
Automatic Interleaving for Testing Distributed Systems

Mihal Brumbulli and Emmanuel Gaudin
PragmaDev

{mihal.brumbulli,emmanuel.gaudin}@pragmadev.com

Abstract—The constantly ever-growing interest for large-scale
distributed systems like the Internet of Things imposes many
challenges for developers and researchers from many areas. The
development of distributed software applications is by no means
trivial, and their inherent complexity becomes apparent during
testing. Indeed, testing the operation of single isolated nodes
does not suffice, because it may be affected by the distribution
and inter-communication between nodes. Re-writing a test case
to consider distribution is neither efficient nor simple, because
concurrency is never easy to implement. In this paper we
present an approach that automatically interleaves execution of
test cases to simulate concurrency inherent in distribution. We
focus on independent test cases that might exhibit a correlation
due to distributed interaction. The approach is applied in the
context of standard modeling and testing languages, and enables
identification of interaction points during test case execution that
depend on distribution. The re-execution of the test case is then
interleaved at the identified points to account for distribution.

Index Terms—Distributed systems, testing, modeling, simula-
tion, TTCN-3, SDL

I. INTRODUCTION

The development of distributed systems has gained much
attention from industry and researchers with a variety of
applications, a trend that is sure to continue in the immediate
future due to the ever-growing interest for the Internet of
Things [1]. However, the development of software applications
for large-scale distributed systems is not a trivial task. This is
especially true for testing, an activity which is quite challeng-
ing even for simple non-distributed systems. The operation
of nodes in a distributed system is not isolated, and as such
it requires for test cases to account for the distribution and
interaction between nodes. The implication here is that existing
test cases and their execution have to be adapted to consider
distribution. This adaptation consists of (a) introducing concur-
rency handling into test cases, and (b) controlled concurrent
execution that deals with all relevant interleavings. For the
former the tests cases have to be modified, and considering that
concurrency handling is never easy to implement, the effort
that is required should not be overlooked. The later implies
the existence of a scheduler that is able to handle all relevant
interleavings.

In this paper we present an approach for automating the
interleaved execution of test cases. We apply the approach in
the context of standard modeling and testing languages. The
system under test is described in SDL [2], TTCN-3 [3] is used
for testing, and SDL-RT deployment diagrams [4] describe the
distribution of system components. Test cases are executed
against the system in a simulated environment extended with
an interleaving algorithm.

In Section II we give an overview of related work and
position our approach in respect to existing state of the art.
We introduce the relevant technologies in Section III and our
approach in Section IV. An example is given in Section V
to illustrate the use of the presented solution. Finally, we
conclude in Section VI with a discussion around the approach,
its current status, and future work.

II. RELATED WORK

Testing of distributed communication systems has been
approached from different angles. We identify two major
groups, i.e., distributed testing and interleaved execution.

Hartman et al. in [5] discuss the execution of abstract tests
for distributed software. They underline the importance and
benefits of interleaving test case sequences for discovering de-
fects in the system. The approach can be applied to a single test
case, it uses either concurrent or sequential synchronization of
execution sequences, and there is no automation involved in
establishing the synchronization points.

Schieferdecker and Vassiliou-Gioles in [6] discuss the distri-
bution of TTCN-3 test setups. The focus is on the underlying
concepts of the language and how they support management
and execution of distributed test cases. This approach implies
test execution on the target. This is obviously an advantage,
however, it also needs a complex synchronization mechanism
for controlling execution of each of the distributed test cases.

Bloom et al. in [7] emphasize the fact that, prior to testing
in a target environment, the software is usually tested in the
host environment. They propose a simulation-based approach
and focus on the semantics of time. However, it is not clear
how the execution of several test instances is interleaved to
account for the inherent concurrency.

Testing of concurrent software is discussed in [8] and [9].
The authors focus on multi-threaded software and propose a
solution that interleaves execution in a controlled way. The
approach uses neither a standard language (like TTCN-3) nor
any kind of abstract notations, instead, it is based on general
purpose programming languages.

We adopt the idea of controlled interleaved execution in
the context of distributed systems. To do so, we consider
distributed communication between instances of the system
to be similar to thread interleavings, and can potentially
impact the behavior induced by the execution of test cases.
Furthermore, the approach is based on standard and formal
languages with precise semantics. This allows simulation in a
controlled environment and, what is of great interest, automatic
generation and execution of all relevant interleavings.

