
 Page 1/10

An Experiment on Exploiting Virtual Platforms for the
Development of Embedded Equipments

P. Cuenot13, E. Jenn14, E. Faure2, N. Broueilh2 , E. Rouland15,
1: IRT Saint-Exupéry, 118 route de Narbonne, 31042 Toulouse, France

2: ASTC France, 42 avenue du Général De Croute, 31100 Toulouse, France

Abstract: Virtual engineering methods and tools
based on simulation have become a privileged mean
to reduce time-to-market and product cost. However,
design and verification activities still need to be im-
proved to manage the ever increasing complexity of
electronic products and their interactions with hetero-
geneous environments. In particular, an important
challenge is to master the real time properties of the
product composed of interacting hardware and soft-
ware components.

In this paper we propose a pragmatic approach to use
virtual platforms to verify gradually and accurately the
properties of a system under design. We illustrate the
approach on an example.

Keywords: Virtual platform, SystemC, Verification.
Simulation, Heterogeneous environment.

1. Introduction and Motivation

New embedded electronic systems impose a new
leap in product integration. The progress of the Sys-
tem on Chips (SoC) market share clearly illustrates
this need. In parallel, embedded electronic systems
or Electronic Control Units (ECU) need to be opti-
mized to integrate new functions usually developed
using analog parts at an acceptable cost.
Basically, the challenge is to maximize the usage of
SoCs while keeping reasonnable development costs.
Embedded electronic systems are usually reactive:
they are part of some control loop closed through their
environment. The temporal properties of the elements
of this loop are of prime importance as they determine
the overall performance of the implemented function
(response time, stability, etc.). Accordingly, those
properties must be carefully monitored and the prod-
uct (including drivers, IPs, sensors, actuators…) shall
be carefully designed to comply with those properties.
In this context, being able to simulate a complete con-
trol chain within its environment is of major interest,
and the benefits of the approach are as high as it can
be applied soon, continuously and “smoothly” during
the development process.

Towards this goal, there is a strong need to move
from segregated hardware and software simulation to
system-level simulation. This requires the modelling

3 Seconded from Continental Automotive France, 1 avenue Paul Ourliac, 31036 Toulouse France
4 Seconded from Thales Avionics, 105 avenue du Général Eisenhower, 31100 Toulouse, France
5 Seconded from ACTIA Automotive, 5 rue Jorge Semprun, 31400 Toulouse, France

and simulation of the system’s components and envi-
ronment at various levels of abstraction, representa-
tiveness, and accuracy. The SystemC language and
simulation kernel [1] provide such capabilities.

SystemC is supported by an open source ecosystem
organized in the context of Accelera Systems Initia-
tive [1]. Recently, the Electronic Design Automation
tools industry (EDA) extended commercial offers by
integrating SystemC. The tool environment offers
modelling services on the top the language, scripting
capabilities to automate test execution, co-simulation
interface to interact with external tools or actual elec-
tronic prototypes, etc.

Despite (or because of) the large offer of technical
methods and tools, some methodological guidance is
required to ensure a safe, high-quality, and cost-ef-
fective development and verification process.

Therefore, we (i) propose an iterative process to opti-
mize the use of SystemC, (ii) apply it on part of a sys-
tem, and (iii) show its benefits. Focus is placed on ver-
ification activities carried out with the system’s envi-
ronment to demonstrate the preservation of the com-
ponents properties during the successive develop-
ment phases.

Our paper is structured as follows. Section 2 intro-
duces the virtual platform concept and gives an over-
view of some significant related works. Section 3 pre-
sents the proposed approach for an iterative develop-
ment and verification process. In section 4, the exper-
imental setup is explained and section 5 gives some
evaluation results. Finally, the conclusion reports
feedback on methods and tools evaluation by appli-
cation of the process and draws perspective for future
work.

2. Related Work

A virtual platform is a hardware simulator executing
embedded software. The hardware simulator is usu-
ally built on top of an Instruction Set Simulator (ISS)
of the processor connected via buses to memory and
peripherals such as timers, general I/O, communica-
tion interface, etc. The ISS may be implemented in
SystemC or in any other general purpose language.

In a typical configuration, communications are mod-
elled using SystemC Transactional Level Modelling

 Page 2/10

(TLM) in order to achieve high simulation speed. Pe-
ripherals and memory are register accurate, they
communicate according to the TLM paradigm, and
their behaviour is implemented in SystemC/C++. The
application software is the actual code compiled for
the target processor. The SystemC non-preemptive
simulation kernel orchestrates the execution of all
components of the platform.

Among typical examples of virtual platforms, we can
mention the Infineon TricoreTM SoC [2] based on the
QEMU ISS or the SockROCKET LEON3 virtual plat-
form developed by ESA [3] implemented in Python
with SystemC/TLM buses and peripherals. Note that
the ISS can be developed by silicon suppliers from
proprietary architecture modelling languages, such as
Freescale’s ADL/uADL [4], and then be integrated
with peripherals to build a complete platform.

Virtual platforms have been experimented on various
industrial use cases, such as automotive power train
applications [6]. Those experiments have demon-
strated the need for appropriate methods during the
development of the platform components and their in-
tegration.

In the industry, the different uses of virtual platforms
map to the organisation of the supply chain: design
and verification of SoC on the silicon suppliers side
(component), design and verification of software on
the equipment suppliers side (system).

