The EI expresses
the probability to have a peak distant enough from another
peak to be independent. In presence of bursts of peaks this
probability decreases in function of the bursts size. The more
the peaks are distant from each other the more the probability
and so the more EI is near 1. According to the GPD idea,
the proability of occurence of a peak decreases exponentially
leading to an estimator of θ [21].

We build the set of inter-arrival times Ti, defined by the
amount of measurements between two peaks, that follow an
exponential process of intensity θ. The distribution of the
inter-arrival times provides the unbiased estimator [21]:

θ =
2
(∑k−1

i=1 (Ti − 1)
)2

(k − 1)
∑k−1
i=1 (Ti − 1)(Ti − 2)

, (9)

with k the number of peaks over the threshold also called the
tail sample fraction standing for the number of execution time
measurements that belong to the tail distribution.

Condition D′ is a fuzzy condition, such that θ has to be
near 1 in order to accept it. Hence, there is no systematic
condition to conclude about the value of θ so that we define
the confidence levels in Table 1 as in Section 4.1.

θ ∈ [1.00;0.95[ [0.95;0.90[ [0.90;0.85[ [0.85;0.80[ [0.80;0.00[
cl3 4 3 2 1 0

Table 1: Confidence Levels of the Extreme Index.

As θ is the inverse of the mean size of the clusters, choosing
0.80 as the least bound on θ prevents from big clusters, so
from unreliable pWCET estimates.

5.4 GPD parameter estimate and model match-
ing

Independent peaks are extracted from the trace of execution
times relatively to the selected threshold u, and are stored in a
list peaks. It rests to estimate the parameters ξ and αu of FCλ

in Equation (3). For this purpose, we choose the Maximum
Likelihood Estimation [20] method that performs well as it
converges to convenient parameters.

Considering the set λ = {ξ, αu} of the parameters to es-
timate according to a GPD, the Maximum Likelihood Esti-
mation is an optimization problem that consists in exploring
values of ξ and αu and find λ that maximizes:

`(λ, exc) =





ln
∏k
i=1

1
αu

(
ξ × peaks[i]−u

αu
+ 1
)− ξ+1

ξ
if ξ 6= 0,

ln
∏k
i=1

1
αu

exp
(
− (peaks[i]−u)

αu

)
if ξ = 0.

(10)
Once the extreme execution time measurements have been

fitted with a GPD it is necessary to check whether they really
come from a GPD. To do so we introduce a matching test
based on a quadratic statistic because it measures the square
distance between the empirical CDF of the extreme measure-
ments and FCλ estimated previously. The Cramer Von Mises
criterion (CVM) performs well in the case of Extreme Value
Distributions [28, 39] because it detects well whether the mea-
surements come from the chosen distribution. The result of
the CVM test measures the distance between the empirical
distribution of the measurements and the pWCET estimate
according to a GPD; a distance is defined as the result of the
CVM test. Thus, the nearer zero the distance it is the bet-
ter the GPD fits the extreme measurements, hence the more
reliable the model it is. For applying the CVM test, the ex-
treme measurements are sorted increasingly in a list uom for
upper-ordered measurements such that:

distance =

k∑

i=1

(
FCλ(uom[i])− 2i− 1

2× k

)2

+
1

12× k . (11)

Critical values of the CVM test are detailed in [16].
From the reliable pWCET estimate Cλ it is possible to de-

rive WCET thresholds for a desired risk probability p. For-
mally, WCET thresholds are defined as the tuple 〈WCET ; p〉
such that p = P

(
Cλ > WCET

)
. For a desired risk probability

e.g., 10−9 in aeronautics certification, the WCET threshold is
directly given by [20]:

WCET =





u+ αu
ξ

(
n
k
p−ξ − 1

)
if ξ > 0,

u− αu log(n
k
p) if ξ = 0,

u− αu
ξ

if ξ < 0.
(12)

The rationale of the WCET thresholds lies on two pilars:
measurements on the real-time system, and the applicability
of the EVT in order to infer the probabilistic law of extreme
execution times. For very low risk probabilities e.g., 10−9,
WCET thresholds may not appear in reality, they only exist
on the basis of the mathematical rationale of the EVT, which
is more rationale than adding a percentage to the maximal
execution time measurement. In the case ξ < 0, the risk
probability zero exists, so that the WCET is deduced. In
static analyses the difficulty is to have a complete model of the
system; wrong or non complete models endangers the estimate
confidence, while the proposed approach directly faces the real
system. Furthermore, the probability of the WCET threshold
also depends on the probability of the execution conditions
e.g., input task parameters, that lead to the execution time
measurements.

5.5 Threshold selection
The peaks of execution time highly affect the pWCET es-

timate because the estimate has to fit the peaks according to
a GPD. The threshold is a great source of uncertainties as



for different values correspond to different pWCET estimates
increasing the uncertainty around the best estimate. Reviews
for the threshold selection refer to many approaches [38] and
still there is no systematic process for the selection. The
threshold u is then a critical parameter because it directly
provides the tail sample fraction k used for the parameter es-
timate, and impacting the reliability of the pWCET estimate.

We focus on the tail sample fraction to select the peaks
such that the pWCET estimates uncertainty is minimized.
To ensure tail convergence, k has to verify the two conditions,
lim
n∞

k = ∞ and lim
n∞

k/n = 0 [38]. Hence, the tail sample

fraction has to be small relatively to all the measurements in
the trace and big enough to ensure the convergence of the
limit law of the maxima. Moreover, for small values of k
the GPD parameters vary a lot in function of k, whereas for
greater values of k the parameters are biased by the amount
of measurements, this is the bias-variance problem [20]. The
threshold selection problem is resumed in Figure 6, where the
central law of the measurements is a Gaussian distribution
while the tail distribution is a GPD. The problem is then to
estimate the right amount of execution time peaks by selecting
the right threshold which lies in the uncertain threshold area.
Thus we can only consider the tail distribution and not the
central one. The existence of the right threshold relies on
the hypothesis that the tail distribution of execution times
converges well to a GPD.

