
 Page 1/12

Shared SW development in multi-core automotive context
Lothar Michel1, Torsten Flaemig2, Denis Claraz3, Ralph Mader4

1 : Audi AG, 84045 Ingolstadt - Germany
2 : Volkswagen AG, Brieffach 39200, D-38037 Braunschweig - Germany

3: Continental Automotive France SAS, 1, av. Paul Ourliac, BP 1149, Toulouse - France
4: Continental Automotive Germany AG, Siemensstr.12, Regensburg - Germany

Abstract
We present a methodology for the common
development of combustion engine control Software
between TIER-1 supplier and OEM. The classical
approach of shared development used in single core
projects has to be adapted to the new challenges of
integration and protection, in the multi-core context.
New integration and protection constraints are
specified at design time, which are considered at
integration and protection time. A common
integration step is defined, where interfaces and
constraints at the border are agreed. After that, each
part can be modified and protected independently,
enabling parallel developments by the partners.

1. Introduction

In the automotive domain, the body controller and chassis
systems markets are driven by the integration of new
innovative features, resulting in an increase of ECUs in
the car, e.g. in an AUDI A8 with up to 80 ECUs. In this
context, the multi-core technology is seen as an
opportunity to slow-down the inflation of ECUs in the
car, by enabling the integration of loosely coupled
functions in one same ECU, as a kind of fusion process.

On the other side, the combustion engine market is driven
by an increase of engine throughput, a reduction of
consumption (CO2), and a reduction of emissions. This
results in more complex systems with tighter real time
constraints, and finally in SW sizes above 1.5 million of
lines of code. Such increase of computation power can
only be achieved by the use of multi-core platforms (Fig.
1). The challenge is then in this case to distribute a highly
cohesive system on different cores, as a kind of fission
process.

Fig. 1: Quota of deliveries based on multi-core CPU at
VW/AUDI

In [1], it has been previously described how this challenge
can be handled. We want now to focus on the common

work between Continental Automotive, as TIER-1
(supplier), and Volkswagen Automotive Group, as OEM.
In an engine management system, a part of the functions
is provided by the OEM, and another part is provided by
the TIER-1, resulting in a complex integration of highly
coupled SW modules and runnables. In addition, the
reduction of time-to-market requires parallel development
of these parts, on TIER-1 side and OEM side.

This paper describes the process developed between
Continental and VAG to support an integrated shared
development in a multi-core legacy (non AUTOSAR)
SW, and is based on real project experience. The paper is
organized as follows:

In a first chapter, we describe the context of engine
control SW. We particularly elaborate on the high
coupling of underlying modules, and the hard real time
requirements of functions. The iterative development
process and the need for parallel development between
the parties are also explained.
In a second chapter, the general integration challenge is
described. We introduce the concepts developed and in
use internally, as well as across partners. We explain that
an important step in the integration is the elaboration of a
precise and exhaustive cartography of the SW.
In a third chapter, the data protection topic is addressed.
We show the importance of this topic, in regard to the
high coupling / data flow characteristic to engine systems.
The basic mechanisms are developed, from the
specification of protection requirements, until the
implementation. We finally provide a comparison of 2
basic methods of intervention.
The fourth chapter describes the context of shared
development and the different use cases. The need of
defining a common architecture, a common integration
frame, and the necessary adaptations of the integration
and protection processes are explained.
Finally, in a last chapter, we provide the state of the art on
these topics, as known from us. We draw a comparison of
the standards AMALTHEA, AUTOSAR, and ASAM-
MDX, which are the state of the art in the automotive
domain. In particular, we point some weaknesses related
to the shared development, and to the multi-core aspects,
requiring evolutions of the standard.

2. Multi-core challenges at engine systems

Technical context

The importance of integration and data protection in
engine systems context is due to the high coupling of
combustion control functions, a unique situation in

automotive domain. Most of these functions control the
same highly dynamic phenomena: the complet
thermodynamic process from beginning of air intake till
the end of exhaust pipe. The different sensors and
actuators interact physically with each other, and
therefore the corresponding SW control algorithms
permanently exchange information signals.

A rough measurement of this coupling can be based on
the number of exchanged signals (SW connectors in
AUTOSAR language) (Fig. 2). In most of the cases, t
exchange concerns 2 modules. This means one to one
coupling (high coupling). In the other side of the spectra,
some signals (e.g. engine rotation speed, air
temperature…) are needed in many control laws, and
therefore exchanged all over the SW. This mea
coupling, with n greater than 100 (i.e. 10% of the
complete application).

Fig. 2 : Number of modules sharing data

Finally, these signals are data implemented as simple
scalars, complex structures, or arrays. For performanc
reasons, global variables are used.
But this module-to-module coupling gives only an
overview of the static facet of the SW. These SW modules
are based on several c-functions (executable entities in
AUTOSAR language) executed at different rates: for one
module, several executable entities might be necessary.
Only in 10% of the cases, a single module ends
single executable.

Therefore, ahead to the data flow between modules, a data
flow between executables can be measured (
which gives a first idea of race conditions we have to
tackle with.

Fig. 3 : Number of executables sharing data

automotive domain. Most of these functions control the
same highly dynamic phenomena: the complete
thermodynamic process from beginning of air intake till
the end of exhaust pipe. The different sensors and
actuators interact physically with each other, and
therefore the corresponding SW control algorithms

ough measurement of this coupling can be based on
the number of exchanged signals (SW connectors in

). In most of the cases, the
exchange concerns 2 modules. This means one to one
coupling (high coupling). In the other side of the spectra,
some signals (e.g. engine rotation speed, air
temperature…) are needed in many control laws, and
therefore exchanged all over the SW. This means 1:n
coupling, with n greater than 100 (i.e. 10% of the

: Number of modules sharing data

Finally, these signals are data implemented as simple
scalars, complex structures, or arrays. For performance

module coupling gives only an
overview of the static facet of the SW. These SW modules

functions (executable entities in
AUTOSAR language) executed at different rates: for one
module, several executable entities might be necessary.
Only in 10% of the cases, a single module ends-up in one

Therefore, ahead to the data flow between modules, a data
flow between executables can be measured (Fig. 3),
which gives a first idea of race conditions we have to

: Number of executables sharing data

Such estimation gives a similar picture tha
component level, but with a higher level of flow: While
70% of the data are encapsulated inside a module, only
30% of them are encapsulated inside one executable.