On the system side, virtual platform are used to esti-
mate the performances of hardware and software ar-
chitectures, and perform early verification activities. In
particular, debug and verification phases are simpli-
fied thanks to the high observability and controllability
of virtual platforms compared to real hardware. Fur-
thermore, using virtual platforms moves the simulated
hardware parts out of the critical path: hardware de-
velopment phases can start once the definition of the
hardware has matured and has been (virtually) vali-
dated.

Finally, virtual platforms also provide:

- A high configurability and flexibility allowing a par-
ticular platform to be configured and elaborated
within minutes provided that the models are avail-
able.

- A capability to integrate models with heterogene-
ous abstraction levels (in particular temporal ab-
stractions thanks to the versatility of Sys-
temC/SystemC-TLM/ SystemC-AMS)

In its Return On Investment (ROI) analysis on elec-
tronic system level design, Synopsys [5], one of the
main EDA tool supplier, announces cost reduction op-
portunities by reducting the number silicon iterations
and a productivity increase of x2-x5 for software de-
velopment.

To reach such a ROI, the virtual platform design flow
shall be optimized so as to (i) minimize the cost of
models and (ii) maximize the credit one may take from

verifications performed using those models. An ap-
proach consists to use simulation models as a form of
an “executable design artifact” that is refined all along
the development process, from the implementation
agnostic logical level down to the physical software
and hardware levels. Obviously, this approach is con-
ditionned by the quality of the model and particularly
on the properties preserved by the model. Those
qualities must be clearly stated and become part of a
contract binding the provider and the user of the
model. A specific care shall be taken on timing prop-
erties of the hardware model and of the environment
impacting the overall system behaviour.

The Socket project [7] has proposed such a design
flow for the development of critical embedded SoCs.
The development steps maps to the SystemC/TLM
modelling styles. This allows to co-simulate hardware
and software, and to introduce and verify properties
gradually (in particular temporal properties). The top
level design of the SoC architecture is focused on
hardware bus traffic optimization, not on the complete
set of properties allocated to the SoC. In this project,
the modelling of the environment is limited since the
systems considered are not reactive.

The COMPLEX project [8] uses UML/MARTE to
model and explore the design space of embedded
systems. Power and performance are the exploration
criteria. The various abstractions of the processor mi-
cro-architecture, of the SoC internal buses, etc. allow
an early and efficient simulation. Those abstractions
also impair accuracy and raise sensitivity problems (in
particular with target compiler optimization versus na-
tive compiler and internal SoC bus communication
control). Compared to Socket, COMPLEX placed fo-
cus at system level where interconnected ECUs com-
municate through communication buses. The preci-
sion in low-level modelling is not considered besides
the use of existing SystemC component libraries. Ad-
ditionally the verification activities are not formalized.

With respect to the previous works, our approach is
aimed at covering a larger modelling spectrum, from
high level models down to behavioural hardware
models. Emphasis is placed on verification of real-
time properties considering the ECU’s environment.

3. An Approach for the Development
and Use of Virtual Platforms

To benefit the virtual platform’s “good properties”, the
objective is to (i) minimize the development cost of the
virtual platform and (ii) maximize the usage of the vir-
tual platform.

To achieve the first objective, one shall (i.a) maximize
the reuse of existing models (possibly reusing them
from previous developments), (i.b) maximize the au-
tomatic generation of platform models (or skeletons)
from existing design models, (i.c) develop simple
models covering the necessary and sufficient features

 Page 3/10

and details with respect to the validation and verifica-
tion objectives. These topics will be addressed in Sec-
tion 4.d.

To achieve the second objective, the strategy is two-
pronged: (ii.a) the “most expensive” problems shall be
identified and tackled first, (ii.b) the model shall be de-
tailed up to the point where the necessary and suffi-
cient precision and accuracy are obtained to solve
(ii.a).

Here, we propose an informal approach somewhat
similar to a Failure Mode and Effect Criticality Analy-
sis (FMECA) applied on a development process. This
approach takes into account: the cost of evaluations
including the cost of model development, the cost of
model execution and the risk inherent to a “sloppy”
evaluation. According to this interpretation, the fre-
quency of occurrence of an error is related to the qual-
ity of the measures (its accuracy and precision). The
gravity integrates the potential impact of the error on
the development process (e.g., the number and na-
ture of the activities to be redone), and the impact on
the product under design. Once the analysis is com-
plete, reducing the overall risk consists to reduce the
probability of occurrence of the evaluation error (e.g.,
by refining the model in order to account for phenom-
ena that have a significant impact on the behaviour of
the system), (ii) reduce the gravity of the error by im-
proving the robustness of the process (e.g., by intro-
ducing margins), (iii) detect evaluation error by adding
additional checks.

In this paper, focus is placed on the temporal proper-
ties, so the trade-off between cost and accuracy/pre-
cision is essentially focused on the modelling of tem-
poral aspects. We consider the three levels — or pro-
gramming styles —defined by SystemC-TLM: un-
timed (U or functional), loosely-timed (LT), and ap-
proximately-timed (AT). As the design improves, the
verification objectives get more and more focused
and may eventually require a fine grain temporal mod-
elling. This change is determined by the property to
be verified.

Failure modes

Contrary to hardware devices, there is no common,
standardized list of failures at functional level. Candi-
date failure modes are identified and selected on the
basis of expertize, experience, etc. Here, focus is
placed on temporal errors such as under and over es-
timation of delays, non-compliance with SW/HW inter-
action sequencing or hardware design constrainst.
The objective is to determine which verification tech-
nique to apply by considering the design faults, their
effect on the system and the cost of the detection /
mitigation means.