Probability

Gaussian distribution = central distribution

GPD = tail distribution
c

tail sample fraction k

u ∈ uncertain threshold area

Figure 6: The threshold selection problem, [14].

One specification of the diagXtrm tool is to be fully au-
tomatic so that we choose to apply a computational method,
based on the respect of the CVM criterion. To converge to
the right amount of execution time peaks, we first scope a

potential area based on a rule of thumb k′ = n2/3

log(log(n))
[32]

ensuring above conditions of convergence as showed in Fig-
ures 7(a) and 7(b).
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Figure 7: Plots of the rule of thumb k′ in function of the
length n of the trace of execution time measurements.

An uncertain area is drawn around k′, where the right thresh-
old should lie. The number of execution time peaks varies in
the interval k ∈ [klow = b0.5×k′c; kup = b1.5×k′c] to explore
other thresholds and still to cope with conditions of conver-
gence. The threshold u is a function of the tail sample fraction
k given by the quantile function q. q is a function of a per-
centage (between 0 and 1) and returns the execution time such

that the desired percentage of measurements is below the re-
turned execution time. Hence, u = q(1 − k/n). Then, the
peaks over u are fitted with a GPD giving the pWCET es-
timate and the distance between the experimental peaks and
the pWCET estimate is evaluated with the CVM test. Finally,
we iterate on k to cover the whole uncertain area.

The matching result given by the CVM test is a good in-
dicator for selecting the right threshold because it indicates
whether the execution time peaks really come from a GPD.
Consequently, if the matching test gives a high confidence level
for a threshold then we this threshold should be selected. To
cope with conditions of convergence, a preference is added for
thresholds given by a tail sample fraction close to k′. The
matching test is so reduced from 4 to 3 confidence levels and
a bonus in [0; 1] is added depending on the value of k. The
bonus evolves linearly from 0 to 1 in [klow; k′] and from 1 to
0 in [k′; kup]. To sum up, the computation of the confidence
level for solving the threshold selection problem is presented
in Algorithm 3.

Algorithm 3 Confidence level algorithm for the threshold
selection

1: procedure ThresholdSelection(k, distance)
2: cl4 ← Defuzzification (distance) . ∈ {0; 1; 2; 3}
3: if k ≥ k′ then

4: cl4 ← cl4 + 1

1− k′
kup

−
1

1− k′
kup

kup
× k . ∈ [0; 4]

5: else

6: cl4 ← cl4 + 1

1− k′
klow

−
1

1− k′
klow
klow

× k . ∈ [0; 4]

7: end if
8: end procedure

As main contributions of the paper focus on the logical
workflow and the decision making process regarding the ap-
plicability of the EVT, evaluations of Algorithm 3 will be the
subject further investigations.

6. APPLICATION
In this section, diagXtrm is applied to a case study where

the considered task is the fibcall from the Mälardelen bench-
mark [3]. To it, we intend finding its pWCET estimates in
different execution conditions. The defined case study repre-
sents an example that could be done in an industrial declina-
tion. The fibcall task computes the ith term in the Fibonacci
sequence by a for loop implementation, with i ∈ [2; 30] ∩ N
so that there is no infinite loop. The set of possible inputs is
denoted by IN = {i, i ∈ [2; 30] ∩ N}. The whole diagXtrm
tool is implemented in R.

Hardware Platform.
The platform running the fibcall task has two

Intel R©Xeon R©E5620 2.4 GHz sockets, each one with four cores
and three levels of cache. The first two levels (L1 and L2) are
private to each core, while the last level (LLC, equivalently
L3) is shared to the cores belonging to the same socket.

Execution Conditions.
The task is implemented in C and runs periodically on one

core; no interrupt (Irq) are present on the running core as
they are redirected to other cores with Python system pro-
gramming. To guarantee the real-time task execution, we set
its scheduling policy to the Linux SCHED FIFO policy. The



fibcall task is executed under different conditions to explore
systemic effects (congestion and interference from shared re-
sources) that can affect extreme execution times:

Scenario 1 S1: fibcall is executed in isolation, it represents
the case with no task interference and the reference sce-
nario to compare with.

Scenario 2 S2: fibcall is executed with the task cnt [3] on
the same core, one after the other. cnt counts non neg-
ative numbers in a 104 × 104 matrix. Such a large data
structure is applied to create interferences at different
cache memory levels to fibcall.

Scenario 3 S3: fibcall is executed with the task cnt in par-
allel on a different core that shares a LLC with the core
where fibcall runs. Thus no interference within the same
core but interference through shared resources.

Scenario 4 S4: a combination of S2 and S3 with two cnt
tasks. One cnt on the core where fibcall runs, and an-
other cnt that runs in parallel on core sharing a LLC
with the core where fibcall runs. Each cnt task explores
its own matrix to create interferences at different cache
memory levels and avoid concurrent problems.

The scenarios may correspond to different choices of tasks
repartition in a safety-critical embedded system, and the ob-
jective is to cope with both aspects of timing performance and
safety by respecting strictly given timing constraints. The
experiment consists in executing 500 times the fibcall task
according to each execution condition presented above. The
longest experiment time is approximately 20 minutes due to
the execution of cnt that has to be allowed to explore the
whole 104 × 104 matrix in scenarios S2, S3 and S4. Task in-
puts in IN are imposed iid according to a Uniform law during
the experiment as they are generated randomly by the random
C function at each time instant.

Results.
We now present the results of the experiments where exe-

cution times are measured in number of CPU cycles.
A first look at the traces in Figure 8 shows the repartition of

the measurements and their randomness because there is no
deterministic pattern over the time instants. Approximately,
average execution times are between 2000 and 2300 CPU cy-
cles. Measurements in the S1 case are concentrated in the
average interval, while in the other cases, some measurements
randomly deviate from the average interval.

