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Abstract— An important acceptance criteria for electric 

mobility is the capability to efficiently use the energy stored in the 

cells of a battery over the vehicle lifetime. The BMS (Battery 

Management System) plays a central role by estimating the state 

of charge (current energy available) and state of health 

(degradation due to ageing effects) of the cells. Improvement of 

the estimation quality has a direct impact on the battery and thus 

vehicle range.  It is the target of the INCOBAT project to 

improve the BMS system by means of new electronic components, 

new control strategies and new development methods in order to 

achieve cost reduction and performance (driving range) increase. 

In this context, the introduction of multi-core computing 

platforms aim at providing more computing resources and 

additional interfaces to answer the needs of new automotive 

control strategies with respect to computing performances and 

connectivity (e.g., connected vehicle, hybrid powertrains). At the 

same time, the parallel execution, resulting resources and timing 

conflicts require a paradigm change for the embedded software. 

Consequently, efficient migration of legacy software on multi-core 

platform, while guaranteeing at least the same level of integrity 

and performance as for single cores, is challenging. In this paper, 

the lessons learnt during the migration of the BMS control 

strategies to the INCOBAT BMS computing platform will be 

presented. 

Index Terms—Multi Core, Electric Vehicle, Battery 

Management Systems 

I. INTRODUCTION 

N recent years, electric mobility has been promoted as the 

clean and cost-efficient alternative to combustion engines. 

Although there are already solutions on the market, mass take-

up has not yet taken place. There are different challenges that 

hinder this process from an end user point of view such as 

costs of the vehicle, driving range, or infrastructure support. 

Several of these challenges are directly connected to the 

battery, the central element of the full electric vehicle (FEV). 

The costs of the battery sum up to 40% of the total costs of a 

FEV, and the driving range of a FEV is strongly reduced in 

comparison to the combustion engine.  

The aim of INCOBAT
1
 (INnovative COst efficient 

management system for next generation high voltage 

BATteries, started in October 2013) is to provide innovative 

and cost efficient battery management systems for next 

generation HV-batteries. To that end, INCOBAT proposes a 

platform concept in order to achieve cost reduction, reduced 

complexity, increased reliability as well as flexibility and 

higher energy efficiency. Moore’s law [1], stating the doubling 

of the computer capacity every 2 years, is still a strong enabler 

for this fast function increase and at the same time cost-per 

function decrease. The current development trend for 

computing platforms has moved from increasing the frequency 

of single cores to increasing the parallelism (increasing the 

number of cores on the same die) to limit the power dissipation 

while improving the performance. Multi-core and many-core 

technologies have strong potential to further support the 

different technology domains, but at the same time present new 

challenges. 

Hence, the automotive industry is facing a growing gap 

between the technologies and required level of expertise to 

make best use of them. The computing platforms are becoming 

more and more high-performance with concurrent computing 

capabilities, larger embedded memories as well as increasing 

number of integrated peripherals. Low-level mechanisms (e.g., 

memory protection, diagnostics) typically provided by the 

basic software or operating system are now being moved into 

the microcontroller. The complexity of these computing 

platforms is very high, the related user guides is made of 

several of thousands of pages. Regarding automotive operating 

systems and low-level basic software (BSW), the AUTOSAR 

approach is following a similar trend by standardizing several 

tens of BSW modules in several tens of thousands pages of 

specification. Similarly for the application software (ASW, 

e.g., control strategy for hybrid powertrains), the complexity is 

already very high and still growing by the introduction of new 

applications such as advanced driver assistance systems 

(ADAS) or predictive energy management strategies. 

 
1
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Additionally, the functional integration of the control strategies 

(e.g., transmission with combustion engine and e-drive) further 

raises the complexity of the resulting application. 

The automotive industry is confronted to the central question 

how to migrate, optimize, and validate a given application (or 

set of applications) on a given computing platform with a 

given operating system. A knowledge transfer is required to 

take over the role of control system integrator and identify the 

application requirements (both functional and non-functional) 

and to perform a mapping to the SW and HW architecture. 

The quality of this mapping has a direct impact on the 

performance of the control system, and thus of the entire 

mechatronic system. 

Main contribution of this paper is to summarize the lessons 

learnt during the migration of the existing BMS control 

strategy to the INCOBAT BMS platform based on multi core 

technology. The paper is organized as follow: Section 2 

introduces the INCOBAT project as well as the BMS platform 

based on Infineon AURIX
TM

 CPU. Section 3 will present the 

AVL BMS core functions (state of charge SoC, state of health 

SoH and State of Function SoF estimation) and the adaptation 

at the functional level that were performed to take advantage 

of the multi-core platform as well as to enable migration. 