Criticality

Our estimation of criticality is (roughly) estimated by a
cost. The principle is trivial: the cost of the verification
means shall be somehow commensurate or related to
the direct and indirect costs of the error. The cost of
the error is roughly estimated by its criticality, which

depends on its probability of occurrence and the costs
of its effects including the cost of detection means
(technical and human) and the cost of error elimina-
tion (redesign and refactoring,…).

Error propagation

With respect to a classical FMECA, the approach dif-
fers because design errors propagate across design
artefacts (space) and across design phases (time). In
particular, an error in the dimensioning of a parameter
in phase 𝑖 may impact the design choices done in

phase 𝑖 + 1, and so on.

Any verification approach is basically aimed at pre-
venting such propagation by (i) detecting design er-
rors as soon as possible in the design process and (ii)
as soon as possible in the dependency chain that re-
late design artefacts.

D D DD

 : probability of detection
 : cost of detection / correction

Figure 1: FMECA overview

This “approach” has been applied on some simple
functions of our experimental setup. The correspond-
ing use cases are described in section 4.b and 4.c.

Back to the important question of the ROI of such
multi-viewpoint, multi-level approach, the following
questions shall be answered:

- What is the cost of developing (all) those addi-
tional models? The answer obviously depends on
their complexity. Hence, the development effort
for a SystemC-TLM timed model of a simple timer
is lower than one men×month, while a complex
ISS can require more than twenty men×months.

- If models are develop by some third party, how do
we formalize the “contract” that binds the model
provider to the model user? Stated differently,
how can we specify the domain to obtain signifi-
cant results with the virtual platform model?

- Finally, how does this additional cost compares to
the gain due to the early validation?

In the sequel of the paper, we propose to answer
those questions by applying the virtual platform ap-
proach on a small example: an autonomous rover.

4. The experimental setup

In order to evaluate the proposed development pro-
cess and supporting tools, and estimate its actual
benefits, we use it for the development of a small mo-
bile vehicule, or “rover”, named “TwIRTee”.

 Page 4/10

a. The TwIRTee demonstrator

TwIRTee is a three-wheeled autonomous rover fitted
with a camera and various other sensors (odometry,
positioning,…). Its operational role is very simple: (i)
move itself on some predefined tracks from a point A
to a point B (a "mission") while avoiding other rovers.

TwIRTee is developed within the INGEQUIP project
at the Toulouse Institut de Recherche Technologique
(IRT) Saint-Exupéry. IRTs are new research struc-
tures established under the auspices of the French
Agence Nationale de la Recherche (ANR) aimed at
favouring the transfer of innovation from laboratories
to industries.

TwIRTee is designed so as (i) to cover the major top-
ics addressed in the project namely: early validation,
architecture exploration, performance prediction, and
formal verification. Furthermore, it is aimed at cover-
ing issues, functional and architectural elements spe-
cific to three industrial domains: automotive, space,
aeronautics.

Accordingly, the missions, functions and the architec-
tural elements are determined so as to tackle or exer-
cise one or several issues: for instance, the “localiza-
tion” function relies partially on imaging so as to exer-
cise hardware / software space exploration and co-
design; the highly redundant architecture provides the
experimental setup to perform early performance
evaluations (including dependability).

An overview of the TwIRTee plaftorm is given on Fig-
ure 2: the computing platform is composed of 2
COM/MON channels that host the main “mission”
functions and one channel dedicated to power supply
generation and motor control. A clock synchronization

protocol is implemented and distributed on each ECU
communicating by the CAN network.

The rover displacements is achieved by the motor
control ECU controlling a two-wheeled powertrain
composed of 2 CC motors, 2 reduction gearboxes, 2
quadrature encoders, 2 wheels. The setpoint for mo-
tor regulation is selected from the 2 commands
(COM) and monitoring (MON) channels.

The methods introduced in Section 3 are applied on
two simple functions: the clock synchronization (Fck)
and the PWM motor control (FPWM).

b. Clock synchronization

The clock synchronization protocol is used to provide
the rover’s computation units with a “common” time
reference. The protocol has been proposed in [9]. It is
built on top of the CAN network.

Principles

The common time reference – or virtual clock (𝑣) –
satisfies the precision, rate and accuracy properties.
The precision property states that no two synchro-
nized virtual clocks may differ by more than a given
value. For instance, at any time 𝑡, any virtual clock

shall show a time “less than 100𝜇s” from any other
virtual clock. More formally, if nodes 𝑘 and 𝑙 partici-
pate to the protocole:

∃𝛿𝑣: |𝑣 𝑘(𝑡) − 𝑣 𝑙(𝑡)| ≤ 𝛿𝑣 (P1)

In practice, the achievable precision depends on two
main parameters Γtight and Γmax agree :

𝛿𝑣 = 𝛿𝑣 + 2𝜌𝑇 (P2)

𝛿𝑣 ≥ (1 + 𝜌)Γtight + 2𝜌Γmax agree (P3)

Motor control

Confirm1

CORE1

PPC

ZYNQ
Guidance

COM

CORE1 CORE2 FPGA

Commands1

Motor L

PPC

Guidance

MON

Se
n

so
r

R
,L

CORE1

PPC

ZYNQ
Guidance

COM

CORE2 FPGA

Guidance

MON

Confirm2Commands2

Clock
Clock Clock

Clock

CORE1

Sync Sync Sync Sync

Commandsx Confirmx Sensors R,LSync

Motor Regulation

Freq. In driver

Hardware IP (eMIOS)

PWM driver

Sensors val.Clock

Rotation Sensor RMotor RRotation Sensor L

CAN driver

CAN Network

Source sel.