ETPs in Figure 9 confirm the different repartitions observed
in each trace, and a more important presence of extreme ex-
ecution times in S2, S3 and S4 than in S1. Each execution
differs from another one by only a few for loops, at most 28,
explaining the concentration of measurements in an average
interval. The interferences introduced with task cnt appear
clearly in the ETPs as some measurements deviate from the
average interval.

diagXtrm is applied to every trace of execution times for
deriving the pWCET estimate and evaluating its reliability
for each scenario. The tool gives the modeling results of the
extreme execution times in Table 2 and also the EVT appli-
cability results in Table 3 for the reliability of the estimates.
The selected thresholds u are between 2500 and 2400 CPU cy-
cles right at the frontier with the average interval highlighted
with the ETPs and traces. Hence, only the extreme execu-
tion times, which are outside the average interval, are used
for the GPD parameter estimate. Every shape parameter ξ
is strictly greater than 0, and the minimal one is S1’s which
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(c) S3
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Figure 8: Trace of execution time measurements for every
execution condition.
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Figure 9: Experimental ETP for every execution condition.

is close to zero. By setting the risk probability p at 10−9, as
in aeronautics certification, the WCET threshold is deduced
on the basis of parameters ξ and αu for each respective sce-
nario as in Equation (12). The greater ξ is, the more the
WCET threshold diverges from the measurements; the great-
est WCET threshold is S2’s which is around 107 times the
respective maximal measurement. Estimated distributions of
the extreme execution times are presented in Figure 10, show-
ing the distribution convergence for each scenario.

All the traces are stationary (cl1), with at least a high con-
fidence and short-range independence (cl2) is also verified for
all the traces, as well as extreme independence (cl3). Extreme



Trace T ξ αu max u 〈WCET ; 10−9〉
S1 0.388 13.959 2586 2319.204 41719.696
S2 1.18 18.845 2999 2265.068 27960307288.975
S3 0.425 89.866 3088 2360.136 453591.23
S4 0.394 81.389 3102 2269.164 272528.444

Table 2: EVT results for every execution condition.
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Figure 10: pWCET estimate for every execution condition.

independence is less obvious is S4 but still accepted. The
threshold selection criterion (cl4) indicates also a high level of
confidence for all the traces, because all matching confidence
levels are strictly greater than 3. Algorithm 3 has the advan-
tage to select the right threshold, if it exists, and to provide
a confidence level about the distribution chosen for modeling
the extreme execution times. Finally, the aggregation of all
the confidence levels gives the reliability (clreliability) of the
pWCET estimates, which are all strictly greater than 3, ex-
cept for S4 that is quite near 3, then the pWCET estimates
are highly reliable for all the scenarios.

Trace T cl1 cl2 cl3 cl4 clreliability
S1 4 2.667 4 3.975 3.66
S2 4 4 3 3.975 3.744
S3 3 3.333 4 3.975 3.577
S4 4 2.333 1 3.604 2.734

Table 3: Confidence levels for every execution condition.

Originally, the distribution used for modeling the pWCET
estimate is the Gumbel distribution (ξ = 0) by applying the
block maxima approach. Within the diagXtrm this original
approach may be evaluated by selecting block maxima instead
of peaks and fitting a Gumbel GEV instead of a GPD. In this
case study, given Theorem 3.1, the Gumbel distribution would
be acceptable for the first scenario where ξ is near 0, and, as
the Gumbel distribution converges to 0 faster than the Frechet
(ξ > 0) distribution, it would decrease the pessismism of the
WCET thresholds for the first scenario.

diagXtrm derives the pWCET estimate that best fits the
peaks of execution time measurements for each scenario and
all are diagnosed as reliable regarding the EVT applicabil-

ity, however, the WCET thresholds of fibcall are all differ-
ent. As pWCET estimates Cλ,S2, Cλ,S3 and Cλ,S4 of sce-
narios S2, S3 and S4 converge slower than Cλ,S1, they are
more pessimistic due to the introduced interferences. Safety
considerations would retain Cλ,S4 as fibcall pWCET because
Cλ,S2 � Cλ,S4 � Cλ,S3 � Cλ,S1 � Cλ,S4 as shown in Fig-
ure 11(a), giving a WCET threshold of 2.796 × 1010 CPU
cycles. However, the retained WCET threshold is more than
105 times greater than the WCET threshold in isolation which
is 3500 CPU cycles questioning the rationale of this estimate.
In scenarios S2, S3 and S4 the WCET threshold in isolation
has more chances to be exceeded and respective probabilities
to exceed it are 10−3, 10−8 and 10−6.

As interferences foster the appearance of extreme execution
times, we gather the extreme execution times of all the scenar-
ios. Let T ∩S be the trace of extreme execution times of all the
scenarios, then measurements are independent and stationary
according to the diagnostic results and it is then possible to
apply the EVT to T ∩S . Length of T ∩S is 143 execution times
so that the ideal tail sample fraction is 17 extreme execu-
tion times. The distribution of the extreme execution times
of T ∩S is deduced by applying the ThresholdSelection as
in Algorithm 3 as shown in Figure 11(b). The final number
of extreme execution times (31) is greater than the number
given by Algorithm 3 (17), so that the distribution converges
up to a risk probability of 10−9. The matching confidence
level (cl4) of the model is equal to 4, so that the pWCET
estimate Cλ,∩S is fully accepted. As in this case ξ < 0, the
WCET threshold for a null risk probability exists and is equal
to 3764(= d3763.446e) CPU cycles.
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Figure 11: Plots including the four scenarios.

Under the hypothesis of non infinite blocking time of the
task, the case ξ < 0 makes sense because the execution of fib-
call has to end. By gathering larger amounts of extreme exe-
cution times from scenarios with different interference sources,
estimates will refine the worst-case estimate. The degree of
convergence of the pWCET estimate, given by ξ, indicates
the impact of the introduced interferences, such that S2 is the
scenario that impacts the most fibcall compared to the others.
As a conclusion, fibcall WCET for the considered hardware
platform is 3764 CPU cycles.

