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Abstract 
We present a methodology for the common 
development of combustion engine control Software 
between TIER-1 supplier and OEM. The classical 
approach of shared development used in single core 
projects has to be adapted to the new challenges of 
integration and protection, in the multi-core context. 
New integration and protection constraints are 
specified at design time, which are considered at 
integration and protection time. A common 
integration step is defined, where interfaces and 
constraints at the border are agreed. After that, each 
part can be modified and protected independently, 
enabling parallel developments by the partners. 

 
1. Introduction 

 
In the automotive domain, the body controller and chassis 
systems markets are driven by the integration of new 
innovative features, resulting in an increase of ECUs in 
the car, e.g. in an AUDI A8 with up to 80 ECUs. In this 
context, the multi-core technology is seen as an 
opportunity to slow-down the inflation of ECUs in the 
car, by enabling the integration of loosely coupled 
functions in one same ECU, as a kind of fusion process. 
 
On the other side, the combustion engine market is driven 
by an increase of engine throughput, a reduction of 
consumption (CO2), and a reduction of emissions. This 
results in more complex systems with tighter real time 
constraints, and finally in SW sizes above 1.5 million of 
lines of code. Such increase of computation power can 
only be achieved by the use of multi-core platforms (Fig. 
1). The challenge is then in this case to distribute a highly 
cohesive system on different cores, as a kind of fission 
process. 
 

 

Fig. 1: Quota of deliveries based on multi-core CPU at 
VW/AUDI 

In [1], it has been previously described how this challenge 
can be handled. We want now to focus on the common 

work between Continental Automotive, as TIER-1 
(supplier), and Volkswagen Automotive Group, as OEM. 
In an engine management system, a part of the functions 
is provided by the OEM, and another part is provided by 
the TIER-1, resulting in a complex integration of highly 
coupled SW modules and runnables. In addition, the 
reduction of time-to-market requires parallel development 
of these parts, on TIER-1 side and OEM side. 
 
This paper describes the process developed between 
Continental and VAG to support an integrated shared 
development in a multi-core legacy (non AUTOSAR) 
SW, and is based on real project experience. The paper is 
organized as follows: 
 
In a first chapter, we describe the context of engine 
control SW. We particularly elaborate on the high 
coupling of underlying modules, and the hard real time 
requirements of functions. The iterative development 
process and the need for parallel development between 
the parties are also explained. 
In a second chapter, the general integration challenge is 
described. We introduce the concepts developed and in 
use internally, as well as across partners. We explain that 
an important step in the integration is the elaboration of a 
precise and exhaustive cartography of the SW. 
In a third chapter, the data protection topic is addressed. 
We show the importance of this topic, in regard to the 
high coupling / data flow characteristic to engine systems. 
The basic mechanisms are developed, from the 
specification of protection requirements, until the 
implementation. We finally provide a comparison of 2 
basic methods of intervention. 
The fourth chapter describes the context of shared 
development and the different use cases. The need of 
defining a common architecture, a common integration 
frame, and the necessary adaptations of the integration 
and protection processes are explained. 
Finally, in a last chapter, we provide the state of the art on 
these topics, as known from us. We draw a comparison of 
the standards AMALTHEA, AUTOSAR, and ASAM-
MDX, which are the state of the art in the automotive 
domain. In particular, we point some weaknesses related 
to the shared development, and to the multi-core aspects, 
requiring evolutions of the standard. 
 

2. Multi-core challenges at engine systems 
 

Technical context 
 
The importance of integration and data protection in 
engine systems context is due to the high coupling of 
combustion control functions, a unique situation in 



automotive domain. Most of these functions control the 
same highly dynamic phenomena: the complet
thermodynamic process from beginning of air intake till 
the end of exhaust pipe. The different sensors and 
actuators interact physically with each other, and 
therefore the corresponding SW control algorithms 
permanently exchange information signals. 
 
A rough measurement of this coupling can be based on 
the number of exchanged signals (SW connectors in 
AUTOSAR language) (Fig. 2). In most of the cases, t
exchange concerns 2 modules. This means one to one 
coupling (high coupling). In the other side of the spectra, 
some signals (e.g. engine rotation speed, air 
temperature…) are needed in many control laws, and 
therefore exchanged all over the SW. This mea
coupling, with n greater than 100 (i.e. 10% of the 
complete application).  
 

Fig. 2 : Number of modules sharing data

Finally, these signals are data implemented as simple 
scalars, complex structures, or arrays. For performanc
reasons, global variables are used. 
But this module-to-module coupling gives only an 
overview of the static facet of the SW. These SW modules 
are based on several c-functions (executable entities in 
AUTOSAR language) executed at different rates: for one 
module, several executable entities might be necessary. 
Only in 10% of the cases, a single module ends
single executable. 
 
Therefore, ahead to the data flow between modules, a data 
flow between executables can be measured (
which gives a first idea of race conditions we have to 
tackle with. 
 

Fig. 3 : Number of executables sharing data
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: Number of executables sharing data 

Such estimation gives a similar picture tha
component level, but with a higher level of flow: While 
70% of the data are encapsulated inside a module, only 
30% of them are encapsulated inside one executable.
 
Finally, the full picture on the data is as follows:
- 1/3 are local to one executable
- 1/3 are exchanged between executables, but local to 

a module (“inter-runnable variables”)
- 1/3 are exchanged between executables of different 

modules (“sender-receiver”) 
 
As these executables (8.000) are scheduled from more 
than 60 operating system tasks (ran
mixing timing and angular frequencies, distributed on 
different cores), a significant part of the data flow is 
subject to race conditions in our multi
 

Fig. 4 : Number of dynamic artifacts for integration in 
different domains

Of course, on the static aspect, the mentioned coupling is 
reduced using SW composition, to allow a platform/reuse 
approach. But this has no effect on the race conditions.
 