III. TECHNOLOGY

A. SDL

The Specification and Description Language (SDL) is a
specification language defined by the International Telecom-
munication Union (ITU-T) in the Z.100 series [2]. SDL is
targeted at the unambiguous specification and description of
the behavior of reactive and distributed systems.

1) Structure, Behavior, and Communication: In SDL the
overall design is called the system, and everything outside of
it is defined as the environment. The system can be composed
of agents and communication constructs. There are two kinds
of agents: blocks and processes. Blocks can be composed of
other agents and communication constructs. When the system
is decomposed down to the simplest block, the way the block
fulfills its functionality is described with processes. A process
provides this functionality via extended finite state machines.
It has an implicit queue for signals. A signal has a name and
parameters; they go through channels that connect agents and
end up in the processes implicit queues. Fig. 1 illustrates these
concepts in a simple client-server application example.

Fig. 1. Excerpt of the SDL model of a client-server application.

The client is started with mStart signal which takes as
parameter the number of request the client should send to
the server. The client will try to connect to the server, and in
case of success it will start sending requests and waiting for
replies. When done (or in case of error) it will report back
(to the environment) the number of replies received from the
server via the mDone signal.

2) Deployment: SDL descriptions are platform indepen-
dent, i.e., they do not capture any information concerning
the implementation details. For example, Fig. 1 speaks of
a bClient and bServer, however it does not specify whether
these agents are distributed or not. Deployment diagrams
as defined in [4] can supplement the models with missing

information about distribution. This approach has been used
for simulating distributed applications as described in [10] and
[11]. We adopt the idea and simplify it by focusing only on
components, nodes, and connections as shown in Fig. 2.1 The
semantics are straightforward, i.e., if components (representing
SDL agents) are attached to different nodes, then they are
considered distributed, otherwise local execution is implied.

Fig. 2. Deployment model of the client-server application.

B. TTCN-3

The Testing and Test Control Notation Version 3 (TTCN-
3) is a standardized testing technology developed and main-
tained by the European Telecommunication Standards Institute
(ETSI). The ETSI TTCN-3 standards [3] have also been
adopted by the ITU-T in the Z.160 series [12].

The abstract definition of test cases makes it possible to
specify a non-proprietary test systems which are independent
of both platform and operating system. The abstract definitions
can be either compiled or interpreted for execution.

Fig. 3 shows a TTCN-3 module definition with a single test
case that triggers the sending of 10 requests (line 15 and 19)
from the client and expects 10 replies (line 16 and 21).

1: module TestClientServer {
2: // Types for messages
3: type record mStart { integer reqCount };
4: type record mDone { integer repCount };
5: // Port type for the interface with the SUT
6: type port port_cExtern message {
7: out mStart;
8: in mDone;
9: };

10: // Component type for the MTC and system inteface
11: type component sClientServer {
12: port port_cExtern cExtern;
13: };
14: // Templates for messages
15: template mStart startMessage := { reqCount := 10 };
16: template mDone doneMessage := { repCount := 10 };
17: // Testcase
18: testcase tc_start_done() runs on sClientServer {
19: cExtern.send(startMessage);
20: alt {
21: [] cExtern.receive(doneMessage) {
22: setverdict(pass);
23: }
24: [] cExtern.receive {
25: setverdict(fail);
26: }
27: }
28: }
29: }

Fig. 3. TTCN-3 module with a test case for the client-server application.

1The number of values in the id attribute is the number distributed nodes,
e.g., the figure implies two clients and one server.

IV. APPROACH

A. Problem Statement

We are interested in the effects (if any) induced by dis-
tributed execution of test cases. To better understand the
problem let us revisit the client-server example, and suppose
that the result of the test case presented in Fig. 3 is pass,
i.e., the system behaves as expected. What will happen if the
number of clients is increased; will the system behave the
same? There is one effective way to answer this question:
test the system with multiple clients. This can be tackled by
(a) rewriting the test case so that it accounts for multiple
clients, or (b) execute multiple instances of the test case (one
for each client) in parallel. The later needs an underlying
synchronization mechanism that allows controlled execution
of parallel (distributed) test cases, which is never trivial and
requires additional expertise (not TTCN-3). That is why the
former is more sound from a tester’s perspective, because it is
confined at the abstract level of testing provided by TTCN-3.
However, rewriting the test case to take into account only the
number of clients is not enough. Indeed, the difficult part is not
in the number of clients but in their parallel (concurrent) exe-
cution due to distribution. To model concurrency all possible
interleavings between test cases should be considered, which
implies execution of all permutations of TTCN-3 instructions
of different clients. For example, if startMessage is sent first
to client 1 and then to client 2, it is important to consider also
the case where it is first sent to client 2 and then to client 1.

