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Introduction 
 
Model Driven Engineering is now recognized as a 
way to significantly improve the development 
process of industrial systems and software. This 
approach leads to the production of various kinds of 
models associated to each modelling and verification 
step of the life cycle. All these concrete models may 
differ in their abstract definition (meta-model) and in 
their syntactic expression. Such diversity cannot be 
easily avoided as each modelling language brings its 
own specific benefit or is fundamentally associated 
with a particular tool or technique. However, merging 
and processing heterogeneous models to support all 
the required development activities can become a 
real engineering issue in the context of industrial 
projects.  
 
This paper presents a solution to this problem. The 
proposed approach is based on the LMP[1] (Logic 
Model Processing) technology to provide a unique, 
standardized and easy to process representation of 
each model that is involved in a given project. Using 
this solution leads to the realization of a global 
homogeneous repository from syntactical conversion 
of each input model, without altering their semantic 
diversity. It then dramatically facilitates the 
development of model processing tools, such as 
model explorations, model verifications, model 
transformations and architectural reasoning. 
 
1. The model jungle 
 
1.1. Model roles 
 
Models can be used at the various stages of the 
system development life-cycle. In the descending 
branch of the life-cycle, we can easily find for a 
single project at least requirements models, design 
models and a set of models associated with early 
verification techniques. If we make the assumption 
that each individual model is well defined in the 
context of its own purpose, the key issue is then to 
ensure a proper inter-operability between these 
various steps of the life-cycle. This implies that we 
can manage various kinds of model dependencies, 
such as traceability (e.g. between design model 

entities and requirement model entities), 
transformation (e.g. between a design model and a 
verification model) and consistency (e.g. between 
the various subsets of a design model) 
 
1.2. Model syntax 
 
Models can be defined with different meta-modelling 
languages or approaches, including BNF, XML 
DTDs or schemas, MOF or ECore. This choice has 
of course an impact on the way the concrete models 
can be handled in a tool or a tool-chain. Most of the 
time, the internal representation of a model in 
memory is tool dependent. On the contrary, the 
result of a file serialization must comply with a 
standard representation which depends on the 
corresponding meta-model syntax. For instance, 
BNF leads to token based human readable models, 
XML DTD or schema leads to XML tag based 
models and MOF or ECore leads to XMI tag based 
models. In a given project, these three kinds of 
concrete model syntax may have to collaborate 
within a same tool chain. 
 
1.3. Model correctness 
 
Each modelling language carries semantic concepts 
that are defined more or less formally by the various 
layers of the language definition. For token based 
languages, syntax compliancy brings a first level of 
correctness that must usually be completed by the 
verification of additional legality rules. With other 
modelling languages, more rigorous structural rules, 
such as relation cardinalities, can be guaranteed by 
construct. However, the actual correctness of a 
model depends on its foreseen usage, and two 
models described with the same modelling language 
may have different contents according to their 
applicative domain. For instance, the model of a 
real-time system may look correct in the scope of the 
verification of its static architecture but not correct in 
terms of its timing behaviour. Another source of 
discrepancy may come from the compliancy with the 
corporate or project engineering rules. For instance 
the way to build a system in SysML[2] may 
significantly vary between the various users or tool 
vendors. 
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1.4. Model inter-operability 
 
All these differences may be fully justified but can 
become a blocking issue for the definition of 
complete tool-chains or for system wide model 
integration. Several approaches may be considered 
to solve these model inter-operability issues. The 
first natural solution is to express all the models with 
the same meta-modelling language and implement 
all the tools within the same framework. The typical 
example of this solution is the use of the Eclipse 
platform as it has been done with the Topcased and 
Polarsys[3] initiatives. Such an “all-in-one” approach 
does minimize the inter-operability problem but 
raises a certain number of other issues like a lack of 
modularity and an increase of the effort required to 
include specialized legacy models and tools. 
Another solution consists in offering a standardized 
communication layer by the mean of a logical bus 
that can be used to ensure model transformations 
and tool interaction in a transparent way. An 
example of this solution is ModelBus[4] which allows 
for heterogeneous tools interaction, but is dedicated 
to ECore based models. The alternate approach that 
we are describing below does not have these 
restrictions. This approach is called Logic Model 
Processing (LMP). 
 
2. Logic Model Processing 
 
LMP is based on the use of the Prolog[5] language 
to formally specify rules to be applied to an 
appropriate representation of the applicative model. 
This representation of the model is composed of 
Prolog facts. Prolog (Programmation Logique) is a 
declarative language that is used to express rules 
applying on predicates. Rules can then be combined 
using Boolean Logic. Prolog syntax is very simple 
and most programs can be specified using AND, OR 
and NOT logical operators.  
 
LMP consists of a methodology, a set of tools and 
prolog libraries.  
 
