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Abstract—Finding problems and optimal designs in the re-
quirements phase is more efficient than later phases. However,
over-constraining the solution is also sub-optimal since not all
information is necessarily available upfront. ‘Build-then-test’
approaches which insist on developing first requirements, then
architecture, then implementation are not suitable for building
systems that must be rapidly fielded and respond to ever-changing
demands. Our approach, ALISA, is working on integrating four
pillars for incrementally building systems which can be shown
to satisfy the relevant requirements. Our four key pillars for as-
suring requirements satisfaction are requirements specifications,
architecture models, verification techniques, and assurance case
traceability between the first three. In this paper we introduce our
approach, and highlight how we are integrating these pillars using
an XText-driven DSL and tool meta-model leveraging existing
tools and languages. Our current focus is on understanding
exactly which requirements are responsible for the majority of
design constraints. Identifying this subset promises to reduce
architecture design space exploration and verification overhead,
increasing delivery cadence.

I. INTRODUCTION

Safety-critical systems function where an error can be
mission- or life-threatening. They are carefully specified and
designed according to a rigorous process, usually by different
collaborating teams. Through the development process, sys-
tem stakeholders define their goals, engineers define system
requirements from them, and architects design the architec-
ture, breaking the system into several layers and parts. Each
part/layer is implemented by potentially different teams, tested
separately and then integrated. One major issue of this actual
process is the late discovery of errors: 80% of implementation
errors are found at system integration but studies have shown
that such issues (70% actually, shown in Fig. 1) are likely
introduced earlier, when defining the system requirements.
Thus, these errors could be discovered and fixed earlier, by
improving requirements specification and design.

In this paper, we introduce our approach for improving
requirements specification and design, called Architecture-
Led Incremental System Assurance, ALISA. Our approach is
traceable and testable from end to end, that is, from system
requirements and stakeholders, down to software and verifica-
tion outputs. This new method connects requirements to other
system artifacts (specifications, models, code, etc.), enabling
requirements traceability and validation along the development

Fig. 1. The Double-V model, showing sources of errors

process. It provides assurance of requirements validation early
in the development process, reducing certification cost of
safety-critical systems through measurably better requirements
and compositional verification evidence.

To improve the quality of requirements we focus on cover-
age of system specifications, quality attributes, and hazards,
as well as management of uncertainty in the requirements.
To improve the quality of evidence we use compositional
verification, and multi-valued logic to automate the planning,
execution of verification plans, and management, reporting of
assurance evidence. In order to so we work with three different
flavors of incrementality:

1) incrementality by refinement, working with one archi-
tecture layer or module at a time

2) incrementality by criticality, focusing on critical re-
quirements/quality attributes first, and then the full set

3) incrementality by change impact, to manage the impact
of changes on requirements, architecture design, and
verification evidence.

II. RELATED WORK

Moving from requirements to architecture is a key problem
in software engineering. Current standards [1], [26] describe
the life-cycle process to follow in order to develop software
but consistency between development phases is often not syn-
chronized, performed using a manual, labor-intensive process
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and consistency between each phase is not automated, and
becomes out of date as products evolve.

One important issue has been to identify architecturally-
significant requirements from a requirements specification; that
is, those requirements which will have the most impact on
how the system is implemented. For example, a well-developed
methodology for this is the Quality Attribute Workshop [5]
and design approaches such as the Architecture-Driven Design
(ADD) approach. Seminal work includes moving from goals to
agent-oriented software, with Tropos [14]; moving from KAOS
specifications to software in [27]; and work by Dewayne Perry
and his students [8]. One key advance is that there now exist
many mature languages for both requirements (e.g., KAOS
[9] and the URN standard [15]) and architectures (e.g., AADL
[2] and SysML [22]). This allows us to leverage well-known
formalisms for the translation. Furthermore, while there were
hints in earlier work towards refinement, there was no explicit
step for driving evidence-based changes in the requirements,
as we propose in ALISA.

In the iterative context, requirements are ideally ‘conversa-
tion starters’ for design elaboration. For example, one takes
the provided user story and queries the product owner about
any uncertainties. And in an iterative context, particularly
with iterations of 2-4 week duration, one can fairly easily
refine these requirements. This approach does not work in all
contexts, however, and may be guilty of finding local optima
(e.g., under-designing), particularly in more complex systems
[10].

