
1

Pareto-efficient deployment synthesis for
safety-critical applications in seamless model-based

development
Sergey Zverlov fortiss GmbH

Guerickestr. 25, 80805 Munich, Germany
Email: zverlov@fortiss.org

Maged Khalil fortiss GmbH
Guerickestr. 25, 80805 Munich, Germany

Email: khalil@fortiss.org
Mayank Chaudhary fortiss GmbH

Guerickestr. 25, 80805 Munich, Germany
Email: chaudhary@fortiss.org

Abstract—Increasingly complex functionality in automotive
applications demand more and more computing power. As room
for computing units in modern vehicles dwindles, centralized ar-
chitectures - with larger, more powerful processing units - are the
trend. With this trend, applications no longer run on dedicated
hardware, but share the same computing resources with others
on the centralized platform. Ascertaining efficient deployment
and scheduling for co-located applications is complicated by the
extra constrains which arise if some of them have a safety-critical
functionality.

Building on our pre-existing design space exploration solution,
we integrated safety constraints, such as ASIL and HW failure
rates, as well as practical aspects, such as component costs, and
extended the approach to allow for multi-criteria optimization.
The work was implemented into our seamless model-based
research CASE tool AutoFOCUS3 and evaluated using a non-
trivial industrial-inspired case study. The solution is capable of
synthesizing deployments together with corresponding schedules,
which satisfy different safety and resource constraints. The
deployments can subsequently be integrated into the safety case
argumentation of AutoFOCUS3, leveraging the tool’s seamless
capabilities to support safety evidence and certification.

Moreover, we are not interested in merely valid solutions,
but in good ones. We hence developed a multi-objective opti-
mization algorithm, which synthesizes solutions pareto-optimized
for safety, resource usage, timing and any other constraints
the user defines. Our approach demonstrates the feasibility
and effectiveness of using formal methods to generate correct
solutions for safety-critical applications, increasing the confidence
and validity of safety cases.

Index Terms—Design Space Exploration, AutoFOCUS, Op-
timization, SMT, Safety, Resource Optimization, Deployment,
Scheduling

I. INTRODUCTION

Connected vehicles and advanced driver assistance systems
(ADAS) are just a few of the latest technological drivers
increasing the demand on computing power in classical do-
mains of embedded systems development, such as the au-
tomotive sector. Given the already high number of ECUs

(electronic control unit) in today’s automobiles, there is a
clear trend towards centralized architectures featuring larger,
more powerful (potentially multi-core) platforms. This trend
lends increased urgency to the problem of mapping logical
computational tasks to the hardware (HW) nodes that will
execute them. This task is intrinsically difficult in embedded
systems, because their limited resources add many constraints
to the deployment problem that have to be respected, e.g.,
execution timing, memory constraints, power consumption,
bus loads and many more. If the applications to be deployed
are safety-relevant, this adds a new dimension to the de-
ployment problem, increasing the difficulty many-fold. Safety
standards dictate design patterns, such as partitioning accord-
ing to criticality, to maintain freedom from interference, but
also set requirements for the hardware nodes’ reliability. This
adds multiple criteria (some orthogonal) to both the problem
space (software components) and the solution space (hardware
nodes). Mapping logical/software components to a hardware
architecture goes beyond the simple task of mere allocation,
and onto the generation of a deployment and corresponding
schedule, which satisfies different constraints, be it related to
safety, resource or cost.

The work presented in this paper is a part of ongoing
research efforts into design space exploration (DSE), which
aims at facilitating the seamless development of safety-critical
applications in the embedded domain. DSE is defined as a
process of systematically finding a solution from a set of
possible designs, w.r.t. a set of given constraints [1]. Building
on our pre-existing approach for the efficient generation of
embedded system architectures with multi-criteria optimiza-
tion (e.g., memory usage, power consumption, bus loads), we
expanded the approach to include safety attributes, such as
hardware failure metrics, but also practical aspects of real-
time development, such as HW costs. The presented approach
computes task and message schedules that are optimized with
respect to a global discrete time base. As a part of the solution,
the approach generates an optimized assignment of tasks to
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computation resources (cores). The approach is integrated into
the AutoFOCUS3 (AF3) tool-chain, as presented in [2].

