
ERTS² 2016 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

1

Abstract— An important acceptance criteria for electric

mobility is the capability to efficiently use the energy stored in the

cells of a battery over the vehicle lifetime. The BMS (Battery

Management System) plays a central role by estimating the state

of charge (current energy available) and state of health

(degradation due to ageing effects) of the cells. Improvement of

the estimation quality has a direct impact on the battery and thus

vehicle range. It is the target of the INCOBAT project to

improve the BMS system by means of new electronic components,

new control strategies and new development methods in order to

achieve cost reduction and performance (driving range) increase.

In this context, the introduction of multi-core computing

platforms aim at providing more computing resources and

additional interfaces to answer the needs of new automotive

control strategies with respect to computing performances and

connectivity (e.g., connected vehicle, hybrid powertrains). At the

same time, the parallel execution, resulting resources and timing

conflicts require a paradigm change for the embedded software.

Consequently, efficient migration of legacy software on multi-core

platform, while guaranteeing at least the same level of integrity

and performance as for single cores, is challenging. In this paper,

the lessons learnt during the migration of the BMS control

strategies to the INCOBAT BMS computing platform will be

presented.

Index Terms—Multi Core, Electric Vehicle, Battery

Management Systems

I. INTRODUCTION

N recent years, electric mobility has been promoted as the

clean and cost-efficient alternative to combustion engines.

Although there are already solutions on the market, mass take-

up has not yet taken place. There are different challenges that

hinder this process from an end user point of view such as

costs of the vehicle, driving range, or infrastructure support.

Several of these challenges are directly connected to the

battery, the central element of the full electric vehicle (FEV).

The costs of the battery sum up to 40% of the total costs of a

FEV, and the driving range of a FEV is strongly reduced in

comparison to the combustion engine.

The aim of INCOBAT
1
 (INnovative COst efficient

management system for next generation high voltage

BATteries, started in October 2013) is to provide innovative

and cost efficient battery management systems for next

generation HV-batteries. To that end, INCOBAT proposes a

platform concept in order to achieve cost reduction, reduced

complexity, increased reliability as well as flexibility and

higher energy efficiency. Moore’s law [1], stating the doubling

of the computer capacity every 2 years, is still a strong enabler

for this fast function increase and at the same time cost-per

function decrease. The current development trend for

computing platforms has moved from increasing the frequency

of single cores to increasing the parallelism (increasing the

number of cores on the same die) to limit the power dissipation

while improving the performance. Multi-core and many-core

technologies have strong potential to further support the

different technology domains, but at the same time present new

challenges.

Hence, the automotive industry is facing a growing gap

between the technologies and required level of expertise to

make best use of them. The computing platforms are becoming

more and more high-performance with concurrent computing

capabilities, larger embedded memories as well as increasing

number of integrated peripherals. Low-level mechanisms (e.g.,

memory protection, diagnostics) typically provided by the

basic software or operating system are now being moved into

the microcontroller. The complexity of these computing

platforms is very high, the related user guides is made of

several of thousands of pages. Regarding automotive operating

systems and low-level basic software (BSW), the AUTOSAR

approach is following a similar trend by standardizing several

tens of BSW modules in several tens of thousands pages of

specification. Similarly for the application software (ASW,

e.g., control strategy for hybrid powertrains), the complexity is

already very high and still growing by the introduction of new

applications such as advanced driver assistance systems

(ADAS) or predictive energy management strategies.

1
 http://www.incobat-project.eu/

Migration of automotive powertrain control

strategies to multi-core computing platforms –

lessons learnt on smart BMS

Eric Armengaud, Ismar Mustedanagic, Markus Dohr, Can Kurtulus, Marco Novaro, Christoph

Gollrad, Georg Macher

AVL List GmbH{eric.armengaud, ismar.mustedanagic, markus.dohr, georg.macher}@avl.com

AVL Research and Engineering {can.kurtulus}@avl.com

AVL Software and Functions GmbH {christoph.gollrad}@avl.com

Ideas and Motion {marco.novaro}@ideasandmotion.com

I

http://www.incobat-project.eu/

ERTS² 2016 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

2

Additionally, the functional integration of the control strategies

(e.g., transmission with combustion engine and e-drive) further

raises the complexity of the resulting application.

The automotive industry is confronted to the central question

how to migrate, optimize, and validate a given application (or

set of applications) on a given computing platform with a

given operating system. A knowledge transfer is required to

take over the role of control system integrator and identify the

application requirements (both functional and non-functional)

and to perform a mapping to the SW and HW architecture.

The quality of this mapping has a direct impact on the

performance of the control system, and thus of the entire

mechatronic system.

Main contribution of this paper is to summarize the lessons

learnt during the migration of the existing BMS control

strategy to the INCOBAT BMS platform based on multi core

technology. The paper is organized as follow: Section 2

introduces the INCOBAT project as well as the BMS platform

based on Infineon AURIX
TM

 CPU. Section 3 will present the

AVL BMS core functions (state of charge SoC, state of health

SoH and State of Function SoF estimation) and the adaptation

at the functional level that were performed to take advantage

of the multi-core platform as well as to enable migration.

Section 4 discusses the migration at software integration level

and summarizes performance increase achieved. Finally,

Section 5 concludes this work.

II. THE INCOBAT PROJECT – AN OVERVIEW

The aim of INCOBAT is to provide innovative and cost

efficient battery management systems for next generation HV-

batteries. To that end, INCOBAT proposes a platform concept

in order to achieve cost reduction, reduced complexity,

increased reliability as well as flexibility and higher energy

efficiency [2].

