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Abstract: This article deals with the usage of Frama-
C to detect runtime-errors. As static analysis for 
runtime-error detection is not a novelty, we will 
present significant new usages in industrial contexts, 
which represent a change in the ways this kind of 
tool is employed. 

The main goal is to have a scalable methodology for 
using static analysis through the development 
process and by a development team. 

This goal is achieved by performing analysis on 
partial pieces of code, by using the ACSL language 
for interface definitions, by choosing a bottom-up 
strategy to process the code, and by enabling a well-
balanced definition of actors and skills. 

The methodology, designed during the research 
project U3CAT, has been applied in industrial 
contexts with good results as for the quality of 
verifications and for the performance in the industrial 
process. 
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1. Introduction 

Static analysis for runtime-error detection is not 
totally new; different tools have been proposed since 
fifteen years. Nevertheless, it is not a widespread 
practice even in critical software. Static analysis is 
commonly employed by specialists for independent 
verifications and after the development of the 
program. This activity is a good way of improving 
quality but it is often synonym of additional activity in 
the main process and additional costs. 
In order to facilitate the usage of static analysis, we 
conducted during the research project U3CAT, 
methodological studies and tooling development. 
The main objectives were: good coverage of 
runtime-errors, scalability, predictable costs, and a 
good integration in the development cycle. 
We largely succeeded in this endeavour: this article 
reports on the main difficulties encountered, the 
technical and methodological solutions adopted, and 
the benefits obtained. 

The produced methodology has been updated and 
used to answer to specific needs in industrial 
contexts and we report this industrial experience. 
Finally, we’ll conclude on new usages already 
identified, but not yet used in industrial context. 

2. Context 

The Frama-C source code analysis platform 

Frama-C is an Open-Source platform dedicated to 
the analysis of C programs. It differs from other code 
analysers as it provides a diverse set of formal tools, 
cooperating through code annotations written in the 
ACSL language. ACSL is a behavioural specification 
language that can express a wide range of functional 
properties, through partial or complete specifications. 
Analysers themselves may report results in terms of 
new ACSL properties asserted inside the source 
code. 

Frama-C [6] is built around a kernel that performs 
the parsing and type-checking of C code and 
accompanying ACSL [5] annotations if any, and 
maintains the state of the current analysis project. 
This includes in particular registering the validity 
status of all ACSL annotations. Analyses themselves 
are performed by various plugins that can validate 
annotations, but also emit hypotheses that may 
eventually be discharged by other plugins. This 
mechanism allows some form of collaboration 
between the various analysers.  

Two important analysis plugins are Value 
Analysis [7] and WP [8]. Value analysis is based on 
abstract interpretation, and computes an over-
approximation of the values that each memory 
location can take at each program point. When 
evaluating an expression, Value Analysis will check 
whether the abstraction obtained for the operand 
represents any value that would lead to a runtime 
error

1
. For instance, when dereferencing a pointer, 

                                                           
1
 Rutime errors include: division by 0, undefined logical 

shift, overflow, underflows on integers, use of non-

initialized variable, dangling pointer, invalid memory 

access , use of non-allocated pointers, problem of 

overlapping lvalue assignment, undefined side-effect in 

expressions, and invalid function pointer access. 
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the corresponding abstract set of location should not 
include NULL. If this is the case, Value Analysis 
emits an alarm, and attempts to reduce the abstract 
value. In our example, it will thus remove NULL from 
the remaining abstract state. The analysis is correct, 
in the sense that if no alarm is emitted, no runtime 
error can occur in a concrete execution. It is however 
incomplete, in the sense that some alarms might be 
due to the over-approximations that have been done 
and might not correspond to any concrete execution. 
Various settings can be selected to choose the 
appropriate trade-off between the precision and the 
cost of the analysis. While the most immediate use 
for Value Analysis is to check for the absence of 
runtime error, it will also attempt to evaluate any 
ACSL annotation it encounters during an abstract 
run. Such verification is however inherently limited to 
properties that fit within the abstract values 
manipulated by Value Analysis. Mainly, it is possible 
to check for assertions on bounds of variables at 
particular program points. 