The most similar approach to ALISA in integrating archi-
tecture and requirements is by AutoFocus 3 [4] and Whalen et
al. [28]. Whalen et al. describe how SysML can be used with
requirements models to accommodate the essential hierarchical
nature of system engineering: a flow from more abstract
(system requirements) to less (software requirements, then
architecture models and code). It is key to recognize that
there may be existing architectures and implementations that
flow ‘upward’ to constrain requirements. This paper illustrated
that it is often component interaction that provides most
system failures, which can be traced to improper requirements
decomposition and refinement. AutoFocus 3 [4], from the
Fortiss Research Group, is a model-based engineering platform
that, like ALISA, supports Eclipse-based end-to-end system
development, starting with requirements and finishing with
architecture. The two projects have a lot in common; key
differences include the languages underpinning the architecture
models (AADL in the case of ALISA, a custom language
in for AutoFocus), and the verification mechanisms supported
(nuSMV model checking in the case of AutoFocus; any AADL
compatible verification approach in the ALISA case).

The concept of ‘virtual integration’ tries to leverage
the promise of these model-centric approaches to reduce
cost/cycle-time and risk (i.e., rework) by using early, and
frequent, virtual integration, illustrated in the System Archi-
tecture Virtual Integration (SAVI) initiative ([23], [12]). For
simplicity, a related paper [24] suggests doing requirements
modeling directly in the architecture-modeling tool (in this
case, Simulink). Although adoption and ease-of-use goals
are important, our experience suggests this is not ideal for

complex requirements models and higher layers of abstraction.
For architecture-centric approaches the specific details of the
‘architecture’ is ambiguous. There are at least four types of
architecture we have identified:

• Functional architectures capture functional requirements
but with little or no information about how those func-
tions will be encapsulated in components.

• Conceptual architectures specify how a system is de-
composed into software and hardware components and
the interfaces between them. Conceptual architectures
are used during architecture trade studies and acquisition
planning.

• Design architectures specify detailed performance char-
acteristics of individual components, including internal
design detail to the level required to support the analyses
desired.

• Implementation architectures specify details needed to
integrate and verify an overall system; for example, data
that can be used to automatically generate configuration
files or perform model-based testing.

This overlapping of abstractions makes it very difficult to
properly separate solution context from problem context. Our
intent is to provide separate languages (and vocabularies)
for discussing these abstractions (for example, requirements
specification tools for “functional architectures”), linked with
shared identifiers.

In architecture-centric approaches, there is no explicit nota-
tion for capturing requirements (as part of a single process).
For instance, the values for rate of change of speed thresholds
are defined external to the modeling approach. This makes it
unclear where and why these values are derived. For example,
if the car we are building is a sports car, high acceleration may
be desirable. If the car is a minivan (where small children may
be more likely), high acceleration may be undesirable. To add
traceability and rationale from requirements to architecture,
we focus on linking stakeholder goals, system requirements,
and an assurance case model for mapping verification strate-
gies to goals. The compositional reasoning from [28] could
be integrated as another technique for modeling architecture
components and verification strategies.

III. LANGUAGES

Defining and verifying requirements rely on several con-
cepts, that are addressed today by separate tools that are not
integrated. Each tool covers one or several concepts but does
not address the whole process from requirement definition to
system validation. As shown in Table I, we distinguish the
following concepts, which we call the four pillars of system
integration [11]:

• Requirements and Goal Definitions: defines the stake-
holders, system objectives and requirements. Require-
ments engineering frameworks offer a formal specifi-
cation of system requirements, avoiding textual speci-
fication. There are several tools to capture and model
requirements, such as KAOS [9] or RDAL [7].

• Architecture Specification: capture the system architec-
ture structure. This is currently managed by languages
such as SysML [22] or AADL [25].
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• Verification: analyze system artifacts (i.e. model, code,
specification), to check requirements. However, these
activities are not directly related to the system require-
ments specifications. This is currently handled by model
analysis tools, such as Resolute [13].

• Claims, Arguments, Assurance: show how the system
enforce the requirements and provides confidence about
system quality. This is currently handled by linking
verification to requirements and architecture using Struc-
tured Assurance Cases (SACM) [21].

One (or several) pillars are supported by existing tools,
but, as the sparseness of Table I shows, the artifacts are
independent and loosely coupled, and thus, do not cover the
entire development process, from requirements specification
to system validation. In addition, some tools support the
same pillars but with a different (and potentially inconsistent)
approach.

