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Abstract: This paper addresses the classical problem of system to software engineering following a 

Model Driven Engineering (MDE) approach. Even if this approach is now widely used in the 
industry, some issues remain: Long term availability of the tools (for projects with duration of 
several decades), use of standards and Commercial Of The Shelf  (COTS) tools versus 
Domain Specific Language (DSL), different modelling tools for the system and the software, 
quality and mastering of automatically generated code. This paper shows how it is possible to 
take simultaneous benefit of COTS (low price), DSL (adapted to specific needs) and in-house 
tools (which can be maintained for very long periods of time) to develop complex critical 
systems. 

1. Introduction 
Since several years, Model based System Engineering (MBSE) has been shown efficient to improve the 
capture of system requirements. Airbus Defence and Space – Space Systems has for instance successfully 
deployed SysML modelling to support the functional definition of the avionics sub-system of a launcher such 
as Ariane 5 Mid-life Evolution ([4]) or of a spacecraft such as the European Service Module (ESM) of the 
Multi-Purpose Crew Vehicle (MPCV, [11]). The functional part of the system definition is formalised by a 
SysML ([18]) model developed in co-engineering by the system experts and the modelling experts. Several 
documents are thus partially automatically generated from this single model: The system Definition Files, the 
digital Interface Control Documents (ICD) and the software Technical Specification. MBSE improves the 
communication between the teams and improves the generated documentation quality. 

This paper shows how Airbus Defence and Space – Space Systems has defined a process and a set of tools 
to extend this approach to the software development (Model Driven Engineering or MDE). The objective of 
this work is to generate from a single model shared between the system and the software the three previously 
mentioned documents and a part of the software code. 

After this introduction, the section 2 will quickly present the system functional modelling today deployed for the 
development of space launchers. The section 3 will summarize previous studies on software modelling and 
explain why these approaches have finally not been selected for the development of future space launchers. 
The section 4 will describe the specific multithreading design used for space launchers and how it has been 
decided to model it. Finally, the section 5 will show how an important part of the flight software can be 
automatically generated from these models. The section 6 will compare the proposed solution with the ones 
presented in section 3 and the section 7 will present the conclusion. 

2. System functional modelling 
The avionics subsystem of a space launcher is mainly responsible for (1) the flight control (navigation, 
guidance and control) and (2) the mission management (ground / board protocol, ignition and stop of engines, 
release of stages…). It is made up of a centralised on-board computer hosting the flight software (or 
potentially several computers working in a redundant mode to ensure the fault tolerance) and a set of avionics 
sensors (gyroscopes, accelerometers…) and actuators (valves, pyrotechnic commands, electro-mechanical 
actuators…) linked by a communication network. 

The system is then cyclically executed: Measurement 
acquisition, flight control algorithm, execution of commands 
by actuators, and so on. The needs of the flight control 
toward the launcher system is translated into a set of blocks 
(hardware or algorithmic) communicating through data-flows. 
This functional architecture is modelled by SysML Internal 
Block Diagrams (IBD). The content of the algorithm blocks is 
textually specified or modelled in Matlab and then coded in 
Ada.  
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Figure 1: Functional data-flow architecture 
modelled in SysML IBD 
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Figure 2: Part of a launcher mission described 

by a finite state machine in SysML 

The mission management describes the acyclic behaviour of 
the system. The phases of the launcher mission (ground 
phase, motor ignition and then lift-off or emergency stop in 
case of failure) are thus modelled by finite state machines in 
SysML and by a textual DSL (Domain Specific Language) 
adapted to the description of a space launcher mission. 

The use of a COTS modelling tool (e.g. Rhapsody [14]) allows decreasing the costs: COTS tools are generally 
very mature and require only light customization. However, one of the main drawbacks of COTS is the 
difficulty of maintenance for a very long period of time. The use of a widely used standard ensures that editors 
will always be available in the future. 

SysML has thus been selected because it is a standard widely used in the industry and in the academic world 
and because it provides the two kinds of diagrams needed to describe the functional architecture and the flight 
software of space launchers: Internal Block Diagrams and Finite State Machines. 

The semantics of the modelling (SysML + DSL) is the one of Synchronous Languages such as Lustre ([8]) or 
Signal ([17]): 
• The system is cyclically activated at a constant frequency. 
• The inputs of the system are supposed to be available at the beginning of each cycle of execution. 
• The outputs computed by the system are provided at the end of the cycle. 