B. Problem Analysis

Supposing concurrent execution of K test cases, with each
test case consisting of ni instructions for i = 1, 2, . . . ,K, the
number of all interleavings is given by:

I =
(
∑K

i=1 ni)!∏K
i=1(ni!)

(1)

If we consider concurrent execution of K instances of the
same test case, then ni = N ∀i, where N is the number of
instructions in the test case, and (1) can be re-written as:

I =
(KN)!

(N !)K
(2)

This is a typical case of the state-explosion problem which
makes execution of all interleavings unpractical even in a
controlled and automated environment. However, not all inter-
leavings are relevant and their number (in most cases) can be
drastically reduced. Indeed, the behavior induced by a test case
can be affected by distribution only if there is an interaction
between nodes. This means that, if the execution of a test
case does not involve any distributed communication, then
distribution will not have any impact. For example, if there
isn’t any communication between the client and the server,
then interleaving is pointless because there is no distributed
behavior in the first place. That is why it makes sense to
interleave execution at critical points, i.e., instructions that

trigger interaction between nodes by means of distributed
communication.

C. Interleaving Algorithm

We start by grouping the instructions and then interleaving
the execution of the groups. The condition is that each group
must include at most one instruction which triggers distributed
communication. Let mj

i be an instruction in the test case,
where i = 1, 2, . . . , N is the index (relative order) of the in-
struction, and j = 0, 1 describes whether the given instruction
triggers any interaction (interleaving point). A group consists
of all subsequent mj

i for which
∑

j ≤ 1. The following shows
an example sequence and corresponding grouping:

m0
1,m

1
2,m

0
3︸ ︷︷ ︸

g1

, m1
4︸︷︷︸

g2

,m1
5,m

0
6︸ ︷︷ ︸

g3

,m1
7,m

0
8,m

0
9︸ ︷︷ ︸

g4

, m1
10︸︷︷︸

g5

(3)

For two test cases with the above sequence, the algorithm can
generate > 700 times less interleavings.2

Interleaved execution can be automated using the following
algorithm:
{K is the number of instances}
{N is the number of groups}
{I is the next interleaving}
for i := 0 to K − 1 do

for j := 0 to N − 1 do
I[i ∗N + j] := i

end for
end for
loop

handleInterleave(I)
i := I.length− 1
while i > 0 and I[i− 1] ≥ I[i] do
i := i− 1

end while
if i = 0 then

return
end if
j := I.length− 1
while I[j] ≤ I[i− 1] do
j := j − 1

end while
temp := I[i− 1]
I[i− 1] := I[j]
I[j] := temp
j := I.length− 1
while i < j do
temp := I[i]
I[i] := I[j]
I[j] := temp
i := i+ 1
j := j − 1

end while
end loop

2The result can be obtained by replacing in (2): K = 2 and N = 10 prior
to grouping, and K = 2 and N = 5 after grouping.

Each group of instructions is represented by a simple integer
for ease of calculation. The handleInterleave procedure maps
the integer to its corresponding sequence of TTCN-3 instruc-
tions (permutation) that is to be executed next.

D. Tool Support

PragmaDev Studio3 is a set of tools that helps specifiers, de-
velopers, and testers to manage complexity in the development
of today’s systems. The tools use the recognized international
standards of SDL, TTCN-3, SDL-RT, and UML [13].

A key functionality of the tool-set is provided by the
PragmaDev (Co-) Simulator as shown in Fig. 4.

Fig. 4. Architecture of the PragmaDev (Co-) Simulator.

The co-simulator allows execution of TTCN-3 test cases
against an SDL system. SDL and TTCN-3 descriptions are
translated into an internal representation (byte code) to be in-
terpreted by the executor, which in turn forwards the schedul-
ing of events to the scheduler. We extend the functionality of
the scheduler with the interleaving algorithm.

In the first phase the test case is executed against the
system using the scheduler in normal mode (no interleaving
involved). All TTCN-3 instructions (send statements) that
trigger distributed communication between agents of the SDL
system are marked during execution. Every communication
between agents is checked against a deployment diagram, and
if the sender and receiver of a message are attached to different
nodes in the diagram, then the last TTCN-3 instruction that
triggered such behavior is indeed the one to be marked.

