
Optimizing Application Distribution on Multi-Core
Systems within AUTOSAR

Wenhao Wang*, Sylvain Cotard*
VALEO Group Electronics Expertise and

Development Services
Créteil, France

wenhao.wang@ensea.fr

Fabrice Gravez*, Yael Chambrin*
VALEO Engine and
Electrical Systems

Cergy, France
firstname.name@valeo.com*

Benoı̂t Miramond
LEAT Lab, CNRS UMR 7248

University of Nice Sophia antipolis
Nice, France

bmiramond@unice.fr

Abstract—Multi-core platforms have gained in popularity
in nowadays automotive domain. But, even if multi-core ar-
chitectures are now supported by the AUTOSAR framework,
this migration remains a great challenge. First of all, software
designers need new methods to fill the gap between application
description and tasks deployment. The use of multiple cores
has also to remain compatible with real-time and safety design
constraints. Finally, developers need tools to assist them in the
new steps of the design process. We propose in this paper a
partitioning method integrated in the AUTOSAR design flow
acting as a decision guide for the distribution of complex and real
world control applications onto automotive multi-core systems.

Keywords—Multi-core, Partitioning, AUTOSAR, Metaheuris-
tics.

I. INTRODUCTION

Nowadays, the multiplication of electronic features in smart
engine control implies the execution in real-time of complex
computational models. To face this evolution, cars embed ever
more ECUs (Electronic Control Units), increasing again the
part of embedded software development in the design costs
of new generations of vehicles. In the same time, a trend in
automotive industries is the adoption of multi-core architecture
in critical embedded systems. Now is the time to put it all
together by proposing novel design methods facing the scale
up of applications, adapting the design process to face the
distribution and prediction issues coming from the multi-core
advent, while still ensuring the functional safety standards
(ISO26262) of the automotive domain.

AUTomotive Open System ARchitecture (AUTOSAR) [1]
contributes to meet the increasing complexity in nowadays’
automotive electrical and electronic systems. To achieve the
technical goals of modularity, scalability, transferability, and
function reusability, AUTOSAR standardizes the software de-
velopment by separating the application and infrastructure.
This allows applications to exist and communicate indepen-
dently of a particular infrastructure. Since its revision 4.0
AUTOSAR has been introducing a new design dimension by
supporting multi-core architectures.

On the one hand, regarding the scheduling policies in multi-
core systems, AUTOSAR still adopts the static allocation and
static priority for the tasks in the system. Static scheduling has
been widely studied in the literature, and it remains an efficient
way to address the difficult issues of prediction and validation
of complex interactions between tasks and shared resources.

On the other hand, multi-core introduces additional chal-
lenges that are still difficult to deal with in real world indus-
trial domains where applications exhibit high complexity and
special cases features that do not fit with theoretical models.
Thus, the shift towards multi-core systems in the automotive
industry has revived the challenge of application partitioning
to enhance productivity, reusability and predictibility.

This paper proposes a method for the distribution of com-
mand and control applications into multi-core architectures, in
the purpose of partitioning the computations on the different
cores in a near optimal way. We model the problem considering
the AUTOSAR specificities and apply metaheuristic algorithms
to solve it. This paper presents the first results of such opti-
mization methods on industrial applications of engine control.

The rest of the paper is organized as follows. Section II
presents the automotive context and the industrial design flow
in which our contribution takes place. We also describe in
this section the state of the art on distribution automation in
automotive multi-core systems and we explain why current
methods are not applicable for concrete automotive projects.
Section III presents the formal modeling of the multi-core
problem as a Combinatorial Optimization problem. We present
our developed tools for partitioning into multi-core platform
in section IV. In Section V, we present the automotive case
studies considered to evaluate our approach and the quality of
the design solutions explored by our tool. Finally, conclusions
and future works are discussed in section VI.

II. AUTOMOTIVE CONTEXT & PROBLEM DESCRIPTION

A. Automotive application design using AUTOSAR

AUTOSAR mitigates the problems existing in the
automotive systems design process by its standardized three-
layer software architecture, i.e., the Application layer, the Ba-
sic Software layer (BSW) and the RunTime Environment layer
(RTE). In the application layer, the applications encapsulate
functionalities within a collection of software components.
AUTOSAR follows a software component approach as in
several description languages. The software components in
AUTOSAR (SWC) can interact independently of a particular
infrastructure through an abstract environment called Virtual
Functional Bus (VFB). Each SWC contains one or more
runnables. These runnables are composed of the pieces of
codes that can be executed and scheduled independently.
Figure 1 depicts such software architecture. All the runnables



are triggered by one or several events, such as timing event
for periodic runnables [2], data received event for data reading
notification and operation invoked event for server (function)
calls by clients. The communication between runnables is done
by writing and reading the variables. For intra-component
communications, these variables are labeled as InterRunnable-
Variables (IRV) that can only be shared by the runnables in the
same software component. Inter-component communications
are realized through Ports and Interfaces.

B. Configuration of the embedded software

The implementation of the VFB is realized by the gen-
eration of the Run-Time Environment (RTE). RTE is mainly
responsible for linking the application to the BSW including
Operating System (OS). It also involves the realization of
communication between components and the generation of all
the RTE events that activate the behavior of runnables.