The targeted outcomes of the project are:

 Very tight control of the cell function leading to an

increase of the driving range

 Radical cost reduction of battery management system

 Development of modular concepts for system architecture

and partitioning, safety, security, reliability as well as

verification and validation, thus enabling efficient

integration into different vehicle platforms.

To achieve these ambitious targets, the technical approach

chosen in INCOBAT primarily relies on the following 12

technical innovations (TI) regrouped into four innovation

groups (see Fig. 1):

 Customer needs and integration aspects: ensures a

correct identification of customer needs and enables an

efficient integration into different platforms. This is

supported by the use of mission profiles (TI-01) – in order

to take into account the different driving styles of the

customers, the different traffic conditions in the same

scenarios and the different tracks – and by the integration

into a demonstrator vehicle (TI-12)

 Transversal innovation: consistent concept and

specification. This second group targets the optimization of

the system architecture and its consistent description over

the technologies and over the system hierarchies. This

aspect aims at providing a consolidated basis in order to

simplify later industrialization of the proposed technologies.

This includes the TI-02 “Model-based systems engineering”

to improve correctness / completeness / consistency of

system specification, the TI-03 “System architecture -

efficient partitioning of the functionalities” for system

optimization at BMS or even vehicle level and the TI-04

“Integration of multiple functionalities” to reduce the

number of electronic control units (and thus related costs) in

the vehicle.

 Technology innovation: E/E control system: This third

group aims at improving the components of the E/E control

system. Regarding the electronic parts, it consists of TI-05

“Multicore computing platform for additional computing

resources” and the TI-06 “Smart and integrated module

management unit”. From the software part, this is achieved

by the TI-07 “Modular SW platform” and by TI-08

“Improved BMS control algorithms”

 Transversal innovation: improving system maturity: This

last group targets the evidences related to the trust on the

technical solutions with respect to correct operation (TI-10

“Design and validation plan including reliability

consideration”), functional safety and security (TI-09

“Definition and integration of safety and security concept”)

as well as reliability (TI-11 “Reliability and robustness

validation”). This group of technical innovations is an

indicator for the maturity of the proposed technology and

further provides information on the efforts required for

proper integration and validation of the system.

Customer needs and integration aspect

1

Mission profiles Car demonstrator / vehicle
validation

12

Transversal innovation: consistent concept and specification

 bdd [SysML Block Definition] 00_Powertrain_Env ironment [BDD_Powertrain_Env ironment]

«block»

Vehicle

«block»

Hybrid Powertrain

«block»

Steering

«block»

Plug

«block»

Brake

«block»

Body

«block»

Vehicle CAN
«block»

Ignition

«block»

Accelerator Pedal

«block»

HCU

«actuator»

ICE

«block»

Electrical Generator

«block»

HV Battery

«block»

Transmission«actuator»

Electrical Traction Motor

«block»

DCDC Conv erter

«block»

ACDC Conv erter

«block»

Powertrain CAN

ECU

«block»

LV Battery

«block»

DCAC Conv erter

«block»

TCU

«block»

Gearbox

 ibd [SysML Internal Block] 00_Powertrain_Env ironment [IBD_Powertrain_Env ironment]

Vehicle

Connection is

TBD

body : Body

To Vehicle CAN

brake : Brake

To Vehicle CAN

Fast

Charging

Cable

Normal

Charging

Cable plug : Plug

Fast

Charging

Cable

Normal

Charging

Cable

To Vehicle CAN

steering : Steering

To Vehicle CAN

Ignition Signal
ignition : Ignition

Ignition Signal

From Brake

From Powertrain

From Steering

vehicle bus : Vehicle CAN

From Brake

From Powertrain

From Steering

Pedal Position

accelerator pedal :

Accelerator Pedal
Pedal Position

Normal

Charging

Cable

Fast

Charging

Cable

To Vehicle CAN

Accelerator Pedal Position

Ignition Signal

hybrid powertrain :

Hybrid Powertrain

Normal

Charging

Cable

Fast

Charging

Cable

To Vehicle CAN

Accelerator Pedal Position

Ignition Signal

 act [Activ ity] 00_Recuperation [AC_Recuperation_Prov ide_Neg_Torque]

Prov ide negativ e recuperation torque

«Operational Actor» IPU_D

«operational_activ ity»

Determination of max.

av ailable TM torque

«Operational Actor» HCU

«operational_activ ity»

Determination of max.

av ailable TM torque

«Operational Actor» HV Battery

«operational_activ ity»

Determination of max.

av ailable HV battery

discharge power

«operational_activ ity»

Current HV battery

charge / discharge

power

«operational_activ ity»

Get Recuperation torque

form CRBS

«operational_activ ity»

Send torque request and

slew rate

«operational_activ ity»

Control traction motor

according to the demand

Able to charge all

recuperation energy into

battery?

Yes

«operational_activ ity»

Reduce torque request

No

Provide negative

recuperation torque

«operational_activ ity»

Charge Battery

«continuous»

«continuous»

«continuous»

 uc [Use Case] 00_Recuperation [UC_Recuperation_Scenario_Start]

Driv er

«operational_activ ity»

Press Brake Pedal

The powetrain is in the

correct state:

- Vehicle Speed is above

minimum speed threshold

- Gear lever is in position D

or R

«operational_capability»

Prov ide negativ e torque

extension points

behavior

«operational_capability»

Charge HV battery

extension points

behavior

Hybrid PowertrainBrake

«operational_scenario»

Brake Recuperation

«include» «include»

«include»

Name:

Package:

Version:

Author:

UC_Recuperation_Scenario_Start

00_Recuperation

1.0

krallinm

2

Model-based systems engineering
System architecture – efficient
partitioning of the functionalities

3

Integration of multiples functionalities
(such as charging and billing)

4

TriCore AURIX platform for
additional computing resources

5

Modular SW platform

7

...