Hardware IP (FlexCAN)

Figure 2: Overview of the TwIRTee equipment

 Page 5/10

where

- 𝑇 is the resynchronization period, 𝜌 is the physical
clock drift

- Γtight is the network propagation delay (around

10𝜇s), Γmax agree is the agreement delay which de-

pends in particular on the number of tolerated
faults and on the background traffic of higher pri-
ority.

First, let’s analyse the failure modes, their “probabili-
ties” of occurrence, and their effects.

Failures

- FF1M1: Erroneous Γmax𝑎𝑔𝑟𝑒𝑒 , underestimation

- FF1M2: Erroneous Γmax𝑎𝑔𝑟𝑒𝑒, overestimation

- FF2M1: Erroneous Γtight, underestimation

- FF2M2: Erroneous Γtight, overestimation

Probabilities of occurrence

- OF1M1: VERY HIGH, because (i) many factors
contribute to the communication times, and (ii) the
dynamic behaviour of CAN is not trivial (see [10]
and [12]).

- OF1M2: LOW, because the mode for fault F1 is
much likely F1M1.

- OF2M1: VERY LOW because this parameter is part
of the specification.

- OF2M2: VERY LOW (same reason as F2M1).

For space reason, we do not consider failure modes
F2 any longer.

Effects and cost impact

- EF1M1: Actual accuracy lower than expected. Cost
impact is MODERATE: (i) the system being re-
dundant (MASTER/SLAVE, COM/MON) many
functions rely on the synchronization precision in
particular via discrepancy margins, confirmation
times are affected. However, the risk for a large
effect on the synchronization is low thanks to the

𝜌1 factor in (P2).
- EF1M2: Actual accuracy greater than expected.

Cost impact is LOW: the network and CPU loads
are higher than necessary but no rework is ex-
pected. (Note that, generally speaking, the impact
could be very high because it could lead to select
and oversized computing platform and / or net-
work. In our very case, there is no risk of such
effect).

In the absence of dedicated detection means, FF1M1
and FF1M2 are likely to be detected only in operations.

Probability of detection

- DF1M1: VERY LOW because Γmax is a worst-case
situation that is difficult to observe in operation.

- DF1M2: VERY LOW because the effects are hardly
visible.

Cost of correction

- CF1M1: VERY HIGH
- CF1M2: VERY HIGH

1 𝜌 is in the range of 10-6 s/s

From the combination of a MODERATE cost, a VERY
LOW detection probability and a VERY HIGH detec-
tion / correction cost, we decided that it was worth
adding a new detection means with a MODERATE
cost and HIGH detection coverage.

Consequently, we decided to test the clock synchro-
nization protocol on a bit-level virtual model of the
CAN capable of simulating the actual effects of back-
ground traffic and error occurrences.

(Note: we consider that the behaviour of the network
in the presence of fault is simulated. However, in the
particular case of CAN, analytical models of the CAN
bus latency are already available (e.g., [10]), but sim-
ulation models allow to consider faults models of ar-
bitrary complexity.

c. PWM motor control

Power is delivered to the rover motors via a H-bridge
(4 transistors, see Figure 3) controlled by a PWM sig-
nal. The PWM duty cycle is computed by the motor
regulator from the speed set point provided by the
rover guidance controller and the actual speed meas-
ured using the wheels’ optical encoders. The wheels’
optical encoders generates quadrature signals ac-
quired as frequencial input and then integrated for
speed determination.

VCC

M

THF

TLB

THB

TLF

f

b

Figure 3: Motor H-Bridge control

The PWM controller was assessed under two per-
spectives: PWM timing and PWM design constraints
both having effect on real time properties.

PWM control generation

The PWM generation device hold the following func-
tional requirements (P4 - non exhaustive list)

- Frequency and resolution step of PWM control:
10kHz frequency with a 0.1 µs step)

- Latency for application of new PWM value (next
cycle)

- Immediate desactivation of active state of the
PWM (lower than 1 ms)

Compliance to the previous requirements may be
achieved in many different ways, including:

- Pure software implementation toggling an output
port (resolution will be certainly an issue)

 Page 6/10

- Pure hardware specific implementation with sin-
gle register interface and fixed frequency (too
specific solution)

- Mix mode with a simple timer, control by software
interrupt and latch of an output (resource will be
an issue)

- Hardware dominant solution with multiple register
interface but “reasonable” or limited resource
(most realistic in this basic example)

Attached to selected scenario we have also a list of
design constrainst (C4) stemming from domain expe-
rience, available resources, etc. For instance :

- Register shall be 32-bit wide. At most 4 registers
must be necessary (duty cycle value, frequency
value, cycle counter and register control)

- The timer frequency range shall be in
[100Hz,100KHz] (10kHz for motor control)

- The effect of the frequency and duty cycle change
shall only occur at the next PWM cycle

For the evaluation of the motor controller we will con-
sider the failure mode “wrong design” (F2M1).