Finally, the full picture on the data is as follows:
- 1/3 are local to one executable
- 1/3 are exchanged between executables, but local to

a module (“inter-runnable variables”)
- 1/3 are exchanged between executables of different

modules (“sender-receiver”)

As these executables (8.000) are scheduled from more
than 60 operating system tasks (ran
mixing timing and angular frequencies, distributed on
different cores), a significant part of the data flow is
subject to race conditions in our multi

Fig. 4 : Number of dynamic artifacts for integration in
different domains

Of course, on the static aspect, the mentioned coupling is
reduced using SW composition, to allow a platform/reuse
approach. But this has no effect on the race conditions.

Challenges

Therefore, the introduction of multi
systems is a challenging task.

On the scheduling and integration side, new constraints
are adding complexity: The number of integration
containers (tasks) increases, the relation between them is
more complex (parallelization, chaining...), new types of
constraints show up (affinities...), as well as new
distribution strategies (all SW on one core, time
dependant SW on one core, safety
core...), and the different partners (OEM, TIER
party...) may have different views/constraints on how to
utilize the different cores.
On the protection side, a SW running previously in a
protected single core cooperative environment (a.k.a.
fixed priority with deferred preemption scheduling
FPDS) has now to support parallel execution. In
particular, to achieve a maximum flexibility of the SW
distribution, which is motivated by the high variability of
project configurations, the module designs have to be
independent of any core consideration. For instanc
runnables of the same module might run on 2 different
cores – or not – depending on the project reusing the
module. The same module must even still be reusable on
the single core projects still under development.

200

89

215

85

9163115 102910

Double Clutch
Transmission

Body Controller Electronic
Brake

Airbag

#Tasks

#Runnables (task level)

#Interrupts

Such estimation gives a similar picture than on
component level, but with a higher level of flow: While
70% of the data are encapsulated inside a module, only
30% of them are encapsulated inside one executable.

Finally, the full picture on the data is as follows:
1/3 are local to one executable

3 are exchanged between executables, but local to
runnable variables”)

1/3 are exchanged between executables of different

As these executables (8.000) are scheduled from more
than 60 operating system tasks (ranging from 1ms to 1 s,
mixing timing and angular frequencies, distributed on
different cores), a significant part of the data flow is
subject to race conditions in our multi-core environment.

: Number of dynamic artifacts for integration in
different domains

Of course, on the static aspect, the mentioned coupling is
reduced using SW composition, to allow a platform/reuse
approach. But this has no effect on the race conditions.

refore, the introduction of multi-core in engine

On the scheduling and integration side, new constraints
are adding complexity: The number of integration
containers (tasks) increases, the relation between them is

x (parallelization, chaining...), new types of
constraints show up (affinities...), as well as new
distribution strategies (all SW on one core, time-
dependant SW on one core, safety-related SW on one
core...), and the different partners (OEM, TIER-1, 3rd
arty...) may have different views/constraints on how to

On the protection side, a SW running previously in a
protected single core cooperative environment (a.k.a.
fixed priority with deferred preemption scheduling –

ow to support parallel execution. In
particular, to achieve a maximum flexibility of the SW
distribution, which is motivated by the high variability of
project configurations, the module designs have to be
independent of any core consideration. For instance, 2
runnables of the same module might run on 2 different

depending on the project reusing the
module. The same module must even still be reusable on
the single core projects still under development.

660

204

60
13

137

4033

Engine
Management

System

Double Clutch
Transmission

HEV Controller

 Page 3/12

Finally, due to the tight economic constraints, a complete
rework of the existing SW is not affordable. Therefore the
methodology has to cover the legacy SW not designed for
multi-core.

3. Integration process

General

The topic of integration in this context covers the
integration of one or more runnables of a software
component or composition into one or more tasks of the
complete software system, performed by an integrator. In
this phase the correct position of the runnable in the
sequence shall be determined and the necessary protection
of data against concurrent access shall be generated, to
ensure the stability or coherency of the data used by the
runnable. It is further on assumed that the provider of the
runnables and the integrator are time-wise and location-
wise separated from each other as a consequence of
worldwide software development of large scale software
project.

Dynamic requirements for runnables:

For the correct real time behavior of the software
functions in the target application, it is necessary to
describe unambiguously the dynamic requirements for the
integration of the runnables into existing tasks (“dynamic
integration”). This is true for runnables of the supplier in
context of a platform development and especially for
runnables of the OEM, when looking on integration use
cases in different applications of the same or even of
different suppliers.
Due to this different use cases it is important to describe
rather the requirements than a given solution. Describing
the solution might be sufficient for one project but would
manifest many design constraints to other projects,
especially when looking across multiple suppliers using
different architectures.

The minimum requirement on dynamic integration is the
description of the point in time, when the runnable shall
be executed. In the Continental PowerSAR architecture
the available points in time (“rates”) are standardized in a
Reference Architecture and are called SystemEvents.
They are characterized by different attributes like required
minimum and maximum period, guaranteed deadline, and
more. For each Runnable to be integrated, a so-called
RunnableEvent is created, which specifies the integration
constraint of this runnable by referring to an existing
SystemEvent. This RunnableEvent should not be
confused with the AUTOSAR RteEvent, which defines
more an integration solution than a requirement.
Still missing are requirements concerning the relation
between runnables using the same SystemEvent. For the
description of requirements for a sequence one could
either describe a relation to one or more runnables by
name, the so called “Execution Order Constraint” (EOC)
or use a requirement concerning the allowed age of a data,
which is consumed, named “Data Age Constraint” (DAC)
(Fig. 5).

The type of constraint to be used depends on the area of
responsibility for a part of the software. Within a software
composition where the responsibility is at a single person
or small group of developers, EOC might be quite
efficient, as giving the order of executables of the own
composition combines a lot of refined requirements
concerning the data flow and allows an easier description
of the sequence requirements. On the other hand most of
those execution orders are needed because of the data
flow of some “important” data, which contribute to the
dynamic behavior of a complete event chain. With EOC
this information might get lost and in case of
repartitioning or renaming of the software: the EOC might
become invalid.

Fig. 5 : Solving Sequence of runnables using
Constraints

When using a DAC, one is working on the interface of the
runnables and does not depend on runnable names. In a
model where only data which are consumed by a runnable
are described with a DAC the requirement doesn’t
become invalid in case of a repartition of the runnables. If
the data use is changed, this attribute has to be considered
as well. This is especially helpful in a shared development
context as the interfaces are the subject of discussion
when defining the interaction of OEM and supplier
software e.g. in Sequencing Workshops (See Fig. 6).