Improved BMS control
algorithms

8

Definition and integration of safety
and security concepts

9

Design and validation plan including
reliability consideration

10

Reliability and robustness
assessment

11

Technology innovation: E/E control system

Transversal innovation: improving system maturity

Smart and integrated
module management unit

6

ERTS² 2016 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

3

Figure 1: Technical innovations within INCOBAT

The INCOBAT BMS CCU (see Figure 2) is based on the

Infineon multicore processor AURIX TC275 with an

innovative multicore architecture [3]. This device supports the

concurrent execution of mixed ASIL functions up to ASIL-D

[4]. It offers a rich set of peripherals such as A/D converters

and timers for data capturing and it has a reasonable number of

IOs to support BMS applications. In conjunction with the

specific power-supply ASIC TLF35584 it is possible to supply

the CCU and support ISO26262 requirements with a minimum

number of components.

Figure 2: INCOBAT BMS CCU Prototype Hardware

Regarding the SW developments in INCOBAT, a modular

development platform is required. Hence, the control strategy

and the application software in general are expected to come

from different providers and to require different levels of

criticality. The activities of SW architect – to define the SW

blocks as well as their interfaces – and the activities of SW

integrator – integrating the different SW modules and ensuring

correct operation of the entire control system – are especially

challenging in the context of automotive supply chain with

constraints related to functional safety (ISO 26262 [5]). A

modular platform is required to enable the distributed

development and flexible deployment of different control

strategies and applications in an efficient way.

For the SW developments in INCOBAT, the proposed

common, modular software development platform consist of:

 a layered SW architecture, consisting of several layers

and components as well as their interfaces, providing access

for the applications to the underlying HW capabilities,

 a suitable SW development tool chain, which supports the

application SW developers by means of an effective and

consistent development process to seamlessly integrate their

particular applications to an overall BMS.

III. FUNCTIONAL MIGRATION OF THE BMS CONTROL

STRATEGY

A. Model-based battery state estimation

1) Introduction

Accurate estimation of battery parameters such as SoC, SoF

and SoH requires model-based estimation methods in which a

representative model of the battery is utilized as part of the

algorithm. Incorporation of a battery model enables many

possibilities including:

 Capturing expected behavior, to be compared with actual

measurements for inference of parameters causing the

deviation,

 Ability of algorithms to handle different operating

conditions and usage scenarios,

 Generation of a “prediction error” signal that is necessary

for modern estimation methods such as Kalman Filters, or

other similar types of Observers.

 Ability of the algorithms to be adapted to different cell

types, and cell chemistries via only adapting the

incorporated battery model

 Possibility of making predictions of various battery

behaviors as well as battery condition

Model based approach to battery state and parameter

estimation, therefore has many advantages.

An overview of how a battery model may be used as part of

the algorithms is given in Figure 3. This architecture uses the

output of the battery model for the prediction step of the

estimation method, and compares it with the actual

measurement to generate an “error” signal. This error signal is

then utilized as part of the algorithm to calculate important

signals such as SoC and eventually to update the model and

adapt it to the actual battery and operation conditions. This

architecture is what enables adaptation to various operating

conditions and handles situations where the model may not

represent battery behavior accurately.

Battery Model

internal states:
SOC
States corresponding to the over-voltage

predicted
voltage

current

reference
temperature

measured
voltage

-

Figure 3: Overview of Model Based Estimation for Battery States

The battery model has to be constructed and parameterized in

accordance with the type of cell used in the target application

since there are large differences of behavior between various

types. The model parameterization requires test data that

captures the behavior of the cell (e.g. terminal voltage

response, surface temperature) under various operation

conditions in terms of ambient temperature and usage (i.e. load

current).

However, there are certain drawbacks included with usage of

model based estimation techniques, such as relatively high

computation power demand, necessity of a high quality

parameterization to obtain satisfactory performance and the

necessity to ensure stable behavior over all possible operating

conditions.

ERTS² 2016 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

4

2) SoC Estimation

The State-of-Charge is defined as the percentage of the

maximum possible charge that is present in the battery. The

SoC can’t be measured directly, but an accurate SoC on pack

and on cell level is mandatory for the energy management

control system (State of Function Calculation). Several

methods have been developed in the past:

 Coulomb counting (Ampere-Hour Counting)

 Open circuit voltage

 Neural Networks

 Heuristic interpretation of measurements, Fuzzy Logic

 Model-based estimation methods

o Kalman Filter for battery SoC determination

o Luenberger Observer

 Sliding-Mode Observer

 LPV Observer

A detailed description of available methods for SoC estimation

is given in [6]. Furthermore, common algorithms for State-of-

Health (SoH), State-of-Function (SoF), Remaining useful Life

(RUL) are introduced.

Nowadays, the most widely used SoC-estimation algorithms

are Kalman-filtering techniques. They are based on an

equivalent circuit model (ECM) of the battery.

The ordinary KF can be used for linear models. Since the

battery is a highly nonlinear system, a Kalman filter is

necessary, which permits the use of nonlinear models. The

Extended Kalman Filter has the ability to handle such kinds of

models. A big advantage of a KF is that it considers

measurement and process noise due to voltage sensor

inaccuracy, temperature fluctuations etc. to estimate the states

of the battery.

One of the first use of an EKF (Extended Kalman Filter) for

SoC estimation of lithium-batteries is published in [7], [8] and

[9]. These papers describe the mathematical background, the

modeling of the battery with its identification requirements and

the final implementation of the EKF for SoC estimation.