7. CONCLUSION
This paper presents the first sytematic and reproducible

process for MBPTA approaches, with a logical workflow named
diagXtrm, for applying the EVT to traces of execution times
and deriving the pWCET of a task as well as its associated
reliability. The systemic complexity of real time systems with
non deterministic platforms (both time-randomized and non
time-randomized) requires the use of MBPTA approaches to
derive the pWCET of a task. The reliability of the pWCET



estimates in MBPTA approaches depends on the theoretical
hypotheses of the EVT that have to be tested. Results of sta-
tistical tests are often fuzzy and it becomes hard to make a
decision on their basis requiring the introduction of a metric
that indicates the fulfillment of a hypothesis. Execution con-
ditions that provide the execution time measurements directly
impacts the pWCET estimate so that MBPTA requires con-
ditions that foster extreme execution times to refine the task
pWCET.
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1 Introduction

Critical embedded systems are generally composed
of repetitive tasks that must meet drastic timing
constraints, such as termination deadlines. Pro-
viding an upper bound of the worst-case execution
time (WCET) of such tasks at design time is nec-
essary to guarantee the correctness of the system.
Test based methods give realistic but unsafe re-
sults: they are never guaranteed to pinpoint the
worst-case execution. On the contrary, static tim-
ing analysis methods compute safe WCET upper
bounds, but at the cost of a potentially large over-
approximation.

Over-approximation will lead to an over-
calibration of the application resources, and even
lead to defeat the scheduling of the tasks.

In static WCET analysis, a main source of over-
approximation comes from the complexity of the
modern hardware platforms: their timing behav-
ior tends to become more unpredictable because of
features like caches, pipeline, test prediction etc.
Another source of over-approximation comes from
the software itself: WCET analysis may consider as
potential worst-cases executions that are actually
infeasible, because of the semantics of the program
and/or because they correspond to unrealistic in-
puts. For instance, in the automotive application
(Engine Management System : EMS) of Continen-
tal Corporation the modules of the application are
mostly implementing generic algorithms that used
calibration data for possible adaptation. Moreover
a theoretical worst case scenario could correspond
to an unrealistic system state like high engine speed

∗This work was funded by the Agence Nationale de la
Recherche, project W-SEPT ANR-12-INSE-0001

with low injection set point.

In the classical WCET estimation framework, the
data-flow analysis is in charge of discovering infea-
sible execution paths. It must at least provide con-
stant bounds for all the loops in the program, oth-
erwise the WCET is not even guaranteed to be fi-
nite. Apart from loop-bounds, control-flow analysis
usually identify simple semantics properties such as
tests exclusions, that may prune infeasible execu-
tion paths when computing the WCET. These so-
lutions remain largely ad-hoc, and there is no clear
answer to the important questions raised by infeasi-
ble executions: What is the nature of such pruning
properties? How to find them? (e.g., on the binary
or the source code?) How to integrate them in a
WCET estimation?

The goal of the W-SEPT project1 is to define and
prototype a complete semantic-aware WCET esti-
mation workflow. It gathers researchers in the do-
main of timing and program analysis, together with
an industrial partner from the real-time domain.
The project mainly focuses on the semantic aspects,
and thus, the pruning of infeasible paths. As far
as possible, the idea is to extend and adapt the
classical WCET estimation workflow, in particular,
all that concerns the hardware analysis is inherited
from previous work, namely the tool OTAWA2.

Figure 1 depicts the proposed workflow. It re-
tains the general organization of classical existing
tools [16]. The bottom block is the WCET compu-
tation tool itself, organized in three steps: Control-
Flow graph (CFG) construction, micro-architecture
analysis, and worst-path search on the CFG. Gen-

1wsept.inria.fr
2www.otawa.fr
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Figure 1: Work-flow and general organization of a semantic aware WCET estimation tool

erally, this last step uses the classical Implicit Path
Enumeration Technique (IPET)[9]. This tool is fed
by the binary code of the program, and a set of se-
mantic informations classically named annotation
file, and containing at least the loop bounds.

The (binary) annotations come from the data-
flow analysis (we use here the more general term of
program analysis). This analysis is generally per-
formed at the source level (C language most of the
time) rather than the binary level. Indeed, analyz-
ing C code is technically much simpler than analyz-
ing binary code, but more importantly, the analy-
sis often requires extra information that only the
human user can provide (e.g., inputs ranges, exclu-
sion, implications). The user can probably express
these properties in terms of the C variables, but it
would be much harder or even impossible to do it
in terms of the (compiled) binary code. This two-
layers description raises the well known problem of
traceability of annotations when transferring infor-
mation between layers.

So far, the principles depicted in Figure 1 are
rather classical. The project proposes first to take
into account a third layer in the design flow: the use
of high-level design languages tends to become com-
mon in the domains of (critical) real-time applica-
tions. Classical examples of high level design tools

are Scade suite3, used in avionics, energy or trans-
portation, and Simulink/Stateflow4 widely used in
control engineering systems. These high-level de-
sign tools provide automatic code generation to C,
which is no longer the source code, but only an
intermediate code. A consequence is that user an-
notations and program analysis can be expressed
and performed at the design level. Once defined
this third layer, the project proposes to focus on
three main issues depicted by enclosing boxes in
the Figure 1 :

• Program analysis, that can be performed at
design, C or binary level, and may take into
account information provided by the user.
• Annotations and traceability between the lan-

guage levels, strongly involve the compilers: as
far as possible, the compilation process should
be annotation-aware, in the sense that the pro-
gram transformations performed by the com-
piler should be reflected as annotation trans-
formations.
• (Worst) Path Search, must be adapted to take

into account the (richer) kind of annotations
produced by the workflow.

In this summary, we briefly introduce each step

3www.esterel-technologies.com/products/scade-suite
4mathworks.com/products/simulink/
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of our workflow.