This approach is well known to ensure a full determinism of the system and allow simple compositions of 
elements with a predictable memory usage.  

Here is an example of the DSL describing the execution in parallel of two commands and inspired by the 
notion of On Board Control Procedure (OBCP, [12], also called “functional sequences”): 

 
sequence Lift-off is 
 fork Cmd_Pyro; 
 wait 5 ms; 
 Valve_Cmd; 
 wait end of Cmd_Pyro; 
 Start_Control; 
end; 

Figure 3: DSL describing a functional sequence 

This example is valid with respect to the synchronous semantics only if the duration “5 ms” is a multiple of the 
basic cycle of the system. 

The communication network (related to the avionics system design) and the middleware and the threads 
(related to the software real-time design) are abstracted in this phase of development. 

3. Previous studies on software design modelling 
In parallel to the deployment of SysML modelling to capture the system functional definition, several modelling 
approaches have been assessed in order to capture the software design and to potentially generate 
automatically part of the flight software: 
• SCADE Suite ([16]) was a promising track thanks to its certified code generator ensuring a high 

quality of the generated code. It has however several limitations 
o The SCADE modelling is partially redundant with the SysML modelling (especially for what 

concerns the finite state machine and the functional architecture). The development cost of 
these two models removes the benefits of the approach 
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o SCADE does not model today the 
multithreading architecture. 
Developing multithreading software 
with SCADE requires thus the 
independent modelling of each 
thread in SCADE and then the 
manual development of a real-time 
sequencer responsible for the 
activation of each thread. 

Thread 1

Thread 2

…

Real time 
sequencer

activation

 
Figure 4: Multithreading modelling in SCADE 

The SCADE model becomes then a design model distinct from the functional model. This 
decreases greatly the advantages of the modelling 

o The code generated from SCADE has not been designed to be manually maintained. This 
implies the need to maintain the SCADE modelling tool and the code generator during the 
complete life of the project (up to 30 years for a space launcher). The cost of this 
maintenance removes on the long term the saving of automatic code generation 

• AADL ([1]) allows modelling the avionics and the software multithreading architecture. As for 
SCADE, this modelling is partially redundant with the SysML modelling selected for the system 
functional description. Moreover, AADL is able to capture any kind of software multithreading 
architecture, even the more complex. The flight software of a space launcher being critical, its 
multithreading architecture is very simple and based on the Rate Monotonic Scheduling (RMS [15], 
see section 4). AADL is thus too complex for the needs. 

• MARTE ([9]) has the advantage of being close from SysML and UML. However, it has the same 
drawbacks than AADL. 

• UML ([19]) is a modelling language especially well-suited for object oriented software design. As the 
flight software of future launchers will be partially developed in an object oriented manner (with the 
Ada 2012 [3] programming language), UML seems a good choice. However, the object oriented 
approaches of UML and Ada 2012 are not fully compatible (see [2]). For instance: 

o The UML notion of “class” is replaced in Ada by the notions of “package” (to define the 
naming space) and of “tagged type” (to define the inheritance) 

o Ada has a restricted set of “visibility” compared to UML 
o … 

Moreover, as for SCADE, the UML modelling is partially redundant with the SysML modelling. It has 
thus been decided that UML models will be developed to describe the principle of design, but not for 
the detailed design (except for some specific parts) and will not be used for automatic code 
generation. 

As a conclusion of these studies, it appears that all the studied software modelling languages have two 
drawbacks: The redundancy with SysML (selected for the system functional description) and the cost to 
maintain the toolsets during a long period of time. Airbus Defence and Space has thus decided to rely mainly 
on SysML completed by a DSL (Domain Specific Language) to model the design of launcher’s flight software 
(the same DSL being used for the system functional behaviour (see section 2) and the software design). 

4. Software design modelling 
Defining a DSL requires an accurate definition of the objectives of the modelling. This section describes the 
flight software design used today on space launchers and which has been the basis to define the DSL. 