Additionally, an algorithm for SoH estimation is presented.

The publications [10] and [11] describes a modified KF. The

Sigma-Point Kalman filter is a more accurate estimation

approach, although the computational demand is of the same

order as EKF. A comparison between SPKF and EKF show an

improvement of the estimation. Moreover, an advanced

algorithm is presented, where state and parameter estimation is

done simultaneously. A summary of the mentioned algorithms

is presented in [12].

A slightly modified Kalman filter with lower computational

demand is used for SoC estimation as part of INCOBAT. The

algorithm runs on module level.

The SOC-function estimates:

 Module States: States of the battery model (model has 6

states, including SoC of the battery)

 Module State of Charge

 Module OCV: Open circuit voltage of the module

The relatively high computational demand makes it very

challenging to run the KF on cell-level with state-of-the-art

battery management systems (BMS), especially for battery

packs intended for high voltage applications. That is why

SOC-estimation is done on module level.

3) SoH Estimation

The State-of-Health is a measure of the condition of the

battery compared to the fresh battery. It is characterized in the

loss in capacity and the increase in resistance.

To assure correct SoF and SoH estimation of a battery pack, it

is necessary to have information of the cell-SoC and the cell-

resistance as well. An algorithm to estimate these values is

described in [13]. The basic mathematical background of the

estimation approach is described in the next sections.

The cell observer is used to determine the deviation of each

cell compared to the mean module state already estimated as

part of the SoC function and the module resistance observer.

The aim is to utilize a much simpler linear algorithm for

computational efficiency.

The used model is a linearized model that describes the

deviation of each cell from the module mean rather than full

cell dynamics. The algorithm is a modified version of the

Recursive Least Squares, a well-established algorithm

commonly used in state and parameter estimation problems.

4) SoF Estimation

The State-of-Function consists of measures for the ability to

fulfill the application specific function of the battery. The

BMS has to calculate current and voltage limitations such that

the battery is operated in a safe operating mode and the

performance and lifetime targets are met.

Start

i = 1

i ≤ Number of
Cells in Pack

 ChaLim(i) = Maximum charge
current/power of cell

 DChaLim(i) = Maximum discharge
current/power of cell

True

i = i+1

 ChaMax = min(ChaLim)
 DChaMax = min(DChaLim)

False

End

Figure 4: State of Function Flow Chart

State of Function calculation is responsible for determining

available functionality of the battery, which would be either

current or power that can be supplied to the powertrain,

considering the maximum allowable cell voltage and the

maximum allowable operating current. The SoF calculation is

based on a prediction of future cell voltages for a calibrated

prediction time with an electrical model.

Basically, the limits are calculated for each cell, as it is shown

in Figure 4. The flowchart shows an iteration over the

maximum number of cells in the battery pack. For SoF limits,

ERTS² 2016 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

5

the results of the ‘worst’ cell (e.g. highest inner resistance) are

taken into account. In more detail, the calculation estimates a

current limit, based on the average cell voltage in a module.

Afterwards, the limits are corrected by the worst cell in a

module. The worst cell is identified by the calculated dSoC

and dR values.

The algorithm provides the maximum charge and discharge

current limits, as well as the maximum charge and discharge

power. The power limitations can be calculated by a

multiplication of the current and voltage limits.

5) Function inter-dependencies

Figure 5 provides an overview how the algorithms for SoC,

SoH and SoF estimations are implemented. SoC and SoH

estimations run on module-level due to the high computational

demand, whereas the SOF are calculated per cell. The battery

pack SoC is simply the average of the estimated Cell SoC

values. To get a plausible SoH of the module resistances of the

battery pack, delta SoC and delta R should be considered.

Figure 5: Information flow of estimation algorithms

6) Functional migration to parallel computing scheme

From the point of view of the model-based battery state

estimation, the main focus is on the analysis of the existing

algorithms (currently running on single core computing

platform) in order to identify possible improvements with

respect to SoX estimation accuracy while making use of the

additional computing power of a multicore processor. The

main target is to improve the accuracy of the estimations from

a group of cells (e.g. a module) down to single cell level. In

our case, the sensor platform already provides the information

required to measure the cells. The challenging factor here is to

run a dedicated instance of the existing model estimation

algorithm for each single cell instead of one instance for a

group of cells. The required computing power (number of

algorithm instances running in parallel) is therefore directly

dependent on the modelling accuracy (reduction of the number

of cells taken into consideration for one algorithm instance). A

higher modelling accuracy provide more accurate information

on the status of the cells, thus moving the limits for the use of

each single cell (and therefore of the entire battery at the end)

from a conservative boundary to a more real limit.

Consequently, it can be assumed that the range of the vehicle

and cycle life of the battery can be increased due to the precise

estimation approach.

B. Electrochemical Impedance Spectroscopy (EIS)

1) Introduction to EIS

This methodology measures dielectric properties of a medium

as a function of frequency. In particular, as applied to the

battery cells, the goal of the EIS is to determine the impedance

parameters, and the state of health (SoH) of the cells as a

function of the impedance. In order to successfully determine

the EIS spectrum it is necessary to take into account certain

inherent problems in the method and the component under test.

The EIS analysis is based on the following prerequisites:

a) the system must be linear

b) the system parameters should not vary over time

c) the system must be single input, single output (SISO)

The lithium battery is not generally satisfying these

requirements: therefore, additional assumptions have to be

made.

First, the characteristic of a battery is not linear: To calculate

the impedance it is therefore necessary to proceed to a

linearization. The used technique is to identify a working point

on the electrical characteristic and to generate a small

perturbation of it. Analyzing a small enough portion of a cell's

current versus the voltage curve, it is considered to be linear.