 

WP is a deductive verification-based plugin. Contrary 
to Value Analysis, which performs a complete 
abstract execution from the given entry point, WP 
operates function by function, on a more modular 
basis. However, this requires that all functions of 
interest as well as their callees be given an 
appropriate ACSL contract. Similarly, all loops must 
have corresponding loop invariants. When this 
annotation work has been completed, WP can take a 
function contract and the corresponding 
implementation to generate a set of proof obligations 
– logic formulas whose validity entails the correction 
of the implementation with respect to the contract. 
WP then simplifies these formulas, and sends them 
to external automated theorem provers or interactive 
proof assistants to complete the verification. WP’s 
main task is thus to verify functional properties of 
programs, expressed as ACSL annotations. It is 
however also possible to use it to check that the pre-
conditions written for a given function f imply that no 
runtime error can occur during the execution of f. 

Frama-C is already used in this industrial context. 
First usage at Airbus is for an implementation of a 
coding rule checker called Taster [3] and a second 
one, Fan-C [4], targets verification of data and 
control flow based on semantic analysis. 

 

Main principles of a static analysis project  
 

One of the main principle of Value Analysis-based 
projects is that to computes values of variables for all 
possible program execution, either starting from the 
program’s ‘main’ function or another one expressed 
to the tool by an option on the command line. 

The Value Analysis handles the semantics of the C 
program, but not only. One strength of the tool is to 
be able to perform analyses on incomplete 
programs, that is, pieces of source code not 
containing all definitions of functions called. 

The user can define function contract in ACSL 
defining behaviour of the function and the tool is able 
to integrate, within its analysis, the semantic of the C 
program and the semantic of the ACSL. 
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Figure 1 : Topology of a static analysis project 

For a C function without C definition neither ACSL 
contract, the tool is able to consider a default 
behaviour deduced from its prototype. 

Finally, the user has three solutions for an external 
function : (1) nothing, (2) an ACSL contract, (3) a 
callee stub written in C language and which could 
use specific Frama-C builtin functions (see Figure 1 : 
Topology of a static analysis project). 

 

3. Modular analysis 

The modular analysis consists in using Value 
Analysis on small pieces of programs in a consistent 
manner. 
 
The ACSL language, by defining the behaviour of 
software interfaces, facilitates the analyses of 
independent parts of software. Properties defined in 
the interfaces can be used in two ways: for 
verification purpose on one hand and for hypothesis 
definition on the over hand. 
 
This small and trivial example can illustrate both 
usages: 
/*@ 

  requires \valid(p); 

  assigns *p; 

  ensures \initialized(p); 

  ensures 0<= *p <10;*/ 

extern void get_index(int* p); 

 

/*@ requires \initialized(&x); 

  assigns \nothing;*/ 

extern void bar(int x); 
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int foo(int p[10]) 

{ 

  int index ; 

  int status ; 

  get_index(&index); 

  bar(index); 

  return p[index]; 

} 

Figure 2 

The called functions get_index and bar are not 
defined by their source code, but by partial ACSL 
contracts.  
For get_index function: 

 For verification purpose at the calling context: 
o The requires clause is able to verify that 

pointer p is valid (referencing an allocated 
memory) 

 To introduce some hypothesis on the behaviour 
of the function 
o The ensures clauses define some 

hypothesis on the outputs: at the return of 
the function, the value pointed by b is 
initialized and in the range [0;10[. 

o The assigns clause specifies side-effects. It 
can be used to define side effects on other 
locations than those identified by the 
function parameters. 

For bar function 

 For verification purpose at the calling context:  
o The require clause check that the value of 

parameter x is initialized 

 To introduce some hypothesis on the behaviour 
of the function: 
o There is no side-effect defined by the 

assigns clause (pure function) 
 
In this way, the verification of the function foo can be 
performed on this function alone and under the 
hypothesis of the correct behaviour of the called 
functions defined by ACSL contract. Verifications are 
targeting the behaviour of the function itself and also 
the calling contexts of the called functions. The same 
contracts of the called functions will then be used in 
their proper analysis. 
Considering the above example, the verification of 
“foo” doesn’t need the source code of its callees 
(“get_index” and “bar”), as the ACSL contracts for 
both callees are sufficient for the analysis. Besides 
the verification reaches all contexts, including the 
function behaviour and the calling contexts of the 
callees, these ACSL contracts will be used lately 
during their corresponding analysis. 
In this way, the different functions i.e. the different 
subsets of software can be developed and analysed 
independently and consistently thanks to the 
function contracts in ACSL. 
 
ACSL contracts can be used not only in the 
detection of RunTime-Errors, but also on more 

specific objectives. For example, the verification of 
functional ranges of parameter values can be 
verified in this way.  
 
While this approach applies to Value Analysis, ACSL 
is also able to define functional properties that will be 
verified with WP using deductive proof techniques as 
stated in §2. 