In the second phase the test case is executed against the
system in interleaving mode. The scheduler automatically
creates K instances4 of the test case and enters the interleaving
algorithm. On each iteration the algorithm creates an inter-
leaved sequence of TTCN-3 instructions based on marking
done in the first phase and the number of instances. The
sequence is then executed like a normal TTCN-3 test case
by the scheduler, and at the end the SDL system is reset to
its initial state for the next iteration.

The whole process is completely automated and transparent
to the tester. There is no need to rewrite the tests, but just
execute them with the interleaving scheduler.

3http://www.pragmadev.com
4The number of instances is deduced from the deployment diagram.

V. EXAMPLE

We have used the presented approach in testing an access-
control system. The system is composed of several terminals
and a central unit. Each terminal has a slot for entering a
card and a keypad for entering the key. This information is
sent to the central unit which checks whether access should
be granted to a user and notifies the terminal from where the
request was issued. The user can be either an administrator
or a normal one. The administrator can add or delete normal
users and is identified by a special card key.

A. Structure and Behavior

Fig. 5 shows an excerpt of the SDL model of the access-
control system. The system is composed of two blocks, namely
bLocal for terminals and bCentral for the central unit. Each
block has a single process within which implements the
behavior of the system.

Fig. 5. Excerpt of the SDL model of the access-control system.

The user enters the card and the key which are sent to the
central unit via the checkCardAndCode. If the card and key
are those of the administrator, then the central unit enters in

http://www.pragmadev.com

administration state, in which normal users can be added or
deleted. On the other hand, if the credentials are not those of
the administrator, the list of registered normal users is scanned
for matching credentials. The employee signal is sent back in
case of a match, otherwise an intruder is signaled.

B. Deployment

A simple deployment scenario for the access-control system
is shown in Fig. 6. The figure speaks of two bLocal (terminals)
connected to a single bCentral (central unit). We will use
this scenario to automatically generate and execute all relevant
interleavings.

Fig. 6. Deployment model of the access-control system.

C. Test Case

To show the applicability of automatic interleaving we start
with the most basic test case for the system, i.e., try to get in
and out of (without doing anything else) administrator mode
as shown in Fig. 7.

1: module TestAccessControl {
2: type record card { integer param1 };
3: type record key { integer param1 };
4: type record displayMessage { charstring param1 };
5: type record openDoor { charstring param1 };
6: type record closeDoor { charstring param1 };
7: type port cEnv_type message {
8: out card;
9: out key;

10: in displayMessage;
11: in closeDoor;
12: in openDoor;
13: };
14: type component AccessControl {
15: port cEnv_type cEnv;
16: };
17:
18: template displayMessage EnterCardMessage := {param1 := "Enter card"};
19: template displayMessage EnterCodeMessage := {param1 := "Enter code"};
20: template displayMessage AddOrDeleteMessage := {param1 := "* add; # delete"};
21: template displayMessage OneStar := {param1 := "*"};
22: template displayMessage TwoStar := {param1 := "**"};
23: template displayMessage CancelledMessage := {param1 := "Cancelled"};
24: template card UserCard(integer userID) := { param1 := userID };
25: template key EnterKey(integer keyValue) := { param1 := keyValue };
26:
27: altstep failOnWrongReceive() runs on AccessControl {
28: [] cEnv.receive { setverdict(fail); };
29: }
30:
31: testcase tc_correctAdministratorAccess() runs on AccessControl {
32: activate(failOnWrongReceive());
33: // Enter card
34: cEnv.receive(EnterCardMessage);
35: cEnv.send(EnterCard(0));
36: // Enter administrator code
37: cEnv.receive(EnterCodeMessage);
38: cEnv.send(EnterKey(0));
39: cEnv.receive(OneStar);
40: cEnv.send(EnterKey(0));
41: cEnv.receive(TwoStar);
42: cEnv.send(EnterKey(7));
43: // Administrator mode
44: cEnv.receive(AddOrDeleteMessage);
45: // Get out of administrator mode
46: cEnv.send(EnterKey(0));
47: cEnv.receive(CancelledMessage);
48: // Done
49: setverdict(pass);
50: }
51: }

Fig. 7. Test case for administrator access on the access-control system.

The user enters the card = 0 (administrator) and then the
code = 007. At this point the information (card + code) is sent
to the central unit. Because these are the right credentials, the
user is allowed to enter in administrator mode, where he/she
can add or delete users. However, none of this actions is
taken, and the user just exits from the administrator mode. The
request to exit is also processed by the central unit. Executing
this scenario against the system using the scheduler in normal
mode (no interleaving, one terminal and one central unit) will
indeed result in a pass for the test case.