Therefore, in normal EIS practice, a small (1 to 10 mV) AC

signal is applied to the cell: this is small enough to confine the

test into a pseudo-linear segment of the cell's current versus

voltage curve.

Second, the battery parameters are not constant: in general,

even with open battery-terminals (i.e. zero current), the battery

voltage varies over time depending on the previous history. To

allow the stabilization of the battery voltage it is necessary to

wait for the conditions of electrochemical balance in the

battery. The required time, also referred to as “settling time” or

“relaxation time” depends on the temperature (ion mobility)

and is estimated in the order of a few hours. A measurement

made before reaching the equilibrium condition produces data

with variations especially in the lower part of the spectrum.

These variations are more or less evident depending on the

imbalance inside the cell.

Lastly, the voltage in a battery does not depend exclusively on

the current flowing through it, but also on other parameters, in

particular temperature and SoC. During each EIS

measurement, these parameters must remain constant, in order

not to influence the output voltage. In general, it must be

ensured that the battery open circuit voltage does not vary

within the range of the test, or this change will be computed in

the spectrum of impedance.

Based on the assumptions above, the stimulus signal needed

for the EIS test shall have the following characteristics:

 The spectrum of the stimulus shall adequately cover the

whole frequency range that has to be analyzed (typically

from 0.01 Hz to 1 kHz)

 The signal amplitude shall be “small enough” to avoid

triggering any nonlinear response in the battery

ERTS² 2016 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

6

As a drawback, the smaller is the signal amplitude, the worse

is the signal to noise ratio. For this reason, a dedicated HW

solution is needed to obtain a good resolution in the acquired

signal. In particular, the proposed solution is:

 Amplify and adequately filter the signal, due to the small

signal amplitude

 Remove the OCV voltage, which is not useful for EIS

measurements

 Read each voltage value through a differential amplifier

All of the above-mentioned features are implemented in a

dedicated EIS daughterboard, working together with the CCU-

BMS board. Figure 6 below shows a functional block diagram

of the daughterboard, integrating:

 The EIS Command Generator: a voltage DAC needed to

generate the stimulus signal

 12x EIS cell voltage measurement circuitry (differential

amplifier + OCV cancelling + 4th order Bessel anti-

aliasing filter)

 2x EIS current measurement circuitry (4th order Bessel anti-

aliasing filter)

Figure 6: EIS daughterboard

In particular, the OCV has to be measured before applying the

stimulus signal, and then removed through the dedicated DAC;

this is part of the features implemented in the EIS software.

Finally, the stimulus signal generated by the daughterboard is a

voltage signal; an external amplifier (in particular, a

transconductance amplifier) is needed to drive the current that

is injected into the cells. The chosen signal, used as a current

stimulus, is a sum of sinusoidal current waveforms with

predefined frequencies, in the range 0.01 Hz to 1 kHz, with a

selectable current amplitude.

2) The resulting EIS algorithm

The EIS algorithm (Figure 7) injects a known current stimulus

into the battery cell, reading the resulting voltage. Due to the

assumptions described previously, the EIS algorithm will run

after a relaxation time, needed for the battery parameters to

reach a steady condition.

The measured signals from the battery shall then be analyzed,

for each frequency, to determine the spectrum of the signal at

that frequency. The idea is to correlate the measured signal to

the input waveform, to obtain magnitude and phase

information about the analyzed signal.

The response waveform from the battery typically has a DC

offset, harmonic distortion components, and noise components

generated by the cell. Nevertheless, the element of the

measured signal, which needs to be analyzed, is the one at the

same frequency as the generator waveform. All of the spurious

components of the measured signal need to be rejected so that

accurate measurements of the fundamental signal at the

generator frequency can be made.

EIS algorithm

Input signal
generation

Battery
model

Heterodyne
(current)

Heterodyne
(voltage)

÷

Current I(t)

Voltage
V(t)

I(wi)

V(wi)

Z(wi)

Figure 7: EIS algorithm overview

The measured system output is multiplied by both the sine and

cosine of the test frequency ω. The results of the

multiplications are then fed to two identical integrators, where

they are averaged over T seconds. As the averaging time

increases, the contribution of all unwanted frequency

components go to zero and the integrator outputs become

constant values which depend only on the gain and phase of

the system transfer function at the test frequency.

Harmonics are rejected by the correlation process, and noise is

rejected by averaging the signal over a number of cycles; the

averaging associated with the correlating frequency response

analyzer acts as a band pass filter with center frequency ω. As

the average time T increases the bandwidth of the filter

becomes narrower, thus the corrupting influence of wide band

noise is increasingly filtered out as the correlation time is

increased.

Averaging over a complete cycle avoids certain measurement

errors associated with offsets on the system output; the

performed simulations demonstrates that acquiring on a time

window of three complete periods, we obtain an effective

rejection of all frequencies above 0.1 Hz. Since the minimum

frequency is 0.01 Hz, three complete periods corresponds to

300 seconds.

The result of the correlation process is made up of two

components one of which is referred to as the Real (or in

phase) component, the other is the Imaginary (or quadrature)

component. By performing simple mathematical operations on

these raw measurement results, it is possible to obtain the

magnitude and phase of the impedance.