This paper presents the approach, and demonstrates its use-
fulness using examples which illustrate the effect of different
criteria on deployment synthesis and how the approach can be
used to optimize the generated valid solution for one or more
criteria. Prior to this work, there was no support for generating
and optimizing deployments in AF3 while simultaneously
satisfying safety metrics, resource constraints and hardware
costs.

Furthermore, AF3 integrates multiple dedicated architec-
tural views, covering not only logical (software) and technical
(hardware) architectures, but also requirements and safety
case expression. Therefore, the method presented here can
be integrated into a seamless development approach that
allows arguing evidence on a formal basis, as well as reusing
argument structures and reducing the costs of component as
well as design (re-)certification for safety-critical applications.

A. Related Work
Approaches where computer-aided methods are used for

system analysis and optimization are not new, having been
proposed as early as in the late fifties, such as the optimiza-
tion approach for register transfer systems towards cost and
performance presented in [3].

Recent works address higher levels of abstraction, such as
the mapping of software to hardware and the corresponding
scheduling [4]; memory optimization [5]; or finding suitable
platform architectures [6][7][8]. In this paper we address the
joint problem of finding an optimized platform, deployment
and schedule w.r.t. to safety, cost, performance and resource
consumption.

The applicability of solvers for finding deployments and
schedules was shown in [9] and [2]. The possibility of using
various solvers for DSE problems was further discussed in
[10] and [11], which – similarly to our work – use a solver to
find valid or optimized solution.

Furthermore there are approaches, which take safety into
account. [12] – for instance – combines FTA analysis and
optimization techniques to find optimal system configura-
tions; [13] optimizes automotive architectures towards cost
and safety; and [14] uses a brute-force algorithm to gener-
ate safety-compliant deployments for avionic systems. Com-
pared to those approaches, the optimization problem we are
considering is more complicated (higher number of criteria
and/or degrees of freedom), and furthermore we integrate our
approach into a model-based framework, which makes it more
usable for practitioners.

There are a number of frameworks with Design Space
Exploration capabilities, which were proposed over the years.
Some of them use their own DSLs to specify DSE Problems,
such as FORMULA [15] and AAOL [16]. Others use well-
established formalisms, such as EAST-ADL[17], UML [18]
and AADL[19]. We integrated our approach in the AutoFO-
CUS3 Framework 1, which is based on the FOCUS method-
ology [20] and was shown to be compliant to AUTOSAR

1http://af3.fortiss.org/

2 in [21], leveraging the framework’s seamless development
capabilities.

The safety metrics used in the multi criteria optimization
have their foundations in the ISO26262 automotive functional
safety standard, and investigations into architecture bench-
marking in the ITEA2 SAFE research project3 published in
[22].

Due to the seamless nature of AF3, our approach demon-
strates how an integrated model-based framework can prag-
matically provide formal support for practical problems in
the development and certification of safety-critical systems
in compliance with the relevant standards – in our case
ISO26262.

B. Structure of Paper
Chapter II gives an overview of background information

building the fundamentals of this paper. In III the model-
based CASE tool AutoFOCUS is presented. In this tool, we
integrate our proposed approach from chapter IV. We evaluate
our work using a non-trivial case-study in chapter V and finally
we conclude in VI.

II. BACKGROUND

This section introduces briefly some concepts necessary for
understanding the rest of the paper.

A. SMT
A satisfiability (SAT) problem consists of variables repre-

sented in a formula, with the goal being to determine whether
there exists an assignment of variables that makes the whole
Boolean formula satisfiable [23]. Satisfiability modulo theories
(SMT) generalize boolean satisfiability by adding equality
reasoning, arithmetic, arrays, quantifiers and other first order
theories. SMT solvers are tools for deciding the satisfiability
of formulas in those theories [24], which can be used to solve
various classes of problems, such as software and hardware
verification; test case generation; planning; or scheduling and
deployment [25, Ch. 2, p. 89ff]. Solvers may be designed
to not only be capable of determining whether a formula is
unsatisfiable or not but also point to the set of clauses which
are not satisfiable, called unsatisfiable cores or UnSAT Cores.

B. Safety
The work presented here was carried out within the SAFE

research project, which targeted the model-based development
of software architectures for safety-critical applications in the
automotive domain. Hence, we focus on metrics identified
in the ISO26262 automotive safety standard. These include
ASIL (Automotive Safety Integrity Level), as well as hardware
failure metrics identified in clauses of part 5 of the standard.
The proposed metrics include PMHF (probabilistic measure of
random hardware failures) the maximum probability of vio-
lating a top level safety goal, shown mapped to corresponding
ASIL levels in Table 1 - and FRC (failure rate classes) an
evaluation of each cause of safety goal violation. These metrics
are explained in more detail in [22].