Challenges 
 
Therefore, the introduction of multi
systems is a challenging task. 
 
On the scheduling and integration side, new constraints 
are adding complexity: The number of integration 
containers (tasks) increases, the relation between them is 
more complex (parallelization, chaining...), new types of 
constraints show up (affinities...), as well as new 
distribution strategies (all SW on one core, time
dependant SW on one core, safety
core...), and the different partners (OEM, TIER
party...) may have different views/constraints on how to 
utilize the different cores. 
On the protection side, a SW running previously in a 
protected single core cooperative environment (a.k.a. 
fixed priority with deferred preemption scheduling 
FPDS) has now to support parallel execution. In 
particular, to achieve a maximum flexibility of the SW 
distribution, which is motivated by the high variability of 
project configurations, the module designs have to be 
independent of any core consideration. For instanc
runnables of the same module might run on 2 different 
cores – or not – depending on the project reusing the 
module. The same module must even still be reusable on 
the single core projects still under development.
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Such estimation gives a similar picture than on 
component level, but with a higher level of flow: While 
70% of the data are encapsulated inside a module, only 
30% of them are encapsulated inside one executable. 

Finally, the full picture on the data is as follows: 
1/3 are local to one executable 

3 are exchanged between executables, but local to 
runnable variables”) 

1/3 are exchanged between executables of different 

As these executables (8.000) are scheduled from more 
than 60 operating system tasks (ranging from 1ms to 1 s, 
mixing timing and angular frequencies, distributed on 
different cores), a significant part of the data flow is 
subject to race conditions in our multi-core environment. 
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Of course, on the static aspect, the mentioned coupling is 
reduced using SW composition, to allow a platform/reuse 
approach. But this has no effect on the race conditions. 
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On the protection side, a SW running previously in a 
protected single core cooperative environment (a.k.a. 
fixed priority with deferred preemption scheduling – 
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Finally, due to the tight economic constraints, a complete 
rework of the existing SW is not affordable. Therefore the 
methodology has to cover the legacy SW not designed for 
multi-core. 
 

3. Integration process 
 

General 
 
The topic of integration in this context covers the 
integration of one or more runnables of a software 
component or composition into one or more tasks of the 
complete software system, performed by an integrator. In 
this phase the correct position of the runnable in the 
sequence shall be determined and the necessary protection 
of data against concurrent access shall be generated, to 
ensure the stability or coherency of the data used by the 
runnable. It is further on assumed that the provider of the 
runnables and the integrator are time-wise and location-
wise separated from each other as a consequence of 
worldwide software development of large scale software 
project. 
 

Dynamic requirements for runnables: 
 
For the correct real time behavior of the software 
functions in the target application, it is necessary to 
describe unambiguously the dynamic requirements for the 
integration of the runnables into existing tasks (“dynamic 
integration”). This is true for runnables of the supplier in 
context of a platform development and especially for 
runnables of the OEM, when looking on integration use 
cases in different applications of the same or even of 
different suppliers. 
Due to this different use cases it is important to describe 
rather the requirements than a given solution. Describing 
the solution might be sufficient for one project but would 
manifest many design constraints to other projects, 
especially when looking across multiple suppliers using 
different architectures. 
 
The minimum requirement on dynamic integration is the 
description of the point in time, when the runnable shall 
be executed. In the Continental PowerSAR architecture 
the available points in time (“rates”) are standardized in a 
Reference Architecture and are called SystemEvents. 
They are characterized by different attributes like required 
minimum and maximum period, guaranteed deadline, and 
more. For each Runnable to be integrated, a so-called 
RunnableEvent is created, which specifies the integration 
constraint of this runnable by referring to an existing 
SystemEvent. This RunnableEvent should not be 
confused with the AUTOSAR RteEvent, which defines 
more an integration solution than a requirement. 
Still missing are requirements concerning the relation 
between runnables using the same SystemEvent. For the 
description of requirements for a sequence one could 
either describe a relation to one or more runnables by 
name, the so called “Execution Order Constraint” (EOC) 
or use a requirement concerning the allowed age of a data, 
which is consumed, named “Data Age Constraint” (DAC) 
(Fig. 5). 
 

The type of constraint to be used depends on the area of 
responsibility for a part of the software. Within a software 
composition where the responsibility is at a single person 
or small group of developers, EOC might be quite 
efficient, as giving the order of executables of the own 
composition combines a lot of refined requirements 
concerning the data flow and allows an easier description 
of the sequence requirements. On the other hand most of 
those execution orders are needed because of the data 
flow of some “important” data, which contribute to the 
dynamic behavior of a complete event chain. With EOC 
this information might get lost and in case of 
repartitioning or renaming of the software: the EOC might 
become invalid. 

 

  

Fig. 5 : Solving Sequence of runnables using 
Constraints 

When using a DAC, one is working on the interface of the 
runnables and does not depend on runnable names. In a 
model where only data which are consumed by a runnable 
are described with a DAC the requirement doesn’t 
become invalid in case of a repartition of the runnables. If 
the data use is changed, this attribute has to be considered 
as well. This is especially helpful in a shared development 
context as the interfaces are the subject of discussion 
when defining the interaction of OEM and supplier 
software e.g. in Sequencing Workshops (See Fig. 6). 
 

 

Fig. 6 : Effect of position in the sequence on the data 
flow between supplier and OEM runnables 

Due to the complex coupling and data flow inherent to 
engine systems, an exhaustive analysis and resolution of 
data precedence problem is not possible: the problem has 
not always one solution. Therefore, the principle of the 
DAC approach is to identify, among all possible flows, 
the few ones which have a real impact on the system. For 
instance, low dynamic information, like the air 
temperature might have one – or more – recurrences of 
delay without big impact on most of the functionalities. 
At the opposite, having the wrong value for a cylinder 
index can be dramatic for the injection controller. 
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Today this information is exchanged via non formal 
requirement specification in a textual way due to the fact 
that MDX V1.2 [2] doesn’t offer means for a formal 
description and most OEMs didn’t migrate up to now to 
AUTOSAR, where the timing extensions would offer a 
possibility to describe a RTE Event and in addition 
runnable sequence needs or a DAC. 
 