When execution in normal mode is finished all the required
information will be available for entering the interleaving
mode. Based on the description above there should have been
identified two interleaving points by now: (1) after entering
the last digit of the code and (2) after the request to leave
the administrator mode. Indeed, these are the points during
execution where a communication between the terminal bLo-
cal and the central unit bCentral is triggered. This translates
into two groups of TTCN-3 statements whose execution shall
be interleaved: the first group consists of lines 34-44 and
the second of lines 46-47 in Fig. 7. Based on the number
of terminals bLocal in Fig. 6 and that of groups (K = 2,
N = 2), the total number of interleavings to be executed is 6.
It is important to note that, if the grouping algorithm is not
applied, the number of interleavings will be 252.5

What we found during execution in interleaving mode was
in fact quite surprising. We didn’t expect to find any problems
from such a simple test case, considering that it induces a
very basic behavior to the system. The system was modeled
so that only one terminal at a time can get administrator access,
meaning that an attempt from a second terminal will fail.
Indeed, this is the behavior we observed during the interleaved
execution, however, what we did not expect is for the second
terminal to block indefinitely waiting for a reply from the
central unit (i.e., test case execution did block on line 44 in
Fig. 6). We were able to immediately jump to the point in the
model (using the PragmaDev Studio user interface) causing
the problem. The central unit, after granting access to the
first terminal, entered the administration state so that it could
process any requests coming from the terminal for adding or
deleting users. However, in this state it was discarding (not
handling) all log-in requests, which in turn caused the second
terminal to wait indefinitely for a reply. The solution was
straightforward: add a new transition in the SDL state machine
of the central unit to handle such requests.

We were able to identify 4 similar problems in our model of
the access-control system by using the interleaving scheduler
on a set of more complex test cases. The set was composed
of (a) previously hand written test cases depicting typical
usage scenarios and (b) a set of automatically generated test
cases using the model-based approach described in [14]. It is
important to note that we were able to identify these problems
without writing a single line of TTCN-3 code.

5In this case the number of groups is equal to that of the TTCN-3 send
statements (N = 5).

VI. CONCLUSION

Testing of software applications for large-scale distributed
systems is not a trivial task, because the test cases and their
execution need to be adapted in order to account for the
distribution and interaction between nodes.

In this paper we presented an approach for automating the
interleaved execution of test cases to mitigate the complexity
of concurrent behavior due to distribution. We applied the
approach in the context of standard modeling and testing
languages where the system under test was described in
SDL, the distribution of system components in deployment
diagrams, and the test cases in TTCN-3. Test cases were
executed against the system in a simulated and controlled
environment with an interleaving scheduler.

The presented algorithm allowed us to significantly reduce
the number of interleavings without deviating from our target,
that is the thorough testing of the system. Instead of using
each single instruction of the test case as interleaving point,
we focused only on those relevant, i.e., instructions that induce
distributed behavior to the system.

Automatic interleaving was used for testing the distributed
behavior of an access-control system. Even with a basic test
case we were able to identify a problem in the system, a trend
that continued also with more complex test cases. Further-
more, we achieved these results by reducing the number of
interleavings by a factor of 42 (in the simplest case).

There are however three issues that need further discus-
sion. First, the proposed algorithm may not always produce
significantly less interleavings. This depends on the degree
of distribution in the behavior, i.e., the number of interleav-
ings grows if more inter-communication between distributed
nodes takes place. This can degrade simulation performance
especially with the increasing complexity of test cases. How-
ever, we believe this type of scenario to be more of an
exception than the rule. Indeed, energy consumption is one
of the major challenges of distributed systems composed of
potentially millions of battery powered devices (e.g., Internet
of Things), and reducing inter-communication between devices
to an acceptable minimum is always an engineering goal.
Second, although we reported a successful application of the
approach with a simple example, we strongly believe that
its benefits are emphasized when used for testing complex
systems, which is still work in progress as the time of writing
this paper. Last, the proposed approach is based on simulation
and at present cannot be applied for test cases executing on
target. The reason is simple: simulation allows fine-grained
control over the execution, does not require any complex
synchronization mechanism for interleaving, and can exploit
the benefits of the proposed algorithm. The last point is
very important because, without any means of reducing the
number of interleavings, testing every possible combination
is unpractical due to the state-explosion problem. In the end,
in addition to a mechanism for controlling the interleaving,
execution on target would require means to track distributed
communication triggered during testing.

REFERENCES

[1] Gartner Inc., “Gartner says the Internet of Things installed base will
grow to 26 billion units by 2020,” http://www.gartner.com/newsroom/
id/2636073, 2013.