The software design is composed of the static design (definition of the hierarchical architecture of the 
software, definition of classes and of objects, definition of the interfaces of components) and of the real-time 
design (definition of threads, of their scheduling, of the communication between the threads and of the 
communication between the software and the communication network). The main drivers of the flight software 
design are: 
• The functional and real-time determinism ensuring the representativeness and the reproducibility of 

the qualification tests 
• The decrease of the development and validation costs 

The determinism of the multithreading design is ensured by using an extension of a Rate Monotonic 
Scheduling: 
• The software is composed of cyclic threads (no acyclic threads) 
• Each thread has a period multiple of the period of the thread just faster (harmonic threads) 
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• The scheduling is pre-emptive with constant priority (a thread with a shorter period has the priority 
over a thread with a longer period) 

• The communications between the threads are performed during time triggered rendezvous 

The Figure 5 provides the example of two communicating threads (a slow one in blue and a quick one in 
yellow). 

Slow thread

Fast thread
 

Figure 5: Time triggered communication between threads 

The period of the slow thread is a multiple of the one of the quick thread. The quick thread has the highest 
priority. It can pre-empt the execution of the slow thread. The communications between the two threads are 
performed at the end of the period of the slow thread (in a protected section): even if the execution of the slow 
thread is quicker than expected, the communication will be performed at the same date. Thus, provided that 
each thread respects it worst case execution time, this design ensures the strict determinism of the software 
behaviour. 

The decrease of the development costs is achieved by mapping the functional architecture and the software 
static design. This result is obtained by a co-engineering work between the system team (responsible for the 
functional architecture, see section 2) and the software team. The functional architecture shown Figure 1, 
which defines a set of functions and their communications, is thus directly used to generate the code (see 
section 5). 

The work remaining at software design level is thus: 
• To define the set of threads and their periods 
• To map each function on a thread. Depending of the reactivity needs, a function at 10Hz can for 

instance be executed either at each cycle on a thread at 10Hz or at one cycle among two on a 
thread at 20Hz. 

A simple DSL has been defined to describe this software design choices. 

 
thread T1 is 
 period (100 ms); 
 functions (F1; F2); 
end; 

thread T2 is 
 period (50 ms); 
 functions ( 
  when 0 => (F3; F4); 
  when 1 => (F3)); 
end; 

Figure 6: Multithreading architecture described by a DSL 

On the example of Figure 6: 
• A major frame of 100 ms has been defined 
• F1 and F2 are executed at 10 Hz (on the thread T1) 
• F3 is executed at 20 Hz (on the thread T2) 
• F4 is executed at 10 Hz (one cycle among two on the thread T2) 

This real-time design is an extension of the synchronous language approach (on which the functional 
modelling described section 2 is based). The DSL describing the functional view (section 2) and the one 
describing the real-time design (section 5) rely thus on the same paradigm and are thus naturally compatible. 

5. Automatic code generation 
The multithreading design of the software (the definition of threads and the mapping of functions on the 
threads) remains today a manual activity which is formalised by a dedicated model using the DSL. All the 
remaining coding activities related to this multithreading design have been automated in an in-house tool 
generating Ada 2012 code from the SysML model and the DSL. 

This automatic generation of code relies on a generic reusable library implementing: 
• A scheduler of threads and of applicative software elementary blocks, 
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• An interpreter of a mission management (described by finite state machines and the DSL shown 
Figure 3). 

 

 

Considering this generic reusable library, the 
following artefacts are automatically generated 
by the in-house tool: 

• Configuration tables in Ada 2012 for 
the generic reusable library from the 
SysML finite state machine and the 
DSL describing the functional 
sequences (Figure 3) and for the 
definition of threads (Figure 6). 

• Ada 2012 code for the skeleton of the 
functions (Figure 1) and the 
scheduling of these functions (Figure 
6). 

thread T1 is
period (40 ms);
functions (F1; F2);

end;

thread T2 is
period (10 ms);
functions (

when 0 | 2 => (F3; F4);
when 1 | 3 => (F3));

end;

Data
flows

Finite state
machines

sequence Lift-off is
fork Cmd_Pyro;
wait 5 ms;
Valve_Cmd ();
wait end of Cmd_Pyro;
Start_Control;

end;

DSL

DSL

Functional

Design

Configuration Table
CodeAutomatic

code generation

Coding

 
Figure 7: Code and configuration table automatic generation 

 

There is no certification for space launchers similar to certification for civil aircraft. However, the quality of 
generated code remains a major issue: a failure of the flight software implies generally the loss of the launcher 
and of its payload (the satellites to be put in orbit) and in the worst possible case the destruction of the launch 
pad. The ECSS-E-ST-40C ([7]), the standard applicable to the development of space software in Europe, 
requires the classical reviews (of specification, of design, of code…) and test activities. The in-house code 
generator being not qualified according to this standard, reaching the same level of quality than for a manual 
code forbids suppressing any of these V&V activities. Reviews of code are for instance performed on the 
generated code. 