In addition to these two types of constraints, EOC and 
DAC, another concept can be used: the phase concept [3]. 
It consists in partitioning the time domain according to 
standard features in automatism. As example, logically, 
the runnables dealing with acquisition and diagnoses need 
to be executed before the runnables dealing with output 
commands. Therefore, a phase is associated to a given 
runnable, according to its inner functionality, and 
therefore is valid independently of the integration 
environment. This leads to a fully reusable and 
independent integration constraint. This method has been 
introduced at Conti since 3 years now, and used 
internally. Nevertheless, its extension on shared 
development with external partners is more difficult. 
 

SW Cartography 
 
For a correct integration and protection of the SW, it is 
necessary to know the whole structure of the code and the 
data accesses for read and write performed throughout the 
whole call graph of the application. No grey area shall be 
left over, as it can have severe consequences. As precise 
the cartography will be, as precise the protection and 
integration will be. 
Verifying a DAC is only possible if the full data and 
control flow of the relevant sequence is known.  The same 
applies to EOC, where the involved runnables are not 
mandatorily those directly integrated in the sequence. 
Depending on the type of the SW which has to be 
integrated, this cartography can be established based on 
C-code, MDX description, or ARXML SW-components, 
a mixture of these use cases needs to be supported. 
 

4. Protection process 
 

Structuring the problem 
 
In terms of data protection against race conditions, two 
types of problems are taking special importance in multi-
core context: data stability and data coherency. 
 
Stability: As soon as runnables can execute in parallel, 
and exchange data, it becomes very probable, that a data 
is modified while it is used on another core. If the data is 
scalar, and atomic, each individual read access cannot be 
corrupted by a write access on another core. The read 
access point will get the newest or the old value. But, if 
there are several read accesses, or if the same value of the 
data is expected across 2 successive runnables, then the 
stability of the data might be corrupted. In some cases, 
this might be acceptable, because for instance, the same 
data is used in different decoupled parts of the algorithm, 
and/or because the data has a low dynamics and only a 
small change of its value is possible. But in other cases, 
like for instance for booleans or state machines, the 
impact of a change during an algorithm can be severe. 

 
Coherency: The modification of an elaborated data 
(structure, array, a set of atomic data…) on one core while 
it is accessed on the other core can have severe 
consequences, too. For instance, 2 exclusive information 
(a flag and its complement…) need to be written and read 
in a coherent manner. The reading of the data set might be 
“interrupted” by the writing of these data on this other 
core. Or on the opposite, the writing of the data-set might 
be “interrupted” by the reading on the other core.  Even 
both cases can happen. Here again, this does not concern 
all variables of the SW, but only sub-sets. For instance, in 
one given algorithm, it is often the case that variables 
from different rates are used, and therefore cannot be 
coherent, by essence. 
 

Consistency needs 
 
Considering the huge data flow across runnables and 
tasks, as depicted in chapter 2, our approach is to be 
selective on the data and runnables to be protected. Ahead 
of limiting the HW resources consumption, this limits the 
protection cases that may have negative functional 
impacts. 
 

 

Fig. 7 : Ensuring data protection using Stability and 
Coherency Needs 

Therefore, functional consistency needs are specified at 
design phase by function experts: stability of certain data 
accessed by distinct but coupled executables, and 
coherency for sub-sets of coupled data in certain 
executable. The function experts are responsible to 
specify the stability and coherency needs where required, 
and only there. In this way, the learning and development 
effort related to multi-core is minimized, and the function 
experts can concentrate on their core competence: physics 
and control laws. They have to concentrate on the “what” 
(to protect) and not on the “how” (to solve the protection). 
 
It has to be noted that the initial AUTOSAR approach 
(“implicit communication”), where protection was applied 
everywhere, has been modified in AUTOSAR 4.1.1[4] 
(and in ASAM-MDX 1.3 [5]), with the introduction of 
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Data Stability and Data Coherency Needs. But this 
represents a significant evolution in the RTE (explicit and 
implicit) communication paradigms. 
 
At integration and protection step, the requirements for 
data consistency are analyzed and checked against the 
project architecture (task configuration) and cartography 
(data flow). In case a consistency is required, a race 
condition is requested, and the SW is ready to be 
protected, then the protection of the relevant data is 
established in the relevant executables. 
 

 

Fig. 8 : Data consistency buffer evaluation 

To cover the simple cases where consistency is 
systematically required, and to reduce the effort of needs 
specification, complementary automatic strategies are 
used. For instance, coherency of non atomic (64 bits) data 
and stability of multiple accesses of same data inside an 
executable do not need to be specified. 
 

Protection by buffering 
 
The protection of data against race condition is mostly 
(but not uniquely) ensured by a buffering mechanism. It 

consists in copying the data in a task-local buffer, and 
using the buffer instead of the original variable in the 
algorithm. Fill and flush routines are inserted in the 
program flow (task bodies) in order to copy the variable 
into the buffer, and vice versa. 
In the AUTOSAR implicit communication, the copies are 
done at beginning/end of task, resulting in long “buffering 
segments”, and high resource consumption. In classical 
approaches, the copy is done at beginning/end inside each 
runnable, which is resource consuming too, but in 
addition does not ensure consistency across runnables. 
In our case, the copies are done along the task to avoid 
these drawbacks. For instance, the filling of the data into 
the buffer is done at the latest possible position in the task 
(“as late as possible”), in order to benefit from the latest 
available value in the global system. 
 