The configuration of BSW for a specific hardware plat-
form consists in the configuration of the OS and other BSW
stacks (communication stacks, memory stacks and I/O stacks).
The OS is responsible for the execution of real-time tasks
containing executable entities. Each task defines an execution
sequence of the runnables mapped to it. The introduction of
multi-core in AUTOSAR leads to additional works in the
configuration: (1) Software allocation to cores, (2) Task set
definition configuration and mapping the runnables to tasks,
(3) Variables distribution to memories in the case of hardware
architecture with memories hierarchy, (4) Synchronization of
the execution flow in multi-core systems.

We consider step (1) and (3) in this paper, as shown in
Figure 2. To achieve this goal, real-time scheduling techniques
need to be considered in order to adapt the application to
the targeted multi-core platform. The considered multi-core
platform is composed of a set of 32 bits superscalar cores
(from 3 to 8 cores) and a set of associated closely coupled
memory local memories. As depicted in Figure 2, data
exchanged for inter-core communications are stored at the
second level into a shared memory. A typical target is the
Aurix architecture from Infineon1.

In the automotive domain, only static scheduling policies
are supported by AUTOSAR. That is, all the runnables are
statically attached to cores, and the runnables in each core are
scheduled by a local scheduler. One of the core often executes

1http://www.infineon.com

Figure 1. AUTOSAR software architecture

in lockstep the critical parts of the application, which then
needs redundancy. Reliability is not considered in the current
version of the tool, but will be considered in the future works.
In the design flow presented in section III, all these decisions
have to be explored by the proposed automation method.

C. Application partitioning

In this work, we focus on partitioning applications driven
by control and data flow (e.g. engine control, brake control
etc.). For that type of command and control applications the
order in which the individual statements are executed is very
important and the proportion of parallel code is often hard
to identify. In consequence, the partitioning of automotive
applications into multiple cores requires a fine analysis of the
dependencies between runnables and tasks. The paper studies
in what extent a design automation method can be employed
for that purpose.

D. Related works

The theoretical formulation of application partitioning
has been widely studied in the past either in the domain
of multiprocessor computing [3] or in hardware/software
co-design [4]. But the proposed partitioning methods rapidly
faced a major limitation considering the lack of real use
cases integrated in a full industrial working process. The
explored solutions at high-level were too abstract to be
really considered. Moreover, when considered alone, the
formal optimization clears out the designer from the problem
and neglects that not all the design considerations can be
theoretically formulated.

In recent years, the adoption of multicore architectures in
critical embedded systems has revived the need of design flows
fully integrating the exploration phase. So, several works have
dealt with the partitioning problem of AUTOSAR applications
onto multi-core systems. So, in [5] authors developed heuristic
algorithms for mapping runnables into different cores. In
this paper, runnables are grouped into clusters before being
distributed across cores by optimizing a specific objective
function. The works of Faragardi et. al [6] and Saidi et. al [7]
proposed a heuristic algorithm to create a task set according
to the mapping of runnables on the cores. With the goal

Figure 2. Application partitioning on the targetted multi-core platform



of minimizing the communications between runnables, the
problem is classically formulated as an Integer Linear Pro-
gramming (ILP). Therefore, conventional ILP solvers can be
easily applied to derive a solution. In [8], Genetic Algorithms
(GA) are applied to partition the application in an optimal way.
The results of task allocation are evaluated by their simulation
tool TA-Toolsuit. A demonstration version is available in [9]
but only simplistic applications are provided. The limitations
of the demonstration version avoid any comparison on real
applications.
However, all the partitioning methods proposed in the literature
only consider the optimization formulation without considering
the full design flow. Compared to the existing research work,
the proposed method is fully thought into an industrial V-cycle
development process. Our contributions are then the following:

• a full working process composed of 5 main phases
(see figure 5): application description, dependency
analysis, design space exploration, configuration of the
executive layer, validation onto the target device;

• back-annotation from the validation phase, enabling
optimisation of the cost function from real and credi-
ble measurements;

• proposition of a cost function mixing functional and
non-functional criteria;

• validation of the solutions explored at high-level
thanks to a fully automated refinement process; The
detailed description of our working process in section
IV will explain how to achieve this goal.

We summarize in table I the properties of the partitioning
methods existing in the literature in order to point out our
contributions.

Reference Cost func-
tion f

Optimization
method

Target ar-
chitecture

Associated
design
flow

Validation

[3] Intercore
Commu-
nication
Overhead
(ICO)

ILP Hetero-
geneous
multicore

No No

[4] Total
execution
time

*SA Hetero-
geneous
Hw/Sw

No No

[5] ICO heuristic Automotive
multicore

No No

[9] Response
time, ICO

GA Automotive
multicore

partial high-level
simula-
tion

Ours Load
balancing,
ICO,
real-time
con-
straints,
response
time

SA, GA,
*TS

Automotive
multicore

full cycle-
accurate

Table I. COMPARISONS OF SOFTWARE PARTITIONING METHODS IN THE
STATE OF THE ART. *SA IS SIMULATED ANNEALING ALGORITHM, TS IS

TABU SEARCH ALGORITHM

III. INTEGRATION OF A SW DISTRIBUTION METHOD IN
THE AUTOSAR DESIGN FLOW

Our proposed automation of the partitioning first asks to
formalize the design constraints as a combinatorial optimiza-

tion problem which mainly relies on the definition of the
objective function.