The interaction between the PWM and the H-bridge
(the device that physically controls the power signal)
raises another possible failure mode. As the H-bridge
provides no overcurrent protection, care shall be
taken not to switch transistors located on the same
side of the bridge on “at the same time” in order to
avoid shortcuts. This situation can be prevented by
introducing a silence time between the commutations
of opposite transistors. The duration shall in particular
take into account the transistor switching time. The
respective failure mode are noted F1Mx.

The following property shall hold:

∀ 𝑡𝑏 , 𝑡𝑓𝑗 ∶ |𝑡𝑏 − 𝑡𝑓𝑗| ≥ Δ𝑡𝑑𝑧 (P5)

Where 𝑡𝑏 (resp. 𝑡𝑓) be a time at which signal “back-
ward” (resp “forward”) is active, and Δ𝑡𝑑𝑧 is the dura-
tion of the “silent zone” where no transistor is active.

Failures modes

- FF1M1: Erroneous Δ𝑡𝑑𝑧, underestimation

- FF1M2: Erroneous Δ𝑡𝑑𝑧, overerestimation
- FF2M1 : Wrong design

Probability of occurrence

- OF1M1: LOW
- OF1M2: LOW
- OF2M1: MEDIUM (component are selected to fulfill

all forecoming applications)

Effects

- EF1M1: During a rotation sense change, the oppo-
site MOSFETs of the H-bridge transistors are on
at “the same time”. Cost impact is VERY HIGH:
this configuration is basically a shortcut. Depend-
ing on the duration of the shortcut, the dissipated
energy may leads to the destruction of the two
transistors and the power supply. No other func-
tion is affected by the error.

- EF1M2: During a rotation sense change, the PWM
signal is delivered slightly later to the H-bridge.
Cost impact is NEGLIGIBLE: the rotation of the
wheel is slightly delayed which has no further im-
pact on the rover’s capabilities.

- EF2M1: In case of wrong design with non capable
component the function performance must be
downgraded. In the worst case, a complete rede-
sign may become necessary. Cost impact is
HIGH because the problem will be detected dur-
ing verification but it will have an impact on overall
product planning.

In the absence of dedicated detection means, FF1M1
and FF1M2 are likely to be detected only in operations.
FF2M1 will be detected lately during product verifica-
tion meaning high effort for redesign.

Probability of detection

- DF1M1: LOW. Depending on the duration of the
“short-circuit”, the number of forward/backward
commutations, the error may stay undetected for
a long time. However, it may eventually reduce
drastically the lifetime of the transistor / power
supply.

- DF1M2: VERY LOW.
- DF2M1: HIGH (as processus for verification are

mature)

Cost of correction

- CF1M1: LOW. The correction is basically a modifi-
cation of a constant in the PWM management
code.

- CF1M2: LOW (same as CF1M1)
- CF2M1: HIGH to VERY HIGH

For the “silence time underestimation” fault model, the
combination of a VERY HIGH cost, a LOW detection
probability and a LOW correction cost leads the intro-
duction of a new detection means. This means shall
have a MODERATE cost and HIGH detection cover-
age.

In practice, we created a virtual platform to host the
PWM driver software and implemented a system-C
observer to check (P5).The virtual platform shall pro-
vide a representation of time “compatible” with the
property at stake. Here, we used a SystemC AT
model of the PWM hardware driver.

For the “wrong design” fault model, the combination
of HIGH cost, HIGH detection and HIGH (to VERY
HIGH) correction cost leads to the introduction of a
new detection means aimed at securing later devel-
opment phases. As the functional requirement (P4)
and design constrainst (C4) are expressed in terms of
hardware and software interactions, the virtual plat-
form shall at least provide a LT abstraction.

To facilitate the verification of the functional properties
(P4) a functional model is developed (initiating also
the test bench environment). From this level, require-
ments and associated properties are refined and al-

 Page 7/10

located. During the decomposition process, some re-
quirements may become “contracts” binding the dif-
ferent components of the motor control chain.

Figure 4 depicts some of these contracts:

- The PWM controller shall ensure a silence-period
greater than Δ𝑡𝑑𝑧 and the H-bridge transistors

shall switch is less than (e.g.,) Δ𝑡𝑑𝑧/100 (P5).
- The power dissipated by the electrical motor shall

be less than 15W. Therefore, the PWM duty cycle
shall never be greater a given ratio for a given
time. This contract propagated from motor power
dissipation constrainst is not considered in the ar-
ticle.

Driver H-bridge Motor

no short-cut
Dissipated power < Pmax

Application

High / low ratio of PWM signal over Δ𝑇 < MRmax

mean speed over Δ𝑇 < MSmax

Contract is propagated

Contract is propagated again

Contract is undertaken

Figure 4: Motor drivers contracts

Another contract defined during the PWM controller
design binds the hardware and software. It concerns
the static and dynamic definition of the interface (see
property C4). This contract is verified at the LT and
AT modelling levels.

Section 5.b describes the use of the contract verifica-
tion on the PWM controller.

d. The virtual platform

VLAB™2 is used to develop the models and build vir-
tual platforms. It provides a programmable and inter-
active environment for the assembly, configuration,
programming and operation of electronic system level
simulations, such as virtual system prototypes and
virtual platforms, as well as other applications (see
Figure 5) . A virtual platform integrates together sim-
ulation models and other simulation objects, scripts,
tools, test and infrastructure software, and target soft-
ware.