Access Modification in executable 
 
For modifying the data access to a buffer access in a 
legacy SW, 2 basic techniques are available: 
 
The Data Reference Modification (DRM) [6] consists in 
changing the address of the original data by the address of 
a buffer in the binary ELF file. Here the integration of 
object code sets some limits in terms of protection. For 
instance, in case of multi rate executables the function 
design has to be modified as the DRM process allows data 
protection in only one context (variable address 
substituted in binary by buffer address). In this particular 
case of multi-rate executables, the resulting re-design 
might have other drawbacks like e.g. code duplication.  
 

 
 DAM (source code modification) DRM (binary code modification) 
Need of source 
migration 

Yes: Accessers (GET/SET) have to be added to 
the code. 
But, a migration can be done by a tool; and code 
generators can be adapted, in the MBD case. 
Finally, a similar migration is required for 
AUTOSAR introduction. 

No. 
But, redesign of the functions might be required in 
special cases. 

Source code 
exchange 

Yes. 
But some TIER-1 and OEMs are used to work with 
obfuscated code. In some cases, the OEM 
functions are even coded by the TIER-1. Finally, 
AUTOSAR process might need source code 
exchange, in context of engine systems. 

No: object code is the standard for IPP, in legacy 
context. 

Verification and 
validation 

Early: Modification of accessers can easily be 
checked at compile time. 

Late: Need to compile and link before having the 
modification. 

Compiler chain 
independence 

Yes: Accessers modified on source code level. No: Same configuration of the compiler chain 
across all partners. Furthermore, the chain has to 
support DRM technique. 

Openness to 
complex cases 

Yes: Step by step, new use cases are supported, 
which need a more complex redirection of the 
Accesser, than a simple address modification (e.g. 
multi-rate cases). Furthermore, the addressing 
mode to the buffer can be different than the one to 
the original data, to gain performance. 

No: Only address modification can be done, 
limiting the possible intervention. 

Coherency 
cartography vs. 
intervention 

Yes: the cartography of the SW and the 
intervention (accesser modification) are based on 
the same model: The SW-code. This guaranties 
the global coherency. 

No: Unless the cartography is based on the obj. 
code, which is late in the process, there might be a 
gap between the cartography and the real 
implementation in the binary leading to severe 
mismatches on the protection. 

Table 1: Comparison of Data Reference Modification and Data Accesser Modification 
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The Data Accesser Modification (DAM) consists in 
modifying the source code. Standardized APIs (data 
“accessers”) are used in the code, and can be redirected - 
or not - to the buffer, using an include file. This 
technique, which is similar to AUTOSAR, gives more 
flexibility and optimization potential. For instance, it 
allows runtime context dependant accessers. On the other 
hand, the different development parties like to protect 
their IP and are reluctant to share source code, which is 
necessary for the DAM process. 
In Table 1, we provide a non-exhaustive list of pros and 
cons of each technique. 
 

5. Shared development 
 

Development process 
 
One additional dimension of the SW development for 
engine systems is the increasing integration, and therefore 
mixture of SW-components coming from different 
sources, and often provided with different formats (Fig. 
9). It becomes a classical use case, for instance, to 
integrate SW functions from the OEM in the TIER-1 
ECU, as well as components from 3rd party. In extreme 
cases, the TIER-1 has to integrate SW modules from 
different OEMs (engine co-developments), or even from 
own competitors. The amount of external SW may be 
high (“box-business” model, where the TIER-1 only 
provides the ECU plus the BSW), or on the opposite, null 
(“full turn-key” programs). In between these two extreme 
cases, the SW-part from the OEM to integrate might be 
provided as models, C-code, or object-code. It might 
comply with AUTOSAR standard, or simply be legacy 
SW. 
 

 

Fig. 9 : Percentage of OEM part in total program code 

Of course, this “OEM plug-in” (monolithic or not) has to 
be integrated in the existing task system, as easily as the 
rest of the SW. Integration constraints are therefore 
discussed between the parties. Constraints on the needed 
SystemEvents are defined, as well as sequencing 
constraints or event chains. The core distribution is finally 
derived from all those requirements. The used protection 
methodology has to give a maximum of flexibility in 
order to meet all use cases. The OEM plug-in has to be 
protected against race conditions, like the TIER-1 SW, 
using the same principles, but with DRM instead of DAM 
due to IPP reasons. 
 

In total, a complete project lasts in average 24 to 36 
months, during which several synchronizations are done 
between TIER-1 and OEM: releases of the OEM plug-in 
to the TIER-1; and releases of the complete integrated SW 
from the TIER-1 to the OEM. Similarly to the TIER-1 
functions, the OEM plug-in integrated in the ECU follows 
a development cycle, and is updated several times during 
the project life-time. To shorten the development loops, 
the OEM needs to be able, “at home”, to further develop, 
re-integrate, and validate his functions. Therefore he must 
be able to build again the system. This kind of process 
was a market standard in single core engine systems, 
where the TIER-1 SW is delivered as object code, and the 
OEM plug-in is modified, re-integrated, and re-compiled 
on OEM side without intervention of the supplier. Thanks 
to cooperative scheduling, a policy extensively used at 
Continental, there was no need of special mean to ensure 
data consistency. 
 
Now, as the OEM wants to distribute his SW over 
different cores, and as the protection of the SW requires a 
particular analysis and treatment, a segregation of the SW 
is done, between OEM and Supplier. The TIER-1 part is 
frozen, protected, and compiled at TIER-1 side, with a 
first version of the OEM part. Library files are released to 
the OEM, with a build environment. Starting from this 
point, the OEM part can be modified, and re-protected at 
OEM side. This means that independent buffering 
strategies are applied on the different parts. 
 
At the end, the shared development process can be seen as 
an alternative or a complement to Rapid Prototyping, 
enabling short development loops between TIER-1 and 
OEM. 
 