The obligation of performing such reviews is often considered as a reason for not using automatic code 
generation because (1) the generated code is not enough readable to perform such review and (2) even a 
light modification in the source model may imply huge modifications in the generated code which makes 
mandatory a complete review of the generated code for each evolution. These two aspects were major 
requirements for the development of the in-house code generator: (1) the generated code is strictly equivalent 
of a manually written code and (2) the impact of a local model modification has a local modification on the 
generated code (allowing performing efficient comparisons between two versions of generated code and thus 
simplifying the code review). 

The long term availability of the specific SysML modelling tool remains also an issue which has been solved in 
two ways: First, the notions of data-flows diagrams and of finite state machines have been also defined in the 
textual DSL; second, the code generator has been designed in order that the generated code is equivalent to 
a manual code, meaning that it can be easily manually maintained. During the development phase of a 
project, the SysML modelling tool will thus be used to decrease the development cost. After some years (5 to 
10 years), i.e. during the maintenance phase, this tool will be potentially not any more maintained by the tool 
provider; the code will then be automatically generated from the textual DSL generated from the SysML 
model. If it is decided to not maintain any more the in-house code generator, it will still be possible to maintain 
manually the generated code. 

The Figure 8 shows this three phases of maintenance: 

1. The SysML model and the DSL are both maintained. The code is automatically generated. A DSL 
corresponding to the SysML model is generated for backup. 

2. The SysML model is not maintained any more. The initial DSL and the DSL previously generated from 
SysML are maintained. The code is automatically generated. 

3. The code generator is not maintained any more. The software code is manually maintained. 
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Figure 8: The three phases of maintenance 
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6. Synthesis 
The following table summarizes the advantages and drawbacks of different modelling approach.  

 

Approach 
Functional view 

Multithreading 
view Safety Long term 

maintenance Finite State 
Machine Data flow Functional sequences 

SCADE Yes Yes 
At a low level of 
abstraction with finite 
state machine 

No Certified code 
generator 

Rely on a 
proprietary tool 

AADL Yes but textual More service oriented No 

Yes, but too 
complex for an 
extended RMS 
approach 

No certified code 
generator Standard 

MARTE See UML See UML See UML 

Yes, but too 
complex for an 
extended RMS 
approach 

No certified code 
generator Standard 

SysML (alone) Yes but 
asynchronous Yes (IBD) Yes, but not formal 

enough No No certified code 
generator Standard 

UML Yes, but 
asynchronous No Yes, but not formal 

enough See MARTE No certified code 
generator Standard 

SysML + DSL 

Yes in SysML, with 
an adapted 
synchronous 
semantics 

Yes in SysML (IBD) 
with an adapted 
synchronous and 
multithreading 
semantics 

Yes in the DSL with the 
required synchronous 
semantics 

Yes in the DSL, 
with an 
extended RMS 
approach 

No certified code 
generator, but the 
automatically 
generated code is 
strictly equivalent 
to a manually 
written code 

Standard SysML 

In-house tool 

The generated 
code can be 
manually 
maintained 
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7. Conclusion 
Refining a system model to a software model and then to code remains an issue for critical system with a long 
duration: the tools are not maintained for the whole duration of the project and have generally a too large 
scope to generate code which can be manually maintained. 

This paper has presented a solution taking benefit of the available modelling tools during the development, 
able to go smoothly from system functional definition to the code. This approach relies on the use of COTS 
(Commercial Of The Shelf) associated to DSL (Domain Specific Language) and in-house tools: 

• The COTS tools are used to take benefit from mature and already widely deployed technologies 
• DSL and in-house tools are used to take into account the specificities of the field 

The quality and the long term maintenance issues are tackled by a specific effort on the code generator: the 
generated code is strictly equivalent to a manual code, can be reviewed and manually maintained. 

The next step of improvement will be the harmonization of toolsets between the functional analysis (for 
instance with the use of the MEGA tool [10]), the system functional definition and the software (for instance 
with the Rhapsody tool [14]) and the physical architecture (for instance with Capella ([6]). 
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