Figure 5: Tool organization

2 VLABTM is a product of ASTC

The development of models does require a solid ex-
pertise understanding SystemC concept and lan-
guage (object oriented). Moreover, the iterative re-
finements of models may be achieved by different
persons with different coding skills.

The tool framework facilitates the creation of models
thanks to a Genesis library compliant with SystemC
and IP-XACT standards. It allows to capture model
structure and connectivity and to automatically create
C++ skeleton for the implementation of the behavioral
part of the model. This library is also available in Py-
thon meaning models can be developed and de-
bugged in a much faster and simpler way than in C++.

Figure 6: Genesis Framework

Finally, the tool provides an integrated and interactive
execution platform leveraging again Python capabili-
ties. It provides a simple yet efficient user experience
for assembling virtual platform, debugging virtual plat-
form (setting HW & SW breakpoints) and scripting
test scenario (including fault injections in a non intru-
isive way) .

Modelling and assembling a virtual platform in Python
are the key functionality used to support the imple-
mentation of the case study.

5. Implementation approach

a. Clock synchronization

We used ASTC VLABTM “CAN toolbox” to create a
model of our computation and communication infra-
structure (5 nodes) and to inject faults during the ex-
ecution of the clock synchronization protocol. A CAN
node comes with two models, at token and bit levels.
The toolbox provides an API for the configuration and
control of nodes, including activation, frame transmis-
sion and frame reception. Python scripting allows to
access directly to API, to send CAN frame and control
the bit engine in order to introduce error in the CAN
frame. These features have been used to exercice the
clock synchronization protocol in situations where bit-
level errors lead to multiple retransmissions of the
same message. Such situations would have been dif-
ficult to obtain using the actual hardware.

 Page 8/10

b. The Motor control

The PWM controller scenario, as elaborated in sec-
tion 4.c, is realized using VLABTM. Some parts of the
complete model were developped using SystemC
and Python modeling capabilities while some other
parts were directly taken from the hardware library (for
TLM transactor or MPC5674F AT models). The mod-
elling scope for contract verification of the PWM con-
troller is enlarged to the overall motor controller fea-
ture. For the sake of the demonstration, we consider
that the C code of the motor controller was generated
from the same Simulink® model used to design and
validate the controller.

The development phase of the motor controller corre-
sponds to the three predefined modelling style U, LT
and AT.

Untimed model

The Untimed model is a functional model. It describes
how the PWM signal is generated from the rotation
speed setpoint and the actual speed measured from
the optical encoders (see Figure 7 below). The Hard-
ware Abstraction Layer API (HAL) is defined at this
level. It allows to implement a static interface between
application layer and driver abstraction using physical
data interface with the motor regulation algorithm (%
for PWM and speed in km/h for integration of quadra-
ture signal).

Motor Control

Python Comp.

Driver

Abstraction

Freq. In

PWM

Motor
Regulation

H

A

L

API

System C C

PWM backward
signal

Quadrature
signals
from

optical
encoders

Setpoint

Init. driver

PWM forward
signal

C

Figure 7: Functional model of Motor Control

The PWM controller is integrated in the driver abstrac-
tion SystemC module by implementing two specific
C++ methods for the definition of the API
(init_mc_driver() and put_mc_pwm(int32 value)).
The SystemC module integrates the driver abstrac-
tion with the PWM controller and the motor regulation.
It declares two public methods init_mc() and put_set-
point(value) to allow access to PWM controller and to
write into the setpoint data.
It includes one thread (or method) activated every 10
ms calling c_mc_ctrl() for regulation control activation.
Using the toolset, the SystemC motor control model
is first wrapped up into a python module which is then
imported into the tool environment as a new compo-
nent of the virtual platform. To use this newly defined
component, the user first instantiates and initializes it.
Then, he/she sets the setpoint value using to the py-
thon API (driver_obj=vlab.get_instance("MC").obj,
driver_obj.init_mcr(), driver_obj.put_setpoint(value)) .

This first level of modelling is a necessary step to build
the subsequent models. We take benefit of it to per-
form a first verification of the design with respect to
properties P4 and P5.

To do so, a test environment (or testbench) is built as
shown on Figure 8. In particular, property P5 (dead
zone) is checked using a dedicated SystemC/python
component (P5 checker on the Figure 8) that is con-
nected to PWM output signals via a monitor compo-
nent). The test driver generates a scenario where
wheels are moved forward and backward.

To close the control loop, a very simple model of the
motor / encoder devices is developed and integrated
in the platform. In this model, the frequency of the
quadrature signals is considered directly proportional
to the value of the PWM duty cycle (this is a good ap-
proximation as far as the frequency of the PWM signal
is sufficiently high). This model is used to get a first
insight on the performances of the regulation (re-
sponse time, stability). In the future we will investigate
co-simulation with Simulink® dynamic of motor itself.

VLABTM

System Under Test

Motor ControlSetpoint

Init.

Motor
(Environment)

PWM

signals
Quadrature

signals

Test Bench

Driver

Monitor

P5 Checker
(config.)

Python Script

Python Comp.

Python Comp.

Python Comp. Python Comp.

Python Comp(s).

Figure 8: Test bench environment

To observe the results of the P5 verification, a trace
is placed on the P5 checker diagnosis output port us-
ing tool tracing capabilities. See the trace of the sce-
nario result in Figure 11.