A. Combinatorial Optimization theories

Minimizing the objective function involves researching an
optimal combination of runnables to cores as well as variables
to memories. This problem is assimilated to a Combinatorial
Optimization (CO) problem, where solutions are encoded with
discrete variables. A model P = (S,Ω, f) of a CO problem
consists in:

• S: a search space where a finite set of discrete
variables are defined;

• Ω: a feasible domain defined by a set of constraints;
• f : an objective function to be minimized.

As the CO problems are NP-hard [10], the complete
methods that search for every instance to find optimal solution
might need exponential computation time in the worst case.
For practical purpose, we often prefer to get a good solution
(not the optimal solution) in a significantly reduced amount of
time, even though finding optimal solution is not guaranteed.
Metaheuristic is this kind of approximate algorithm that aims
at exploring the search space efficiently and effectively. This
class of algorithms includes - but not restricted to Simulated
Annealing (SA), Tabu Search (TS) and Genetic Algorithm
(GA).

Simulated Annealing is inspired by the physical anneal-
ing process of solids. It accepts solutions according to an
acceptance probability computed following the Boltzmann
distribution e−

f(s′)−f(s)
T , where s′ is a neighbor solution of

the current solution s, and T represents the temperature.

Tabu search maintains a tabu list and allows adopting the
best solution in the neighborhood in condition that it does not
exist in the tabu list. This solution is then added into the tabu
list after this iteration.

Unlike SA and TS that deal with one single solution
at each iteration, Genetic Algorithm treats a population of
potential solutions at each iteration. GA uses ideas from
biological evolution that includes three main steps: selection,
reproduction and replacement. More details on these classical
methods can be found in [11], [12], [13].

De-facto, this optimization problem has been modeled in
industrial contexts. Reference [14] applies GA to solve the
optimization issue of the SWC-to-ECU mapping, and reference
[8] applies GA to optimize the task allocation for multi-core
processors.

B. Application and architecture modeling

The software architecture is modeled using a directed graph
G(V,E), such that V is a set of nodes (set of runnables here
for AUTOSAR application) and E is a set of edges, also called
transitions (links between runnables). A node is modeled as an
execution time, a trig mode, a period. A transition has a weight
that depends on the size of data transmitted, the period of the
producer, etc. The graph size is optimized by the creation of
buses between nodes.

We assume that each node V is associated with a period Ti.
For the runnables activated by a periodic event, Ti is the period



of the activating event. Similarly, for the runnables activated
in response to another runnable’s result or request, Ti denotes
the period of the runnable invoking it or, if it is still not a
period event, our partitioning tool identify the one invoking it
and so on iteratively.

Each runnable is also associated with execution informa-
tion that contains two parts: variable accessing time Ta and
execution time Te.

The accessing time Ta mentions the time for a runnable to
read or write its related variables located in the memories. In
our multi-core architecture, each core is associated with a local
distributed memory. Runnables can also access data in shared
memories. It is worth to mention that all the memories can be
accessed by all the runnables distributed to all the cores, which
implies that the accessing time for a runnable to write or read a
variable varies with the location of the runnable as well as the
location of its variable. In Figure 2, the right part represents
a simple model of our architecture with 2 cores: each core
has a local memory and there is one shared memory in the
system. The accessing time for runnable ρ to access variable θ
depends on the location of ρ and θ. All the potential cases are
shown in Table II, where Taθ (i, j) means the accessing time
for ρ located in ith core to access θ located on jth memory.
It is obvious that Ta is much shorter if we locate θ into the
local memory of the core where ρ is located. Accessing a
variable in the local memory of another core is much slower;
and accessing to shared memory is dedicated to data exchanged
between cores.

The execution time Te represents the time for a runnable
to execute some instructions. Te is influenced by two factors.
One is the performance of the core on which the runnable is
located in. The higher computing power, the faster the runnable
will finish its corresponding treatment. In a real-life automotive
system, the real-time constraints also depend on the execution
modes, such as the engine speed or driving modes. E.g. the
amount of executed codes depend on the vehicle speed. In the
following we denote these contexts cases, and it is the second
factor that influences Te. A weight w is associated to each case
to model its importance in the system (high value of w means
high importance). So for a given runnable ρ, Teρ(i, n) varies
with its location (ith core) and the nth case, an example with
3 cases is shown in Table III.

The communications between nodes are presented as tran-
sitions E. Each transition contains two nodes ρi and ρj ,
(ρj , ρj ∈ V ), model ρi 7→ ρj present the dependency between
ρi and ρj , where ρi is the predecessor of ρj and ρj is the
successor of ρi. The predecessor ρi sends a set of variables
that are received by the sucessors. The sum of the size of these
variable is noted as Ss. So the sent data rate for the predecessor

Table II. ACCESSING TIME FOR RUNNABLE ρ TO VARIABLE θ

Variable θ Mem 1 Mem 2 Share Mem
Core 1 Taθ (1, 1) Taθ (1, 2) Taθ (1, 3)
Core 2 Taθ (2, 1) Taθ (2, 2) Taθ (2, 3)

Table III. EXECUTION TIME FOR RUNNABLE ρ

Runnable ρ Case 1 Case 2 Case 3
Core 1 Teρ (1, 1) Teρ (1, 2) Teρ (1, 3)
Core 2 Teρ (2, 1) Teρ (2, 2) Teρ (2, 3)

ρi is

sρi =
Ss
Ti

(1)