Fig. 6 : Effect of position in the sequence on the data
flow between supplier and OEM runnables

Due to the complex coupling and data flow inherent to
engine systems, an exhaustive analysis and resolution of
data precedence problem is not possible: the problem has
not always one solution. Therefore, the principle of the
DAC approach is to identify, among all possible flows,
the few ones which have a real impact on the system. For
instance, low dynamic information, like the air
temperature might have one – or more – recurrences of
delay without big impact on most of the functionalities.
At the opposite, having the wrong value for a cylinder
index can be dramatic for the injection controller.

 Page 4/12

Today this information is exchanged via non formal
requirement specification in a textual way due to the fact
that MDX V1.2 [2] doesn’t offer means for a formal
description and most OEMs didn’t migrate up to now to
AUTOSAR, where the timing extensions would offer a
possibility to describe a RTE Event and in addition
runnable sequence needs or a DAC.

In addition to these two types of constraints, EOC and
DAC, another concept can be used: the phase concept [3].
It consists in partitioning the time domain according to
standard features in automatism. As example, logically,
the runnables dealing with acquisition and diagnoses need
to be executed before the runnables dealing with output
commands. Therefore, a phase is associated to a given
runnable, according to its inner functionality, and
therefore is valid independently of the integration
environment. This leads to a fully reusable and
independent integration constraint. This method has been
introduced at Conti since 3 years now, and used
internally. Nevertheless, its extension on shared
development with external partners is more difficult.

SW Cartography

For a correct integration and protection of the SW, it is
necessary to know the whole structure of the code and the
data accesses for read and write performed throughout the
whole call graph of the application. No grey area shall be
left over, as it can have severe consequences. As precise
the cartography will be, as precise the protection and
integration will be.
Verifying a DAC is only possible if the full data and
control flow of the relevant sequence is known. The same
applies to EOC, where the involved runnables are not
mandatorily those directly integrated in the sequence.
Depending on the type of the SW which has to be
integrated, this cartography can be established based on
C-code, MDX description, or ARXML SW-components,
a mixture of these use cases needs to be supported.

4. Protection process

Structuring the problem

In terms of data protection against race conditions, two
types of problems are taking special importance in multi-
core context: data stability and data coherency.

Stability: As soon as runnables can execute in parallel,
and exchange data, it becomes very probable, that a data
is modified while it is used on another core. If the data is
scalar, and atomic, each individual read access cannot be
corrupted by a write access on another core. The read
access point will get the newest or the old value. But, if
there are several read accesses, or if the same value of the
data is expected across 2 successive runnables, then the
stability of the data might be corrupted. In some cases,
this might be acceptable, because for instance, the same
data is used in different decoupled parts of the algorithm,
and/or because the data has a low dynamics and only a
small change of its value is possible. But in other cases,
like for instance for booleans or state machines, the
impact of a change during an algorithm can be severe.

Coherency: The modification of an elaborated data
(structure, array, a set of atomic data…) on one core while
it is accessed on the other core can have severe
consequences, too. For instance, 2 exclusive information
(a flag and its complement…) need to be written and read
in a coherent manner. The reading of the data set might be
“interrupted” by the writing of these data on this other
core. Or on the opposite, the writing of the data-set might
be “interrupted” by the reading on the other core. Even
both cases can happen. Here again, this does not concern
all variables of the SW, but only sub-sets. For instance, in
one given algorithm, it is often the case that variables
from different rates are used, and therefore cannot be
coherent, by essence.

Consistency needs

Considering the huge data flow across runnables and
tasks, as depicted in chapter 2, our approach is to be
selective on the data and runnables to be protected. Ahead
of limiting the HW resources consumption, this limits the
protection cases that may have negative functional
impacts.

Fig. 7 : Ensuring data protection using Stability and
Coherency Needs

Therefore, functional consistency needs are specified at
design phase by function experts: stability of certain data
accessed by distinct but coupled executables, and
coherency for sub-sets of coupled data in certain
executable. The function experts are responsible to
specify the stability and coherency needs where required,
and only there. In this way, the learning and development
effort related to multi-core is minimized, and the function
experts can concentrate on their core competence: physics
and control laws. They have to concentrate on the “what”
(to protect) and not on the “how” (to solve the protection).

It has to be noted that the initial AUTOSAR approach
(“implicit communication”), where protection was applied
everywhere, has been modified in AUTOSAR 4.1.1[4]
(and in ASAM-MDX 1.3 [5]), with the introduction of

 Page 5/12

Data Stability and Data Coherency Needs. But this
represents a significant evolution in the RTE (explicit and
implicit) communication paradigms.

At integration and protection step, the requirements for
data consistency are analyzed and checked against the
project architecture (task configuration) and cartography
(data flow). In case a consistency is required, a race
condition is requested, and the SW is ready to be
protected, then the protection of the relevant data is
established in the relevant executables.

Fig. 8 : Data consistency buffer evaluation

To cover the simple cases where consistency is
systematically required, and to reduce the effort of needs
specification, complementary automatic strategies are
used. For instance, coherency of non atomic (64 bits) data
and stability of multiple accesses of same data inside an
executable do not need to be specified.

Protection by buffering

The protection of data against race condition is mostly
(but not uniquely) ensured by a buffering mechanism. It

consists in copying the data in a task-local buffer, and
using the buffer instead of the original variable in the
algorithm. Fill and flush routines are inserted in the
program flow (task bodies) in order to copy the variable
into the buffer, and vice versa.
In the AUTOSAR implicit communication, the copies are
done at beginning/end of task, resulting in long “buffering
segments”, and high resource consumption. In classical
approaches, the copy is done at beginning/end inside each
runnable, which is resource consuming too, but in
addition does not ensure consistency across runnables.
In our case, the copies are done along the task to avoid
these drawbacks. For instance, the filling of the data into
the buffer is done at the latest possible position in the task
(“as late as possible”), in order to benefit from the latest
available value in the global system.

Access Modification in executable

For modifying the data access to a buffer access in a
legacy SW, 2 basic techniques are available:

The Data Reference Modification (DRM) [6] consists in
changing the address of the original data by the address of
a buffer in the binary ELF file. Here the integration of
object code sets some limits in terms of protection. For
instance, in case of multi rate executables the function
design has to be modified as the DRM process allows data
protection in only one context (variable address
substituted in binary by buffer address). In this particular
case of multi-rate executables, the resulting re-design
might have other drawbacks like e.g. code duplication.