Loosely Timed model

The Loosely Timed Model is a structural and behav-
ioral refinement of the Functional Model.

It introduces several hardware and software compo-
nents:
- The timer IP abstraction generates the clocks

used to generate the PWM signal. This IP is mod-
elled in systemC. It integrates all design con-
straint defined in C4 property (register size, fre-
quency range).

- The driver abstraction provides the interface to
the timer IP. This software component is defined
in C. It is interfaced with the timer abstraction IP
via a Hardware Software Interface (HSI). It inte-
grates the C4 HSI contract (static and sequence
interface).

- A SystemC bus driver interface allows to access
to the timer IP peripheral. The C to SystemC in-
terface complies with the TLM2 loosely timed
standard. It is available in the tool component li-
brary.

 Page 9/10

This structural and behavioural refinement preserves
the properties demonstrated on the functional model.
It is used to express the Hardware Software Interface
(HSI) contract (C4).

The HSI is implemented using five 32 bits registers:

- CNT running counter register (range of 24 bits)
with 10ns resolution (range from 6Hz to 100 MHz,
capable for 10KHz with 0.1% of precision)

- A and B compare registers for PWM control
(range of 24 bits)

- CCR control register with enable bit (UCPREN bit
6), polarity bit (EDPOL bit 24) and fixed buffered
mode (OPWFMB matching eMIOS definition bit
25-31)

- CSR status register with overrun bit (FLAG bit 31)
- Sequence transfer for buffered register A,B at the

end of the PWM cycle and guarantee of B always
greater than A.

The objective is not to implement the complexity of an
hardware IP like the eMIOS, but build a simplified IP
fulfilling the fonctionnality with respect of a reduced
HSI accessed via TLM2 access (untimed).

Motor Control

Python Comp.

Python Comp.

Timer IP
Abstraction

(LT model)

Bus
driver

Driver
Abstraction

Freq. In

PWM

Motor
Regulation

H

A
L

API

R
E
G
I
S
T
E
R
SP. Bus

System C System C

C C

TLM-LT

C

PWM backward
signal

Quadrature
signals

Setpoint

Init. driver

PWM forward
signal

Figure 9: LT model of the Motor Control

The motor control is now split in two python compo-
nents as depicted in Figure 9. This split allows the ob-
servability using VCD. The python components are
then instanciated with the test bench architecture as
in Figure 8. For the testbench, the interface for the
motor control is identical as the functional model. The
P5 checker can also be reused to demonstrate the
dead zone contract. See Figure 11 for trace of the re-
sults.

The HSI interface contract can be demonstrated
thanks to respect of the API resolved during virtual
platform building and sequence demonstrated by in-
strumentation capability to trace TLM transaction
(register access and value transported).

Approximated Timed model

The last model integrates approximated timing on bus
communication and on hardware IP resource compo-
nent access (internal definition and average pro-
cessing time in hardware IP). Model can also com-
plete the register interface when extra control regis-
ters are necessary for pre-implementation constraint,
such as merging several LT models into a more com-
plex and configurable hardware component. In any

case the predefined HSI contracts shall be preserved:
at least the same registers are used to interact with
the component, according to the same sequence
(protocol).

A use case more relevant than timer IP could be an
image processing hardware accelerator merging LT
models with modeling of internal timing interconnec-
tion.

In our experiment, the LT timer IP is mapped to the
MPC5674F eMIOS AT model. The Timer IP is con-
nected to a bridge and to the memory bus of the Pow-
erPC core via the peripheral bus (see Figure 10). The
target software is the binary software, including final
drivers, application software compiled for the µC tar-
get.

Motor Control
Binary SW

Python Comp. Python Comp.

Timer IP

(eMIOS)

(AT model)

Drivers

Freq. In

PWM

R
E
G
I
S
T
E
R
S

Motor
Regulation

M
.

B
u

s

System C System C

Appli Init.

TLM-AT
System C

H

A
L

API

P
.

B
u

s

Bridge

PPC ISS (e200z7)
(AT model)

Memory not displayed (model of µC MP5674F)

uADL- System C

PWM backward
signal

Quadrature
signals

memory

Setpoint

PWM forward
signal

Embedded C

(dummy)

Init. driver

Figure 10: AT Model of the Motor Control

The test bench is only slightly adapted with respect to
the one used at the more abstract levels. A python
transactor component is inserted and connected to
the same test bench driver. It integrates one method
for target memory introspection using debugging API
feature of the tool environment (write_memory()) and
a second one to dummy the motor control initialization
as it is now performed by the µC start-up code. The
simulation scenario generator and the property
checker component do not change. The P5 checker
can be reused for the validation of the contract de-
fined in the FMECA process. The functional property
P4 of the PWM control is verified. The C4 contract on
the HSI register access and sequence is also verified.

The simulation trace typical of every refinement level
is depicted below in the Figure 11.

Increasing forward speed

(PWM F duty cycle
from 30% to 70%)

Constant reverse speed

(PWM R duty cycle
at 70%)

zero speed

Full forward
speed

Full reverse speed Half forward speed

P5 not satisfied

P5 satisfied

zero speed

P5 : Δ fixed to 200 ns

Figure 11: Trace of dead zone validation

 Page 10/10

6. Conclusions and future work

In current SystemC ecosystem, the adequacy of
model representativity for verification objective and
the quality of the simulation models curbs the large
deployement of virtual platform. Our approach pro-
vides a first level of guidance and formalization of the
modeling process.