For that reason, we propose to unify these concepts. Lever-
aging existing approaches, we address each pillar with a
separate language, and connect them with tool support. Using
such an approach, users can then specify their requirements,
attach them to the architecture and ultimately, validate them,
demonstrating system compliance with the requirements.

We defined the following languages:

• ReqSpec: stakeholder goals and system requirements.
The language borrows concepts from RDAL [7] and
KAOS [9].

• Verify: for verification activities, verification plans,
methods (i.e. how to analyze and process system artifact
to verify a property). This language is based on concepts
from SVM [3], JUnit [17] and Resolute [13].

• Alisa: for defining assurance work areas, tasks This
language borrows concepts from Mylyn [16].

• Assure: for assurance case instances. This language
reuses concepts from JUnit [17], Resolute [13], SACM
[21]

These languages have been implemented within Eclipse
using the Xtext [6] framework. Our tool supports require-
ments/goals specification, validation methods and activities to
check requirements enforcement in the architecture/implemen-
tation and automatic assurance case generation using the Goal
Structuring Notation (GSN) 1 The tools check for requirements
coverage (what architecture elements is missing a requirement,
and vice versa), consistency (is there conflict between re-
quirements) and auto-generate assurance cases using the GSN
notation and tooling from [19] to show how requirements are
validated and enforced within the architecture.

Note that we are not committed to a requirements →
architecture mapping; indeed, in most cases we expect to
have an existing architecture and requirements models, so
the tracing can be either direction. We call this approach
“architecture-led requirements specification” to capture the
notion that the architectural model is the central hub of our
model-driven engineering approach, with the spokes being the
requirements, verification plans, and other artifacts. This does

1http://www.goalstructuringnotation.info

not demand that an architecture exist before requirements, but
it does acknowledge that a strictly linear process is not realistic.

IV. THE LIGHTBULB EXAMPLE

We show how to use ALISA languages and concepts on a
simple system: a light-bulb being powered by a battery. The
objective is that the battery has enough capacity to power the
bulb.

The architecture of this system is shown in Figure 2 (the
AADL textual representation is shown in Listing 1). It consists
of two devices: one battery and one bulb. Both components are
connected through a power socket. The goal of our example
is to show that the battery has enough capacity to power the
bulb.

While the graphical representation does not include AADL
properties (that specify power capacity and budgets), the
textual representation (listing 1) includes such information to
capture the power capacity and budget.

Fig. 2. AADL model of the bulb example

package simple al isa power

public

wi th SEI ;

bus power

end power ;

device bulb

features

powersocket : requires bus access power ;

properties

SEI : : PowerBudget => 60.0 W applies to powersocket ;

end bulb ;

device b a t t e r y

features

powersocket : provides bus access power ;

properties

SEI : : PowerCapacity => 80.0 W;

end b a t t e r y ;

system i n t e g r a t i o n

end i n t e g r a t i o n ;

system implementation i n t e g r a t i o n . i

subcomponents

bulb : device bulb ;

b a t t : device b a t t e r y ;

connections

c : bus access b a t t . powersocket −> bulb . powersocket ;

end i n t e g r a t i o n . i ;
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KAOS RDAL Resolute AGREE SACM AADL

Requirements
Stakeholder Goals X
System Requirements X X

Architecture
Specification X X X
Instance X

Verification
Activities X X X
Verification Methods X X X

Assurance
Claims and Arguments X X
Assurance Results X X

TABLE I. TOOL COVERAGE AND GAPS IN SYSTEM PHASES

end simple al isa power ;

Listing 1. Architecture of the lightbulb system

To specify the system requirements, the first step is to
specify the stakeholders of the system, as shown in listing
2. For this example, we will keep the number of stakeholders
to one, the system electrician.

organization mycompany

stakeholder e l e c t r i c i a n

[ f u l l name ” John Doe” ]

Listing 2. Stakeholders definition

The next step consists in defining the stakeholders require-
ments, also known as goals (i.e. what the system is supposed
to be and what constraints it is supposed to comply with).
Goals definition are written using the ReqSpec language, as
illustrated in listing 3. A goal is bound to a component (in
the present example, the global system), a description and is
associated with a stakeholder (the electrician defined before).

stakeholder goals mygoals for simple al isa power : : i n t e g r a t i o n

[ goal g1 : ” Power OK” [

description ”We should be able to power the bulb ”

ra t ionale ” Without l i g h t , we cannot see ”

stakeholder mycompany . e l e c t r i c i a n

] ]

Listing 3. Stakeholders Goals (REQSPEC lang.)