Common architecture 
 
In this code sharing context, a common understanding of 
the basic system behaviour is essential to be reached. 
Right in the beginning, a definition of the features 
provided by the Operating System has to be negotiated 
and agreed: a common dynamic architecture. This 
common architecture has to enable an efficient protection, 
an easy integration, and it has to support simulation and 
validation of the scheduling. 
 
First (and already known from single core systems) a set 
of common SystemEvents, as defined in chapter 3, has to 
be defined. It might be a subset of the complete set 
needed by the TIER-1, plus some extensions. Then, these 
SystemEvents are implemented as tasks, which have a 
priority and pre-emption behaviour, and a core allocation. 
In an engine management system typically we have a 
mixture of time based system events (from 1ms to 
1000ms) and angle based system events (crankshaft and 
camshaft synchronous). Typically, different system events 
with a same angular period, but different phasing relative 
to the Top Dead Centre might be required. 
But, in addition to periodic system events, sporadic 
initialization events, such as ECU start-up, ignition key 
transitions or failure memory clearing have to be 
specified. Here mainly, the precise position of the event, 
and its system meaning have to be clear to all parties. 
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The principle of initialization events is inspired from the 
object orientation concepts of constructors and 
destructors, and allows having a coherent system 
initialization across the complete SW. This concept, used 
in single core projects, has been enhanced in the scope of 
multi-core context, as it is important that all cores 
“toggle” get initialized synchronously and coherently. 
 
Finally, with the step-wise deployment of AUTOSAR, it 
becomes important to fix also some basis on the use of the 
RTE, as there are different interpretation/use between 
partners can cause severe incompatibilities at integration 
time. Therefore, in the definition of this common 
architecture, the AUTOSAR configuration has also to be 
addressed, in particular if the OEM wants to integrate 
AUTOSAR SW and therefore fixes some implementation 
choices in its SW-Component descriptions. 
 
For an OEM like VAG the challenge is to find a system 
setup which is similar in all TIER-1 ECUs, and which is 
proven to work in a multi-core context. For the above 
named SystemEvents, this is possible across all ECU 
suppliers. But the SystemEvents abstract implementation  
details like OS configuration of priority and pre-emption, 
core allocation, task chaining and handling of sporadic 
system transitions (synchronized or not). With multi-core, 
a new complexity is added to the system. 
For a TIER-1 supplier like Continental, the challenge is to 
find a setup which fits to its generic functions, as far as 
generic functions are integrated in the project. In effect, in 
front of the TIER-1, there is a high variability of OEMs, 
with different visions of the architecture. The TIER-1 
challenge is then to fill the gap between the different 
visions. 
 

Common integration frame 
 
With the ongoing change from single-core to multi-core 
systems the rising complexity of integration has a huge 
effect on the software development. It extends the high-
level goals of the classic software development, like high 
reusability, reliability and correctness, IPP. Additional 
methods are needed, to achieve a closer examination of 
the sw-architecture. The given heterogeneous tools for 
integration and protection on the different TIER-1-side 
must be enabled through standardized general description 
of integration and protection needs on the OEM side. 
Additionally it is necessary to consider legacy software, 
because it is not divisible with further ado. Additional 
specification and in some cases refactoring is needed.  
 
The main challenge for efficient integration on multi-core 
systems is an independent partitioning of the software that 
can run in parallel. But for that it is necessary to find and 
describe the dependencies and avoid conflicts, to protect 
and minimize inter-core data-access. Since two years, 
Volkswagen, Continental and other TIER-1 work together 
on a model-based approach which resolves the following 
main question of shared development for multi-core: 
• What and how to specify and define the integration 

and protection needs? 
• On which architecture level should the specification 

be done? 

• What is additionally required in methodology and 
collaborative process? 
 

This model-based approach is a continuous roundtrip 
from specification until verification [7]. As Fig. 10 
illustrates, this roundtrip includes all needed steps in the 
shared context, considering the typical iterative 
engineering process in automotive industry, where the 
software is developed in several iterations of the V-Model 
and with this has several different releases with different 
maturity and quality. In a first step to generate the basic 
element for all considerations in shared context – the 
system model – a model consolidation combines system 
descriptions including hardware, operating system and 
TIER-1-software information given in the  
AMALTHEA format with the software description 
including the OEM-software information and 
requirements in the MDX format. This basis element 
combines the required information. It is the fundament for 
shared methods, like the already introduced sequencing 
workshops. It extends the collaborative software 
development with new information to be exchanged in 
new or enhanced formats.  
 
With a consolidated system model, the software 
architecture can be visualised and graphically annotated 
with requirements, while analysing the data flow and 
signal paths. In this second step typically the TIER-1 is 
responsible to process the requirements and define the 
final system design. The system-model and defined 
requirements can be used with tool-support to find a 
pareto-optimal design, with efficient resource usage and 
requirement fulfilment.  In the third step the updated 
system design is checked up against the requirements with 
simulation of the dynamic behaviour in an early design 
phase, before final integration to take into account, that 
the design is executable and fulfils all requirements for 
the given target hardware. Finally in a last step after 
integration and measurement, the system is verified with 
evaluation of the requirements taking real software or 
hardware traces, which includes all system events on 
required call tree level for referenced elements in the 
requirements. 
 
In each step enhanced and complex tools are necessary 
which should interpret the information given from each 
partner in adequate and standardized exchange formats. 
 