[2] ITU-T, “Specification and Description Language – Overview of SDL-
2010,” International Telecommunication Union – Telecommunication
Standardization Sector, ITU-T Recommendation Z.100, 2011, http://
handle.itu.int/11.1002/1000/11387.

[3] ETSI, “Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 1: TTCN-3 Core Language,”
European Telecommunications Standards Institute, ETSI Standard ES
201 873-1, 2014, http://www.ttcn-3.org/index.php/downloads/standards.

[4] SDL-RT Consortium, “Specification and Description Language – Real
Time,” SDL-RT Consortium, SDL-RT Standard V2.3, 2013, http://www.
sdl-rt.org/standard/V2.3/html/index.htm.

[5] A. Hartman, A. Kirshin, and K. Nagin, “A Test Execution Environment
Running Abstract Tests for Distributed Software,” in Proceedings of
Software Engineering and Applications, ser. SEA ’02. Acta Press,
2002.

[6] I. Schieferdecker and T. Vassiliou-Gioles, “Realizing Distributed TTCN-
3 Test Systems with TCI,” in Testing of Communicating Systems, ser.
Lecture Notes in Computer Science, D. Hogrefe and A. Wiles, Eds.
Springer Berlin Heidelberg, 2003, vol. 2644, pp. 95–109.

[7] S. Blom, T. Deiß, N. Ioustinova, A. Kontio, J. van de Pol, A. Rennoch,
and N. Sidorova, “TTCN-3 for Distributed Testing Embedded Software,”
in Perspectives of Systems Informatics, ser. Lecture Notes in Computer
Science, I. Virbitskaite and A. Voronkov, Eds. Springer Berlin
Heidelberg, 2007, vol. 4378, pp. 98–111.

[8] M. Musuvathi and S. Qadeer, “CHESS: Systematic Stress Testing of
Concurrent Software,” in Logic-Based Program Synthesis and Trans-
formation, ser. Lecture Notes in Computer Science, G. Puebla, Ed.
Springer Berlin Heidelberg, 2007, vol. 4407, pp. 15–16.

[9] ——, “Iterative Context Bounding for Systematic Testing of Multi-
threaded Programs,” in Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, J. Ferrante and
K. S. McKinley, Eds. ACM, 2007, pp. 446–455.

[10] M. Brumbulli and J. Fischer, “Simulation Configuration Modeling of
Distributed Communication Systems,” in System Analysis and Modeling:
Theory and Practice, ser. Lecture Notes in Computer Science, Ø. Hau-
gen, R. Reed, and R. Gotzhein, Eds. Springer Berlin Heidelberg, 2013,
vol. 7744, pp. 198–211.

[11] M. Brumbulli, “Model-Driven Development and Simulation of Dis-
tributed Communication Systems,” Ph.D. dissertation, Humboldt Uni-
versität zu Berlin, 2015.

[12] ITU-T, “Testing and Test Control Notation version 3: TTCN-3 core
language,” International Telecommunication Union – Telecommuni-
cation Standardization Sector, ITU-T Recommendation Z.160, 2014,
http://handle.itu.int/11.1002/1000/12346.

[13] OMG, “OMG Unified Modeling Language (OMG UML). Version 2.5,”
Object Management Group, OMG Standard, 2015.

[14] J. Deltour, A. Faivre, E. Gaudin, and A. Lapitre, “Model-Based Testing:
An Approach with SDL/RTDS and DIVERSITY,” in System Analysis
and Modeling: Models and Reusability, ser. Lecture Notes in Computer
Science, D. Amyot, P. Fonseca i Casas, and G. Mussbacher, Eds.
Springer International Publishing, 2014, vol. 8769, pp. 198–206.

http://www.gartner.com/newsroom/id/2636073
http://www.gartner.com/newsroom/id/2636073
http://handle.itu.int/11.1002/1000/11387
http://handle.itu.int/11.1002/1000/11387
http://www.ttcn-3.org/index.php/downloads/standards
http://www.sdl-rt.org/standard/V2.3/html/index.htm
http://www.sdl-rt.org/standard/V2.3/html/index.htm
http://handle.itu.int/11.1002/1000/12346

	Introduction
	Related Work
	Technology
	SDL
	Structure, Behavior, and Communication
	Deployment

	TTCN-3

	Approach
	Problem Statement
	Problem Analysis
	Interleaving Algorithm
	Tool Support

	Example
	Structure and Behavior
	Deployment
	Test Case

	Conclusion
	References