Section 4 discusses the migration at software integration level 

and summarizes performance increase achieved. Finally, 

Section 5 concludes this work. 

II. THE INCOBAT PROJECT – AN OVERVIEW 

 

The aim of INCOBAT is to provide innovative and cost 

efficient battery management systems for next generation HV-

batteries. To that end, INCOBAT proposes a platform concept 

in order to achieve cost reduction, reduced complexity, 

increased reliability as well as flexibility and higher energy 

efficiency [2]. 

The targeted outcomes of the project are: 

 Very tight control of the cell function leading to an 

increase of the driving range  

 Radical cost reduction of battery management system  

 Development of modular concepts for system architecture 

and partitioning, safety, security, reliability as well as 

verification and validation, thus enabling efficient 

integration into different vehicle platforms. 

To achieve these ambitious targets, the technical approach 

chosen in INCOBAT primarily relies on the following 12 

technical innovations (TI) regrouped into four innovation 

groups (see Fig. 1): 

 Customer needs and integration aspects: ensures a 

correct identification of customer needs and enables an 

efficient integration into different platforms. This is 

supported by the use of mission profiles (TI-01) – in order 

to take into account the different driving styles of the 

customers, the different traffic conditions in the same 

scenarios and the different tracks – and by the integration 

into a demonstrator vehicle (TI-12) 

 Transversal innovation: consistent concept and 

specification. This second group targets the optimization of 

the system architecture and its consistent description over 

the technologies and over the system hierarchies. This 

aspect aims at providing a consolidated basis in order to 

simplify later industrialization of the proposed technologies. 

This includes the TI-02 “Model-based systems engineering” 

to improve correctness / completeness / consistency of 

system specification, the TI-03 “System architecture - 

efficient partitioning of the functionalities” for system 

optimization at BMS or even vehicle level and the TI-04 

“Integration of multiple functionalities” to reduce the 

number of electronic control units (and thus related costs) in 

the vehicle. 

 Technology innovation: E/E control system: This third 

group aims at improving the components of the E/E control 

system. Regarding the electronic parts, it consists of TI-05 

“Multicore computing platform for additional computing 

resources” and the TI-06 “Smart and integrated module 

management unit”. From the software part, this is achieved 

by the TI-07 “Modular SW platform” and by TI-08 

“Improved BMS control algorithms” 

 Transversal innovation: improving system maturity: This 

last group targets the evidences related to the trust on the 

technical solutions with respect to correct operation (TI-10 

“Design and validation plan including reliability 

consideration”), functional safety and security (TI-09 

“Definition and integration of safety and security concept”) 

as well as reliability (TI-11 “Reliability and robustness 

validation”). This group of technical innovations is an 

indicator for the maturity of the proposed technology and 

further provides information on the efforts required for 

proper integration and validation of the system.   
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Figure 1: Technical innovations within INCOBAT 

 

The INCOBAT BMS CCU (see Figure 2) is based on the 

Infineon multicore processor AURIX TC275 with an 

innovative multicore architecture [3]. This device supports the 

concurrent execution of mixed ASIL functions up to ASIL-D 

[4]. It offers a rich set of peripherals such as A/D converters 

and timers for data capturing and it has a reasonable number of 

IOs to support BMS applications. In conjunction with the 

specific power-supply ASIC TLF35584 it is possible to supply 

the CCU and support ISO26262 requirements with a minimum 

number of components.  

 

Figure 2: INCOBAT BMS CCU Prototype Hardware 

Regarding the SW developments in INCOBAT, a modular 

development platform is required. Hence, the control strategy 

and the application software in general are expected to come 

from different providers and to require different levels of 

criticality. The activities of SW architect – to define the SW 

blocks as well as their interfaces – and the activities of SW 

integrator – integrating the different SW modules and ensuring 

correct operation of the entire control system – are especially 

challenging in the context of automotive supply chain with 

constraints related to functional safety (ISO 26262 [5]). A 

modular platform is required to enable the distributed 

development and flexible deployment of different control 

strategies and applications in an efficient way. 

For the SW developments in INCOBAT, the proposed 

common, modular software development platform consist of: 

 a layered SW architecture, consisting of several layers 

and components as well as their interfaces, providing access 

for the applications to the underlying HW capabilities, 

 a suitable SW development tool chain, which supports the 

application SW developers by means of an effective and 

consistent development process to seamlessly integrate their 

particular applications to an overall BMS. 