Once goals are defined, one should define the system
requirements. The ReqSpec language is also used to define
system requirements, as shown in listing 4. A system require-
ment is associated with a component, defines a description
and is ultimately associated with a goal so that the tool is
able to trace goals coverage (what goals are being linked to
system requirements) but also architecture validation (what
components have requirements).

requirement speci f icat ion myrequirements

for simple al isa power : : i n t e g r a t i o n

[

requirement enough power : ” The b a t t e r y should have \
enough power ” [

compute actua lbudget

description th is ” should have a b a t t e r y w i th enough \
power for the bulb ”

see goal mygoals . g1

]

]

Listing 4. System Requirements (ReqSpec language)

Then, verification plans are defined with the Verify lan-
guage, that specifies how requirements are verified. The assur-
ance plan is separated by claim being validated using analysis
tools. Listing 5 shows that the system requirements previously
defined are supported by a claim c1 that checks that the system
has enough power. This claim is verified by a verification
activity (mylibrary.electric_requirements, defined in a
general verification library) that will analyze the AADL model
and ultimately, check the property values, making sure that the
power provided by the battery is more than the power required
by the bulb.

plan myplan for simple al isa power : : i n t e g r a t i o n . i [

claim c1 for myrequirements . enough power [

assert a l l [ my l i b ra ry . e l ec t r i c requ i r emen ts

] argument ” The bulb has enough power ”

]

]

Listing 5. Validation Plan (VERIFY lang.)

Ultimately, the overall assurance plan is defined using the
Alisa language that defines verification plans are executed
(ordering of tests). This is shown in Listing 6, which shows a
definition of a basic assurance plan that executes the verifica-
tion plan defined before (myplan).

a l isa myplan

assurance plan power for simple al isa power : : i n t e g r a t i o n . i

[ assert myplan ]
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Listing 6. Assurance Plan Workflow (ALISA lang.)

We have also added a function to automatically export the
result of the verification process into an assurance case using
the Goal Structuring Notation (GSN) [19]. The objective is to
formalize the validation activities into a standardized notation.
Our tool export these results into a GSN format that can be
processed by the D-case assurance case tool [18].

Fig. 3. GSN export example

The GSN diagram of the bulb example is shown in Fig. 3.
It details how the goal is decomposed and validated: the stake-
holder goal (Power requirements are met) is decomposed into
an evidence (The bulb has enough power) which are ultimately
validated in the model (justification Analyze Power Across
The System). Automating the production of the assurance case
would avoid the labor costs associated with the production of
such document, but also make them accurate with respect to
the actual validation activities done on the model.

V. LARGER-SCALE EXAMPLE – THE SYSTEM

ARCHITECTURE VIRTUAL INTEGRATION CASE

In 2009 the SAVI initiative published a white-paper [12]
describing a case study outlining how the notion of virtual
integration – the use of an annotated architecture model as
the single source for architecture analysis – can dramatically
reduce rework and verification costs in safety-critical systems
development. We have begun to implement that example in the
ALISA tool-chain in order to demonstrate ALISA’s suitability
to realistic problems. In the 2009 report we modeled the
sample problem – a Tier 1 airplane system - in AADL, one of
the components of the ALISA tool-chain. We have completed
this analysis using the ReqSpec tools, reverse engineering the
requirements both from the existing architectural documents
and pre-existing natural language requirements.

Figure 4 shows the SAVI Tier 1 model components, and
figure 5 shows a portion of the Tier 2 model of the Integrated

Modular Avionics subsystem. Note that AADL has a robust
behavioral specification language, shown in Figure 6.

From these architectural models we focused on the flight
guidance subsystem, creating appropriate requirements and
verification specifications for these systems. The Verify lan-
guage asserts that a given claim in the requirements (ReqSpec)
is met. Listing 8 shows the verification plan for the re-
quirements defined in listing 7. The Plugins.ResourceAnalysis

verification activity (listing 8) calls a separate, standalone
verification tool to check the associated requirement and ulti-
mately returns one of {True, False, Unknown}. The automatic
traceability support in our tool propagates the truth-value of
each claim to mark requirements as satisfied (claims are True)
or unsatisfied (claims are Unknown or False). The result will
then be saved and used later to build the associated GSN (as
the one shown in figure 3 for the lightbulb example).