Similarly, the received a set of variable from predecessors. The
sum of the size of these variable is noted as Sr, and received
data rate for the the successor ρj is

rρj =
Sr
Tj

(2)

C. Cost function formalization

According to the discussion above, we give the formulation
of the problem as follows:

The multi-core architecture is composed of a set of cores
{π1, ...πI} and a set of memories {M1, ...MJ}, with J > I
and M1 to MI are attached to the local memories of cores
π1 to πI , while MI+1 to MJ represent the shared memories.
The partitioning involves the distribution of a set of runnables
{ρ1, ...ρK} to the cores and also a set of variables {θ1, ...θL}
to the memories. We note ρk,i when the kth runnable is
distributed to ith core and θl,j when the lth variable is
distributed to jth memory. Taθl (i, j) mentions the accessing
time for the runnable located on the ith core to access the
variable θl located on jth memory. We also define a set of
contexts cases {K1, ...,KN}, and wn is the weight for the
nth case. Then, Tek(i, n) represents the execution time for
kth runnable located in the ith core and in the nth case.
Thus when we distribute a runnable ρk to core πi, based on
its execution time, accessing time and period, this runnable
results in a load uρk,i :

uρk,i = f
(
Taθl (i, j), Tek(i, n), Tk

)
(3)

The load of core πi is the sum of the loads caused by the
runnables distributed to this core, mentioned as uπi :

uπi =
∑
k

uρk,i (4)

Considering α as the max load ratio of a core, the load of
each core must respect

∀i : uπi < α (5)

Based on the loads of each runnable in (4) and the weight wn
of each case, we can deduce the load for the entire multi-core
system.

The load of the multicore distribution must be well bal-
anced, with a tolerated deviation of 2%. It appears as the main
design constraint in the optimisation formulation.

We also define the size of memory Mj as Sj and the size
of variable θl as Sθl . The maximum occupation ratio of each
memory is noted β. So the occupation ratio of each memory
should not exceed it:

∀j :

∑
l Sθl
Sj

< β (6)

The intercore communications represent the main chal-
lenge to pass from monocore to multicore architectures. They
are estimated by summing the number of data access per



millisecond. Minimizing this overhead, under load balancing
constraints, corresponds to the objective function that evaluates
the performance of our partitioning solutions:

F = g
(
uρk,i , wn

)
(7)

Equation (7) shows that the cost value of the objective
function is decided by the loads generated by the runnable
(uρk,i ) in every execution context (weighted by wn). The
loads consider two elements: the CPU utilization computed
as Te

Tk
and the communication overhead that is influenced by

accessing time of the variables. It is obvious that different ways
of partitioning will change the cost value of objective function.

Figure 3 (a) shows a simple example: the application
contains 3 runnables ρ1, ρ2 and ρ3. ρ1 send variable θ1 to
ρ2 and θ2 to ρ3. The hardware model shown in Figure 3
(b) consists in a 2-core system with a shared memory M3.
Besides, each core is attached to a local memory M1 and M2.
We assume that the execution time for each runnable at each
core is identical. The objective is to distribute the application
to this 2-core system. Solution in Figure 3 (c) allocates all
the runnables in one core, and distributes the variables in its
local memory. This could minimize the accessing time, so
the communication overhead is low. But the loads of CPU
are not well balanced as the other core is empty. Solution
in Figure 3 (d) allocates the runnable ρ3 to the other core, so
when runnable ρ1 finishes its execution, ρ2 and ρ3 can execute
parallel. Therefore the loads of CPU are better balanced.
However, the communication overhead is increased as the
accessing time for the variables allocated at the shared memory
is much longer. This compromise is considered in our objective
function.

In this work, we aim at developing a practical policy
for partitioning software applications, composed of several
hundreds of nodes, onto multiple cores that will minimize this
objective function, while respecting the dependencies and the
constraints in AUTOSAR and also verifying the rules in (5)
and (6).

D. Description of the optimum solutions searching method

The partitioning solution is represented as a vector in
which each element presents the position for runnables or
variables. The vector is an ordered list with the length of

Figure 3. Explanation for objective function (a) Application; (b) Hardware
model; (c) and (d) Solutions considering different criteria

l = L+K, where the L represents the number of the variables
and K is the number of runnables to be distributed. In the
position i of the vector, i ∈ [0, L), a memory is distributed
for the corresponding variable and in position j, j ∈ [L, l), a
core is attached to the corresponding runnable. The different
combinations of the memories and cores will change the value
of objective function. In order to deal with this combinatorial
optimization problem, we take the metaheuristic algorithms
as a solver. The method to search the optimum solution is
described as follows:

• the initial solution can be obtained in a random way
as well as by heuristic guide. The quality of the initial
solution would affect final solution;

• the neighbourhood structure of a solution defines
its possible move direction for improvement, which
involves 2 operators: operator N1 changes only the
memory attached to one single variable to another
memory or operator N2 changes only the core at-
tached to one single runnable to another core. The
move will choose one operator randomly each time;

• the constraints guarantee the viability of solutions on
each move proposed by the neighbourhood operator:
all the solutions (including the initial solution) shall
respect all the defined constraints;

• the metaheuristic algorithms provide the searching
policies to find the optimum (or good) solutions in
an efficient way: starting at the initial solution, the
improvement is effectuated by a single move (defined
by neighbourhood structure) each iteration.