 DAM (source code modification) DRM (binary code modification)
Need of source
migration

Yes: Accessers (GET/SET) have to be added to
the code.
But, a migration can be done by a tool; and code
generators can be adapted, in the MBD case.
Finally, a similar migration is required for
AUTOSAR introduction.

No.
But, redesign of the functions might be required in
special cases.

Source code
exchange

Yes.
But some TIER-1 and OEMs are used to work with
obfuscated code. In some cases, the OEM
functions are even coded by the TIER-1. Finally,
AUTOSAR process might need source code
exchange, in context of engine systems.

No: object code is the standard for IPP, in legacy
context.

Verification and
validation

Early: Modification of accessers can easily be
checked at compile time.

Late: Need to compile and link before having the
modification.

Compiler chain
independence

Yes: Accessers modified on source code level. No: Same configuration of the compiler chain
across all partners. Furthermore, the chain has to
support DRM technique.

Openness to
complex cases

Yes: Step by step, new use cases are supported,
which need a more complex redirection of the
Accesser, than a simple address modification (e.g.
multi-rate cases). Furthermore, the addressing
mode to the buffer can be different than the one to
the original data, to gain performance.

No: Only address modification can be done,
limiting the possible intervention.

Coherency
cartography vs.
intervention

Yes: the cartography of the SW and the
intervention (accesser modification) are based on
the same model: The SW-code. This guaranties
the global coherency.

No: Unless the cartography is based on the obj.
code, which is late in the process, there might be a
gap between the cartography and the real
implementation in the binary leading to severe
mismatches on the protection.

Table 1: Comparison of Data Reference Modification and Data Accesser Modification

 Page 6/12

The Data Accesser Modification (DAM) consists in
modifying the source code. Standardized APIs (data
“accessers”) are used in the code, and can be redirected -
or not - to the buffer, using an include file. This
technique, which is similar to AUTOSAR, gives more
flexibility and optimization potential. For instance, it
allows runtime context dependant accessers. On the other
hand, the different development parties like to protect
their IP and are reluctant to share source code, which is
necessary for the DAM process.
In Table 1, we provide a non-exhaustive list of pros and
cons of each technique.

5. Shared development

Development process

One additional dimension of the SW development for
engine systems is the increasing integration, and therefore
mixture of SW-components coming from different
sources, and often provided with different formats (Fig.
9). It becomes a classical use case, for instance, to
integrate SW functions from the OEM in the TIER-1
ECU, as well as components from 3rd party. In extreme
cases, the TIER-1 has to integrate SW modules from
different OEMs (engine co-developments), or even from
own competitors. The amount of external SW may be
high (“box-business” model, where the TIER-1 only
provides the ECU plus the BSW), or on the opposite, null
(“full turn-key” programs). In between these two extreme
cases, the SW-part from the OEM to integrate might be
provided as models, C-code, or object-code. It might
comply with AUTOSAR standard, or simply be legacy
SW.

Fig. 9 : Percentage of OEM part in total program code

Of course, this “OEM plug-in” (monolithic or not) has to
be integrated in the existing task system, as easily as the
rest of the SW. Integration constraints are therefore
discussed between the parties. Constraints on the needed
SystemEvents are defined, as well as sequencing
constraints or event chains. The core distribution is finally
derived from all those requirements. The used protection
methodology has to give a maximum of flexibility in
order to meet all use cases. The OEM plug-in has to be
protected against race conditions, like the TIER-1 SW,
using the same principles, but with DRM instead of DAM
due to IPP reasons.

In total, a complete project lasts in average 24 to 36
months, during which several synchronizations are done
between TIER-1 and OEM: releases of the OEM plug-in
to the TIER-1; and releases of the complete integrated SW
from the TIER-1 to the OEM. Similarly to the TIER-1
functions, the OEM plug-in integrated in the ECU follows
a development cycle, and is updated several times during
the project life-time. To shorten the development loops,
the OEM needs to be able, “at home”, to further develop,
re-integrate, and validate his functions. Therefore he must
be able to build again the system. This kind of process
was a market standard in single core engine systems,
where the TIER-1 SW is delivered as object code, and the
OEM plug-in is modified, re-integrated, and re-compiled
on OEM side without intervention of the supplier. Thanks
to cooperative scheduling, a policy extensively used at
Continental, there was no need of special mean to ensure
data consistency.

Now, as the OEM wants to distribute his SW over
different cores, and as the protection of the SW requires a
particular analysis and treatment, a segregation of the SW
is done, between OEM and Supplier. The TIER-1 part is
frozen, protected, and compiled at TIER-1 side, with a
first version of the OEM part. Library files are released to
the OEM, with a build environment. Starting from this
point, the OEM part can be modified, and re-protected at
OEM side. This means that independent buffering
strategies are applied on the different parts.

At the end, the shared development process can be seen as
an alternative or a complement to Rapid Prototyping,
enabling short development loops between TIER-1 and
OEM.

Common architecture

In this code sharing context, a common understanding of
the basic system behaviour is essential to be reached.
Right in the beginning, a definition of the features
provided by the Operating System has to be negotiated
and agreed: a common dynamic architecture. This
common architecture has to enable an efficient protection,
an easy integration, and it has to support simulation and
validation of the scheduling.

First (and already known from single core systems) a set
of common SystemEvents, as defined in chapter 3, has to
be defined. It might be a subset of the complete set
needed by the TIER-1, plus some extensions. Then, these
SystemEvents are implemented as tasks, which have a
priority and pre-emption behaviour, and a core allocation.
In an engine management system typically we have a
mixture of time based system events (from 1ms to
1000ms) and angle based system events (crankshaft and
camshaft synchronous). Typically, different system events
with a same angular period, but different phasing relative
to the Top Dead Centre might be required.
But, in addition to periodic system events, sporadic
initialization events, such as ECU start-up, ignition key
transitions or failure memory clearing have to be
specified. Here mainly, the precise position of the event,
and its system meaning have to be clear to all parties.

0

5

10

15

20

25

30

35

40

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

GS OEM C

GS OEM B

GS OEM A

DS OEM D

DS OEM A

 Page 7/12

The principle of initialization events is inspired from the
object orientation concepts of constructors and
destructors, and allows having a coherent system
initialization across the complete SW. This concept, used
in single core projects, has been enhanced in the scope of
multi-core context, as it is important that all cores
“toggle” get initialized synchronously and coherently.