3) EIS Software implementation

The EIS Software consists of several SW components, using

resources either directly from the Aurix microcontroller or

through the EIS daughterboard

In particular, the EIS consists of:

 Complex Device Drivers (CDD):

ERTS² 2016 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

7

o OCV removal: generates the signals needed to remove

the OCV from the measured cell voltage; OCV shall

be measured before applying the stimulus signal, and

then canceled through a dedicated DAC signal.

o EIS Command Generator: its purpose is to generate the

EIS Command signal (voltage reference) representing

the current stimulus to be forced into the battery pack

 iLLD (Low-Level-Drivers from Infineon): mainly this will

be used for the analog input signals acquisition and for the

coherent measurement of:

o Cell voltages - both DC and AC (useful EIS signal) -

for each battery cell

o EIS current flowing in the battery module/pack

 Application

o Data Processing System for the calculation of the EIS

spectrum

Start

T = 0

Coherent read of
current and

voltage

Heterodyne
(current)

Heterodyne
(voltage)

T = T+250us

T <
300s

End

Impedance
computation

True

False

Figure 8: EIS application flowchart

CDD

EisVoltSignal(i)

EIS

OcvCom(i) EisCurrCmd

OCV
Removal

EIS

Command

Generator

iLLD

EIS

Daughter Board
Aurix

Impedance Z

Application layer

Basic SW Layer

HW

Figure 9: EIS software architecture

In particular, the application layer implements the EIS

algorithm, as described above; the flowchart in Figure 8 shows

an overview of the algorithm, that is executed for the whole

time of the test (300 seconds), subsequently using then the last

output from the integrators to compute the impedance. The

resulting SW architecture is depicted in Figure 9.

4) Functional migration to parallel computing scheme

Since the EIS algorithm has been developed from scratch

within the INCOBAT project, no specific migration from

single core (sequential) to multi-core (parallel) computing

scheme was required. The challenges are focused on the

proper SW integration and resource managements. This will be

discussed further in the next section.

IV. SOFTWARE INTEGRATION ON MULTICORE PLATFORM

A. Software development environment

The large variety of use cases as well as business organization

is leading to different requirements on the development

framework and build environment:

 Flexible configuration of source files, include files and

directories for building code for each core. This targets

increase in build efficiency as well as constructive

integration [14] by the capability of updating a core

independently from each other

 To have a sufficient intellectual property (IP) protection

linking of external pre-compiled objects / libraries to the

main binary of each core shall be possible. This is

especially required in case of distributed development –

means different teams / company integrating their IP into

a common computing platform

 Adaptations to other compilers shall be possible with less

effort.

 Integration of additional tools shall possible with less effort.

These two last items are related to the distributed

development of the entire SW by different teams relying

on different development processes and consequently

different tools

In the context of INCOBAT, the development environment

shall be a low cost solution with capabilities to be deployed by

each INCOBAT partner while minimizing the licensing costs.

To meet all these requirements for the INCOBAT project a set

of tools was used to establish the SW development framework.

The basic configuration of the SW development environment

consists of a standard set of make files and target rules, a

common memory mapping and compiler associated make and

linker files.

To allow utilization of the ERIKA
2
 operating system from

Evidence into the integration and build process, the command

line interface (CLI) from RT Druid was integrated in the build

environment in form of make target rules. The OS

configuration, including the definition and core allocation of

counters, alarms, task, spinlocks and resources is done via

OSEK implementation language (OIL) file, which is feed in

RT Druid for the generation of the OS Erika related code and

header configuration files for each core.

The build process is setup in such a manner that for each core

a separate binary image is generated. This allows SW updates

on one core without the need of rebuilding the other cores. Of

course, this mechanism is only applicable if the applied

changes do not affect the other’s core SW and if the SW of the

different cores can access peripherals of the microcontroller

only via one dedicated interface. The SW code allocation to

the different cores is done statically via one manual

configurable make file, in which for each core application

2 http://www.evidence.eu.com/

http://www.evidence.eu.com/

ERTS² 2016 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

8

source and include files or directories, pre-compiled objects

and libraries can be setup.

GNU Make Cygwin

.oil

.c/.h.c/.h.c/.h

OS ErikaBSW iLLD

.c/.h

ASW

Models

.hex .hex .hex

CPU0 CPU1 CPU2

Embedded
Coder

.mk.awk .lsl

SW development framework

Figure 10: INCOBAT SW development framework

The memory allocation is done aligned to the AUTOSAR

memory mapping approach and configured memory sections in

the linker script. Depending on the currently identified CPUx

in generation, the linker performs allocation of code and data

to predefined flash and core local data scratchpad RAM

memory sections.

The shared data of the cores is defined and allocated by the

master core and placed into the local data scratchpad memory

of that core which is the producer of the data element. The

exchange of the memory information to the slave cores is done

by dumping of master core’s binary shared memory sections

and export to a separate shared sub linker file which is

generated during the build of the master core. The sub-linker

script is used in the later build phases of slave cores for

address resolutions of the shared data elements.

Another important aspect for the SW development

environment was tool integration – in our case the mapping of

the system information with the SW development framework.

During the scope of the project, different tool interfaces for

generating AUTOSAR aligned SW information where

generated. The proposed tool interfaces mainly relies on four

level of exchanges – all aligned with the AUTOSAR or OSEK

standard. The first level (AUTOSAR tool-bridge) aims at

describing the SW components (SW-C) and their interfaces –

and serves proper integration of control strategies and

application SW. The second level (RTE configuration) targets

the description of the real-time environment for according

configuration. The third level focuses on basic SW (BSW)

configuration, while the fourth level aims at describing the

operating system (tasks available in the system and their

related options). More information is available in [15], [16]

and [17].