III. FUNCTIONAL MIGRATION OF THE BMS CONTROL 

STRATEGY  

A. Model-based battery state estimation 

1) Introduction 

Accurate estimation of battery parameters such as SoC, SoF 

and SoH requires model-based estimation methods in which a 

representative model of the battery is utilized as part of the 

algorithm. Incorporation of a battery model enables many 

possibilities including: 

 Capturing expected behavior, to be compared with actual 

measurements for inference of parameters causing the 

deviation, 

 Ability of algorithms to handle different operating 

conditions and usage scenarios, 

 Generation of a “prediction error” signal that is necessary 

for modern estimation methods such as Kalman Filters, or 

other similar types of Observers. 

 Ability of the algorithms to be adapted to different cell 

types, and cell chemistries via only adapting the 

incorporated battery model 

 Possibility of making predictions of various battery 

behaviors as well as battery condition 

Model based approach to battery state and parameter 

estimation, therefore has many advantages.  

An overview of how a battery model may be used as part of 

the algorithms is given in Figure 3. This architecture uses the 

output of the battery model for the prediction step of the 

estimation method, and compares it with the actual 

measurement to generate an “error” signal. This error signal is 

then utilized as part of the algorithm to calculate important 

signals such as SoC and eventually to update the model and 

adapt it to the actual battery and operation conditions. This 

architecture is what enables adaptation to various operating 

conditions and handles situations where the model may not 

represent battery behavior accurately.  

Battery Model

internal states:
SOC
States corresponding to the over-voltage

predicted
voltage

current

reference 
temperature

measured
voltage

-

 

Figure 3: Overview of Model Based Estimation for Battery States 

The battery model has to be constructed and parameterized in 

accordance with the type of cell used in the target application 

since there are large differences of behavior between various 

types. The model parameterization requires test data that 

captures the behavior of the cell (e.g. terminal voltage 

response, surface temperature) under various operation 

conditions in terms of ambient temperature and usage (i.e. load 

current). 

However, there are certain drawbacks included with usage of 

model based estimation techniques, such as relatively high 

computation power demand, necessity of a high quality 

parameterization to obtain satisfactory performance and the 

necessity to ensure stable behavior over all possible operating 

conditions.  
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2) SoC Estimation 

The State-of-Charge is defined as the percentage of the 

maximum possible charge that is present in the battery. The 

SoC can’t be measured directly, but an accurate SoC on pack 

and on cell level is mandatory for the energy management 

control system (State of Function Calculation). Several 

methods have been developed in the past: 

 Coulomb counting (Ampere-Hour Counting) 

 Open circuit voltage 

 Neural Networks 

 Heuristic interpretation of measurements, Fuzzy Logic 

 Model-based estimation methods 

o Kalman Filter for battery SoC determination 

o Luenberger Observer 

 Sliding-Mode Observer 

 LPV Observer 

A detailed description of available methods for SoC estimation 

is given in [6]. Furthermore, common algorithms for State-of-

Health (SoH), State-of-Function (SoF), Remaining useful Life 

(RUL) are introduced. 

Nowadays, the most widely used SoC-estimation algorithms 

are Kalman-filtering techniques. They are based on an 

equivalent circuit model (ECM) of the battery. 

The ordinary KF can be used for linear models. Since the 

battery is a highly nonlinear system, a Kalman filter is 

necessary, which permits the use of nonlinear models. The 

Extended Kalman Filter has  the ability to handle such kinds of 

models. A big advantage of a KF is that it considers 

measurement and process noise due to voltage sensor 

inaccuracy, temperature fluctuations etc. to estimate the states 

of the battery. 

One of the first use of an EKF (Extended Kalman Filter) for 

SoC estimation of lithium-batteries is published in [7], [8] and 

[9]. These papers describe the mathematical background, the 

modeling of the battery with its identification requirements and 

the final implementation of the EKF for SoC estimation. 

Additionally, an algorithm for SoH estimation is presented. 

The publications [10] and [11] describes a modified KF. The 

Sigma-Point Kalman filter is a more accurate estimation 

approach, although the computational demand is of the same 

order as EKF. A comparison between SPKF and EKF show an 

improvement of the estimation. Moreover, an advanced 

algorithm is presented, where state and parameter estimation is 

done simultaneously. A summary of the mentioned algorithms 

is presented in [12]. 

A slightly modified Kalman filter with lower computational 

demand is used for SoC estimation as part of INCOBAT. The 

algorithm runs on module level.  

The SOC-function estimates: 

 Module States: States of the battery model (model has 6 

states, including SoC of the battery) 

 Module State of Charge 

 Module OCV: Open circuit voltage of the module 

The relatively high computational demand makes it very 

challenging to run the KF on cell-level with state-of-the-art 

battery management systems (BMS), especially for battery 

packs intended for high voltage applications. That is why 

SOC-estimation is done on module level. 

