
 Page 1/8

Spreading Static Analysis with Frama-C in Industrial Contexts

A. Stéphane Duprat1, B. Victoria Moya Lamiel1,
C. Florent Kirchner2, D. Loïc Correnson2,

 E. David Delmas3

1: Atos, 6 Impasse Alice Guy, B.P. 43045, 31024 Toulouse Cedex 03
2: CEA LIST, Software Safety Laboratory, Saclay, F-91191

3: Airbus Operations S.A.S., 316 route de Bayonne, 31060 Toulouse Cedex 9

Abstract: This article deals with the usage of Frama-
C to detect runtime-errors. As static analysis for
runtime-error detection is not a novelty, we will
present significant new usages in industrial contexts,
which represent a change in the ways this kind of
tool is employed.

The main goal is to have a scalable methodology for
using static analysis through the development
process and by a development team.

This goal is achieved by performing analysis on
partial pieces of code, by using the ACSL language
for interface definitions, by choosing a bottom-up
strategy to process the code, and by enabling a well-
balanced definition of actors and skills.

The methodology, designed during the research
project U3CAT, has been applied in industrial
contexts with good results as for the quality of
verifications and for the performance in the industrial
process.

Keywords: Static analysis, abstract interpretation,
safety critical software, embedded system, modular
analysis, Frama-C, ACSL, runtime error

1. Introduction

Static analysis for runtime-error detection is not
totally new; different tools have been proposed since
fifteen years. Nevertheless, it is not a widespread
practice even in critical software. Static analysis is
commonly employed by specialists for independent
verifications and after the development of the
program. This activity is a good way of improving
quality but it is often synonym of additional activity in
the main process and additional costs.
In order to facilitate the usage of static analysis, we
conducted during the research project U3CAT,
methodological studies and tooling development.
The main objectives were: good coverage of
runtime-errors, scalability, predictable costs, and a
good integration in the development cycle.
We largely succeeded in this endeavour: this article
reports on the main difficulties encountered, the
technical and methodological solutions adopted, and
the benefits obtained.

The produced methodology has been updated and
used to answer to specific needs in industrial
contexts and we report this industrial experience.
Finally, we’ll conclude on new usages already
identified, but not yet used in industrial context.

2. Context

The Frama-C source code analysis platform

Frama-C is an Open-Source platform dedicated to
the analysis of C programs. It differs from other code
analysers as it provides a diverse set of formal tools,
cooperating through code annotations written in the
ACSL language. ACSL is a behavioural specification
language that can express a wide range of functional
properties, through partial or complete specifications.
Analysers themselves may report results in terms of
new ACSL properties asserted inside the source
code.

Frama-C [6] is built around a kernel that performs
the parsing and type-checking of C code and
accompanying ACSL [5] annotations if any, and
maintains the state of the current analysis project.
This includes in particular registering the validity
status of all ACSL annotations. Analyses themselves
are performed by various plugins that can validate
annotations, but also emit hypotheses that may
eventually be discharged by other plugins. This
mechanism allows some form of collaboration
between the various analysers.

Two important analysis plugins are Value
Analysis [7] and WP [8]. Value analysis is based on
abstract interpretation, and computes an over-
approximation of the values that each memory
location can take at each program point. When
evaluating an expression, Value Analysis will check
whether the abstraction obtained for the operand
represents any value that would lead to a runtime
error

1
. For instance, when dereferencing a pointer,

1
 Rutime errors include: division by 0, undefined logical

shift, overflow, underflows on integers, use of non-

initialized variable, dangling pointer, invalid memory

access , use of non-allocated pointers, problem of

overlapping lvalue assignment, undefined side-effect in

expressions, and invalid function pointer access.