The “FMECA-like” approach introduces – to some lim-
ited extend, however – objective criteria to determine
whether a refined model is necessary or not. It allows
to start the modelling phase at the adequate abstrac-
tion level for the verification of the selected property.
The formalization of the development and the test of
an architecture compliant with SystemC modelling
standard allows a sound design covering hardware
software codesign process. We demonstrated that
test elements can be reused all over the model refine-
ment. Moreover, the contract approach provides
backbone for decomposition and guarantee on the
coverage of the requirements.

The tool automation features simplify the platform
models generation for component interfaces descrip-
tion and component bindings. However, for the crea-
tion of a new component model, the remaining man-
ual operations (code implementation, platform inte-
gration and test campaign) still represent around 90%
of the development costs. In actual practice the elab-
oration of simulation models follows a typical top-
down approach based on successive abstractions.
Such refinement has been formalized through the
control motor modelling experiment. More important,
the models have been continuously verified. In our
case, the development and testing of two additional
abstracted models is only estimated at 10 to 20% of
the overall effort.

Balanced to the model development effort, the pro-
posed methodology with virtual platform provides
strong benefits on the overall product development.
The contract and the model based communication fa-
cilitate inter domain communication and improve the
design quality of the product. It helps to reduce signif-
icantly the re-work iterations. The effort gained can be
estimated at 10 to 20%. This was demonstrated in our
experimentation and also on porting the OS Trampo-
line [15] on MPC5674F microncontroller for twIRtee.
The early hardware software integration by simulation
reduces operational set up and validation.

The approach proposed in this paper will be experi-
mented for the development of other parts of the
INGEQUIP project demonstrator. In particular, the
camera-based line tracking function will be developed
according to the same approach. This function re-
quires a lot of computing power, focus will be placed
on the issue of hardware/software design space ex-
ploration.

7. Acknowledgement

The authors thank all people and industrial partners
involved in the Ingequip project. This work is sup-
ported by the French Research Agency (ANR) and by
the industrial partners of IRT Saint-Exupéry Scientific
Cooperation Foundation (FCS): Actia Automotive,
Airbus, Airbus Defence and Space, ASTC Design
Partners, Continental Automotive, SAGEM, Systerel,
Space Codesign Systems and Thales Avionics.

8. References

[1] SystemC core langage definition, Accelera Systems

initiative standards, http://accellera.org/down-

loads/standards/systemc

[2] B. Koppelmann and all, “An open and Fast Virtual
Platform for TricoreTM based SoC Using QEMU,
DVCON Europe 2014

[3] ESA SockROCKET virtual platform,
http://www.esa.int/Our_Activities/Space_Engineer-
ing_Technology/Microelectronics/So-
CROCKET_Virtual_Platform_-_SystemC

[4] Freescale ADL, uADL open source project,
http://opensource.freescale.com/fsl-oss-projects/

[5] Franck Schirrmeister, Synopsys, “System Level
Market trends”, 2010 Synopsys Interoperability fo-
rum

[6] P. Cuenot, N. Tavernier, JM Talbot, “Embedded
Software V&V using virtual platforms for Powertrain
application”, ERTS 2008 Toulouse, France

[7] V. Lefftz, J. Bertrand, H. Casse, C. Clienti, P.
Coussy, L. Maillet-Contoz, P. Mercier, P. Moreau, L.
Pierre, et E. Vaumorin, « A design flow for critical
embedded systems », in 2010 International Sympo-
sium on Industrial Embedded Systems (SIES),
2010, p. 229–233.

[8] F. Herrera, H. Posadas, P. Penil, E ; Villar, F. Ferreo,
R. Valencia, G. Palemro « The COMPLEX method-
ology for UML/MARTE Modeling and design space
exploration of embedded systems”, Journal of Sys-
tem Architecture, volume 60, issue 1, Jan 2014.

[9] L. Rodrigues, M. Guimarães, and J. Rufino, ‘Fault-
tolerant clock synchronization in CAN’, in Proceed-
ings of the 19th Real-Time Systems Symposium,
Madrid, Spain, 1998, pp. 420–429.

[10] I. Broster and A. Burns, ‘Timely use of the CAN pro-
tocol in critical hard real-time systems with faults’, in
Real-Time Systems, 13th Euromicro Conference on,
2001., 2001, pp. 95–102.

[11] Electronic Reliability Design Handbook, US Depart-
ment of Defense, MIL-HDBK-338B, Oct. 1998.

[12] Road Vehicles – Controller area network (CAN) –
Part 1: data link layer and physical signalling’,
ISO/TC 22/SC 3N, 7-May-2014

[13] http://cache.freescale.com/files/32bit/doc/ref_man-
ual/MPC5674FRM.pdf

[14] VLAB™, ASTC, http://www.vlabworks.com/
[15] Trampoline OpenSource RTOS projet, http://tram-

poline.rts-software.org/

http://accellera.org/downloads/standards/systemc
http://accellera.org/downloads/standards/systemc
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/SoCROCKET_Virtual_Platform_-_SystemC
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/SoCROCKET_Virtual_Platform_-_SystemC
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/SoCROCKET_Virtual_Platform_-_SystemC
http://opensource.freescale.com/fsl-oss-projects/
http://www.vlabworks.com/
http://trampoline.rts-software.org/
http://trampoline.rts-software.org/