The specification of integration and protection needs, like 
coherency groups or data ages should be done on an 
abstract level, considering the design rules of the SW 
architecture. On SW composition level the requirement 
engineering is feasible for legacy software and considers 
the existing development process and given static 
architecture, because SW compositions already 
encapsulate functional dependencies given from 
requirement and architecture engineering. It reduces the 
costs in development process because complexity and 
efforts are reduced to specify the integration and 
protection needs. For that different architecture views 
have been created, each one fitting best to the use case of 
requirement engineering.  
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A static architecture view visualises the logic hierarchical 
grouping of the static software structure and their 
interfaces. On this first view it is recommended to define, 
analyse and check the more static requirements, but also 
signal grouping for coherency needs are possible. 
A second view, the dynamic software architecture view 
shows more the design of tasks, runnable sequences and 
their data accesses and data flow. This view is typically 
used to discuss and analyse dynamic dependencies like 
execution order constraints, data ages and event chains on 
runnable level in sequencing workshops. 
A new developed view combines both worlds, the static 
and dynamic architecture: It shows the runnable groups in 
a SW composition grouped for their period. If it is 
defined, that this SW-composition specific runnable 
groups are indivisible (what means the scheduler should 
not interrupt this group), then it is recommended to define 
intra execution order constraints for this groups and use 
data ages for the inter execution order. 
 
Another aspect concerns the compatibility of the SW 
components to each other. For instance, in order to reach 
a similar level of parallelism, it would probably be useful 
to have a similar approach of developing SW components 
(e.g. rules, patterns) across the parties. Therefore, in a 
joint research project we look for patterns which are 
suitable to develop SW components utilizing a high 
degree of parallelism. These patterns shall be described in 
a kind of cook book which can be used by OEM 
developers as well as TIER-1 developers. 
 

 

Fig. 10: Continuous Roundtrip for shared model-
based system design in multi-core projects  

Then there is the topic of IP protection: even in a close 
collaboration the different partners need a good level of IP 
protection. The exchange of source code is maybe not the 
best solution to reach this goal, unless new technologies 
like remote build or obfuscated code are used. Object 
code can be used as exchange format, but with the other 
drawbacks already mentioned. Due to the permanently 
increase of inter-penetration of different parties in the 
final SW, this topic is gaining importance. In addition the 

exchanged information of the system- and software-
descriptions needs IP-protection. For this data it is 
necessary to obfuscate specified signals and runnable 
names for IP-parts of the software. But it is recommended 
to obfuscate only as much as really necessary but not 
more, otherwise needed information to analyze and 
specify dependencies and requirements for the interaction 
of the OEM- and TIER-1 software are lost and in effect 
the specification in this shared context isn’t possible. 
 

Common standard formalism 
 
In order to reach a smooth integration into the defined 
integration frame the SW description and the specified 
timing requirements have to be exchanged between the 
parties. This exchange has to be based on a machine 
readable standard format, as integration and simulation 
processes of such complex system are only possible with 
tool support.  Further on the use of a standard helps to 
define a common understanding of system features and 
forces the usage of a common wording. As each standard 
has some space for interpretation, the harmonization of 
semantics and used tags is necessary.   
In cooperation between OEM and TIER-1 the ASAM 
MDX file format is currently widely used for SW sharing 
in non-AUTOSAR context. In those projects MDX is 
used to deliver information necessary for integration 
purposes to the integrator of a SW component.  
 
The MDX standard is well defined for data definition 
purposes, as well as for the exchange of SW features 
information. Also variant handling can be described via 
system constant definition and settings. Basic scheduling 
information can be transferred to the integrating party. 
As described above, in projects using multi-core CPUs 
there is the need to exchange further information: 
- Data flow information – this currently possible with 

the existing MDX standard V1.2, but  the data 
access frequency (access multiplicity) has to be 
added for a more detailed view on the real SW. 

- Data stability needs – not defined in V1.2 
- Data coherency needs – not defined in V1.2 
- Data Age Constraints – not defined in V1.2 
- Scheduling requirements for runnables – already 

possible with V1.2 
- Scheduling dependencies between SW components – 

not defined in V1.2 
A new version of the MDX standard has been defined to 
address the missing topics: the V1.3 released since June 
2015. 
Data stability groups can be specified as well as data 
coherency groups using new tags in the SW collection 
area. 
Data Age Constraints and access multiplicity in one 
executable can be specified on data access elements in 
SW services (runnables). 
With these extensions a SW component provider is able to 
exchange the defined timing requirements and constraints 
of its SW components to the integrating party as discussed 
above.  
 
As there is a lot of legacy code at VW/AUDI this way has 
been chosen to bring these SW components to the new 
multi-core world, limiting the effort of reengineering. 
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After defining this step in exchange format, the focus now 
changes to: 
- implementing of MDX V1.3 in development tools 
- gathering all the requirements and constraints to be 

transported via MDX V1.3 
- training the teams to this new process 

In the near future the new features of the MDX standard 
will be used in practice.  
 

The contract = Interface freeze 
 
Freezing of interfaces consists of mainly two steps. The 
first step happens at the end of interface and sequencing 
workshops when the interface is agreed between the 
involved parties and fixed in terms of mapping of content, 
names, ranges, resolution, DAC and EOC constraints. 
The second step is performed, when the interface 
adaptation is implemented at the TIER1 and the OEM 
receives software for the parallel development. To 
manifest and freeze the contract, the software has to be 
prepared in a certain way.  
 
Protection adaptation: Part Management 
When integrating TIER-1 and OEM SW parts, all 
integration and protection Needs are collected. Each 
artifact in the project (data, runnable, module…) is 
allocated to one of the three parts: TIER-1, or OEM part. 
This allows applying different buffering policies on the 
different parts: For instance, if the OEM has not a proper 
description of the protection Needs (stability, coherency), 
then an automatic strategy can be applied, which are not 
necessary on TIER-1 side. 
Also, this partitioning allows to select between different 
formats for the input (C-code, ARXML, MDX), but also 
for the output (DAM, DRM). 
 