3) SoH Estimation 

The State-of-Health is a measure of the condition of the 

battery compared to the fresh battery. It is characterized in the 

loss in capacity and the increase in resistance.  

To assure correct SoF and SoH estimation of a battery pack, it 

is necessary to have information of the cell-SoC and the cell-

resistance as well. An algorithm to estimate these values is 

described in [13]. The basic mathematical background of the 

estimation approach is described in the next sections. 

The cell observer is used to determine the deviation of each 

cell compared to the mean module state already estimated as 

part of the SoC function and the module resistance observer. 

The aim is to utilize a much simpler linear algorithm for 

computational efficiency.  

The used model is a linearized model that describes the 

deviation of each cell from the module mean rather than full 

cell dynamics. The algorithm is a modified version of the 

Recursive Least Squares, a well-established algorithm 

commonly used in state and parameter estimation problems. 

4) SoF Estimation 

The State-of-Function consists of measures for the ability to 

fulfill the application specific function of the battery. The 

BMS has to calculate current and voltage limitations such that 

the battery is operated in a safe operating mode and the 

performance and lifetime targets are met. 

Start

i = 1

i ≤  Number of 
Cells in Pack

 ChaLim(i) = Maximum charge 
current/power of cell

 DChaLim(i) = Maximum discharge 
current/power of cell

True

i = i+1

 ChaMax = min(ChaLim)
 DChaMax = min(DChaLim)

False

End

 

Figure 4: State of Function Flow Chart 

State of Function calculation is responsible for determining 

available functionality of the battery, which would be either 

current or power that can be supplied to the powertrain, 

considering the maximum allowable cell voltage and the 

maximum allowable operating current. The SoF calculation is 

based on a prediction of future cell voltages for a calibrated 

prediction time with an electrical model. 

Basically, the limits are calculated for each cell, as it is shown 

in Figure 4. The flowchart shows an iteration over the 

maximum number of cells in the battery pack. For SoF limits, 
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the results of the ‘worst’ cell (e.g. highest inner resistance) are 

taken into account. In more detail, the calculation estimates a 

current limit, based on the average cell voltage in a module. 

Afterwards, the limits are corrected by the worst cell in a 

module. The worst cell is identified by the calculated dSoC 

and dR values. 

The algorithm provides the maximum charge and discharge 

current limits, as well as the maximum charge and discharge 

power. The power limitations can be calculated by a 

multiplication of the current and voltage limits. 

5) Function inter-dependencies 

Figure 5 provides an overview how the algorithms for SoC, 

SoH and SoF estimations are implemented. SoC and SoH 

estimations run on module-level due to the high computational 

demand, whereas the SOF are calculated per cell. The battery 

pack SoC is simply the average of the estimated Cell SoC 

values. To get a plausible SoH of the module resistances of the 

battery pack, delta SoC and delta R should be considered. 

 

Figure 5: Information flow of estimation algorithms 

6) Functional migration to parallel computing scheme 

From the point of view of the model-based battery state 

estimation, the main focus is on the analysis of the existing 

algorithms (currently running on single core computing 

platform) in order to identify possible improvements with 

respect to SoX estimation accuracy while making use of the 

additional computing power of a multicore processor. The 

main target is to improve the accuracy of the estimations from 

a group of cells (e.g. a module) down to single cell level. In 

our case, the sensor platform already provides the information 

required to measure the cells. The challenging factor here is to 

run a dedicated instance of the existing model estimation 

algorithm for each single cell instead of one instance for a 

group of cells. The required computing power (number of 

algorithm instances running in parallel) is therefore directly 

dependent on the modelling accuracy (reduction of the number 

of cells taken into consideration for one algorithm instance). A 

higher modelling accuracy provide more accurate information 

on the status of the cells, thus moving the limits for the use of 

each single cell (and therefore of the entire battery at the end) 

from a conservative boundary to a more real limit. 

Consequently, it can be assumed that the range of the vehicle 

and cycle life of the battery can be increased due to the precise 

estimation approach. 

B. Electrochemical Impedance Spectroscopy (EIS) 

1) Introduction to EIS 

This methodology measures dielectric properties of a medium 

as a function of frequency. In particular, as applied to the 

battery cells, the goal of the EIS is to determine the impedance 

parameters, and the state of health (SoH) of the cells as a 

function of the impedance. In order to successfully determine 

the EIS spectrum it is necessary to take into account certain 

inherent problems in the method and the component under test.  

The EIS analysis is based on the following prerequisites:  

a) the system must be linear 

b) the system parameters should not vary over time  

c) the system must be single input, single output (SISO) 

The lithium battery is not generally satisfying these 

requirements: therefore, additional assumptions have to be 

made. 