4. The bottom-up strategy 

One of the main issues of static analysis tools in 
general is that they can produce many false alarms 
and/or take large amounts of time. The amount of 
effort necessary is thus difficult to evaluate before 
performing the analysis. These unpredictable costs 
and technical difficulties can dampen industrial 
applications and contractual commitment 
possibilities. 
 
The most trivial technique to analyse a software is to 
perform analysis of the whole program completed by 
a definition of the called libraries. This strategy can 
be a winning one in case of immediate success. But 
success is not guaranteed and engineers can be 
stucked by the number of false alarms and 
computation time. 
 
One alternative is to divide the program in smaller 
pieces, to add ACSL contracts in the subset 
interfaces and to conduct a modular analysis. This 
strategy can be a solution to obtain a good result, 
but defining ACSL contracts in a reverse engineering 
work can be a costly activity. 
 
Facing these difficulties, we defined a bottom-up 
methodology aiming at succeeding in the analysis of 
a whole class of programs and with predictable 
costs.  
 
This methodology is based on an exhaustive 
analysis of each function with a bottom-up 
progression. The lowest layer is analysed first and all 
issues are handled in order to make dispense of all 
warnings. Different actions are possible: correction in 
case of bug, fine-tuning of analysis parameters of 
the tool, or addition of ACSL clauses to help the tool 
in case of inaccuracy. Once the first layer is treated 
and all the analyses raise no alarm, each iteration 
will consist in the integration of sources of the upper 
layer in their analysis. These iterations will end when 
reaching the top of the program. This progressive 
approach has been successfully applied in several 
analyses. Two experienced uses cases are 
presented in the §5. 
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Figure 3: Bottom-Up Strategy applied on 40 C files 

 
By using such a bottom-up strategy, programs that 
were difficult to analyse as a whole can be analysed 
step by step up to the main or the entry function. 
 
The opposite strategy of the bottom-up strategy is 
the top-down strategy consisting in integrating all the 
source code and performing the analysis on the 
main function. This strategy can be successful if the 
whole program is entirely and quickly analysed, 
otherwise, it leads to the situation previously 
described and that we encountered where the user 
is stuck by a large amount of false alarms. 
 
 

5. Experience report 

We report the application of this Bottom-Up strategy 
on two subset of software. Both are aeronautical 
software in an intermediate stage of development. 
Complexity of these two subsets is presented in 
table below. 

 

Figure 4 

The size of these uses cases are 20 kloc for UC1 
and 55 kloc for UC2. UC2 contains complex types 
considering nested structures, pointers and arrays 
and with a lot of string manipulations. This higher 
degree of complexity of UC2 is confirmed by the 

cyclomatic complexity figures computed by Frama-C. 
95% of functions of UC1 have a complexity <15 
while 95% of functions of UC1 have a complexity 
<20. 
 
Objectives 
 
Verification objectives are not expressed in terms of 
static analysis techniques but by a need of detection 
of the following threats: 

 T1: usage of a non-initialized variable 

 T2: usage of a non-initialized pointer 

 T3: out of bound access of an array element 

 T4: uninitialized output value of a function 

 T5: usage of the address of a local value out of 
the scope of its declaring function 

 T6: string management 
 
Solution 
 
A dedicated methodology based on the use of 
Frama-C’s Value Analysis plugin has been proposed 
to handle all these objectives. Some of these threats 
are directly handled by usage of the plugin Frama-
C/Value. Some additional artefacts have been 
deployed in order to achieve other objectives. 
 
For example, some callers (as instrumented function 
on the verification project) have been generated in 
order to implement the verification of the complete 
initialisation of all output variables. This mechanism 
is illustrated for threat T4 in the example below: 
 
typedef struct { int a; int b;} S; 

 

void f(S * s1) 

{ 

  s1->a=0 ; 

  return ; // filed s1.b is not assigned 

} 

 

 

Source code to verify 
 

// validation function for f 

void caller_f(void) 

{ 

  S l_param1; 

 

  // call of f with parameters to an 

uninitialized state 

  f(&l_param1); 

 

  // verification that l_param1 i initialized 

  //@assert \initialized(&l_param1); 

} 

 

Caller generated 

Figure 5 

In this situation, the tool is able de detect that s1 
parameter is not fully assigned in the function f. 
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Application 
 
Following the bottom-up strategy, all functions have 
been individually analysed, starting from the lower 
layers. 
 