 Page 2/8

the corresponding abstract set of location should not
include NULL. If this is the case, Value Analysis
emits an alarm, and attempts to reduce the abstract
value. In our example, it will thus remove NULL from
the remaining abstract state. The analysis is correct,
in the sense that if no alarm is emitted, no runtime
error can occur in a concrete execution. It is however
incomplete, in the sense that some alarms might be
due to the over-approximations that have been done
and might not correspond to any concrete execution.
Various settings can be selected to choose the
appropriate trade-off between the precision and the
cost of the analysis. While the most immediate use
for Value Analysis is to check for the absence of
runtime error, it will also attempt to evaluate any
ACSL annotation it encounters during an abstract
run. Such verification is however inherently limited to
properties that fit within the abstract values
manipulated by Value Analysis. Mainly, it is possible
to check for assertions on bounds of variables at
particular program points.

WP is a deductive verification-based plugin. Contrary
to Value Analysis, which performs a complete
abstract execution from the given entry point, WP
operates function by function, on a more modular
basis. However, this requires that all functions of
interest as well as their callees be given an
appropriate ACSL contract. Similarly, all loops must
have corresponding loop invariants. When this
annotation work has been completed, WP can take a
function contract and the corresponding
implementation to generate a set of proof obligations
– logic formulas whose validity entails the correction
of the implementation with respect to the contract.
WP then simplifies these formulas, and sends them
to external automated theorem provers or interactive
proof assistants to complete the verification. WP’s
main task is thus to verify functional properties of
programs, expressed as ACSL annotations. It is
however also possible to use it to check that the pre-
conditions written for a given function f imply that no
runtime error can occur during the execution of f.

Frama-C is already used in this industrial context.
First usage at Airbus is for an implementation of a
coding rule checker called Taster [3] and a second
one, Fan-C [4], targets verification of data and
control flow based on semantic analysis.

Main principles of a static analysis project

One of the main principle of Value Analysis-based
projects is that to computes values of variables for all
possible program execution, either starting from the
program’s ‘main’ function or another one expressed
to the tool by an option on the command line.

The Value Analysis handles the semantics of the C
program, but not only. One strength of the tool is to
be able to perform analyses on incomplete
programs, that is, pieces of source code not
containing all definitions of functions called.

The user can define function contract in ACSL
defining behaviour of the function and the tool is able
to integrate, within its analysis, the semantic of the C
program and the semantic of the ACSL.

(nothing)

Side effects deduced
from the prototype

ACSL

Side effects defined by
ACSL

C callees +
annotations

Side effects defined by
C code + annotation

SRC_PRJ

CALLER_STUBS

Refine calling context
(allocation, predefined values, …)

System under verification

Modeling behaviour
of external parts
(3 different ways)

Figure 1 : Topology of a static analysis project

For a C function without C definition neither ACSL
contract, the tool is able to consider a default
behaviour deduced from its prototype.

Finally, the user has three solutions for an external
function : (1) nothing, (2) an ACSL contract, (3) a
callee stub written in C language and which could
use specific Frama-C builtin functions (see Figure 1 :
Topology of a static analysis project).

3. Modular analysis

The modular analysis consists in using Value
Analysis on small pieces of programs in a consistent
manner.

The ACSL language, by defining the behaviour of
software interfaces, facilitates the analyses of
independent parts of software. Properties defined in
the interfaces can be used in two ways: for
verification purpose on one hand and for hypothesis
definition on the over hand.

This small and trivial example can illustrate both
usages:
/*@

 requires \valid(p);

 assigns *p;

 ensures \initialized(p);

 ensures 0<= *p <10;*/

extern void get_index(int* p);

/*@ requires \initialized(&x);

 assigns \nothing;*/

extern void bar(int x);

 Page 3/8

int foo(int p[10])

{

 int index ;

 int status ;

 get_index(&index);

 bar(index);

 return p[index];

}

Figure 2

The called functions get_index and bar are not
defined by their source code, but by partial ACSL
contracts.
For get_index function:

 For verification purpose at the calling context:
o The requires clause is able to verify that

pointer p is valid (referencing an allocated
memory)

 To introduce some hypothesis on the behaviour
of the function
o The ensures clauses define some

hypothesis on the outputs: at the return of
the function, the value pointed by b is
initialized and in the range [0;10[.

o The assigns clause specifies side-effects. It
can be used to define side effects on other
locations than those identified by the
function parameters.