In this work, we apply three metaheuristic algorithms : SA,
GA and TS. All the algorithms share the same framework such
as initial solution, neighbourhood structure. Each algorithm ef-
fectuates different searching policies to find the final solution.
The evolution of solutions iteration by iteration is illustrated in
Figure 4, which shows the convergence of optimization process
by our objective function with the goals that both benefit the
acceleration of performance from multi-core and respect the
real-time constraints on the dependant tasks.

The results obtained with this method show the contribu-
tions of our work :

• the quality of the solutions explored according to the
cost function;

• the diversity of the solutions around the optimum at
the convergence of the method. This diversity will

Figure 4. An example of research result by SA



provide the designer the guide needed to take its final
decision [15];

• the scalability of the method over complex AU-
TOSAR applications potentially composed of several
hundreds of runnables and several thousands of tran-
sitions.

IV. PRESENTATION OF THE PARTITIONING TOOL

Our partitioning tool presented in Figure 5 is designed
to analyze the automotive applications in AUTOSAR and
distribute them automatically onto cores. The application tar-
geted in these experiments is composed of a set of software
components (SWCs) described in the input AUTOSAR XML
files (.arxml). The tool is based on eclipse and written in
Java. It allows to analyze a software application by parsing
the AUTOSAR XML files. The working process of the tool is
described as follows.

A. Dependency analysis

As the high sensibility of the execution order and low
proportion of parallelism exist in the targeted applications,
the partitioning of automotive applications into multiple cores
requires a fine analysis of the dependencies between functional
elements. For this reason, the tool analyzes the features by the
following steps:

• re-works the software architecture: modeling the ap-
plication as a directed graph presented in the section
III-B;

• determines the levels of dependency: building statistics
on each transition in the graph;

• analyzes the data information for each transition such
as data size, data rate, data unit ;

• identifies the sequences of communications: extraction
of data flows.

Figure 5. Working process for partitioning automotive application onto
multicore architectures

The results of the analysis of dependencies drive the distri-
bution step. More precisely, the level of dependencies and data
information are used to evaluate the communication overhead;
the sequence of execution would guide the distribution tool to
determinate the response time for sequence chains.

B. Software distribution

For the distribution part, the tool performs design space
exploration (DSE) of the graph designed in dependency analy-
sis step, to distribute the applications into multi-core systems.
As stated in the section III, the problem is formalized as a
combinatorial optimization problem, which mainly relies on
two essential elements: the definition of objective function and
a given set of constraints that each solution shall respects.
Therefore, applying the metaheuristic algorithms, the tool
researches the solutions by evaluating the defined objective
function that was presented in (7). Every research step has to
respect the constraints presented in (5) and (6).

As to the granularity of element for the distribution, a
preparation step is involved in order to minimize the inter
connection between the cores. For doing this, the tool deter-
mines the dependencies between runnables based on the results
obtained by dependency analysis step such as the communi-
cation between runnables or the chains of event, etc. Then the
tool groups runnables according to the level of dependency
between clusters. AUTOSAR SWC is the atomic element that
is not allowed to be divided into multiple partitions, thus,
all the runnables in the same SWC shall be mapped into
the same partition. Respecting this constraint, the tool then
gathers again certain clusters into groups. By doing this, we
obtain the atomic elements to distribute into cores. These
elements are referred as CpuEntities. Then the tool distributes
the runnables, or more precisely the CpuEntities, into cores. It
also distributes the variables to the different memories. To do
this, the tool applies the selected metaheuristic algorithms to
find the optimal combination for runnables and cores.

The output of this tool will provide the designer a set of
distribution solutions. Each solution is represented as a vector
in which each element presents the position for runnables
or variables. The designer can then analyze the subset of
near-optimal solutions to finally select the best distribution
according to non-formalized criteria (designer experience,
reusability, management...). For these reasons, we developed
our partitioning tool as a decision guide environment. Thus, the
expected behaviour of the underlying optimisation heuristics is
not to provide only the optimal solution but also the subset of
near-optimal solutions.

C. Configuration of the executive layer

This step contains the configuration of RTE, OS and other
BSW stacks. The partition solutions that provide the allocation
information on each core update the configuration of RTE
and OS. The configuration of RTE consists in the mapping
of runnables into tasks. The configuration of OS includes the
terms of priority definition for tasks, tasks partition, allocation
of resources, communication and synchronization between
tasks. After that, embedded source code of the solution is
generated, compiled and downloaded on the target architecture
for the final validation of both the real-time and the functional
exigencies.



V. EXPERIMENTAL RESULTS

We now describe the experiments leaded to determine the
optimization method the best adapted to our context and to
validate the explored solutions.

A. Results of dependency analysis

The method has been evaluated with three application
descriptions. The first one labeled as App 1 is composed of
a small amount of components. This application is built in a
random way and the exploration space for this application is
exhaustive thanks to its small quantity. Besides, this application
contains 3 context cases for the execution time. We have other
two applications (labeled as App 2 and App 3) correspond to
bigger real industrial use-cases which represent a portion of a
full application of engine control. For these two application,
we consider only one running execution mode, therefore there
is only one context case:

• App 1 contains 15 SWCs with 32 runnables. After
analyzing this application, the tool generates 6 CpuEn-
tities with 7 variables;

• App 2 contains 25 SWCs and 208 runnables, the tool
generates 14 CpuEntities with about 493 variables;

• App 3 contains 68 SWCs and 562 runnables, the tool
generates 21 CpuEntities with about 1358 variables.