2http://www.autosar.org/
3http://www.safe-project.eu/
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ASIL Level Probability of random hardware failures (PMHF)

D < 10�8
h

�1

C < 10�7
h

�1

B < 10�7
h

�1

A < 10�6
h

�1

TABLE I: Target values for hardware architectural metrics

C. Multi-objective Optimization

As an optimization problem, we consider the search of
a good (optimized) or best (optimal) solution of a decision
problem among a set of alternatives, assuming the existence
of a set of objectives, according to which the quality of
the alternatives can be measured [26]. Cases in which an
optimization problem does not only have one objective, but
several ones are called: multi-objective optimization, and these
objectives are often contradictory. Therefore, in most cases of
multi-criteria optimization problems, there is no single optimal
solution for the problem under consideration, but a set of
solutions, where each is optimal to a subset of objectives. This
set of solutions is called Pareto-efficient or the Pareto front.

III. AUTOFOCUS3

AUTOFOCUS3 (http://af3.fortiss.org) is a re-
search CASE tool that allows modeling and validating concur-
rent, reactive, distributed, timed systems on the basis of formal
semantics [27]. Furthermore – in [21] – it was illustrated
how AF3 modeling concepts fit into concepts provided by
AUTOSAR.

A. Levels of Abstraction

An AF3 system model is divided into several models that
provide different levels of abstraction, while supporting dif-
ferent views on the system model, e.g., from the model-based
requirements view down to the hardware-related platform
view.

The Requirements Specification and Analysis View provides
for requirements specification, documentation, and analysis of
the requirements of a system.

The Logical Architecture View of a system is defined by
means of components communicating via message passing
through typed channels, using a clearly defined model of
computation. Messages exchange is synchronized with respect
to a global, discrete time base. Components can directly
implement behavior or consist of other components that do
so.

The Technical Architecture View describes a hardware topol-
ogy that is composed of hardware units, e.g. CPUs of a Multi-
Core Board, hardware ports (sensors or actuators), buses and
a shared-memory component.

Furthermore, AF3 supports so-called integrated or weav-
ing models, which hold information from different levels of
abstraction and thereby connect them. The deployment view
is one example of such an integrated model, which maps
elements from the component to elements of the technical

architecture. This provides traceability between modeling ar-
tifacts [1].

Another example is the AF3 support for a safety-case view,
which is supported by integrated models, linking the safety
case elements to all the other AF3 artifacts in support of the
argument structure.

B. Design Space Exploration in AF3
A valid deployment and schedule pair for any system under

consideration has to fulfill certain constraints, for instance,
precedence constraints or resource utilization (two tasks can’t
run in parallel on the same node). These constraints can be
formalized in such a way that they can be used as input for a
state-of-the-art SMT solver. In this sub-section we provide a
small overview of work done in [2], which we extend in the
following sections.

The approach uses the integrated deployment model, which
combines information from the logical and technical archi-
tecture (cf. III-A). From the logical architecture this model
contains a set of logical components (which, in this context,
we call tasks) T = t0, t1, ..., tn passing messages M =
m0,m1, ...,mk

via channels. This communication structure
results in dependencies between the tasks. Those dependencies
can be used to derive constraints, such as the execution order
of tasks, for the schedule generation.

Additionally, this model contains information from the
technical architecture, such as a set of computational resources
(nodes) N , a set of buses B, and in some cases memories
MEM . Nodes are used to store and execute the tasks from
the logical architecture, whereas buses and memories are used
to exchange messages between the tasks.

By encoding this information in a SMT solver, it is possible
to synthesize a valid deployment and schedule pair, if they
exist. Furthermore, it is possible to produce not only valid but
also optimized solutions (cf. [2] or [28]), using a meta-search
on top of the SMT solver, which manipulates constraints –
max. execution time, for instance–after every SMT request.

IV. SAFETY-ORIENTED DEPLOYMENT AND SCHEDULING
IN AF3

In this section we present how using a SMT solver makes it
possible to synthesize safety oriented deployments, which are
either valid or optimized w.r.t. to certain criteria. Furthermore
we discuss how we integrated this approach in AutoFOCUS3.