For bar function

 For verification purpose at the calling context:
o The require clause check that the value of

parameter x is initialized

 To introduce some hypothesis on the behaviour
of the function:
o There is no side-effect defined by the

assigns clause (pure function)

In this way, the verification of the function foo can be
performed on this function alone and under the
hypothesis of the correct behaviour of the called
functions defined by ACSL contract. Verifications are
targeting the behaviour of the function itself and also
the calling contexts of the called functions. The same
contracts of the called functions will then be used in
their proper analysis.
Considering the above example, the verification of
“foo” doesn’t need the source code of its callees
(“get_index” and “bar”), as the ACSL contracts for
both callees are sufficient for the analysis. Besides
the verification reaches all contexts, including the
function behaviour and the calling contexts of the
callees, these ACSL contracts will be used lately
during their corresponding analysis.
In this way, the different functions i.e. the different
subsets of software can be developed and analysed
independently and consistently thanks to the
function contracts in ACSL.

ACSL contracts can be used not only in the
detection of RunTime-Errors, but also on more

specific objectives. For example, the verification of
functional ranges of parameter values can be
verified in this way.

While this approach applies to Value Analysis, ACSL
is also able to define functional properties that will be
verified with WP using deductive proof techniques as
stated in §2.

4. The bottom-up strategy

One of the main issues of static analysis tools in
general is that they can produce many false alarms
and/or take large amounts of time. The amount of
effort necessary is thus difficult to evaluate before
performing the analysis. These unpredictable costs
and technical difficulties can dampen industrial
applications and contractual commitment
possibilities.

The most trivial technique to analyse a software is to
perform analysis of the whole program completed by
a definition of the called libraries. This strategy can
be a winning one in case of immediate success. But
success is not guaranteed and engineers can be
stucked by the number of false alarms and
computation time.

One alternative is to divide the program in smaller
pieces, to add ACSL contracts in the subset
interfaces and to conduct a modular analysis. This
strategy can be a solution to obtain a good result,
but defining ACSL contracts in a reverse engineering
work can be a costly activity.

Facing these difficulties, we defined a bottom-up
methodology aiming at succeeding in the analysis of
a whole class of programs and with predictable
costs.

This methodology is based on an exhaustive
analysis of each function with a bottom-up
progression. The lowest layer is analysed first and all
issues are handled in order to make dispense of all
warnings. Different actions are possible: correction in
case of bug, fine-tuning of analysis parameters of
the tool, or addition of ACSL clauses to help the tool
in case of inaccuracy. Once the first layer is treated
and all the analyses raise no alarm, each iteration
will consist in the integration of sources of the upper
layer in their analysis. These iterations will end when
reaching the top of the program. This progressive
approach has been successfully applied in several
analyses. Two experienced uses cases are
presented in the §5.

 Page 4/8

Figure 3: Bottom-Up Strategy applied on 40 C files

By using such a bottom-up strategy, programs that
were difficult to analyse as a whole can be analysed
step by step up to the main or the entry function.

The opposite strategy of the bottom-up strategy is
the top-down strategy consisting in integrating all the
source code and performing the analysis on the
main function. This strategy can be successful if the
whole program is entirely and quickly analysed,
otherwise, it leads to the situation previously
described and that we encountered where the user
is stuck by a large amount of false alarms.

5. Experience report

We report the application of this Bottom-Up strategy
on two subset of software. Both are aeronautical
software in an intermediate stage of development.
Complexity of these two subsets is presented in
table below.

Figure 4

The size of these uses cases are 20 kloc for UC1
and 55 kloc for UC2. UC2 contains complex types
considering nested structures, pointers and arrays
and with a lot of string manipulations. This higher
degree of complexity of UC2 is confirmed by the

cyclomatic complexity figures computed by Frama-C.
95% of functions of UC1 have a complexity <15
while 95% of functions of UC1 have a complexity
<20.