For each analysed file, the steps are the following 
1- Prepare the environment 

a. Define a caller for every analysed function 
b. Define a correct stub for each called function 

2- Launch a batch analysis on all functions of the 
files of the layer 

3- Analyse each generated warning  
a. In case of real warning,  

i. Mention the issue on a report file 
ii. Fix the issue 

b. In case of a false warning due to a tool 
inaccuracy 
i. Help the tool by adding some ACSL 

annotations in the source code or by 
using specific options 

c. In case of absence of warning, the analysis 
of the layer are finished, go the next file 

4- Without any warning, the process is finished for 
this layer, go to the upper layer. Launch a new 
analysis in case of remaining warnings (go to 
step 2). 

 
Notes: 

 Minor modifications of source code have been 
made to accelerate the analysis. These 
modifications concern almost reductions of array 
size. 

 The semantics of parallel execution of the 
multithread program are not handled  

 
As for the industrial organisation, the analysis has 
been conducted by a team with the support of an 
expert. Two persons have been involved in UC1 and 
three for UC2. Each person has been working on 
different files. The next files to be analysed were 
determined with the aid of a “module call graph” 
consolidated with the list of the already analysed 
source files and always following a bottom-up 
progression. All issues reported were checked by 
another team member and periodical technical 
meetings were organised. 
 
Results 
 
All source files have been analysed. The total 
number of all findings and their proportions 
compared to the number of lines of code is 
presented in the table below. 

 UC1 UC2 

Findings 54 232 

Kloc 17500 57500 

Findings / kloc 3,1 4,0 

Proportions of findings between both use cases are 
comparable. Number of warnings in proportion is 
normally higher for UC2 which is more complex and 
including string computation. 
 
A closer look reveals a coherent relation in both Use 
Cases of the medium number of findings per function 
depending on the cyclomatic complexity of the 
function. This repartition is quite linear in UC2 for 
complexity up to 20.  
 

 
 
Proportions of the different warning categories are 
presented in the diagram below. 
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Figure 6 

The great majority of findings are concerning array 
indexes. As the verification is done at a unitary level, 
these warnings are not meaning that there are as 
many real bugs detected. It means that indexes of 
arrays are not checked at each level of functions 
(this could be at most a lack of robustness, but 
definitively not necessarily a bug). 
 
Both use cases are diverging on full initialisation of 
output values: while it represents the second most 
important category of warnings on UC1, none of 
them are detected on UC2 thanks to some specific 
preventive actions conducted on this subset. No 
warning on string operations are detected on UC1 
because of the absence of strings in this subset. 
One of the most interesting lessons learnt is about 
the verification of string computation widely used in 
UC2. String computation is a hard point of 
verification by static analysis. This experience 
demonstrates that, under the assumption of some 
good coding practices (for example: strncpy instead 
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of strcpy) the software can be analysed with enough 
precision to limit the amount of false alarms.  
 

6. Feedback 

Feedback on the Modular analysis strategy 
 
The modular analysis strategy can be a solution for 
scaling up in the face of major difficulties with full 
program analysis. But the definition of ACSL 
contracts of the subset can be a costly activity if it is 
done in a reengineering process. Another drawback 
is that some implicit hypotheses that are taken for 
the analysis of the different modules and not always 
correct for the whole program. For example, the 
different locations referenced by pointer parameters 
of one function are considered as separated 
locations; that is not always the case. This can lead 
to an unsound analysis. 
 
On the other hand, if the modular analysis is applied 
early during development, just after the coding stage 
and if contracts are already defined as a part of the 
design, this becomes a good strategy for increasing 
rapidly software maturity. Each developed subset 
can benefit from this valued added approach without 
waiting for the development of all pieces of software. 
After software integration, the enhanced quality of 
the produced code will facilitate an analysis of the 
whole program that will provide the highest level of 
trust. 
 
A balance can also be made for stub definition 
between a solution based on ACSL contracts and a 
solution based on a full C language definition of 
stubs. The C language offers multiple ways to define 
a representative behavior of a called function. One 
advantage is to use only one language for the user 
and for the tool too. But as presented in §3, the 

same ACSL contract (ex: “ensures 0<= *p <10;”) 

used as a property of the called function on one 
hand is also used as a property to verify on the real 
implementation of the called function. This duality is 
not allowed by a C definition of a stub. 
 
 
Feedback on the Bottom-Up strategy 
 
At the provider side (Atos), who proposed the 
solution and applied it. The bottom-up approach 
enabled engineers to analyse the entire software 
cost efficiently and within their deadlines. This 
success can be explained mainly by the good 
scalability of this method and by the industrial 
organisation enabling several actors to work on the 
same software. 
 