A. Artefact properties in AF3
As already explained in III, AutoFOCUS3 view on the

system is divided in different levels of abstraction. Each of
these levels contains a set of artifacts (i.e. ECU in Technical
Architecture). Using the ”annotation” concept of AF3 it is
possible to assign properties to each artifact (i.e. Failure Rate
to an ECU). For our approach a set of safety and resource
related properties were needed, which partly already existed
and partly were added by us.

In context of safety we added the possibility of annotat-
ing PMHF values for ECUs and busses. This value is then
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Fig. 1: Seamless model-based development in AF3

translated to ASIL according to table I. This way it is more
convenient to compare with the safety integrity level values of
the logical components. The possibility of assigning (A)SIL
values to logical components was already given.

Furthermore we added the possibility of assigning energy
consumption, memory and cost to the hardware elements as
well as memory consumption and taswk duration to the logical
components.

B. Scheduling and Deployment Constraints
The constraints – introduced in this sub-section – are already

formalized. Together with instructions, such as in [29] or
examples such as in [2], these formalized constraints provide
enough information to be encoded as a SMT problem.

1) PMHF Constraint for ECU: This constraint states that
a task t 2 T can only be mapped on a node n 2 N , if the
PMHF value of the node n is compliant to the ASIL value
of the task t according to table I. Let � : T 7! N be a
function that allocates tasks to nodes, then the constraint can
be formalized as follows:

8t 2 T

0
,where T

0 = {t0|�(t0) = n} ! t.asil  n.asil (1)

2) PMHF Constraint for BUS: As defined in [2], if two
tasks t

i

t

k

2 T communicate with each other and are deployed
on different nodes, such that �(t

i

) 6= �(t
j

), they have to
communicate over a bus b 2 B, which also has a PMHF value.
Furthermore, we respect ASIL propagation, which means that
tasks can only exchange messages via bus, if the bus is
sufficiently reliable, as indicated by its PMHF value. This
constraint affects the allocation of communciating tasks. If t

i

sends a message to t

k

and those tasks are mapped on different
nodes, the constraint can be formalized as follows:

b.asil � t

k

.asil (2)

3) Memory Constraint: In real-life embedded systems re-
sources, such as memory, are limited. We assume that each
hardware node n offers a certain amount of memory that can
be used by the tasks t allocated to it, and must not be exceeded.
To define this constraint, we first have to sum up the memory
which is used by each node:

8t 2 T

0
,where T

0 = {t0|�(t0) = n} !
n.used memory =

X
t.mem (3)

Having determined the memory used by each node, we
can now ascertain that the used memory does not exceed the
available memory (n.ram):

n.used memory  n.ram (4)

4) Maximum Number of Nodes: In some cases it is inter-
esting to know whether the deployment of tasks is possible
on less nodes than currently used or available. To define a
constraint limiting the number of used nodes, we first have to
find out which nodes are currently used (has tasks deployed
on it). We can formalize this as follows:

n.used =

(
1, 9t 2 T : �(t) = n

0, otherwise
(5)

Next, we identify how many nodes are currently used:

total used nodes =
NX

n

n.used (6)

Finally, we can formalize the constraint as follows:

total used nodes  max nodes (7)
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5) Cost: Cost is a very important factor in industrial
projects. This is especially true in context of automobile
industry, since even a small saving in component costs can
impact a lot due to the large numbers of produced cars. As
already discussed, PMHF values of hardware components can
be mapped to ASIL values, but also to component costs, under
the assumption that hardware with more stringent failure rates
is also more expensive to build. It is thus relevant to define a
separate constraint to limit component costs, without violating
any other constraints. We first need to know which nodes are
used in the current deployment, the formalization of which has
already been shown in (eq. 5). Based on this knowledge, it is
possible to calculate the total cost of the system:

total cost =
NX

n

n.cost⇥ n.used (8)

Subsequently we restrict the maximum cost of the system as
follows:

total cost  max cost (9)

6) Power Constraint (Energy Constraint): Energy con-
sumption is another important factor in embedded systems and
hence we generate deployments that take energy efficiency into
account. In our simplified energy model we assume that each
node consumes energy only as long it is active (non-idling).
Therefore the non-idling time can be calculated as follows:

n

non idle time

=
X

t2T

0
t

duration

where T

0 = {t0|�(t) = n} (10)

Since power is defined as energy over time the energy con-
sumption of a node n can be formalized with the following
equation:

n.energy = n.power ⇥ n.non idle time (11)

Using (eq. 12) it is now is possible to calculate the total
energy consumption of the system. This value again can be
constrained by the maximum allowed energy consumption (eq.
13).

total energy consumed =
NX

n

n.energy (12)

total energy consumed  max energy (13)

C. Pareto-efficient Deployments
In the previous sub-section we presented the constraints,

which – in scope of this work – are used to synthesize valid
deployments with certain characteristics. In the following sub-
section we discuss how to find optimal (or at least optimized)
deployments w.r.t. certain criteria.