Objectives

Verification objectives are not expressed in terms of
static analysis techniques but by a need of detection
of the following threats:

 T1: usage of a non-initialized variable

 T2: usage of a non-initialized pointer

 T3: out of bound access of an array element

 T4: uninitialized output value of a function

 T5: usage of the address of a local value out of
the scope of its declaring function

 T6: string management

Solution

A dedicated methodology based on the use of
Frama-C’s Value Analysis plugin has been proposed
to handle all these objectives. Some of these threats
are directly handled by usage of the plugin Frama-
C/Value. Some additional artefacts have been
deployed in order to achieve other objectives.

For example, some callers (as instrumented function
on the verification project) have been generated in
order to implement the verification of the complete
initialisation of all output variables. This mechanism
is illustrated for threat T4 in the example below:

typedef struct { int a; int b;} S;

void f(S * s1)

{

 s1->a=0 ;

 return ; // filed s1.b is not assigned

}

Source code to verify

// validation function for f

void caller_f(void)

{

 S l_param1;

 // call of f with parameters to an

uninitialized state

 f(&l_param1);

 // verification that l_param1 i initialized

 //@assert \initialized(&l_param1);

}

Caller generated

Figure 5

In this situation, the tool is able de detect that s1
parameter is not fully assigned in the function f.

 Page 5/8

Application

Following the bottom-up strategy, all functions have
been individually analysed, starting from the lower
layers.

For each analysed file, the steps are the following
1- Prepare the environment

a. Define a caller for every analysed function
b. Define a correct stub for each called function

2- Launch a batch analysis on all functions of the
files of the layer

3- Analyse each generated warning
a. In case of real warning,

i. Mention the issue on a report file
ii. Fix the issue

b. In case of a false warning due to a tool
inaccuracy
i. Help the tool by adding some ACSL

annotations in the source code or by
using specific options

c. In case of absence of warning, the analysis
of the layer are finished, go the next file

4- Without any warning, the process is finished for
this layer, go to the upper layer. Launch a new
analysis in case of remaining warnings (go to
step 2).

Notes:

 Minor modifications of source code have been
made to accelerate the analysis. These
modifications concern almost reductions of array
size.

 The semantics of parallel execution of the
multithread program are not handled

As for the industrial organisation, the analysis has
been conducted by a team with the support of an
expert. Two persons have been involved in UC1 and
three for UC2. Each person has been working on
different files. The next files to be analysed were
determined with the aid of a “module call graph”
consolidated with the list of the already analysed
source files and always following a bottom-up
progression. All issues reported were checked by
another team member and periodical technical
meetings were organised.

Results

All source files have been analysed. The total
number of all findings and their proportions
compared to the number of lines of code is
presented in the table below.

 UC1 UC2

Findings 54 232

Kloc 17500 57500

Findings / kloc 3,1 4,0

Proportions of findings between both use cases are
comparable. Number of warnings in proportion is
normally higher for UC2 which is more complex and
including string computation.

A closer look reveals a coherent relation in both Use
Cases of the medium number of findings per function
depending on the cyclomatic complexity of the
function. This repartition is quite linear in UC2 for
complexity up to 20.

Proportions of the different warning categories are
presented in the diagram below.

T1
4%

T2
2%

T3
81%

T4
13%

T5
0%

T6
0%

UC1 T1
3%

T2
0%

T3
69%

T4
0%

T5
0%

T6
24%

Others
4%

UC2

T1

T2

T3

T4

T5

T6

Others

Figure 6

The great majority of findings are concerning array
indexes. As the verification is done at a unitary level,
these warnings are not meaning that there are as
many real bugs detected. It means that indexes of
arrays are not checked at each level of functions
(this could be at most a lack of robustness, but
definitively not necessarily a bug).

Both use cases are diverging on full initialisation of
output values: while it represents the second most
important category of warnings on UC1, none of
them are detected on UC2 thanks to some specific
preventive actions conducted on this subset. No
warning on string operations are detected on UC1
because of the absence of strings in this subset.
One of the most interesting lessons learnt is about
the verification of string computation widely used in
UC2. String computation is a hard point of
verification by static analysis. This experience
demonstrates that, under the assumption of some
good coding practices (for example: strncpy instead

 Page 6/8

of strcpy) the software can be analysed with enough
precision to limit the amount of false alarms.