In section 2, we present how, at any stage, we
can take into account annotations (from expert
or automatically extracted) in order to produce a
set of new ones. Then we automatically translate
them when changing level, for instance loop un-
rolling, while keeping their validity regarding the
code transformation/compilation.

In section 3, we describe how we adapted an
WCET estimation tool in order to simplify, guide
and even iterate the expert annotation process and
exploit new kind of annotations.

One of the industrial goal is to prevent as early
as possible in the development process the timing
issues. In section 4 we detail the development cy-
cle of an automotive application, and how some of
the proposed solutions were experimented on a case
study.

2 Find and trace useful infor-
mation

In this section, we explain what kind of semantic
properties may help to enhance the WCET estima-
tion: where do they come from, which step of the
application development do they refer to (binary,
code, design), how are they transferred from one
level to the next one. We consider two sources: an-
notations/feedback from expert and automatically
extracted properties.

In order to express most of the properties, we
use (and extend) FFX, an annotation language [20].
It is an open, portable and expandable annotation
format. It allows combining flow fact information
from different high-level tools. It is used as an in-
termediate format for WCET analysis.

2.1 Hypothesis and/or information
from Expert

Some properties are known by the expert when con-
sidering the context of execution of the program:
parameter domains, values for specific executions,
parameters dependency... In classical tools 5 6 [10]
the expert input permits to reduce loop bounds.
We use these precisions, called scenarios, in order
to eliminate infeasible paths, in the execution con-
text described by the expert.

Scenarios are used to give precisions on use cases:
manual/automatic modes, context conditions like
temperature, speed, height... Precisions that only

5www.absint.com
6www.bound-t.com

an expert can provide because related to the con-
text of execution of the program/application.

For these particular cases, when the expert wants
to obtain a WCET estimation, it is possible to re-
duce the overestimation by taking into account con-
straints and conditions of execution. In most cases,
information on these constraints allow to eliminate
infeasible paths or bound more accurately the num-
ber of execution of certain part of the program.
Indeed, when expert provides domain of certain
parameters, our tools integrate these inputs and
tighten our analysis.

The language FFX has been extended to express
properties given by the expert. Limitations are due
to the difficulties to make the expert write con-
straints in FFX. In order to resolve this issue, the
expert expresses constraints in C and more recently
the plug-in delta, describe in Sec 3.2, provides an
interface. In a further work, we will define a format
allowing the expert to address constraints directly
in the code via comments.

2.2 Propagation and/or extraction
of properties

2.2.1 Low-level

Looking for infeasible paths at binary level allows
to benefit from the exact matching of the pro-
gram with the hardware and to inject found proper-
ties immediately in the WCET computation. The
price is an increase of analysis time caused by
the program size and the loss of expressivity im-
plied by machine instructions. Consequently, exist-
ing analyses either look for very simple infeasible
paths [5, 15], or design a new WCET computa-
tion method [15]. Our approach tries to get rid
of these limitations by using SMT solvers (Satisfia-
bility Modulo Theories) to generate infeasible path
properties.

2.2.2 Code level

The discovery of bounds and relations on numer-
ical variables is a classical goal in program anal-
ysis [3, 4], the results of which can obviously be
used to restrict the set of feasible paths consid-
ered in WCET evaluation. This can be helped by
adding some counters to the code of the program:
of course, adding a loop counter may result in find-
ing a bound to this counter, and thus to the it-
eration number. Moreover, adding block counters,
and finding relations between these counters can re-
veal subttle restrictions in the possible executions
of the program. We illustrate this approach on a
small example.
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Program LOC #Cntr #Inv WCET init WCET fin. Improv.

selector 134 14 14 1112 528 52.6%
roll-control 234 25 19 501 501 0%

cruise-control 234 35 31 881 852 3.3%
even 82 9 8 2807 2210 23.3%

rate-limiter 35 2 2 43 29 32.6%
break 114 4 5 820 820 0%

Table 1: Improvement of OTAWA results with counter-based analysis at code level

Consider the following program fragment where
x is not modified in block B1:

x = 0;
while c1 {

if(x < 10){ B1: . . .
}
if(c2){B2: x++; . . .
}

}

Let’s add counters at important program points,
e.g., counting the number of iterations in the loop
(α) and the numbers of executions of blocks B1 (β)
and B2 (γ):

x = 0; α = β = γ = 0;
while c1 { α++;

if(x < 10){B1: β++;. . .
}
if(c2){ B2: γ++; x++;. . .
}

}
An analysis of this instrumented program using

an analyser of linear relations (here, we used the
tool PAGAI [7]), automatically discovers that the
following relations are always satisfied at the end of
the program:

γ = x , β + γ ≤ α+ 10 , γ ≤ α , β ≤ α

The inequality β + γ ≤ α + 10 is especially inter-
esting, since it means that there are at most 10
iterations of the loop which execute both blocks B1
and B2.

Experiments: This approach has been imple-
mented in a prototype tool [1], and applied in com-
bination with OTAWA to several examples. Table 1
compares the results to those returned by OTAWA
alone, for a set of small or medium-size programs.
For each program it gives the number of lines of
code, the number of introduced counters, the num-
ber of useful properties found by Pagai, the WCET
evaluated by OTAWA alone, the WCET evaluated
by OTAWA taking into account the properties, and
the percentage of improvement.

2.2.3 High-level
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Figure 2: A typical high-level dataflow design

Critical embedded systems are often designed us-
ing an high level modeling language, such as Scade
or Simulink. The system is then automatically
compiled into classical imperative code (C in gen-
eral), and then into binary code (cf. Fig 1).