The problem of generating the pareto-optimal deployments
can be formulated in terms of objectives to be optimized and
constraints to be satisfied (as shown below). The formulation
is followed by a brief explanation of the objectives and an
introduction of the proposed optimization algorithm.

Minimize
number of nodes

memory per node

total sil

e2e latency

such that
number of nodes  max nodes

memory per node  max memory

total sil  upper bound sil

PMHF constraint holds

The values of variables max nodes, max memory and
upper bound sil are entered by the user, if they choose to
generate pareto-optimal deployments. The PMHF constraint
are also needed to be satisfied while generating the pareto-
optimal deployments. Since we are aiming at minimizing the
total SIL of the hardware architecture, we do not use cost
constraint and energy consumption constraint explicitly.

1) Optimization Criteria: In [30], it was illustrated that
participants of the survey – if it comes to system design
optimization – are interested in such criteria as safety, timing,
resource usage, energy consumption and cost.

Following this line of argumentation we implemented a
multi-objective optimization algorithm which takes number of
used nodes, used memory per node, as well as hardware costs
and energy consumption as optimization criteria. For simplic-
ity, we assumed hardware costs and power consumption to be
directly correalted to the ASIL value, and thus used total ASIL
as a proxy optimization criterion.

Furthermore, we took timing (end-to-end latency) into ac-
count using a solution, which, while not being Pareto-optimal
according to the definition in II-C, was still optimized as
explained in IV-C2.

2) Optimization Algorithm: Our algorithm works in three
steps: reduction of the search-space, generation of all valid
solutions for the reduced search-space, and elimination of
dominated solutions, i.e., those solutions which are superseded
by the pareto front.

In the first step, our approach reduces the search-space by
calculating lower bounds for the criteria memory per node and
number of nodes. Consider a scenario wherein the logical ar-
chitecture contains 5 components and each component requires
10 units of memory. Let the values of variables max nodes and
max memory (as entered by the user) be 4 and 20 respectively.
It is clear that there will be no possible solution if the
number of nodes in the technical architecture is less than 3,
since the total memory needed to accommodate the 5 logical
components is 50 and maximum memory allowed per node
is 20. Similarly, the memory per node can be no less than 20
(assuming memory per node is a multiple of 10). As the result
of this step we get a set of possible configurations in terms
of a range for number of nodes i.e. [min nodes,max nodes]
and for memory per node i.e [min memory,max memory].

In the second step, we generate valid solutions for all
possible combinations of nodes and memory found in the
previous step. This is illustrated in the algorithm 1 below.

Lines 2-4 shows that for each pair of nodes and memory
in decision variable space, a constraint satisfaction problem
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Algorithm 1 Valid Solutions
1: procedure VALIDSOLUTIONS
2: for nodes in min nodes .. max nodes do
3: for memory in min memory .. max memory do
4: result CheckSAT (nodes,memory, upper bound sil)
5: if result is SAT then
6: solution parse(result)
7: store solution to UniqueSolutions

8: total sil extractSIL(solution)
9: while result is SAT do

10: total sil total sil � 1
11: result CheckSAT (nodes,memory, total sil)
12: if result is SAT then
13: solution parse(result)
14: store solution to UniqueSolutions

is created which is solved by the Z3 SMT solver. The
checkSAT () function formulates the problem in Z3 syntax,
where the parameters nodes, memory and upper bound sil

defines the upper limits for assertions used in node usage,
memory per node and total sil constraints, respectively . Line
5 checks if the constraint satisfaction problem is satisfiable.
In case it is satisfiable, the output of the Z3 solver is parsed
to fetch number of nodes, memory per node, total sil and
e2e latency. These variables are combined into a solution

(line 6) and stored into a set of unique solutions (line 7), as we
do not want to duplicate the set of valid deployments. We then
try to optimize the total sil by reducing it in steps of 1 (line
10) and check the satisfiability of new constraint satisfaction
problem (line 11). The reduction of total sil continues until
Z3 cannot find a solution to the constraint satisfaction problem
(line 9).