First, the characteristic of a battery is not linear: To calculate 

the impedance it is therefore necessary to proceed to a 

linearization. The used technique is to identify a working point 

on the electrical characteristic and to generate a small 

perturbation of it. Analyzing a small enough portion of a cell's 

current versus the voltage curve, it is considered to be linear. 

Therefore, in normal EIS practice, a small (1 to 10 mV) AC 

signal is applied to the cell: this is small enough to confine the 

test into a pseudo-linear segment of the cell's current versus 

voltage curve. 

Second, the battery parameters are not constant: in general, 

even with open battery-terminals (i.e. zero current), the battery 

voltage varies over time depending on the previous history. To 

allow the stabilization of the battery voltage it is necessary to 

wait for the conditions of electrochemical balance in the 

battery. The required time, also referred to as “settling time” or 

“relaxation time” depends on the temperature (ion mobility) 

and is estimated in the order of a few hours. A measurement 

made before reaching the equilibrium condition produces data 

with variations especially in the lower part of the spectrum. 

These variations are more or less evident depending on the 

imbalance inside the cell. 

Lastly, the voltage in a battery does not depend exclusively on 

the current flowing through it, but also on other parameters, in 

particular temperature and SoC. During each EIS 

measurement, these parameters must remain constant, in order 

not to influence the output voltage. In general, it must be 

ensured that the battery open circuit voltage does not vary 

within the range of the test, or this change will be computed in 

the spectrum of impedance. 

Based on the assumptions above, the stimulus signal needed 

for the EIS test shall have the following characteristics: 

 The spectrum of the stimulus shall adequately cover the 

whole frequency range that has to be analyzed (typically 

from 0.01 Hz to 1 kHz) 

 The signal amplitude shall be “small enough” to avoid 

triggering any nonlinear response in the battery 
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As a drawback, the smaller is the signal amplitude, the worse 

is the signal to noise ratio. For this reason, a dedicated HW 

solution is needed to obtain a good resolution in the acquired 

signal. In particular, the proposed solution is: 

 Amplify and adequately filter the signal, due to the small 

signal amplitude 

 Remove the OCV voltage, which is not useful for EIS 

measurements 

 Read each voltage value through a differential amplifier 

All of the above-mentioned features are implemented in a 

dedicated EIS daughterboard, working together with the CCU-

BMS board. Figure 6 below shows a functional block diagram 

of the daughterboard, integrating: 

 The EIS Command Generator: a  voltage DAC needed to 

generate the stimulus signal 

 12x EIS cell voltage measurement circuitry (differential 

amplifier + OCV cancelling + 4th order Bessel anti-

aliasing filter) 

 2x EIS current measurement circuitry (4th order Bessel anti-

aliasing filter) 

 

 

Figure 6: EIS daughterboard 

In particular, the OCV has to be measured before applying the 

stimulus signal, and then removed through the dedicated DAC; 

this is part of the features implemented in the EIS software. 

Finally, the stimulus signal generated by the daughterboard is a 

voltage signal; an external amplifier (in particular, a 

transconductance amplifier) is needed to drive the current that 

is injected into the cells. The chosen signal, used as a current 

stimulus, is a sum of sinusoidal current waveforms with 

predefined frequencies, in the range 0.01 Hz to 1 kHz, with a 

selectable current amplitude. 

2) The resulting EIS algorithm 

The EIS algorithm (Figure 7) injects a known current stimulus 

into the battery cell, reading the resulting voltage. Due to the 

assumptions described previously, the EIS algorithm will run 

after a relaxation time, needed for the battery parameters to 

reach a steady condition. 

The measured signals from the battery shall then be analyzed, 

for each frequency, to determine the spectrum of the signal at 

that frequency. The idea is to correlate the measured signal to 

the input waveform, to obtain magnitude and phase 

information about the analyzed signal. 

The response waveform from the battery typically has a DC 

offset, harmonic distortion components, and noise components 

generated by the cell. Nevertheless, the element of the 

measured signal, which needs to be analyzed, is the one at the 

same frequency as the generator waveform. All of the spurious 

components of the measured signal need to be rejected so that 

accurate measurements of the fundamental signal at the 

generator frequency can be made. 

EIS algorithm

Input signal
generation

Battery
model

Heterodyne
(current)

Heterodyne
(voltage)

÷

Current I(t)

Voltage
V(t)

I(wi)

V(wi)

Z(wi)

 

Figure 7: EIS algorithm overview 

The measured system output is multiplied by both the sine and 

cosine of the test frequency ω. The results of the 

multiplications are then fed to two identical integrators, where 

they are averaged over T seconds. As the averaging time 

increases, the contribution of all unwanted frequency 

components go to zero and the integrator outputs become 

constant values which depend only on the gain and phase of 

the system transfer function at the test frequency. 