Finally, the final goal of a clear partitioning of the SW is 
to minimize the interactions between the parts (or at least 
to concentrate them in an adaptation part) and to enable a 
partitioning of the protection process. For instance, 
dedicated buffers, dedicated copy routines, dedicated task 
sections can be defined and fixed for one part, while the 
other part is updated. It allows an independent build of the 
SW at OEM side: The TIER-1 SW is built (protected, 
compiled, validated) at TIER-1 side, while the OEM SW 
is re-built as many times as requested, at OEM side. 
 

  

Fig. 11 : Stability Needs apply to different parts 

In Fig. 12, we show the resulting buffering for a concrete 
example. The TIER-1 and OEM runnables are identified 
by their respective colour. Different buffers are used in 
the TIER-1 area, which are not reused in the OEM area. 
The OEM area can then be modified independently of the 
TIER-1 area, and re-built. 
 

Parallel development / Parallel builds 
 
Having a frozen interface allows starting a parallel 
development in various stages depending in the amount of 
changes and the timing requirements of the developed 
solution. Each partner (OEM, TIER-1) can modify its part 
without impacting the other one. 
When doing only small changes, a parallel development 
using a tooling for internal bypassing (e.g. eHooks) is 
appropriate. The limitation of the internal bypass is 
mainly due to the tight internal resources (RAM, ROM) 
of the controller. 
If the changes grow, or completely new functions are 
developed, the use of an external bypass system can be 
useful. With this, an existing function is cut out of the 
sequencing and replaced by a calculation in an external 
CPU. The communication to this external ECU is done at 
defined points before and after the existing function. So 
the new function gets the same timing environment than 
the existing one. The communication via separate data 
buffers to the external CPU ensures stability by default for 
the external calculated functionality. When using 
additional variables in the external calculation a 
coherency need might be not fulfilled. 
 

 

Fig. 12 : Partitionning of runnables and Buffers in 
shared context 

In both cases of external and internal bypassing, if race 
conditions are modified, the buffering configuration is not 
anymore valid, due to the modified cartography. It might 
be that a change in a bypassed function generates a 
change of buffering in a non modified & stable function. 
For instance, changing a write access to a read access, or 
changing the multiplicity of a read access might have 
impacts on the buffering status elsewhere. Therefore, the 
type of modifications that can be applied on an algorithm 
w/o impact on the race condition is very limited, in multi-
core context.  
In addition, if the required change affects tight integration 
requirements (e.g. working on a 100µs task in an 
electrical engine controller), or connection to HW features 
(e.g. special ASICs), that cannot be fulfilled by rapid 
prototyping, external and internal bypassing are also no 
options. 
 
In this case, the solution developed by Continental is the 
only alternative to the re-delivery of parts between OEM 
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and TIER-1 (with the consequences it has). As mentioned 
earlier, a high flexibility is provided to the OEM as long 
as the interface (= integration of the adaptation runnables) 
is unchanged. It is even possible for the OEM to change 
its own integration, and in particular investigate different 
core distributions of his SW. 
 
All the ways to evolve the functionality of the SW system 
will exist in future. Depending on the need for flexibility 
and the type of modification, the internal bypass will be a 
perfect solution for a rapid development. But due to its 
limitations other solution are needed. On the other hand, 
the parallel build gives full data protection and guarantees 
exact real time behaviour, but with the drawback of 
comparably long turnaround times due to build and flash 
times. 
 

6. Related works / State of the art 
 
For the discussed topics of shared development of 
embedded automotive software, state of the art are three 
quasi industry standards, depending on the use case and 
target platform in the given project context. The public 
promoted research project AMALTHEA [8] is of higher 
interest for software engineering of future multi- and 
many core software-systems. Parts of the pre-released 
results with a well-defined data-model from this project 
are already in use for software architecture specification 
and description. Currently in usage for exchange more 
present in the automotive embedded context are the 
working groups of ASAM MDX [5] and AUTOSAR 
[4][9] . Unified exchange and interoperability for software 
description are supported; all data models have equivalent 
core data.   
All these three standards enable software architecture 
engineering and exchange of relevant information. 
Depending on the use case, they are more or less suitable. 
In Table 2, the coverage of the different description 
context for all discussed use cases is compared for this 
three standards, where “x” means full support, “(x)” 
means partly supported and “-“ means currently not 
supported. In this comparison there where considered the 
latest versions with the highest coverage of information. 
  

About MDX 
 
The MDX description as an ASAM standard is used for 
single-core projects and with additions since version 1.3 
[10]. Also, software description for multi-core projects are 
supported with the mayor basic multi-core features, like 
basic timing requirements, data consistency needs and 
scheduling requirements from the OEM point of view. 
Complete system description with hardware- and 
operating system features are not supported. For the use 
case to describe and exchange the integration needs of the 
OEM application software it is suitable. 
 

About AUTOSAR 
 
Advanced description and new concepts like Application 
partitioning and more static architecture support is given 
with AUTOSAR from version 4.2, which includes the 
integration- and protection needs and further timing- and 
architecture description. It is the most established format 

in the automotive industry, has the most support from 
architecture and analysis tools and on this reason highly 
recommended. Nevertheless, the support of consistency 
needs (“groups”) on RTE side is still an open point. 
 

 About AMALTHEA 
 
Finally the AMALTHEA format from version 1.1.1 
[11][12], as the newest possibility in these cases, adds 
features and more support for the dynamic description of 
the software. It extends the architecture and timing 
requirements and gives possibilities to describe more 
technical design properties, for example of the target 
platform with its hardware or the operating system. For 
use cases like software simulation and partitioning of the 
software in multi-core context, this is recommendable 
[12]. This format is suitable for the exchange of complete 
system description typically generated from the TIER-1 
side, which is responsible for the integration. 
 