6. Feedback

Feedback on the Modular analysis strategy

The modular analysis strategy can be a solution for
scaling up in the face of major difficulties with full
program analysis. But the definition of ACSL
contracts of the subset can be a costly activity if it is
done in a reengineering process. Another drawback
is that some implicit hypotheses that are taken for
the analysis of the different modules and not always
correct for the whole program. For example, the
different locations referenced by pointer parameters
of one function are considered as separated
locations; that is not always the case. This can lead
to an unsound analysis.

On the other hand, if the modular analysis is applied
early during development, just after the coding stage
and if contracts are already defined as a part of the
design, this becomes a good strategy for increasing
rapidly software maturity. Each developed subset
can benefit from this valued added approach without
waiting for the development of all pieces of software.
After software integration, the enhanced quality of
the produced code will facilitate an analysis of the
whole program that will provide the highest level of
trust.

A balance can also be made for stub definition
between a solution based on ACSL contracts and a
solution based on a full C language definition of
stubs. The C language offers multiple ways to define
a representative behavior of a called function. One
advantage is to use only one language for the user
and for the tool too. But as presented in §3, the

same ACSL contract (ex: “ensures 0<= *p <10;”)

used as a property of the called function on one
hand is also used as a property to verify on the real
implementation of the called function. This duality is
not allowed by a C definition of a stub.

Feedback on the Bottom-Up strategy

At the provider side (Atos), who proposed the
solution and applied it. The bottom-up approach
enabled engineers to analyse the entire software
cost efficiently and within their deadlines. This
success can be explained mainly by the good
scalability of this method and by the industrial
organisation enabling several actors to work on the
same software.

At the side of the industrial customer (Airbus),
requester of this analysis, all the verifications
requested have been reached and with a very high
degree of confidence due to the application of a
static analysis by abstract interpretation solution.
For UC2, a large part of findings are concerning a
lack of robustness without safety consequences.
Less than 10% have led to a correction in the source
code. Very few issues are related to actual bugs with
operational impact, which have all been also
detected during a simultaneous test campaign.

The results demonstrated the validity of the
approach and the ability to detect threats very hard
to debug during the software development phase.
Considering the reported warnings and the
verification capacity, the return on investment would
have made it worth applying this strategy earlier in
the process. An earlier detection of safety issues
would have saved costs in validation efforts.

Other considerations

The main advantage of the bottom-up strategy lies in
its scalability. But it is also a way to conduct
dedicated verifications on each function that is not
accessible through the analysis of the whole
program in one shot.

The need for this verification depends on the
industrial development process. The user can be
interested only in detecting runtime-errors that can
really occur in its operational situation, with the
whole code integrated. On the other hand, the user
can be interested in verifying some properties that
shall be assumed by each source function
independently to address maintainability and
portability concerns (that was the case of the
reported UC in §5).

For example, the situation presented in Figure 5 may
not impact the program if the callers of these
functions are not using the non-initialised field. This
situation may not be detected during the analysis of
the entire program. Considering this function
specifically, returning an initialized value of each
output operand in any situation can be something
expected and required by the coding rules of the
project. In this case, the bottom-up strategy is a way
of verifying these properties for each function
independently.

Roles and development methodologies

During the evaluation studies, we targeted an
industrial process to gain maximum benefit of the
usage of static analysis in an industrial process. We
targeted the phase of the development process and
not a terminal phase of an independent verification.

 Page 7/8

To the question “When?”, the answer is as early as
possible in the development process. The analysis is
best run during the coding phase and before the
tests. The expected benefits are a quality
assessment of the source code, a reduction of the
costs of the tests and a better quality of the final
product.