Harmonics are rejected by the correlation process, and noise is 

rejected by averaging the signal over a number of cycles; the 

averaging associated with the correlating frequency response 

analyzer acts as a band pass filter with center frequency ω. As 

the average time T increases the bandwidth of the filter 

becomes narrower, thus the corrupting influence of wide band 

noise is increasingly filtered out as the correlation time is 

increased. 

Averaging over a complete cycle avoids certain measurement 

errors associated with offsets on the system output; the 

performed simulations demonstrates that acquiring on a time 

window of three complete periods, we obtain an effective 

rejection of all frequencies above 0.1 Hz. Since the minimum 

frequency is 0.01 Hz, three complete periods corresponds to 

300 seconds. 

The result of the correlation process is made up of two 

components one of which is referred to as the Real (or in 

phase) component, the other is the Imaginary (or quadrature) 

component. By performing simple mathematical operations on 

these raw measurement results, it is possible to obtain the 

magnitude and phase of the impedance. 

3) EIS Software implementation 

The EIS Software consists of several SW components, using 

resources either directly from the Aurix microcontroller or 

through the EIS daughterboard 

In particular, the EIS consists of: 

 Complex Device Drivers (CDD): 
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o OCV removal: generates the signals needed to remove 

the OCV from the measured cell voltage; OCV shall 

be measured before applying the stimulus signal, and 

then canceled through a dedicated DAC signal. 

o EIS Command Generator: its purpose is to generate the 

EIS Command signal (voltage reference) representing 

the current stimulus to be forced into the battery pack 

 iLLD (Low-Level-Drivers from Infineon): mainly this will 

be used for the analog input signals acquisition and for the 

coherent measurement of: 

o Cell voltages - both DC and AC (useful EIS signal) - 

for each battery cell 

o EIS current flowing in the battery module/pack 

 Application 

o Data Processing System for the calculation of the EIS 

spectrum 

Start

T = 0

Coherent read of 
current and 

voltage

Heterodyne
(current)

Heterodyne
(voltage)

T = T+250us

T < 
300s

End

Impedance
computation

True

False

 

Figure 8: EIS application flowchart  
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Figure 9: EIS software architecture 

In particular, the application layer implements the EIS 

algorithm, as described above; the flowchart in Figure 8 shows 

an overview of the algorithm, that is executed for the whole 

time of the test (300 seconds), subsequently using then the last 

output from the integrators to compute the impedance. The 

resulting SW architecture is depicted in Figure 9. 

4) Functional migration to parallel computing scheme 

Since the EIS algorithm has been developed from scratch 

within the INCOBAT project, no specific migration from 

single core (sequential) to multi-core (parallel) computing 

scheme was required. The challenges are focused on the 

proper SW integration and resource managements. This will be 

discussed further in the next section.  

IV. SOFTWARE INTEGRATION ON MULTICORE PLATFORM 

A. Software development environment 

The large variety of use cases as well as business organization 

is leading to different requirements on the development 

framework and build environment: 

 Flexible configuration of source files, include files and 

directories for building code for each core. This targets 

increase in build efficiency as well as constructive 

integration [14] by the capability of updating a core 

independently from each other  

 To have a sufficient intellectual property (IP) protection 

linking of external pre-compiled objects / libraries to the 

main binary of each core shall be possible. This is 

especially required in case of distributed development – 

means different teams / company integrating their IP into 

a common computing platform 

 Adaptations to other compilers shall be possible with less 

effort.  

 Integration of additional tools shall possible with less effort. 

These two last items are related to the distributed 

development of the entire SW by different teams relying 

on different development processes and consequently 

different tools 

In the context of INCOBAT, the development environment 

shall be a low cost solution with capabilities to be deployed by 

each INCOBAT partner while minimizing the licensing costs. 

To meet all these requirements for the INCOBAT project a set 

of tools was used to establish the SW development framework. 

The basic configuration of the SW development environment 

consists of a standard set of make files and target rules, a 

common memory mapping and compiler associated make and 

linker files.  

To allow utilization of the ERIKA
2
 operating system from 

Evidence into the integration and build process, the command 

line interface (CLI) from RT Druid was integrated in the build 

environment in form of make target rules. The OS 

configuration, including the definition and core allocation of 

counters, alarms, task, spinlocks and resources is done via 

OSEK implementation language (OIL) file, which is feed in 

RT Druid for the generation of the OS Erika related code and 

header configuration files for each core.  