AMALTHEA (v1.1.1) 
AUTOSAR (v4.2)  

ASAM-MDX (v1.3)   
Software    
 Runnable level    
  Data access (i.e. interfaces) x x x 
  Access occurrences x - x 
  Runtime x x - 
 Process level    
  Activation (periodic, sporadic, single) x x - 
  Call sequence of runnables x - x 
  Hierarchical call sequences x - x 
  Logic grouping of runnables x - - 
 Signals    
  Data description (x) x x 
 Requirements    
  Execution Order Constraint x x x 
  Execution Order Constraint (hierarchical) - x x 
  Data Stability Needs x x x 
  Data Coherency Needs x x - 
  Data Age Constraints (time based) x x x 
  Data Age Constraints (cycle based) x x x 
Hardware    
 Cores (frequency, instruction per cycle, 
topology) 

x x - 

 Core features (lock-step, peripherals) x (x) - 
 Memory topology (bus, crossbar, caches, 
access times) (x) (x) - 

Operating System    
 Scheduling (algorithm, core resources) x (x) - 
 Process configuration x x - 

Table 2: Comparison of Standards currently in use in 
Automotive domain 

 
About the automotive domain 

 
The engine systems domain is the first one in automotive 
requiring an introduction of multi-core processors due to a 
lack of computing power (with the exception of 
multimedia). This is the domain where the deployment of 
multi-core is most advanced, and which has the tightest 
constraints as mentioned in chapter 2. 
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About other industrial domains 
 
To our knowledge, there is no other industrial domain 
where the development of embedded multi-core SW has 
similar constraints. In aeronautics, space and defense, the 
time to market, and target system price are not on the 
same magnitude, like security and safety requirements. As 
example, the following article shows the growth of 
automotive embedded SW with the aeronautic case [13]. 
In particular, in the aeronautic domain, the main focus is 
on the scheduling topic: due to safety issues, offline 
scheduling is widely used, which requires a safe 
estimation of the Worst Case Execution Times (highly 
impacted by new multi-core architectures). As example, 
in [14], the authors consider the access to shared 
resources only in the point of view of timing impact.  In 
Automotive, domain, offline scheduling is not so often 
used, as the mostly used OS is AUTOSAR OS or OSEK 
OS. This is even more true in the engine systems domain, 
where half of the SW is executed at angular (i.e. time 
variable) rates. Concerning data protection, some studies 
are conducted, which concern the detection of race 
conditions, but in our case, we aim not only to identify 
them, but also to protect them automatically. Furthermore, 
the shared resource topic is addressed under the view 
point of impact on timing and WCET. Also, the 
integration topic is also very specific to engine systems 
context, as mentioned in the chapter 2 about coupling.  
 

About ARAMIS and ARTEMIS ECSEL EMC2 
 
ARAMIS: 
In [15][16], the authors address the integration topic, but 
on a vehicle level, and on a basis of distribution of 
functions across ECUs. Multi-core is seen as an 
opportunity to reduce the number of ECUs in the car but 
requires a good distribution of the functions on the cores 
[17]. In [18], the particularity of engine systems is 
recognized as it is qualified as a central ECU. 
Several papers [19] address the topic of scheduling, of the 
verification of timing properties. But in general, 
individual components are considered, designed 
independently of any framework (reference architecture). 
Other papers [20][21][22] address the topic of detecting 
race conditions, but once again, our purpose is not limited 
to detection. 
ARTEMIS ECSEL EMC2: 
The project EMC2 is dedicated to multi-core mixed 
criticality systems, dynamically reconfigurable.  The 
objectives of this project have no relationship to our 
purpose, as the mix of OEM vs. TIER-1 Sw is not 
organized on a criticality basis (e.g. TOER-1 Sw low 
critical and OEM-SW high critical), but rather on a 
functional basis. Also, the critical/safety aspects are not 
part of this paper. Concerning the dynamic configuration, 
and/or reallocation of functions is not seen as a short term 
option, in regard to the tight coupling and real time 
requirements in the engine control area. One interesting 
paper [23] concerns the migration of legacy SW to multi-
core platforms, but the approach is different than the one 
chosen on our side, as a redesign of the functions is 
requested, according to a pre-established core allocation 
(which is part of the design itself). In our case, our clear 

goal is an independence of the design from the 
integration, which can change from project to project. 
 

7. Conclusion 
 
The formal requirement engineering on dynamic aspects 
has a relevant impact on the development process and 
artifacts to be handled. New templates, guidelines and 
trainings have been set up to cope with these challenges. 
New design rules are necessary, which will facilitate the 
parallelization of the control algorithms, but at the same 
time have to minimize the re-design effort: on OEM side, 
like on TIER-1 side, the design of the functions have to be 
prepared for multi-core, but have to be independent of any 
core and memory distribution, a choice which is highly 
project specific. It is also not possible to fix core 
distribution for a function for the next 10 years. To reach 
this goal of flexibility, it is therefore essential that the 
function development focuses on the original requirement 
(protection and integration needs), rather than on any 
implementation (e.g. using of double buffering). 
 
The introduced model based approach needs long term 
establishment, but in prototype projects the first 
experiences confirm significant easement, better system 
understanding for each party in collaborative process and 
in conclusion a key enabler to reach the multi-core 
challenges for SW development. Step by step the process 
and tools are adapted. 
 
Finally new technologies will arise, which will influence 
the design of the functions. For instance, dynamic 
scheduling / allocation to cores, different partitions in the 
ECU… Also, the increase of computation power linked to 
multi-core will certainly motivate higher integration of 
systems, going towards mixed domains ECUs. We can 
think of course about integration of Transmission Control 
Unit and Engine Control Unit, PowerTrain Controllers. 
But it is to be expected that functions out of the 
PowerTrain domain start to be integrated, leading to an 
even higher variability, and therefore needs for partial 
reprogramming, for instance. 
At the end, it is doubtless, that the multi-core introduction 
is at the origin of a big evolution of architectures, and the 
presented shared development process will be a key 
enabler. 
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