In the last step, the algorithm eliminates the solutions which
are dominated by other solutions w.r.t. number of nodes,
memory per node, total ASIL and thereby builds a Pareto front.
As mentioned earlier our approach chooses a solution with
the lowest end-to-end latency from the set of valid solutions,
which were produced in step 2. For that reason we call this
solution not optimal but optimized.

D. Integration in AutoFOCUS3
In scope of this work we integrated our synthesis approach

together with the constraints and the optimization algorithm
(introduced in the previous sub-sections) in the AutoFOCUS3
development methodology.

A typical development process in AF3 could look as fol-
lows. An engineer, designing a safety-critical system in Aut-
oFOCUS3, ideally starts with the definition of requirements.
Among other things in this phase, he will identify a set of
safety goals which the system under development will have
to fulfill. One of the safety goals could be that safety-critical
software should not be compromised due unsafe hardware it
is running on, which corresponds to the constraints 1) and 2)
from IV-B.

In the next step, the engineer starts to design the structure
and the behavior of the system in the logical architecture (cf.
III-A). After that he can assign certain properties (cf. IV-A),
such as Safety Integrity Level, to the elements of this level of
abstraction. At this step it possible either to continue with the

design of the technical architecture (i.e. the technical platform
of the system is already fixed) or use the optimization approach
from IV-C to find an optimized technical architecture together
with the corresponding deployment and schedule. Regardless
which option the engineer takes at some point he will end up
with a logical and a technical architecture. Now he can use
either the constraints from IV-B or the approach from IV-C
to find either valid or optimized deployments and schedules
w.r.t. the constraints he is interested in (cf. fig. 2).

Fig. 2: Choosing constraints in AF3

The deployments and schedules which are found during this
Design Space Exploration activity are valid towards certain
constraints (such as 1) and 2) from IV-B). Therefore, the
results of this DSE run can now be used as an evidence in a
safety case to prove that the safety goal is reached by design.
The integration of safety cases into AF3 development process
was demonstrated in [31].

Fig. 3: Finding the unsatisfiable constraints

Given the potential complexity of the optimization prob-
lems addressed by our approach, it is possible to define the
constraints so tightly that no solution can satisfy them all. For
instance, the provided pool of ECUs – even if all of them were
used in combination – does not provide enough memory to run
all the software components. It is thus just as useful to support
the user by providing guidance as to which constraints could
not be satisfied. For this case we integrated the Z3s UnSAT
Core functionality (cf. sec. II-A), which identifies unsatisfiable
constraints for the current DSE problem. As seen in figure 3,
this feature points the user exactly to the constraint which is
not satisfiable and, hence, needs to be adjusted.

V. EVALUATION

A. Description of the Case Study
We evaluated our approach using an industrial-like case

study, which was created in the scope of the SAFE Project.
This case study was modeled in AutoFOCUS3 and consists
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ASIL Level Components
ASIL D c1, c2, c3, c4, c5
ASIL C c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17
ASIL B c18, c19, c20, c21, c22, c23, c24, c25, c26, c27
ASIL A c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39
QM c40, c41, c42, c44, c45, c46, c47, c48

TABLE II: Logical Architecture of the Case-Study

of both a logical and technical architecture. The logical archi-
tecture consists of 48 components, connected by 65 channels.
The components have different ASIL levels, as described in
table II.

The technical architecture consists of 9 nodes connected
by a bus. Each hardware component was assigned a predeter-
mined PMHF value (and ergo ASIL compliance) and cost (cf.
table III). These values can, of course, be modified by the user
to represent different hardware characteristics.