The build process is setup in such a manner that for each core 

a separate binary image is generated. This allows SW updates 

on one core without the need of rebuilding the other cores. Of 

course, this mechanism is only applicable if the applied 

changes do not affect the other’s core SW and if the SW of the 

different cores can access peripherals of the microcontroller 

only via one dedicated interface. The SW code allocation to 

the different cores is done statically via one manual 

configurable make file, in which for each core application 

 
2 http://www.evidence.eu.com/  

http://www.evidence.eu.com/
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source and include files or directories, pre-compiled objects 

and libraries can be setup. 

 

GNU Make Cygwin

.oil

.c/.h.c/.h.c/.h

OS ErikaBSW iLLD

.c/.h

ASW

Models

.hex .hex .hex

CPU0 CPU1 CPU2

Embedded   
Coder

.mk.awk .lsl

SW development framework

 

Figure 10: INCOBAT SW development framework 

The memory allocation is done aligned to the AUTOSAR 

memory mapping approach and configured memory sections in 

the linker script. Depending on the currently identified CPUx 

in generation, the linker performs allocation of code and data 

to predefined flash and core local data scratchpad RAM 

memory sections.  

The shared data of the cores is defined and allocated by the 

master core and placed into the local data scratchpad memory 

of that core which is the producer of the data element. The 

exchange of the memory information to the slave cores is done 

by dumping of master core’s binary shared memory sections 

and export to a separate shared sub linker file which is 

generated during the build of the master core. The sub-linker 

script is used in the later build phases of slave cores for 

address resolutions of the shared data elements. 

Another important aspect for the SW development 

environment was tool integration – in our case the mapping of 

the system information with the SW development framework. 

During the scope of the project, different tool interfaces for 

generating AUTOSAR aligned SW information where 

generated. The proposed tool interfaces mainly relies on four 

level of exchanges – all aligned with the AUTOSAR or OSEK 

standard. The first level (AUTOSAR tool-bridge) aims at 

describing the SW components (SW-C) and their interfaces – 

and serves proper integration of control strategies and 

application SW. The second level (RTE configuration) targets 

the description of the real-time environment for according 

configuration. The third level focuses on basic SW (BSW) 

configuration, while the fourth level aims at describing the 

operating system (tasks available in the system and their 

related options). More information is available in [15], [16] 

and [17]. 

B. Software architecture 

To ensure modularity and reusability the SW architecture was 

split in several layers aligned to AUTOSAR: 

 Infineon iLLD – similar to AUTOSAR MCAL, providing 

abstraction to HW I/O’s, other peripheral modules, and 

startup code for the cores 

 OS Erika – OSEK/VDX certified asymmetric operating 

system, where each core has its own copy of the OS 

instance 

 BSW including complex device drivers and other coded 

BSW services  

 ASW and ASWIL, to reduce the complexity of the system 

each ASW component is accessing its data via separate 

interfaces from the BSW or IOC module. During the 

execution of the function group, each core is using its 

local buffered data wherever possible to minimize 

execution time caused by inter-core accesses and remote 

blocking. 
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Figure 11: INCOBAT SW architecture 

For the multicore capabilities, several SW functionalities were 

used similar to the currently defined and supported 

AUTOSAR concepts: 

 Synchronized master slave startup and shutdown approach 

of the cores. During startup of master core 0 the other two 

slave cores are in idle. They startup with a 

synchronization barrier during startup of the OS. During 

shutdown, the reversed order is used and master core 

waits until synchronized shutdown of slave cores. 

 Functional based inter-core data exchange of single signals 

or groups similar to the AUTOSAR Inter-OS-Applicator 

communicator (IOC).  

 Usage of spinlocks to guarantee data consistency for core-

to-core data exchange. The spinlock mechanism was 

combined with immediate suspension of interrupts in 

order to reduce the time of remote blocking. Additionally, 

to prevent from deadlocks nested acquisition of spinlocks 

was avoided.   

C. Verification environment – mini-HiL 

An important target and basis for the proper SW development, 

verification and integration is the deployment of appropriate 

test environment. Hence, the test environment shall be flexible 
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enough to enable different kind of stimulation for the functions 

developed and realistic enough to accurately model the physics 

related to the system to control. In the context of INCOBAT, 

the simulation environment is playing an important role in 

different work-packages and tasks: 

 White box testing: verification of single SW function such 

as control strategy (e.g., battery state estimation), safety 

function (e.g., control of battery’s main relays) or basic 

SW (e.g., low-level drivers). Target is to provide the 

direct environment for these functions, therefore 

sometimes shortening the SW system by investigating 

only one function 

 Grey box testing: validation of SW system and especially 

correct integration of the functions into the control system 

as well as correctness of the interfaces 

 Black box testing: validation of the safety mechanisms – 

especially ensure correct reaction of the control system in 

case of hazardous situations 

In the context of INCOBAT, different approaches are used:  