Figure 2 shows a typical high-level data-flow de-
sign. For the sake of simplicity, it is represented
as a diagram, while the actual program is actually
written in Lustre [6], the academic textual language
which is the ancestor of the industrial Scade lan-
guage. This application consists of two sub mod-
ules, A and B, each of them consisting in two parts:
a control part and a data processing part. The data
processing part has different computation modes
(e.g. A0, A1 and A2), controlled by a clock (e.g.
idle, low and high). An important property of
such a design is that these modes are exclusive: at
each reaction exactly one of the modes is activated.
This information, obvious at the design level, may
or may not be obvious at the C or binary level: de-
pending on the compilation process, the (high level)
mode exclusion may result or not into structurally
exclusive pieces of code. In a more subtle way, we
also know, for this particular program, that it ex-
ists a logical exclusion between the modes of the two
sub-modules: if A is not idle (A1 or A2), then B is
necessarily in degraded mode (B1). This property
is neither structural nor obvious: it is an invariant
of the infinite cyclic behavior of the application,
and, as a consequence, it is almost impossible to
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discover it at the low-level.
Based on these remarks, we have developed a pro-

totype for discovering such properties, propagate
them through the compilation process, and exploit
them to enhance the WCET estimation. This pro-
totype uses:
• an existing model-checker (Lesar [13]) to check

the validity of properties at the Lustre level,
• a traceability module that can relate high level

control variables (idle, degr etc.) to con-
trol points in the C code, and then control
points in the binary; this traceability is par-
tial (but safe): depending on compiler opti-
mizations, some relations between high and
low level maybe lost. However we had good
results on this particular program, even with
the higher level of optimization (option -O2 of
the gcc compiler)
• the OTAWA tool-chain for he binary analysis

and the construction of IPET (Implicit Path
Enumeration Technique) problems, together
with lp-solve to solve the IPET problems.

We have tried two strategies for enhancing the
WCET.
Iterative algorithm:
• OTAWA is called for building an initial IPET

problem, and lp-solve is called to find a first
WCET control path candidate;
• according to the traceability information, the

validity of this path is translated (if possible)
into a logical condition on the high level vari-
ables (e.g. ¬idle ∧ low ∧ nom);
• Lesar is called to check this condition; if the

condition is unsatisfiable, the WCET path can-
didate is proven unfeasible, the corresponding
constraint is added to the IPET problem, and
lp-solve is called again to find a new candidate,
and so on. If the condition is satisfiable, the
process stops with the current WCET.

Pairwise algorithm:
• The high level code is analyzed to find a set

of interesting control variables, according to
a simple heuristic: any Boolean variable that
control computation modes (often called the
logical clocks) are likely to control big pieces
of binary code, and thus, have a big influence
on the computation time. In the example, the
five control variables are selected.
• We “blindly” search for all possible pairwise re-

lations (either exclusions or implications) be-
tween these variables. For n variables, there
are 4(n ∗ (n − 1)/2) = 2n(n − 1) such (poten-
tial) relations (40 in the example). For each re-
lations proven by Lesar, we generate the corre-
sponding constraints at the binary level thanks
to the traceability information; in the example,

optim. reference iterative pairwise
wcet cost wcet cost wcet cost

-O0 4718 64s 2371 163s 2372 67s
-O2 758 1s 457 5s 457 2s

Table 2: Exploiting high level properties: WCET
improvement and computation cost (cpu second on
a i7 workstation).

5 over 40 relations are proven.
• OTAWA is called once with these constraints,

and generate directly an enhanced WCET es-
timation.

The whole experiment is presented in details
in [14]; quantitative results are summarized and
commented in Table 2 where two optimization lev-
els and two strategies are experimented; enhance-
ment is important for both level (-50% and -40%),
and similar for both strategies. Iterative algorithm
may be relatively costly, pairwise strategy has a
constant overhead.

2.3 Traceability

Knowledge of semantic properties helps tighten
WCET estimates. Such information is usually
known at the design or source code level, whereas
WCET estimation must be computed at the binary
code level.

From design level to source code, we transfer the
properties by tracing them in the code generator
(by inserting additional comments in the C code).

From C to binary, hundreds of compiler optimiza-
tions may have a strong impact on the structure of
the code, making it impossible to match source-
level and binary-level control flow graphs. This
ends up in a loss of useful information. For this rea-
son, the current practice is to turn off compiler opti-
mizations, resulting in low average-case and worst-
case performance. To safely benefit from optimiza-
tions, we propose a framework to trace and main-
tain flow information up-to-date from source code
to machine code [8].

The transformation framework, for each compiler
optimization, defines a set of formulas, that rewrite
available semantic properties into new properties
depending on the semantics of the concerned opti-
mization. Supported semantic properties are loop
bounds and linear inequations constraining the ex-
ecution counts of basic blocks. Consider, for ex-
ample, loop unrolling, that replicates a loop body
k times to reduce loop branching overhead and in-
crease instruction level parallelism. The associated
rewriting rule divides the initial loop bound by k,
and introduces constraints on the execution counts
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Figure 3: Impact of optimizations (-O1) on WCET.
The y-axis represents the WCET with optimiza-
tions, normalized with respect to the WCET with-
out optimization (-O0)

of the basic blocks within the loop (see [8] for de-
tails).

We implemented this traceability in the LLVM
compiler infrastructure. Each LLVM optimization
was modified to implement the rewriting rules cor-
responding to the optimization. Semantic informa-
tion is initially read from a file in the FFX for-
mat [18] and then represented internally in the
LLVM compiler and transformed jointly with the
code transformations. Optimizations that do not
modify the control flow graph can safely preserve
the semantic information. Others must update the
information to reflect the new graph. Note that,
if a transformation happens to be too complex to
trace the information, it can be disabled. This is
a much better situation than the current practice
which is disabling all optimizations.

Figure 3 reports the reduction of WCET esti-
mates for codes from the Mälardalen benchmark
suite 7, resulting from optimizations of level O1. In
this experiment, only loop bounds are traced.

The experiments first show that it is technically
feasible to transform all semantic information from
C code to binary without loss of information. This
is shown by the fact that we can compute the
WCET of all benchmarks (a single missing loop
bound would make the computation impossible).
Secondly, we observe that option -O1 yields an im-
portant reduction of estimated WCETs: 60 % in
average, and up to 86 % (optimized WCET is 14 %
of unoptimized) for benchmark ludcmp, which con-
tains deeply-nested loops.