The tool also analyzes the transitions information for each
application and classifies these transitions according to the
different level of dependency. The results for the three tests
are shown in Table IV.

B. Results of distribution exploration

The next step consists in distributing the application into
a specific multi-core architecture. Our targeted multi-core
architecture contains 3 cores, a shared memory and each core
is assigned to a local memory. In order to distribute these
CpuEntities into 3 cores and the variables into 4 memories,
the tool applies the selected metaheuristics: SA, TS and GA.
The small application allows us to obtain independently all
the possible combinations and to calculate their cost based
on (7). Thus we can identify the optimal solution with the
smallest cost values among all the potential solutions. The
distribution of cost values for all the partitioning solutions of
the first application (noted App 1) is illustrated in Figure 6.
The figure exposes the complexity of the problem even when
considering an AUTOSAR application composed of only 32
runnables. The number of feasible solutions exceed several
hundreds of thousands solutions (279888 exactly), and so the
optimal solution (with value of cost at the left side in Figure
6) only represents 0, 0357% of the landscape.

We then apply each algorithm 10 times on application
app 1. The cost bands of solutions found by each algorithm are

Table IV. APPLICATION ANALYSIS RESULTS

Application Number Number Number Number
of SWC of runnables of transitions of CpuEntities

App 1 15 32 27 6
App 2 25 208 1558 14
App 3 68 562 6826 21

Table V. OPTIMIZATION RESULTS FOR APPLICATION APP 1 BY GA,
SA AND TS METAHEURISTICS. ONLY GA WORKS ON A POPULATION SIZE

OF 10. SA AND TS ONLY EXPLORE 1 SOLUTION PER ITERATION.

Algorithms Deviation to Optimal solution Average Run Number of
best solution finding times/10 Time (ms) explored solutions

SA 0.0 4 243.52 1000000x1
GA 0.0 10 279362.09 100000x10
TS 1.97% 0 7467.08 1000000x1

compared to the previous distribution of cost values as shown
in Figure 6. The more precise results are shown in Table V.
GA (in red in Figure 6) always find the optimal solution. SA
also find the optimum and other solutions with a cost between
4, 02 and 4, 2. Finally TS never find the optimal solution,
but only solutions with costs between 4, 1 and 4, 25. From
these results, we can notice that GA can always find the best
solution in a longer running time. SA runs faster with a chance
less than 50% to find the optimal solution. Considering TS,
unfortunately, we never get the optimal solution, but solutions
very close to it.

For the two other applications, we considered real industrial
use-cases and focus on quantitative results. We applied only
SA and GA, as TS does not show its capability to find the
optimum for the small application. We remind that we consider
constraints of loads balancing for each solution, data for
inter-core communication are allocated in the shared memory,
and the cost function minimizes inter-core communication
overhead (using IOC). With the growth of the application
size, it becomes impossible to obtain all the solutions in the
exhaustive way as we did on the small application. So, the
optimal solution can not be exactly determined. Thus, we
used a different criteria to evaluate the quality criteria of the
optimization methods. We focused on the standard deviation
between the costs of solutions obtained by each algorithm and
the cost of the best solution it ever found. The results for the
two applications are shown in Table VI and Table VII. From
these results, GA can no longer find better solutions than SA.
Besides, the run time of GA is much longer. The average run
time for both algorithms increases with the size of application,
this is shown in Figure 7.

As previously explained, the goal of our partitioning tool
is not to still reach the optimum but rather to prune the design
space, and only present to the designer the most promising
solutions according to a specific objective function. Only the
designer can then identify feasible solutions and take the final
decision. Nevertheless, from the optimization point of view,

Figure 6. Distribution of the costs of all the partitioning solutions for
application app 1. The cost band on the left represent the subset of solutions
found by the GA, SA and TS methods.



these experiments allowed to identify the algorithm the best
adapted to this design problem, even if each of them could
be tuned to reach better results. Hence, for this use case, SA
shows its ability to provide both the optimal solution and a set
of other solutions approaching the optimal one. SA also seems
to better scale with the application complexity. The analysis
of performances metrics (cores loads, memory occupation,
execution time) then allows finer selection.

After the distribution phase, the embedded source code of
the solution is generated, compiled and downloaded on the
target architecture for the final validation of both the real-time
and the functional exigencies.

C. Results of the validation

The target hardware platform is a TC27x tri-core micro-
controller. There are two category of memories: the local
memories attached to each core and the global memories.
There are three cores in this architecture, two identical cores
TC1.6P and another core TC1.6E. All these three cores execute
the same set of instruction. There are two independent on-chip
buses in the tri-core architecture: Shared Resource Interconnect
(SRI) and System Peripheral Bus (SPB). The SRI is the
crossbar based high speed system bus for TC 1.6.x CPU based
devices. The SPB connects the TC1.6 CPUs and the general
purpose DMA module to the medium and low bandwidth
peripherals. More details can be seen in [16].

We deployed the application App 2 onto this multi-core
platform to measure the communication overheads and CPU
loads for several distributions. After starting the execution,
the trace information were obtained by the vendor tool -
Lauterbach Trace32. We present in this section the results
obtained for two specific solutions:

• initial solution: it is the first generated solution from

Figure 7. Scalability of the execution time of GA and SA optimization meth-
ods. The average run time is plotted according to the application complexity.
The figure specifies the average measured values.