B. Software architecture

To ensure modularity and reusability the SW architecture was

split in several layers aligned to AUTOSAR:

 Infineon iLLD – similar to AUTOSAR MCAL, providing

abstraction to HW I/O’s, other peripheral modules, and

startup code for the cores

 OS Erika – OSEK/VDX certified asymmetric operating

system, where each core has its own copy of the OS

instance

 BSW including complex device drivers and other coded

BSW services

 ASW and ASWIL, to reduce the complexity of the system

each ASW component is accessing its data via separate

interfaces from the BSW or IOC module. During the

execution of the function group, each core is using its

local buffered data wherever possible to minimize

execution time caused by inter-core accesses and remote

blocking.

iLLD

Core 0 Core 2Core 1

iLLD

EIS

AURIX HW

OS
EE

C
A

NXCP

I/O
 H

W
A

L

CAN
open

ECU
M ECU

M

Mon Srv
(Stack, CPU, RT)

iLLD

IOC

OS
EE

IOC

C
plxD

evD
rv

C
plxD

evD
rv

C
plxD

evD
rv

BMS ASW

BSW

ASW

ASWIL

ASW

ASWIL

ASW

ASWIL

ASW

ASWIL

ASW

ASWIL

Mon Srv
(Stack, CPU, RT)

WDGMgr

WDGMgr

WDGMgr

ETH

Figure 11: INCOBAT SW architecture

For the multicore capabilities, several SW functionalities were

used similar to the currently defined and supported

AUTOSAR concepts:

 Synchronized master slave startup and shutdown approach

of the cores. During startup of master core 0 the other two

slave cores are in idle. They startup with a

synchronization barrier during startup of the OS. During

shutdown, the reversed order is used and master core

waits until synchronized shutdown of slave cores.

 Functional based inter-core data exchange of single signals

or groups similar to the AUTOSAR Inter-OS-Applicator

communicator (IOC).

 Usage of spinlocks to guarantee data consistency for core-

to-core data exchange. The spinlock mechanism was

combined with immediate suspension of interrupts in

order to reduce the time of remote blocking. Additionally,

to prevent from deadlocks nested acquisition of spinlocks

was avoided.

C. Verification environment – mini-HiL

An important target and basis for the proper SW development,

verification and integration is the deployment of appropriate

test environment. Hence, the test environment shall be flexible

ERTS² 2016 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

9

enough to enable different kind of stimulation for the functions

developed and realistic enough to accurately model the physics

related to the system to control. In the context of INCOBAT,

the simulation environment is playing an important role in

different work-packages and tasks:

 White box testing: verification of single SW function such

as control strategy (e.g., battery state estimation), safety

function (e.g., control of battery’s main relays) or basic

SW (e.g., low-level drivers). Target is to provide the

direct environment for these functions, therefore

sometimes shortening the SW system by investigating

only one function

 Grey box testing: validation of SW system and especially

correct integration of the functions into the control system

as well as correctness of the interfaces

 Black box testing: validation of the safety mechanisms –

especially ensure correct reaction of the control system in

case of hazardous situations

In the context of INCOBAT, different approaches are used:

 Model or SW in the loop (MiL / SIL): direct verification of

single SW function

 Hardware in the loop (HiL): verification and validation of

set of functions up to SW system in a real control system

 Vehicle demonstrator: prototyping validation in vehicle

Batcore
6 Modules, 12 cells

each

iLLD
Core 0

XCP

CAN0: Battery cell dataCAN1: XCP
W

D
G

M
gr

C
A

N

OS
EE

Mon Srv
(Stack, CPU, RT)

Mon Srv
(Stack, CPU, RT)

OS
EE

IOC

BatcoreI

EC
U

M

iLLD
Core 1

EC
U

M

ES910
cRIO

DAQ/CAL

WDGMgr

Figure 12: HiL test environment

While MiL and SiL are state of practice and will not be

discussed any further, a dedicated mini-HIL platform for the

efficient validation of the BMS (E/E system including satellite

units and central controller) has been deployed. This platform

is conjointly used for white, grey and black box testing – with

different focuses as described previously,

For a validation of the SW multicore integration approach and

the battery SoX estimation algorithms following HiL test

environment was setup, see Figure 12.

In a first phase, the battery estimation algorithms were

stimulated with battery cell data via CAN wrapper. For the

stimulation of the battery load profiles the test and automation

environment from NI Veristand was used in combination

CompactRIO HW. With support of the XCP protocol,

measurement and calibration access to each core’s local

memory was established.

D. Performances achieved and lessons learnt

A first comparison of the battery state estimation, while

moving the computation accuracy from module to cell level, is

shown in the following. The red curves represent the results of

the modified estimation approach. Figure 13 illustrates the

minimum and maximum cell SoC, while the discharge current

limits during the cycle is illustrated in. Figure 14. Especially at

the end of the cycle (at 6000s), a higher difference between the

estimation on cell-level (red curve) and the estimation on

module-level (blue curve) can be recognized. It is important to

note that the results achieved in SiL and MiL environment are

highly coherent (SoC and SoH difference below 0.05%)

therefore confirming the correct integration into the multi-core

computing platform.

Figure 13: SoC computation at module and cell level

Figure 14: SoF computation at module and cell level

Figure 15 is summarizing the computing resource usage (task

execution time) for the current implementation. As stated in

Section 4-B, an instance of the operating system ERIKA is

ERTS² 2016 – EMBEDDED REAL TIME SOFTWARE AND SYSTEMS

10

running on each core. Core 0 is managing the BSW and

drivers, the battery state estimation algorithm is run on Core 1,

and Core 2 is reserved for EIS. It can be noticed that the

operating system task is consuming slightly more than 10%

core time for this configuration. The computation of the SoX

function at pack level requires less than 5% core time. By

improving the computation accuracy to cell level, then a

computation time of 15% of the core time is required. This

illustrates the computing requirement (factor 3) in comparison

to computation at module level. At the same time, it illustrates

that integration of other functionalities into the AURIX

platform (thus reducing the number of electronic control unit)

is easily possible.