7www.mrtc.mdh.se/projects/wcet

2.4 Heuristic for targetting the “in-
teresting” properties

In order to lower the real WCET, some approaches
compute the criticality of piece of codes [2] or gen-
erate a static profile using probabilities for decisions
at branching points [17]. The delta tool [19] aims
at identifying the conditional statements that are
unbalanced in terms of execution time weight (ob-
tain so far by a naive account of instructions). This
highlights, to the expert or the program analyzers,
the parts of code where a semantic analysis or ex-
pert annotation should focus to gain more accuracy
on the WCET estimation.

The following experiment is detailed in [19].

In the context of the case study, the expert ini-
tially provided a scenario of 30 parameter initial-
izations (over 85 identified parameters). 54 ∆-
conditions have been identified. 20 of the 30 pa-
rameters initialized in the provided scenario appear
in the list of the ∆-conditions, 18 of them exhibit-
ing the highest 10 ∆-values (difference of weight
between the two branches) the list. 19 of the 54
∆-conditions have low ∆-values (218 and less than
11) and no correspondence to the parameters in
the scenario. As we rely on the parameter names
to appear as operands in the ∆-conditions, a pa-
rameter may be linked to several ∆-conditions and
vice versa.

Table 3 shows the result of WCET analysis of
the module: column 1 lists the provided scenario,
column 2 lists the number of specified parameters
in the scenario and column 3 to 6 list the WCET
estimate and improvement compared to the global
WCET for an ARM7 lpc2138 platform, without
and with a 1KB direct mapped data cache.

WCET analysis of the module without scenario,
(1) global, reports 2553 as WCET estimate. WCET
analysis of the expert-provided scenario, specify-
ing 30 parameters, (2) full scenario, yields an im-
provement of 5%. Rows, (3)-(6), list the estimate
and gain when specifying only those parameters in-
volved in the i highest valued ∆-conditions.

To validate that specifications for parameters not
contained in the list of ∆-conditions have little im-
pact on the estimate, we supply the 10 parame-
ter initializations that do not appear in any ∆-
conditions, row (7).

Summarizing, branching statement analysis iden-
tified 20 of 80 parameters as important due to their
high ∆-values in the list and they coincide with
specified values in the expert-provided scenario. 10
parameters specified in the expert-provided sce-
nario do not appear in the ∆-condition list and
have almost no impact on the WCET estimate,
while specifying only parameters identified in the
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10 highest ∆-conditions still improves the estimate.
The experiment shows that our branching state-

ment analysis can help system-experts focus on the
relevant parameters from the vast number of possi-
ble parameters.

scenario # param. no cache
(1) global, no scenario 0 2553 gain
(2) full scenario 30 2426 5%
(3) 3 highest ∆ 3 2553 0%
(4) 8 highest ∆ 10 2479 3%
(5) 9 highest ∆ 14 2463 3.5%
(6) 10 highest ∆ 18 2448 4%

(7) none of ∆ 10 2551 0.08%

Table 3: WCET computation depending on param-
eters provided in scenarios

3 Integration in WCET esti-
mation tool

In this section we explain how the information ex-
tracted in previous section may be exploited to en-
hance the WCET estimation. We show how they
are taken into account into the WCET tool and
how the expert or user may interact and get feed-
back from the WCET.

Scenarios and properties are given in FFX. The
tool OTAWA is used to integrate all annotated
property in the WCET estimation.

3.1 Exploitation through automata

In previous works, infeasible paths properties are
encoded into integer linear programming con-
straints and taken into account at the last WCET
estimation step [5]. In the project, we propose a
general, versatile and non-intrusive process for inte-
gration of the paths properties[11, 12]. This process
assumes that the WCET tool internally handles
CFGs and integer linear constraints, which is the
case of every IPET-based WCET analysers. The
internal representation of the program is extracted,
improved according to the annotations and set back
in the tool. The transformation relies on a novel
automata formalism that can represent both the
program CFG and the annotations. The transfor-
mation itself is an automata product; its result is
an automaton that allows only paths both existing
in the original CFG and being valid with respect to
the annotations. The analysis performed on the en-
riched CFG delivered a WCET improvement up to
10% on the benchmarks of the WCET Tool Chal-
lenge.

E
A

B

X

?A, B:α

α ≤ 1

E X

?

Figure 4: Path Property Automaton

The formalism, called Path Property Automata
(PPA) offers the following features:

1. State based acceptance. Like in finite state
automata, one can forbid some transitions ac-
cording to the history of the execution.

2. Counter based acceptance. Before being ac-
cepted, a path must satisfy numerical con-
straints on the transitions it took.

3. Context of validity. The restrictions expressed
using Features 1 and 2 can be subject to a con-
text of validity. The notion of context is ex-
pressed in the formalism by hierarchical states.

Figure 4 contains two PPA. On the left, the PPA
isomorphic to the program CFG. On the right, the
PPA reflects the annotation “in each iteration of
the loop starting with E and ending with X, at most
one of A or B can be taken”.

3.2 Iterative process from WCET
tool to the user

Based on the delta tool, we have developed a graph-
ical tool.

Figure 3.2 shows the iterative process: given
a C program and a scenario, the delta tool pro-
vides annotations (in FFX format) and a list of
δ-conditions. The Eclipse Delta Plugin, allows to
easily visualize these δ-conditions and the parame-
ters involved. The expert can re-define a scenario
by visualizing the relevant parameters, obtain the
consequent new unbalanced conditionals caused by
the scenario, and iterate this process by refining
properties on parameters in order to gain accuracy
on the WCET estimate.