Table VI. OPTIMIZATION RESULTS FOR APPLICATION APP 2 BY GA
AND SA METAHEURISTICS

Algorithms Deviation
to best

Best Average
Run

Number of

found solu-
tion

solution
found

Time (ms) explored
solutions

SA 0.12% 8 35305 1000000x1
GA 2.83% 7 663305.2 100000x10

Table VII. OPTIMIZATION RESULTS FOR APPLICATION APP 3 BY GA
AND SA METAHEURISTICS

Algorithms Deviation
to best

Best Average
Run

Number of

found solu-
tion

solution
found

Time (ms) explored
solutions

SA 21.23% 1 752202.4 1000000x1
GA 10.48% 0 14355693.8 100000x10

which the metaheuristic algorithms search the near-
optimal distributions;

• optimised solution: the best solution founded by SA
and GA. As shown in the section V-B, the two
algorithms could find the same optimised solution for
this App 2.

The source code of all the solutions found by the exploration
tool can be generated and associated to the code of the
embedded executive layers. Once compiled, the binary file
is downloaded onto the device. We aim at comparing the
estimated and real (measured) performances of the explored
solutions. The measured communication overhead for the two
solutions specifically studied in this paper are given in Table
VIII. Estimated values are given by considering the number of
data access per millisecond (taking into account the number of
fetches required to get data, i.e. the size of data). Measurements
are done onto the platform using Trace32 tool and provide the
exact amount of time used for intercore communication. It
appears in Table VIII as a percentage of the total application
execution time. The trace of execution are extracted and
analysed in a pseudo-automatic manner. We can for example
compute the average load per intercore communication func-
tions (called IOC), and per core by identifying the individual
IOC calls, and their execution time, during a period of time.

By comparing real values with estimated values, we can
observe that the optimization done by the tool is confirmed by
the experiments despite an estimation error. More precisely,

• Table VIII represents the intercore communication
cost for each source core (executing the producers of
data)

• Table IX shows the associated core loads,

both for the initial and optimised solutions. More precisely,
we present in Table VIII the following results of the intercore
communications for both solutions:

• the transition counts represent the number of transi-
tions between cores. Each transition is related to 2
IOC functions: send and receive;

• the estimated overhead considers the number of data
access per millisecond (taking into account the number
of fetches required to get data, i.e. the size of data);

• the measured overhead is the load of IOC functions
measured on the target. We can observe in this table
that measured overhead is correlated with both transi-
tion counts and estimated overhead.

These results show a systematic reduction of the commu-
nication and the load metrics, and allow to evaluate the error
of estimation.



Table VIII. ESTIMATION AND VALIDATION RESULTS OF THE
COMMUNICATION OVERHEAD ON THE AURIX TRICORE TARGET.

Initial Solution Optimized Solution

Cores transition
counts

estimated
overhead

measured
overhead

transition
counts

estimated
overhead

measured
overhead

Core 0 144 26,25 3,25% 114 26,03 2,0%
Core 1 99 37,20 3,23% 67 22,68 0,94%
Core 2 110 23,50 1,37% 78 15,00 1,2%
Total 353 86,95 7,85% 259 63,71 4,14%
Gain 26,63% 26,73% 47,26%

Firstly, according to the Table VIII, the optimized solutions
are better, about 26% more efficient from the partitioning
tool point of view, and about 47% in the real platform. It
corresponds to about 26% of minimization of the number of in-
tercore transitions. Even if communications are not represented
with the same unit in Table VIII we can observe a difference in
the global gain. This error of estimation is not very surprising.
Performance estimation is currently computed only from the
amount of data exchanged between cores. In fact, the count
of transitions impacts also the communication overhead. This
explains why in Table VIII the decrease of estimated overhead
does not necessarily improve the measured overhead while the
transition count is increased. Besides, additional features such
as the OS services and the memory protection unit (MPU)
increase the communication overhead. These overheads should
be modeled in the next version of the tool.
Moreover, the on-board profiling showed that, as a system call
is done each time the application needs an inter-core commu-
nication, it could be more efficient to have 2 data accesses
in one communication channel than having 2 communication
channels with 1 data access in each. This new optimization
will be added as a new type of move (section III-D) during
the exploration.

Table IX. ESTIMATION RESULTS OF THE CPU LOADS ON THE AURIX
TRICORE TARGET

Cores Initial Solution
(estimated)

Initial Solution
(measured)

Optimised
Solution
(estimated)

Optimised
Solution
(measured)

Core 0 4.62% 21,8% 5.34% 20,0%
Core 1 6.51% 21.1% 4.66% 13.3%
Core 2 4.66% 14.4% 5.78% 15.6%
Total 15,79% 57,3% 15,78% 48,9%

Secondly, table IX shows the estimated CPU load for initial
and optimized solution. The partitioning tool considers the
CPU load balancing as one of the design constraints, and
ensures a global load balancing between cores (with a 2%
tolerated deviation). The results show that this constraint is
respected by the partitioning tool, since based on estimations.
The load of cores is measured with Trace32 using dedicated
scripts whereas we only consider the load generated by ap-
plicative runnables in the estimations. The loads of these
runnables were previously measured with Trace 32 onto a
single-core distribution (without intercore communication) and
back annotated into the application description file.