ECUt 1 2 3 4 5 6 7 8 9
PMHF 0.1 0.1 0.3 0.4 0.6 0.6 0.8 0.9 1.0
ASIL D D C C B B A A QM
Cost 10 10 8 8 5 5 3 3 1

TABLE III: Technical Architecture of the Case-Study

B. Cost versus Safety
In our investigations, we analyzed how manipulating the

criteria - both individually and collectively - affects the deploy-
ment and schedule generation process. The investigation is too
large to list in detail here; more results are provided in [22].
To demonstrate the approach, we will focus on one example:
how cost reduction affects safety-oriented deployments; an
optimization problem reflecting design trade-offs, under the
assumption that hardware with more stringent failure rates
is more expensive to build. The results are shown in chart
form in the next figure. The chart (cf. fig. 4) shows possible

Fig. 4: Effect of Cost Constraint (non-uniform cost) on de-
ployment (ASIL-D BUS)

deployments to satisfy the multi-criteria problem, while op-
timizing for power consumption, total cost of hardware, and
total number of nodes. The results show that it is possible
to satisfy the problem with various configurations and allows
the user to choose which criteria are more relevant, and hence

which deployment – among the multiple valid ones – is most
suitable to their needs.

C. Evaluation of the Optimization Approach
In our second experiment, we investigated how long our

approach would take to find a set of non-dominated, i.e.,
optimized, solutions. As input we used the case-study from
section V-A. The search space was restricted using the fol-
lowing intervals: 1 to 9 nodes; 1 to 36 as total ASIL; and 10
to 100 MB memory per node (using a 10 MB iteration step).
As discussed in section IV-C, the end-to-end latency does not
have to be restricted because our approach picks the solution
with the best end-to-end latency from all the solutions it finds.
The total ASIL constraint represents the hardware cost factor,
by assigning a high number to more capable hardware nodes.

Number of nodes Memory per node E2E latency TotalSIL
5 100 263 10
7 70 292 14
6 80 248 16
6 80 257 14
6 90 210 11
8 60 269 17
6 80 281 13
8 90 192 13

TABLE IV: Pareto deployments for industry-like use case

In our experiment we used the Z3 solver with a 6 hours
time limit for each evaluation. This means, that after this time
period the Z3 solver times out with the best solution so far,
which might be not the overall optimal solution. The result
of this experiment, presented in table IV, was calculated in
126 hours. Given the size of the case study and the degrees of
freedom under consideration (deployment, schedule, memory,
SIL distribution, timing) we think that this time period is
reasonable and feasible in a practical setting.

Most importantly, the approach allows for the explicit
optimization for selected criteria, the impact of which can be
seen in the last tables. One can have different deployments on
the same as well as different numbers of nodes with different
effects on resource usage, system attributes, and hardware
costs. For instance, if the number of nodes is the absolute
limiting factor, then one can choose the first deployment with
5 nodes. If however, one can accommodate a design with 6
hardware nodes, then it is possible to choose a solution op-
timized for Memory consumption and hardware costs, which
also provides a comparatively low latency value. More details
on the different effects of optimizing for different criteria are
given in [22].

Above all, these outcomes are based on formal methods,
they are deterministically reproducible, and form a solid foun-
dation for safety assurance and correct/safe-by-construction
solutions.

VI. CONCLUSION AND FUTURE WORK

In the engineering of reliable and safe automotive sys-
tems, the process of mapping software to hardware is an
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essential design step. In this paper we presented a design
space exploration approach for multi-criteria optimization of
the deployment problem, formalizing constraints relevant for
system development according to ISO26262.

Not limiting our interest to generating merely valid so-
lutions, but in good ones, we developed a multi-objective
optimization algorithm, which synthesizes solutions pareto-
optimized for safety, resource usage, timing and any other con-
straints the user defines. A state-of-the-art SMT solver is used
in conjunction with the formalized constraints to find valid
solutions, which satisfy the constraints, while a meta-search
on top of the SMT solver provides the optimized solutions.
In our example, we derived 6 constraints and implemented
an optimization algorithm for 4 criteria, with ongoing work
to give users more freedom to define their own constraints
and criteria. Above all, the generated results are based on
formal methods, they are deterministically reproducible, and
form a solid foundation for safety assurance and correct/safe-
by-construction solutions.

Our approach demonstrates the feasibility and effective-
ness of using formal methods to generate correct solutions
for safety-critical applications under real-world scenarios, in-
creasing the confidence and validity of safety evidence for
certification.

Solutions to software engineering problems are most useful
when bolstered by tool-support; we integrated our work in
a model-based framework, called AutoFOCUS3. Due to the
seamless nature of AF3, our approach demonstrates how an
integrated model-based framework can pragmatically provide
support for practical problems in the development and certi-
fication of safety-critical systems in compliance with the rel-
evant standards, and just as importantly, how formal methods
can easily be made more accessible to practitioners without a
formal background.
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