Figure 15: Computing resource usage for the three cores

It must be noted that at this stage of the project no particular

approach was deployed for the systematic exploration of

timing behavior and resource management. The decisions

related to startup and shutdown sequences and handling,

possible deadlocks, delays caused by remote blocking,

memory allocation, as well as ASW functionality scheduling

and partitioning were made based on expert knowledge. This

step (scheduling analysis) will become essential to ensure an

efficient and balanced functionality partitioning and

scheduling and is part on ongoing work.

V. CONCLUSION

Accurate understanding and modeling of the physical

behaviors of the cells’ chemistry is pre-requisite for proper and

optimized control of the HV battery, thus moving the limits for

use of each single cell (and therefore of the entire battery at the

end) from a conservative boundary to a more real limit.

Consequently, it can be assumed that the range of the vehicle

and cycle life of the battery can be increased due to the precise

estimation approach.

The continuous advances in chip design (multi-core computing

platforms for automotive applications) and embedded SW

engineering (AUTOSAR) are providing important basis to

deploy complex and accurate control strategies. At the same

time, the competences and skills gap is growing apart between

the different technologies. The seamless migration of an

existing control strategy to a multi-core platform, while

considering functional and non-functional requirements (e.g.,

performances, timeliness, safety), is not an easy task. During

this paper, the migration of battery estimation functions (SoX)

to an AURIX platform was presented. The migration has led to

more accurate battery state estimation and illustrated that the

proposed CPU provides enough performances for integration

of further functionalities, thus providing the potential for

reduction of number of discrete electronic control units within

the vehicle. At the same time, an important lesson learnt was

the need to proper analyze and manage startup and shutdown

sequences, possible deadlocks, delays caused by remote

blocking, memory allocation, as well as ASW functionality

scheduling and partitioning. These aspects is already part of

ongoing work.

ACKNOWLEDGMENT

The research leading to these results has received funding from

the European Union’s Seventh Framework Programme

(FP7/2007-2013) under grant agreement n° 608988

REFERENCES

[1] G. E. Moore. Cramming more components onto integrated circuits.

Electronics, 38(8):114 – 117, April 1965.

[2] Eric Armengaud, Georg Macher, Can Kurtulus, Riccardo Groppo, Sven

Haase, Günter Hofer, Claudio Lanciotti, Alexander Otto, Holger

Schmidt, Slawomir Stankiewicz, Improving HV battery efficiency by

smart control systems, Smart Systems Integration conference 2015 (SSI

2015)

[3] Brewerton, Schneider, & Grosshauser. (2009). Practical use of

AutoSAR in Safety Critical Automotive Systems. SAE #2009-01-0748.

[4] Schneider, Eberhard, & Brewerton. (2010). Multicore vs. Safety. SAE

#2010-01-0207.

[5] ISO 26262: “Road vehicles – Functional safety”, 2011.

[6] W. Waag, C. Fleischer and D. U. Sauer, "Critical review of the methods

for monitoring of lithium-ion batteries in electric and hybrid vehicles,"

in Journal of Power Sources 258, 2014.

[7] G. L. Plett, "Extended Kalman filtering for battery management systems

of LiPB-based HEV battery packs Part1. Background," Journal of

Power Sources, pp. 252-261, 2004.

[8] G. L. Plett, "Extended Kalman filtering for battery management systems

of LiPB-based HEV battery packs Part 2. Modeling and identification,"

Journal of Power Sources, pp. 262-276, 2004.

[9] G. L. Plett, "Extended Kalman filtering for battery management systems

of LiPB-based HEV battery packs Part 3. State and parameter

estimation," Journal of Power Sources, pp. 277-292, 2004.

[10] G. L. Plett, "Sigma-point Kalman filtering for battery management

systems of LiPB-based HEV battery packs Part 1. Introduction and state

estimation," Journal of Power Sources, pp. 1356-1368, 2006.

[11] G. L. Plett, "Sigma-point Kalman filtering for battery management

systems of LiPB-based HEV battery packs Part 2: Simultaneous state

and parameter estimation," Journal of Power Sources, pp. 1369-1384,

2006.

[12] G. L. Plett, "Battery management system algorithms for HEV battery

state-of-charge and state-of-health estimation," in Advanced Materials

and Methods for Lithium-Ion Batteries, 2007.

[13] B. Kortschak, C. Kurtulus, M. Dohr, U. Wiedemann and V. Hennige,

"Detection Method of Battery Cell Degradation," in Vehicle Power and

Propulsion Conference, Chicago, IL, 2011.

[14] Hermann Kopetz, “Real-Time Systems: Design Principles for

Distributed Embedded Applications”. Kluwer Academic Publishers,,

Apr 2011, ISBN 978-1441982360

[15] G. Macher, E. Armengaud, and C. Kreiner. Integration of

Heterogeneous Tools to a Seamless Automotive Toolchain. In R.

O’Connor and R. Messnarz, editors, EuroSPI 2015, 2015.

[16] G. Macher, M. Atas, E. Armengaud, and C. Kreiner. A Model- Based

Configuration Approach for Automotive Real-Time Operating Systems.

SAE International Journal on Passenger Cars – Electronics and

Electronical Systems, 8(2), 2015.

[17] G. Macher, R. Obendrauf, E. Armengaud, and C. Kreiner. Automated

Generation of Basic Software Configuration of Embedded Systems. In

ACM RACS Conference Proceedings, 2015.