design

Source code

Unit testing

Integration

Static analysis

Figure 7: Formal verification of the whole product

design

Source code

Unit testing

Integration

Static analysis

Figure 8 : Formal verification integrated in the coding

phase

Another question is “Who is doing the analysis?”.
Starting from a situation where analyses are
conducted by experts (Figure 7: Formal verification of

the whole product), we tried to integrate as far as
possible the developer in the process of verification
of code by static analysis. The idea was to obtain a
continuous improvement of the source code and an
availability of analysis produced in a short time. Real
feedbacks indicated us that the lack of skills and
experience in static analysis could be detrimental.
Indeed, a beginner in static analysis could be stuck
on a difficulty of understanding or a weakness of the
tool and spent too much time trying to get unstuck ;
at worst the developer can denigrate the solution. In
reaction, we quickly focused to a solution mixing
skills of developers and experts in static analysis.
The best way to integrate experts in static analysis in
the development team is to have them prepare the
verification projects and to run the first analysis.
Once the project is in place, it can be appropriated
by the developers. Facing problems in the analysis,
experts are able to quickly find a fine tuning of the
tool, a fix or a workaround and thus keep in the

productivity targets. Work of experts is synchronized
with the team developments by using a version
control tool. In this way, we are able to keep the
benefits of an integrated process and the efficiency
of specialized actors.

Simultaneously to these methodological works,
tooling works have been done to facilitate this
application: automatic generation of stubs, module
dependence analysis for retro design, makefile, and
also integration in CDT Eclipse, Client/Server
prototyping.

6. Conclusion

Static analysis is still a disruptive technique for
verification, as it is not yet largely applied. We have
demonstrated that methodological efforts can open
new areas of applications. This article reports on
how we applied the technique with a specific
strategy and with actors that facilitated their usage in
development projects. Another step would be to
systematically apply these verifications during the
coding stage and to capitalise on them during post-
development activities, in a fashion similar to testing.
If we are considering the industrial organisation,
including the industrial customers, subcontractors,
near-shore and off-shore, and academic
laboratories, sharing the analysis projects from the
first developers to the end-users can be a solution to
improve quality with an optimized cost. Finally, the
use of static analysis for runtime-error detection can
be a first step before employing other techniques as
deductive proof for functional verification.

7. References

[1] Antoine Miné and David Delmas. Towards an
industrial use of sound static analysis for the
verication of concurrent embedded avionics
software. In EMSOFT: To appear in proc. of the
15th International Conference on Embedded
Software, 2015. IEEE CS Press.

[2] Pascal Cuoq, David Delmas, Stéphane Duprat, and
Victoria Moya Lamiel. Fan-C, a Frama-C plug-in for
data flow verification. In ERTSS 2012: Proceedings
of Embedded Real Time Software and Systems.
SIA, 2012.

[3] Jean Souyris, David Delmas and Stéphane Duprat.
Airbus : vérification formelle en avionique. In Jean-
Louis Boulanger, editor, Utilisations industrielles
des techniques formelles : interprétation abstraite.
Hermes-Lavoisier, June 2011.

[4] David Delmas, Stéphane Duprat, Victoria Moya
Lamiel, and Julien Signoles. Taster, a Frama-C
plug-in to enforce coding standards. In ERTSS
2010: Proceedings of Embedded Real Time
Software and Systems. SIA, 2010.

[5] Patrick Baudin, Pascal Cuoq, Jean-Christophe
Filliâtre, Claude Marché, Benjamin Monate,
Yannick Moy, and Virgile Prevosto: “ACSL:

 Page 8/8

ANSI/ISO C Specification Language (V1.9)”,
http://frama-c.com/download/acsl_1.9.pdf, 2013.

[6] Florent Kirchner, Nikolai Kosmatov, Virgile
Prevosto, Julien Signoles, Boris Yakobowski:
“Frama-C: A software analysis perspective”. Formal
Asp. Comput. 27(3): 573-609 (2015)

[7] Pascal Cuoq and Boris Yakobowski with Virgile
Prevosto: Value Analysis, February 2015.
http://frama-c.com/download/value-analysis-
Sodium-20150201.pdf

[8] Pascal Cuoq and Boris Yakobowski with Virgile
Prevosto: Patrick Baudin, François Bobot, Loïc
Correnson, Zaynah Dargaye, February 2015.
http://frama-c.com/download/wp-manual-Sodium-
20150201.pdf

9. Glossary

ACSL: ANSI/ISO C Specification Langage