We are currently researching better support for more com-
plex propagation of verification outputs. For example, we may
use semantics that provide for another verification activity if
the first attempt is either Unknown (e.g. a model checker times
out) or False (which we are calling fail-then semantics).

system requirements ADC SW : ” Requirements for the Software \
Subsystem of the ADC subsystem of the F l i g h t Guidance System ”

for I n t e g r a t o r : : FGS : :ADC: : Spec : : p rA i rDataFunct ion

[

va l U t i l R a t i o = SystemConstants . U t i l i z a t i o n R a t i o

va l ADC ProcessingBudget = SystemConstants .TBDm

va l ADC RAMBudget = SystemConstants .TBDmb

va l ADC ROMBudget = SystemConstants .TBDmb

assert ADC ProcessingBudget <=

ADC HW. ADC ProcessingCapacity∗Resource Ut i l izat ion RoT

assert ADC RAMBudget <=

ADC HW. ADC RAMCapacity∗Resource Ut i l izat ion RoT

assert ADC ROMBudget <=

ADC HW. ADC ROMCapacity∗Resource Ut i l izat ion RoT

requirement R1 1 : ”ADC Processing Budget ” [

Fig. 4. Tier 1 (system view) of SAVI proof of concept
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description ” The processing needs of the Software

Subsystem of the ADC subsystem s h a l l not exceed ”

U t i l R a t i o ” percent o f ”

ADC ProcessingBudget

]

requirement R1 2 : ”ADC RAM Memory Budget ” [

description ” The RAM memory needs of the Software

Subsystem of the ADC subsystem s h a l l not exceed ”

U t i l R a t i o ” percent o f ”

ADC RAMBudget

]

requirement R1 3 : ”ADC ROM Memory Budget ” [

description ” The ROM memory needs of the Software

Subsystem of the ADC subsystem s h a l l not exceed ”

U t i l R a t i o ” percent o f ”

ADC ROMBudget

]

]

Listing 7. FGS Requirements specified in ALISA’s ReqSpec

v e r i f i c a t i o n plan ADC SWPlan for ADC SW

[

claim ADC SW. R1 1 [

a c t i v i t i e s

processingbudget : P lug ins . ResourceAnalysis ( )

]

claim ADC SW. R1 2 [

a c t i v i t i e s

RAMbudget : P lug ins . ResourceAnalysis ( )

]

claim ADC SW. R1 3 [

a c t i v i t i e s

ROMbudget : P lug ins . ResourceAnalysis ( )

]

]

Listing 8. FGS Requirements specified in ALISA’s Verify.

Fig. 5. Tier 2 AADL model of SAVI PoC

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented ALISA, our vision for integrating
four pillars for incrementally building systems: requirements
specifications, architecture models, verification techniques, and
assurance case traceability between the first three. We ex-
plained how we created DSL-based tooling to build these
pillars, using a simple example. We then presented our ex-
ample from an avionics domain to support our claim that the
ALISA approach promises to reduce architecture design space
exploration and verification overhead.

Our current and future work is to work with industry
partners to add functional and safety requirements to an
existing safety-critical system. We will apply the ALISA tools
to perform compositional verification to provide assurance
evidence. We are currently translating existing requirements
from a DOORS and Excel environment to an ALISA-based
requirements and safety hazards specification. We hope to
demonstrate measurable improvement in requirements cover-
age and consistency. This will show the value of ALISA in
early project phases. Our ultimate aim is to show measurable
reduction in system rework costs by earlier defect detection.
The certification process for safety-critical systems is one place
where demonstrating compliance can produce large savings, so
we are working with a collaborator to to produce additional
evidence and certification artifacts to complement their testing
evidence. Future work also includes integrating an assessment
of requirements uncertainties (such as described by [20]),
in order to further circumscribe the set of requirements that
need to be checked. For example, in a car we may already
be comfortable with our level of knowledge in the anti-lock
braking subsystem, but less sure about the new fuel injector.
We have also created import and export mechanisms with the
OMG’s Requirements Interchange Format (ReqIF)2 in order to
facilitate interchange.
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