At the side of the industrial customer (Airbus), 
requester of this analysis, all the verifications 
requested have been reached and with a very high 
degree of confidence due to the application of a 
static analysis by abstract interpretation solution. 
For UC2, a large part of findings are concerning a 
lack of robustness without safety consequences. 
Less than 10% have led to a correction in the source 
code. Very few issues are related to actual bugs with 
operational impact, which have all been also 
detected during a simultaneous test campaign. 
 
The results demonstrated the validity of the 
approach and the ability to detect threats very hard 
to debug during the software development phase. 
Considering the reported warnings and the 
verification capacity, the return on investment would 
have made it worth applying this strategy earlier in 
the process. An earlier detection of safety issues 
would have saved costs in validation efforts. 
 
Other considerations 
 
The main advantage of the bottom-up strategy lies in 
its scalability. But it is also a way to conduct 
dedicated verifications on each function that is not 
accessible through the analysis of the whole 
program in one shot. 
 
The need for this verification depends on the 
industrial development process. The user can be 
interested only in detecting runtime-errors that can 
really occur in its operational situation, with the 
whole code integrated. On the other hand, the user 
can be interested in verifying some properties that 
shall be assumed by each source function 
independently to address maintainability and 
portability concerns (that was the case of the 
reported UC in §5). 
 
For example, the situation presented in Figure 5 may 
not impact the program if the callers of these 
functions are not using the non-initialised field. This 
situation may not be detected during the analysis of 
the entire program. Considering this function 
specifically, returning an initialized value of each 
output operand in any situation can be something 
expected and required by the coding rules of the 
project. In this case, the bottom-up strategy is a way 
of verifying these properties for each function 
independently. 
 

Roles and development methodologies 
 
During the evaluation studies, we targeted an 
industrial process to gain maximum benefit of the 
usage of static analysis in an industrial process. We 
targeted the phase of the development process and 
not a terminal phase of an independent verification. 
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To the question “When?”, the answer is as early as 
possible in the development process. The analysis is 
best run during the coding phase and before the 
tests. The expected benefits are a quality 
assessment of the source code, a reduction of the 
costs of the tests and a better quality of the final 
product. 
 

design

Source code

Unit testing

Integration

Static analysis

 

Figure 7: Formal verification of the whole product 
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Figure 8 : Formal verification integrated in the coding 

phase 

 
Another question is “Who is doing the analysis?”. 
Starting from a situation where analyses are 
conducted by experts (Figure 7: Formal verification of 

the whole product), we tried to integrate as far as 
possible the developer in the process of verification 
of code by static analysis. The idea was to obtain a 
continuous improvement of the source code and an 
availability of analysis produced in a short time. Real 
feedbacks indicated us that the lack of skills and 
experience in static analysis could be detrimental. 
Indeed, a beginner in static analysis could be stuck 
on a difficulty of understanding or a weakness of the 
tool and spent too much time trying to get unstuck ; 
at worst the developer can denigrate the solution. In 
reaction, we quickly focused to a solution mixing 
skills of developers and experts in static analysis. 
The best way to integrate experts in static analysis in 
the development team is to have them prepare the 
verification projects and to run the first analysis. 
Once the project is in place, it can be appropriated 
by the developers. Facing problems in the analysis, 
experts are able to quickly find a fine tuning of the 
tool, a fix or a workaround and thus keep in the 

productivity targets. Work of experts is synchronized 
with the team developments by using a version 
control tool. In this way, we are able to keep the 
benefits of an integrated process and the efficiency 
of specialized actors. 
 
Simultaneously to these methodological works, 
tooling works have been done to facilitate this 
application: automatic generation of stubs, module 
dependence analysis for retro design, makefile, and 
also integration in CDT Eclipse, Client/Server 
prototyping. 

6. Conclusion 

Static analysis is still a disruptive technique for 
verification, as it is not yet largely applied. We have 
demonstrated that methodological efforts can open 
new areas of applications. This article reports on 
how we applied the technique with a specific 
strategy and with actors that facilitated their usage in 
development projects. Another step would be to 
systematically apply these verifications during the 
coding stage and to capitalise on them during post-
development activities, in a fashion similar to testing. 
If we are considering the industrial organisation, 
including the industrial customers, subcontractors, 
near-shore and off-shore, and academic 
laboratories, sharing the analysis projects from the 
first developers to the end-users can be a solution to 
improve quality with an optimized cost. Finally, the 
use of static analysis for runtime-error detection can 
be a first step before employing other techniques as 
deductive proof for functional verification. 
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ACSL:  ANSI/ISO C Specification Langage 