 Model or SW in the loop (MiL / SIL): direct verification of 

single SW function  

 Hardware in the loop (HiL): verification and validation of 

set of functions up to SW system in a real control system 

 Vehicle demonstrator: prototyping validation in vehicle 
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Figure 12: HiL test environment 

While MiL and SiL are state of practice and will not be 

discussed any further, a dedicated mini-HIL platform for the 

efficient validation of the BMS (E/E system including satellite 

units and central controller) has been deployed. This platform 

is conjointly used for white, grey and black box testing – with 

different focuses as described previously, 

For a validation of the SW multicore integration approach and 

the battery SoX estimation algorithms following HiL test 

environment was setup, see Figure 12. 

 

In a first phase, the battery estimation algorithms were 

stimulated with battery cell data via CAN wrapper. For the 

stimulation of the battery load profiles the test and automation 

environment from NI Veristand was used in combination 

CompactRIO HW. With support of the XCP protocol, 

measurement and calibration access to each core’s local 

memory was established. 

D. Performances achieved and lessons learnt 

A first comparison of the battery state estimation, while 

moving the computation accuracy from module to cell level, is 

shown in the following. The red curves represent the results of 

the modified estimation approach. Figure 13 illustrates the 

minimum and maximum cell SoC, while the discharge current 

limits during the cycle is illustrated in. Figure 14. Especially at 

the end of the cycle (at 6000s), a higher difference between the 

estimation on cell-level (red curve) and the estimation on 

module-level (blue curve) can be recognized. It is important to 

note that the results achieved in SiL and MiL environment are 

highly coherent (SoC and SoH difference below 0.05%) 

therefore confirming the correct integration into the multi-core 

computing platform.  

 

Figure 13: SoC computation at module and cell level 

 

Figure 14: SoF computation at module and cell level 

Figure 15 is summarizing the computing resource usage (task 

execution time) for the current implementation. As stated in 

Section 4-B, an instance of the operating system ERIKA is 
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running on each core. Core 0 is managing the BSW and 

drivers, the battery state estimation algorithm is run on Core 1, 

and Core 2 is reserved for EIS. It can be noticed that the 

operating system task is consuming slightly more than 10% 

core time for this configuration. The computation of the SoX 

function at pack level requires less than 5% core time. By 

improving the computation accuracy to cell level, then a 

computation time of 15% of the core time is required. This 

illustrates the computing requirement (factor 3) in comparison 

to computation at module level. At the same time, it illustrates 

that integration of other functionalities into the AURIX 

platform (thus reducing the number of electronic control unit) 

is easily possible. 

 

Figure 15: Computing resource usage for the three cores 

It must be noted that at this stage of the project no particular 

approach was deployed for the systematic exploration of 

timing behavior and resource management. The decisions 

related to startup and shutdown sequences and handling, 

possible deadlocks, delays caused by remote blocking, 

memory allocation, as well as ASW functionality scheduling 

and partitioning were made based on expert knowledge. This 

step (scheduling analysis) will become essential to ensure an 

efficient and balanced functionality partitioning and 

scheduling and is part on ongoing work. 

V. CONCLUSION 

Accurate understanding and modeling of the physical 

behaviors of the cells’ chemistry is pre-requisite for proper and 

optimized control of the HV battery, thus moving the limits for 

use of each single cell (and therefore of the entire battery at the 

end) from a conservative boundary to a more real limit. 

Consequently, it can be assumed that the range of the vehicle 

and cycle life of the battery can be increased due to the precise 

estimation approach. 

The continuous advances in chip design (multi-core computing 

platforms for automotive applications) and embedded SW 

engineering (AUTOSAR) are providing important basis to 

deploy complex and accurate control strategies. At the same 

time, the competences and skills gap is growing apart between 

the different technologies. The seamless migration of an 

existing control strategy to a multi-core platform, while 

considering functional and non-functional requirements (e.g., 

performances, timeliness, safety), is not an easy task. During 

this paper, the migration of battery estimation functions (SoX) 

to an AURIX platform was presented. The migration has led to 

more accurate battery state estimation and illustrated that the 

proposed CPU provides enough performances for integration 

of further functionalities, thus providing the potential for 

reduction of number of discrete electronic control units within 

the vehicle. At the same time, an important lesson learnt was 

the need to proper analyze and manage startup and shutdown 

sequences, possible deadlocks, delays caused by remote 

blocking, memory allocation, as well as ASW functionality 

scheduling and partitioning. These aspects is already part of 

ongoing work.   
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