Finally, with the step-wise deployment of AUTOSAR, it
becomes important to fix also some basis on the use of the
RTE, as there are different interpretation/use between
partners can cause severe incompatibilities at integration
time. Therefore, in the definition of this common
architecture, the AUTOSAR configuration has also to be
addressed, in particular if the OEM wants to integrate
AUTOSAR SW and therefore fixes some implementation
choices in its SW-Component descriptions.

For an OEM like VAG the challenge is to find a system
setup which is similar in all TIER-1 ECUs, and which is
proven to work in a multi-core context. For the above
named SystemEvents, this is possible across all ECU
suppliers. But the SystemEvents abstract implementation
details like OS configuration of priority and pre-emption,
core allocation, task chaining and handling of sporadic
system transitions (synchronized or not). With multi-core,
a new complexity is added to the system.
For a TIER-1 supplier like Continental, the challenge is to
find a setup which fits to its generic functions, as far as
generic functions are integrated in the project. In effect, in
front of the TIER-1, there is a high variability of OEMs,
with different visions of the architecture. The TIER-1
challenge is then to fill the gap between the different
visions.

Common integration frame

With the ongoing change from single-core to multi-core
systems the rising complexity of integration has a huge
effect on the software development. It extends the high-
level goals of the classic software development, like high
reusability, reliability and correctness, IPP. Additional
methods are needed, to achieve a closer examination of
the sw-architecture. The given heterogeneous tools for
integration and protection on the different TIER-1-side
must be enabled through standardized general description
of integration and protection needs on the OEM side.
Additionally it is necessary to consider legacy software,
because it is not divisible with further ado. Additional
specification and in some cases refactoring is needed.

The main challenge for efficient integration on multi-core
systems is an independent partitioning of the software that
can run in parallel. But for that it is necessary to find and
describe the dependencies and avoid conflicts, to protect
and minimize inter-core data-access. Since two years,
Volkswagen, Continental and other TIER-1 work together
on a model-based approach which resolves the following
main question of shared development for multi-core:
• What and how to specify and define the integration

and protection needs?
• On which architecture level should the specification

be done?

• What is additionally required in methodology and
collaborative process?

This model-based approach is a continuous roundtrip
from specification until verification [7]. As Fig. 10
illustrates, this roundtrip includes all needed steps in the
shared context, considering the typical iterative
engineering process in automotive industry, where the
software is developed in several iterations of the V-Model
and with this has several different releases with different
maturity and quality. In a first step to generate the basic
element for all considerations in shared context – the
system model – a model consolidation combines system
descriptions including hardware, operating system and
TIER-1-software information given in the
AMALTHEA format with the software description
including the OEM-software information and
requirements in the MDX format. This basis element
combines the required information. It is the fundament for
shared methods, like the already introduced sequencing
workshops. It extends the collaborative software
development with new information to be exchanged in
new or enhanced formats.

With a consolidated system model, the software
architecture can be visualised and graphically annotated
with requirements, while analysing the data flow and
signal paths. In this second step typically the TIER-1 is
responsible to process the requirements and define the
final system design. The system-model and defined
requirements can be used with tool-support to find a
pareto-optimal design, with efficient resource usage and
requirement fulfilment. In the third step the updated
system design is checked up against the requirements with
simulation of the dynamic behaviour in an early design
phase, before final integration to take into account, that
the design is executable and fulfils all requirements for
the given target hardware. Finally in a last step after
integration and measurement, the system is verified with
evaluation of the requirements taking real software or
hardware traces, which includes all system events on
required call tree level for referenced elements in the
requirements.

In each step enhanced and complex tools are necessary
which should interpret the information given from each
partner in adequate and standardized exchange formats.

The specification of integration and protection needs, like
coherency groups or data ages should be done on an
abstract level, considering the design rules of the SW
architecture. On SW composition level the requirement
engineering is feasible for legacy software and considers
the existing development process and given static
architecture, because SW compositions already
encapsulate functional dependencies given from
requirement and architecture engineering. It reduces the
costs in development process because complexity and
efforts are reduced to specify the integration and
protection needs. For that different architecture views
have been created, each one fitting best to the use case of
requirement engineering.

 Page 8/12

A static architecture view visualises the logic hierarchical
grouping of the static software structure and their
interfaces. On this first view it is recommended to define,
analyse and check the more static requirements, but also
signal grouping for coherency needs are possible.
A second view, the dynamic software architecture view
shows more the design of tasks, runnable sequences and
their data accesses and data flow. This view is typically
used to discuss and analyse dynamic dependencies like
execution order constraints, data ages and event chains on
runnable level in sequencing workshops.
A new developed view combines both worlds, the static
and dynamic architecture: It shows the runnable groups in
a SW composition grouped for their period. If it is
defined, that this SW-composition specific runnable
groups are indivisible (what means the scheduler should
not interrupt this group), then it is recommended to define
intra execution order constraints for this groups and use
data ages for the inter execution order.

Another aspect concerns the compatibility of the SW
components to each other. For instance, in order to reach
a similar level of parallelism, it would probably be useful
to have a similar approach of developing SW components
(e.g. rules, patterns) across the parties. Therefore, in a
joint research project we look for patterns which are
suitable to develop SW components utilizing a high
degree of parallelism. These patterns shall be described in
a kind of cook book which can be used by OEM
developers as well as TIER-1 developers.

Fig. 10: Continuous Roundtrip for shared model-
based system design in multi-core projects

Then there is the topic of IP protection: even in a close
collaboration the different partners need a good level of IP
protection. The exchange of source code is maybe not the
best solution to reach this goal, unless new technologies
like remote build or obfuscated code are used. Object
code can be used as exchange format, but with the other
drawbacks already mentioned. Due to the permanently
increase of inter-penetration of different parties in the
final SW, this topic is gaining importance. In addition the

exchanged information of the system- and software-
descriptions needs IP-protection. For this data it is
necessary to obfuscate specified signals and runnable
names for IP-parts of the software. But it is recommended
to obfuscate only as much as really necessary but not
more, otherwise needed information to analyze and
specify dependencies and requirements for the interaction
of the OEM- and TIER-1 software are lost and in effect
the specification in this shared context isn’t possible.

Common standard formalism

In order to reach a smooth integration into the defined
integration frame the SW description and the specified
timing requirements have to be exchanged between the
parties. This exchange has to be based on a machine
readable standard format, as integration and simulation
processes of such complex system are only possible with
tool support. Further on the use of a standard helps to
define a common understanding of system features and
forces the usage of a common wording. As each standard
has some space for interpretation, the harmonization of
semantics and used tags is necessary.
In cooperation between OEM and TIER-1 the ASAM
MDX file format is currently widely used for SW sharing
in non-AUTOSAR context. In those projects MDX is
used to deliver information necessary for integration
purposes to the integrator of a SW component.