Figure 3.2 is an overview of the Eclipse Delta
Plugin. In the center, the code is loaded. Lines
corresponding to the selected δ-condition are high-
lighted. A list of related parameters is provided,
allowing to refine the initial value. The adapted
scenario is then automatically created as a FFX
file. Either it is reloaded in order to identify other
relevant branchings, either it is given to Otawa in
order to compute the WCET estimate.

This plugin can also be used as an assistant to
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4 An industrial case study

This section presents the application of some of the
proposed techniques to a case study given by the
industrial partner of the project, Continental. Only
a part of the experiments are presented, because on
one hand, the case study does not match some of
the techniques — for instance, it is given in C, so
the techniques devoted to higher-level code (§2.2.3)
don’t apply — and on the other hand, some further
experiments are still to come.

The industrial case study for the experimentation
of the new WCET method is an automotive appli-
cation extracted for Continental industrial portfo-
lio.

The Engine Management System (EMS) appli-

cation is a complex real time application. The soft-
ware application is an assembly of multiple sources:

• C Code generated from Simulink model using
model based approach. A one to one relation-
ship is established between Simulink subsys-
tem and C source file.

• Manual C code for other functions.

• Third party software from customer. It can be
a Simulink model, a source code or an object
file.

• AUTOSAR execution platform (BSW) with ei-
ther code developed internally or library code
bought as third party software form the mar-
ket.

The software is executed on dedicated micro-
controller for embedded automotive (even Engine
Systems) market. It requires the use of ”specific”
target compiler (unlike usual GGC or LLVM com-
plier), using an internal standardized configuration
options (optimization scheme, in lining, cache con-
trol, memory allocation strategy ...).

The software module complexity and conse-
quence on timing bound effects are managed by:

• applying encapsulation, modularity and
portable design principle with focus on
module reuse,

• defining generic module algorithm and use cal-
ibration data for possible adaptation. A cal-
ibration is a constant ROM which is config-
urable during development, and frozen for soft-
ware production,

• applying MISRA-C coding rule that prevents
use of dangerous coding (limitation of the use
of pointer, implementing loop with bound, ),

• abstracting hardware dependencies by a Hard-
ware Abstraction Layer (hardware platform
and compiler independence).

Moreover, the today software is designed and imple-
mented to support multi-core architecture, but first
we decided to ignore this constraint in the study.

The definition and sizing of the software architec-
ture is driven by resource consumption limitation
and safety related constraints. The co-engineering
with customer requires defining common method-
ologies to be able to manage the resource such as:
component split, memory control, timing control,
OS and AUTOSAR services integration...

The timing resource is the one of most critical
one. It needs to be estimated to organize a sound
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scaling of processor resource and for the task timing
allocation. So, a generic schema for task schedul-
ing is defined by an architecture team and feed by
the project with all software module runnable units
(executable part of a software module). This is the
integration work. Such configuration shall be eval-
uated for the prediction of scheduling of the appli-
cation and then verified by measurement on real
HW target. Today schedulability design and eval-
uation are based on measurement data, stored in
a database. At integration time, it is necessary
to evaluate the runtime of runnable units inte-
grated in the Tasks, in order to properly configure
the Task / the integration. Usually, this evaluation
is based on the measurements done at the end of the
previous V-cycle. As real measurements on bench
can only be done sporadically (e.g. once/month)
compared to the continuous integration work (e.g.
several steps / day), the measurement data from
the database becomes rapidly obsolete, and needs
to be replaced by estimation. In addition, software
configurations and timing measurement conditions
are very difficult to standardized and therefore to
compare and reuse. The actual orientation for use
of heuristics for prediction is then limited in term
of granularity.

In addition, the strong reuse strategy is based on
reusable software components out of the hardware
development context. So, the timing performance
of these components needs to be provided (and
reused) with an abstract timing estimation (hard-
ware dependence limited). Moreover, the WCET is
important to determine, but not always represents
a realistic execution due to software interactions
complexity.

Continental in this project aims to find a solu-
tion for the early estimation of the time execution
of software and to allow computing realistic WCET
values. The sensitivity to the hardware core archi-
tecture must be established to validate the results
of the estimation. Of course, this approach requires
to be supported by a reliable methodology, capable
to support customer/client engineering exchange.

A set of software components representative of
the EMS were selected to evaluate the technologies
represented in the workflow (Fig 1). The expert
uses the annotation concept (section 2.1) to cap-
ture behavioral scenarios of the application. These
scenarios match the operational conditions of ex-
ecution of the software, which means real engine
conditions. As an example, a theoretical worst case
scenario could correspond to an unrealistic system
state like high engine speed with low injection set
point.

The expert is using heuristics (section 2.4) to
describe the scenarios. Out of the general condi-

tions, he concentrates his effort on main effect of
large branches. In particular, it is not necessary to
spend engineering work on determining an active
branch, if the two alternatives have an equivalent
weight. The runtime estimation is refined using the
propagation of the previously defined properties, in
addition to the resolution of the own SW code se-
mantics with the help of eventual annotations. The
property propagation at C level is mostly used for
this estimation.

The property propagation at low level (HW, bin,
asm) has been used as verification of the estimated
runtime for one specific core architecture. The high
level properties propagated from Lustre language
(SCADE environment not used for EMS applica-
tion) is seen as requirement for the Simulink C code
generation chain. The tool environment (section
3.2) is used on the selected software module to es-
timate the timing execution of the runnable units
of the software component.

For the selected component, the estimation of
the software component timing execution is per-
formed using the tool prototype environment (sec-
tion 3.2). Finally, the traceability concept (section
2.3) couldn’t be applied in our application due to
specific target compiler used. It could lead to iden-
tification of new requirement for future embedded
compiler.

5 Conclusion

In this paper, we introduce the workflow imple-
mented in the W-SEPT project to better integrate
the application semantics. We show that seman-
tic properties may be found at each language level
(design, source and binary), they have to be traced
through the compilation steps to be taken into ac-
count in the WCET estimation. The current im-
plementation already showed interesting results for
benchmarks and real applications, and good feed-
back from our industrial partner.
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