Thus, the other parts of code executed by the application,
such as BSW, OS and other stacks are not considered in the
estimations computed by the partitioning tool. On the other
hand, real CPU loads are obtained on-board by measuring
the time spent in the idle task, and by subtracting the load
dedicated to the BSW tasks (main functions). If the current

measure provides a best precision compared to high-level
estimations, it can still be improved since OS features and other
modules are counted in the application load. This explains the
differences in the results presented in Table IX. Precisely, we
can observe a constant global load according to estimations
whereas measures point out the consequences of the distri-
bution onto the core load, due to OS and communication
overheads. The execution time of the functional code of the
runnables only represents 30% of the global load of this
automotive system.

We are now working on adding an intermediate fast vali-
dation phase between the distribution and the validation phase
to improve the quality of our estimations during exploration.
We are developing a SystemC transactional simulator of the
multicore software distribution. Besides, similarities between
the SystemC language and AUTOSAR have already been
demonstrated [17]. At this level, the hardware architecture
can be essentially abstracted. The concurrency is modeled
at the core level, the goal being to reduce the estimation
error on communication costs, to explore more accurately the
scheduling of tasks, and to identify in the early phase of the
design the conflict of resources. This new simulation step will
allow short and long validation cycles in the same multicore
design flow.

VI. CONCLUSION

We described in this paper the issues in the partition-
ing of engine control applications in multi-core automotive
systems. The proposed partitioning method is the first one
fully compatible with the constraints imposed by the AU-
TOSAR architecture both in terms of software architecture
and design process. The corresponding partitioning tool can
thus be integrated in a seamless AUTOSAR design flow, from
application description to software deployment onto multi-core
architectures. Hence, classical optimization methods have been
adapted to the automotive context and its specific real-time
constraints in an efficient exploration tool. The entire working
process has been validated onto real world applications from
the AUTOSAR descriptions to the on-board profiling.
The results obtained on complex motor control applications
show the benefits of the optimization phase. A 47 % gain
has been obtained by minimizing the intercore communication.
These first results, obtained on the recent intercore release of
AUTOSAR, also point out an increase of the core load when
migrating from a monocore to a multicore deployment.

After having proposed a pseudo-automatic top-down refine-
ment process in this paper, we aim at recovering the results
obtained by real measurements up to the partioning tool in
order to improve the precision of the performance estimations.
Moreover, thanks to a multi-criteria formulation of the future
version of the cost function, we will be able to take into
account several criteria to evaluate multicore distributions such
as OS overhead, memory usage, resource conflicts, safety...



REFERENCES

[1] AUTOSAR, http://www.autosar.org, Tech. Rep., last visited:
01/03/2015.

[2] ——, “Specifiaciton of timing extensions, version 2.1.0,”
www.autosar.org, Tech. Rep., 2014.

[3] Y. Yi, W. Han, X. Zhao, A. T. Erdogan, and T. Arslan, “An ilp for-
mulation for task mapping and scheduling on multi-core architectures,”
in Proceedings of the Conference on Design, Automation and Test in
Europe, ser. DATE ’09. 3001 Leuven, Belgium, Belgium: European
Design and Automation Association, 2009, pp. 33–38.

[4] B. Miramond and J.-M. Delosme, “Design space exploration for dy-
namically reconfigurable architectures,” pp. 366–371, 2005.

[5] A. Monot, N. Navet, B. Bavoux, and F. Simonot-Lion, “Multi-source
software on multicore automotive ecus - combining runnable sequencing
with task scheduling,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp.
3934–3942, October 2012.

[6] H. R. Faragardi, B. Lisper, and T. Nolte, “Towards a communication-
efficient mapping of autosar runnables on multi-cores,” IEEE 18th Conf.
on Emerging Technologies & Factory Automation (ETFA), vol. 18, pp.
1–5, September 2013.

[7] S. E. Saidi, S. Cotard, K. Chaaban, and K. Marteil, “An ilp approach for
mapping autosar runnables on multi-core architectures,” Proceedings of
the 2015 Workshop on Rapid Simulation and Performance Evaluation:
Methods and Tools, 2015.

[8] A. Sailer, S. Schmidhuber, L. Deubzer, M. Alfranseder, M. Mucha, and
J. Mottok, “Optimizing the task allocation step for multi-core processors
within autosar,” International Conference on Applied Electronics, 2013.

[9] Amalthea-project, http://amalthea-project.org, Tech. Rep., last visited:
02/02/2015.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP Completeness. W. H. Freeman and Company,
1979.

[11] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220 (4598), pp. 533–549, 1983.

[12] F. Glover, “Future paths for integer programming and links to artificial
intelligence,” Computers and Operations Research, vol. 13 (5), 1986.

[13] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley Professional, 1989.

[14] M. Zhang and Z. Gu, “Optimization issues in mapping autosar compo-
nents to distributed multithreaded implementations,” 22nd International
Symposium on Rapid System Prototyping (RSP), pp. 23 – 29, 2011.

[15] B. Miramond and J.-M. Delosme, “Decision guide environment for
design space exploration,” 2005.

[16] 32-bit TriCore Microcontroller, infineon, http://www.infineon.com/,
Tech. Rep.

[17] M. Krause, O. Bringmann, A. Hergenhan, G. Tabanoglu, and
W. Rosentiel, “Timing simulation of interconnected autosar software-
components,” Design, Automation & Test in Europe, 2007., vol. 1, no. 6,
pp. 16–20, 2007.