The MDX standard is well defined for data definition
purposes, as well as for the exchange of SW features
information. Also variant handling can be described via
system constant definition and settings. Basic scheduling
information can be transferred to the integrating party.
As described above, in projects using multi-core CPUs
there is the need to exchange further information:
- Data flow information – this currently possible with

the existing MDX standard V1.2, but the data
access frequency (access multiplicity) has to be
added for a more detailed view on the real SW.

- Data stability needs – not defined in V1.2
- Data coherency needs – not defined in V1.2
- Data Age Constraints – not defined in V1.2
- Scheduling requirements for runnables – already

possible with V1.2
- Scheduling dependencies between SW components –

not defined in V1.2
A new version of the MDX standard has been defined to
address the missing topics: the V1.3 released since June
2015.
Data stability groups can be specified as well as data
coherency groups using new tags in the SW collection
area.
Data Age Constraints and access multiplicity in one
executable can be specified on data access elements in
SW services (runnables).
With these extensions a SW component provider is able to
exchange the defined timing requirements and constraints
of its SW components to the integrating party as discussed
above.

As there is a lot of legacy code at VW/AUDI this way has
been chosen to bring these SW components to the new
multi-core world, limiting the effort of reengineering.

 Page 9/12

After defining this step in exchange format, the focus now
changes to:
- implementing of MDX V1.3 in development tools
- gathering all the requirements and constraints to be

transported via MDX V1.3
- training the teams to this new process

In the near future the new features of the MDX standard
will be used in practice.

The contract = Interface freeze

Freezing of interfaces consists of mainly two steps. The
first step happens at the end of interface and sequencing
workshops when the interface is agreed between the
involved parties and fixed in terms of mapping of content,
names, ranges, resolution, DAC and EOC constraints.
The second step is performed, when the interface
adaptation is implemented at the TIER1 and the OEM
receives software for the parallel development. To
manifest and freeze the contract, the software has to be
prepared in a certain way.

Protection adaptation: Part Management
When integrating TIER-1 and OEM SW parts, all
integration and protection Needs are collected. Each
artifact in the project (data, runnable, module…) is
allocated to one of the three parts: TIER-1, or OEM part.
This allows applying different buffering policies on the
different parts: For instance, if the OEM has not a proper
description of the protection Needs (stability, coherency),
then an automatic strategy can be applied, which are not
necessary on TIER-1 side.
Also, this partitioning allows to select between different
formats for the input (C-code, ARXML, MDX), but also
for the output (DAM, DRM).

Finally, the final goal of a clear partitioning of the SW is
to minimize the interactions between the parts (or at least
to concentrate them in an adaptation part) and to enable a
partitioning of the protection process. For instance,
dedicated buffers, dedicated copy routines, dedicated task
sections can be defined and fixed for one part, while the
other part is updated. It allows an independent build of the
SW at OEM side: The TIER-1 SW is built (protected,
compiled, validated) at TIER-1 side, while the OEM SW
is re-built as many times as requested, at OEM side.

Fig. 11 : Stability Needs apply to different parts

In Fig. 12, we show the resulting buffering for a concrete
example. The TIER-1 and OEM runnables are identified
by their respective colour. Different buffers are used in
the TIER-1 area, which are not reused in the OEM area.
The OEM area can then be modified independently of the
TIER-1 area, and re-built.

Parallel development / Parallel builds

Having a frozen interface allows starting a parallel
development in various stages depending in the amount of
changes and the timing requirements of the developed
solution. Each partner (OEM, TIER-1) can modify its part
without impacting the other one.
When doing only small changes, a parallel development
using a tooling for internal bypassing (e.g. eHooks) is
appropriate. The limitation of the internal bypass is
mainly due to the tight internal resources (RAM, ROM)
of the controller.
If the changes grow, or completely new functions are
developed, the use of an external bypass system can be
useful. With this, an existing function is cut out of the
sequencing and replaced by a calculation in an external
CPU. The communication to this external ECU is done at
defined points before and after the existing function. So
the new function gets the same timing environment than
the existing one. The communication via separate data
buffers to the external CPU ensures stability by default for
the external calculated functionality. When using
additional variables in the external calculation a
coherency need might be not fulfilled.

Fig. 12 : Partitionning of runnables and Buffers in
shared context

In both cases of external and internal bypassing, if race
conditions are modified, the buffering configuration is not
anymore valid, due to the modified cartography. It might
be that a change in a bypassed function generates a
change of buffering in a non modified & stable function.
For instance, changing a write access to a read access, or
changing the multiplicity of a read access might have
impacts on the buffering status elsewhere. Therefore, the
type of modifications that can be applied on an algorithm
w/o impact on the race condition is very limited, in multi-
core context.
In addition, if the required change affects tight integration
requirements (e.g. working on a 100µs task in an
electrical engine controller), or connection to HW features
(e.g. special ASICs), that cannot be fulfilled by rapid
prototyping, external and internal bypassing are also no
options.

In this case, the solution developed by Continental is the
only alternative to the re-delivery of parts between OEM

 Page 10/12

and TIER-1 (with the consequences it has). As mentioned
earlier, a high flexibility is provided to the OEM as long
as the interface (= integration of the adaptation runnables)
is unchanged. It is even possible for the OEM to change
its own integration, and in particular investigate different
core distributions of his SW.

All the ways to evolve the functionality of the SW system
will exist in future. Depending on the need for flexibility
and the type of modification, the internal bypass will be a
perfect solution for a rapid development. But due to its
limitations other solution are needed. On the other hand,
the parallel build gives full data protection and guarantees
exact real time behaviour, but with the drawback of
comparably long turnaround times due to build and flash
times.

6. Related works / State of the art

For the discussed topics of shared development of
embedded automotive software, state of the art are three
quasi industry standards, depending on the use case and
target platform in the given project context. The public
promoted research project AMALTHEA [8] is of higher
interest for software engineering of future multi- and
many core software-systems. Parts of the pre-released
results with a well-defined data-model from this project
are already in use for software architecture specification
and description. Currently in usage for exchange more
present in the automotive embedded context are the
working groups of ASAM MDX [5] and AUTOSAR
[4][9] . Unified exchange and interoperability for software
description are supported; all data models have equivalent
core data.
All these three standards enable software architecture
engineering and exchange of relevant information.
Depending on the use case, they are more or less suitable.
In Table 2, the coverage of the different description
context for all discussed use cases is compared for this
three standards, where “x” means full support, “(x)”
means partly supported and “-“ means currently not
supported. In this comparison there where considered the
latest versions with the highest coverage of information.

About MDX

The MDX description as an ASAM standard is used for
single-core projects and with additions since version 1.3
[10]. Also, software description for multi-core projects are
supported with the mayor basic multi-core features, like
basic timing requirements, data consistency needs and
scheduling requirements from the OEM point of view.
Complete system description with hardware- and
operating system features are not supported. For the use
case to describe and exchange the integration needs of the
OEM application software it is suitable.

About AUTOSAR

Advanced description and new concepts like Application
partitioning and more static architecture support is given
with AUTOSAR from version 4.2, which includes the
integration- and protection needs and further timing- and
architecture description. It is the most established format

in the automotive industry, has the most support from
architecture and analysis tools and on this reason highly
recommended. Nevertheless, the support of consistency
needs (“groups”) on RTE side is still an open point.

 About AMALTHEA

Finally the AMALTHEA format from version 1.1.1
[11][12], as the newest possibility in these cases, adds
features and more support for the dynamic description of
the software. It extends the architecture and timing
requirements and gives possibilities to describe more
technical design properties, for example of the target
platform with its hardware or the operating system. For
use cases like software simulation and partitioning of the
software in multi-core context, this is recommendable
[12]. This format is suitable for the exchange of complete
system description typically generated from the TIER-1
side, which is responsible for the integration.

AMALTHEA (v1.1.1)
AUTOSAR (v4.2)

ASAM-MDX (v1.3)
Software
 Runnable level
 Data access (i.e. interfaces) x x x
 Access occurrences x - x
 Runtime x x -
 Process level
 Activation (periodic, sporadic, single) x x -
 Call sequence of runnables x - x
 Hierarchical call sequences x - x
 Logic grouping of runnables x - -
 Signals
 Data description (x) x x
 Requirements
 Execution Order Constraint x x x
 Execution Order Constraint (hierarchical) - x x
 Data Stability Needs x x x
 Data Coherency Needs x x -
 Data Age Constraints (time based) x x x
 Data Age Constraints (cycle based) x x x
Hardware
 Cores (frequency, instruction per cycle,
topology)

x x -

 Core features (lock-step, peripherals) x (x) -
 Memory topology (bus, crossbar, caches,
access times) (x) (x) -

Operating System
 Scheduling (algorithm, core resources) x (x) -
 Process configuration x x -

Table 2: Comparison of Standards currently in use in
Automotive domain

About the automotive domain

The engine systems domain is the first one in automotive
requiring an introduction of multi-core processors due to a
lack of computing power (with the exception of
multimedia). This is the domain where the deployment of
multi-core is most advanced, and which has the tightest
constraints as mentioned in chapter 2.

 Page 11/12

About other industrial domains

To our knowledge, there is no other industrial domain
where the development of embedded multi-core SW has
similar constraints. In aeronautics, space and defense, the
time to market, and target system price are not on the
same magnitude, like security and safety requirements. As
example, the following article shows the growth of
automotive embedded SW with the aeronautic case [13].
In particular, in the aeronautic domain, the main focus is
on the scheduling topic: due to safety issues, offline
scheduling is widely used, which requires a safe
estimation of the Worst Case Execution Times (highly
impacted by new multi-core architectures). As example,
in [14], the authors consider the access to shared
resources only in the point of view of timing impact. In
Automotive, domain, offline scheduling is not so often
used, as the mostly used OS is AUTOSAR OS or OSEK
OS. This is even more true in the engine systems domain,
where half of the SW is executed at angular (i.e. time
variable) rates. Concerning data protection, some studies
are conducted, which concern the detection of race
conditions, but in our case, we aim not only to identify
them, but also to protect them automatically. Furthermore,
the shared resource topic is addressed under the view
point of impact on timing and WCET. Also, the
integration topic is also very specific to engine systems
context, as mentioned in the chapter 2 about coupling.

About ARAMIS and ARTEMIS ECSEL EMC2

ARAMIS:
In [15][16], the authors address the integration topic, but
on a vehicle level, and on a basis of distribution of
functions across ECUs. Multi-core is seen as an
opportunity to reduce the number of ECUs in the car but
requires a good distribution of the functions on the cores
[17]. In [18], the particularity of engine systems is
recognized as it is qualified as a central ECU.
Several papers [19] address the topic of scheduling, of the
verification of timing properties. But in general,
individual components are considered, designed
independently of any framework (reference architecture).
Other papers [20][21][22] address the topic of detecting
race conditions, but once again, our purpose is not limited
to detection.
ARTEMIS ECSEL EMC2:
The project EMC2 is dedicated to multi-core mixed
criticality systems, dynamically reconfigurable. The
objectives of this project have no relationship to our
purpose, as the mix of OEM vs. TIER-1 Sw is not
organized on a criticality basis (e.g. TOER-1 Sw low
critical and OEM-SW high critical), but rather on a
functional basis. Also, the critical/safety aspects are not
part of this paper. Concerning the dynamic configuration,
and/or reallocation of functions is not seen as a short term
option, in regard to the tight coupling and real time
requirements in the engine control area. One interesting
paper [23] concerns the migration of legacy SW to multi-
core platforms, but the approach is different than the one
chosen on our side, as a redesign of the functions is
requested, according to a pre-established core allocation
(which is part of the design itself). In our case, our clear

goal is an independence of the design from the
integration, which can change from project to project.

7. Conclusion

The formal requirement engineering on dynamic aspects
has a relevant impact on the development process and
artifacts to be handled. New templates, guidelines and
trainings have been set up to cope with these challenges.
New design rules are necessary, which will facilitate the
parallelization of the control algorithms, but at the same
time have to minimize the re-design effort: on OEM side,
like on TIER-1 side, the design of the functions have to be
prepared for multi-core, but have to be independent of any
core and memory distribution, a choice which is highly
project specific. It is also not possible to fix core
distribution for a function for the next 10 years. To reach
this goal of flexibility, it is therefore essential that the
function development focuses on the original requirement
(protection and integration needs), rather than on any
implementation (e.g. using of double buffering).

The introduced model based approach needs long term
establishment, but in prototype projects the first
experiences confirm significant easement, better system
understanding for each party in collaborative process and
in conclusion a key enabler to reach the multi-core
challenges for SW development. Step by step the process
and tools are adapted.

Finally new technologies will arise, which will influence
the design of the functions. For instance, dynamic
scheduling / allocation to cores, different partitions in the
ECU… Also, the increase of computation power linked to
multi-core will certainly motivate higher integration of
systems, going towards mixed domains ECUs. We can
think of course about integration of Transmission Control
Unit and Engine Control Unit, PowerTrain Controllers.
But it is to be expected that functions out of the
PowerTrain domain start to be integrated, leading to an
even higher variability, and therefore needs for partial
reprogramming, for instance.
At the end, it is doubtless, that the multi-core introduction
is at the origin of a big evolution of architectures, and the
presented shared development process will be a key
enabler.

Works Cited

[1] D. Claraz, F. Grimal, T. Leydier, R. Mader and G.

Wirrer, “Introducing Multi-Core at Automotive
Engine Systems,” in ERTS2-2014, Toulouse, Feb.
2014.

[2] ASAM, ASAM AE MDX Meta Data Exchange
Format standard V1.2.0,
http://www.asam.net/nc/home/standards/standard-
detail.html?tx_rbwbmasamstandards_pi1%5Bshow
Uid%5D=2559&start=, Dec. 2012.

[3] D. Claraz, S. Kuntz, U. Margull, M. Niemetz and G.
Wirrer, “Deterministic Execution Sequence in
Component Based Multi-Contributor Powertrain
Control Systems,” in ERTS2-2012, Toulouse, 2012.

 Page 12/12

[4] AUTOSAR, AUTOSAR 4.1.1 Specification of RTE -
AUTOSAR_SWS_RTE 3.3.0,
http://www.autosar.org/specifications/release-41/,
2013.

[5] ASAM, ASAM AE MDX Meta Data Exchange
Format standard V1.3.0,
http://www.asam.net/nc/home/standards/standard-
detail.html?tx_rbwbmasamstandards_pi1%5Bshow
Uid%5D=3244&start=, Jun. 2015.

[6] R. Bosch, “Method for preventing data
inconsistency between accesses of different
functions of an application to a global variable in a
data processing installation”. Germany Patent EP 1
738 257 B1, 30 03 2005.

[7] T. Flämig, H. Jelden, C. Kornmesser, A. Schulze, L.
Michel, C. Ebert and B. Cool, Software architecture
methods for multi-core – Distributed development
and validation of architecture in collaborative
engineered multi-core systems, EMCC Embedded
Multicore Conference Munich 2105, Jun. 2015.

[8] A. Project, AMALTHEA Project Deliverable: D 4.4
- report on model and tool exchange.,
https://itea3.org/project/workpackage/document/do
wnload/1675/09013-AMALTHEA-WP-4-D44-
Reportonmodelandtoolexchange.pdf, Apr. 2014.

[9] A. Sailer, Timing Simulation of Multi-Core Systems
based on AUTOSAR Models, http://www.timing-
architects.com/fileadmin/user_upload/Log-
In_Miscellaneous/Whitepaper_Timing_Simulation_
AUTOSAR.pdf, Aug. 2014.

[10] ASAM, Release Presentation ASAM AE MDX
V1.3.0,
http://www.asam.net/index.php?eID=tx_nawsecured
l&u=0&file=fileadmin/documents/standards/AE/M
DX/V1.3.0/ASAM-AE-MDX-
V1_3_0_Release_Presentation.pdf&t=1446754174
&hash=468d38849977145083, Jun. 2015.

[11] AMALTHEA, AMALTHEA Project Deliverable: D
4.4 - report on model and tool exchange.,
https://itea3.org/project/workpackage/document/do
wnload/1675/09013-AMALTHEA-WP-4-D44-
Reportonmodelandtoolexchange.pdf, Apr. 2014.

[12] H. Mackamul, Innovation report: Building an open
source, extendible development platform,
https://itea3.org/project/result/download/6729/AMA
LTHEA%20Innovation%20Report.pdf, Sept. 2014.

[13] R. Charette, “This Car Runs on Code,” IEEE
Spectrum, no.
http://spectrum.ieee.org/transportation/systems/this-
car-runs-on-code, Feb. 2009.

[14] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund,
C. Maiza, J. Reineke, B. Triquet and R. Wilhelm,
“Predictability Considerations in the Design of
Multi-Core Embedded Systems,” in ERTS-2010,
Toulouse, Feb. 2010.

[15] W. Schwitzer, R. Schneider, D. Reinhardt and G.
Hofstetter, “Tackling the Complexity of Timing-
relevant Deployment Decisions in Multicore-based
Embedded Automotive Software Systems,” in SAE
2013 World Congress & Exhibition, Apr. 2013.

[16] D. Juergens, D. Reinhardt, R. Schneider, G.
Hofstetter, U. Dannebaum and A. Graf,
“Implementing Mixed Criticality Software
Integration On Multicore - A Cost Model And The
Lessons Learned,” in SAE 2015 World Congress
and Exhibition, Apr. 2015.

[17] R. Schneider, A. Kohn and D. Juergens, “Software
Parallelization in Automotive Multi-Core Systems,”
in SAE 2015 World Congress and Exhibition, Apr.
2015.

[18] D. Reinhardt and M. Kucera, “Domain Controlled
Architecture – A new approach for Large Scale
Software Integrated Automotive Systems,” in
International Conference on Pervasive and
Embedded Computing and Communication Systems
2013, Feb. 2013.

[19] I. Stierand, P. Rainkemeier and P. Bhaduri, “Virtual
Integration of Real-Time Systems Based on
Resource Segregation Abstraction,” in International
Conference on Formal Modeling and Analysis of
Timed Systems, 2014, Sept. 2014.

[20] D. Nowotka and J. Traub, “Formal Verification of
Concurrent Embedded Software,” in International
Embedded Systems Symposium, IESS 2013, Jun.
2013.

[21] T. Ehlers, D. Nowotka and P. Sieweck, “Finding
race conditions in real-time code by using formal
software verification,” in 12th International
Conference on Formal Modeling and Analysis of
Timed Systems, 2014, Sept. 2014.

[22] N. Koutsopoulos, M. Northovery and T. Felden,
“Advancing Data Race investigation and
Classification through Visualization,” in 3rd IEEE
Working Conference on Software Visualization
(VISSOFT 2015), Sept. 2015.

[23] G. Macher, A. Höller, E. Armengaud and C.
Kreiner, “Automotive Embedded Software:
Migration Challenges to Multi-Core Computing
Platforms,” in IEEE INDIN 2015 - International
Conference on Industrial Informatics, Jul. 2015.