Model Driven Engineering activities are supported by 
LMP as follows: 
- The meta-model classes define prolog fact 
specifications whose parameters names correspond 
to the attributes names of the classes. 
- An instantiated model consists in a populated 
prolog facts base, where facts parameters values 
correspond to classes attributes values. 
- The model processing program is expressed as a 
set of prolog rules whose predicates are others rules 
or facts. 
- To execute a LMP program, it is necessary to 
produce the facts base associated with the model to 
be processed, to merge it with the rules base 
associated with the processing to be performed and 
to run a query with the prolog interpreter. 

 
With the prolog language being an ISO standard, 
any prolog environment can be used to support the 
LMP approach. The one that has been used until 
now is sbprolog[6]. Other environments such as 
SWI-Prolog[7] are also being considered. One of the 
particularities of sbprolog is that the facts and rules 
bases can be described in textual form or in a binary 
form (byte code). Sbprolog binary files can be 
concatenated which highly facilitates the realization 
of modular processing features and the merge of 
input models. 
 
In addition to the prolog interpreter itself and its run-
time environment, a set of additional tools and 
reusable libraries are also part of the LMP tool-box. 
These include in particular input model parsers and 
output model un-parsers (or printers). The currently 
available parsers are for XML/XMI models (xmlrev), 
AADL[8] models (aadlrev), and programming 
languages. Facts base generation can also be 
implemented for memory stored models handled by 
modeling tools. 
 
The main benefits brought by the LMP approach are: 
- A clear separation between the model to be 
processed (facts base) and the model processing 
program (rules base). 
- A strong traceability between model processing 
requirements and their implementation (one rule per 
requirement). 
- The declarative and logical programming style 
offered by the prolog language. 
- The ability to define modular set of processing 
rules and to link them together at run time. 
- The ability to use a same implementation language 
for all kinds of model processing, i.e. navigation 
within the model language constructs (query 
language), verification of model properties 
(constraint language), model to model, model to text 
and text to model transformations (transformation 
language). 
 
3. Current LMP Applications 
 
3.1. Stood 
 
LMP principles have been applied in their early 
phase in the Stood[9] design tool. It has been used 
in this context for more than twenty years to 
implement various features such as static rules 
checkers, code and documentation generators as 
well as reverse engineering tools. 
 
One of the most significant successes of the use of 
the LMP technology within the Stood tool has been 
the qualification of customized model verification by 
Airbus in support of the DO 178 certification process. 
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3.2. AADL Inspector 
 
After the positive experience of the use of the LMP 
approach for increasing the capabilities of the Stood 
tool, it was decided to apply it in an extensive way 
for the development of the AADL Inspector[10] 
framework.  
 
AADL Inspector is a model processing environment 
that can parse AADL models and connect them to a 
variety of verification and generation tools, such as 
Cheddar[11] for scheduling analysis, Marzhin[12] for 
event based simulation and Ocarina[13] for source 
code generation. AADL Inspector can also be used 
to convert SysML or UML-MARTE[14] models into a 
corresponding AADL specification to take advantage 
of the existing connections with the processing tools.  
 
AADL Inspector can thus be seen as a generic 
model processing framework using AADL as pivot 
language and LMP as transformation technique. 
 
3.3. The TASTE tool-chain 
 
The TASTE[15] tool-set resulted from spin-off 
studies of the ASSERT project, which started in 
2004 with the objective to propose innovative and 
pragmatic solutions to develop real-time software. 
One of the primary targets was satellite flight 
software, but it appeared quickly that their 
characteristics were shared among various 
embedded systems.  
 
The solutions that have been developed now 
comprise a process and several tools. The 
development process is based on the idea that real-
time, embedded systems are heterogeneous by 
nature and that a unique UML-like language was 
helping neither their construction, nor their 
validation. Rather than inventing yet another 
“ultimate” language, TASTE makes the link between 
existing and mature technologies such as Simulink, 
SDL, ASN.1, C, Ada, and generates complete, 
homogeneous software-based systems that one can 
straightforwardly download and execute on a 
physical target.  
 
Within the TASTE tool-chain, LMP is used to insure 
a link between the Domain Specific Models 
(Interface View and Deployment View) and the 
corresponding AADL specification that is used 
during the model processing phases (real-time 
analysis and code generation). 
 
3.4. The PMM editors 
 
The Property Model Methodology[16] is a system 
engineering approach that involves several 
interconnected models: the Specification Model, the 

Property Based Requirements, four kinds of Design 
Models and the overall System Model. 
 
A graphical editor is being developed to support this 
modelling approach and the use of LMP is foreseen 
to insure the various required model processing 
needs in this context. 
 
4. Using LMP to process heterogeneous models 
 
The examples of use of the LMP technology that 
have been presented in the previous section are all 
confined in the scope of a particular tool or tool-
chain: processing HOOD[17] models in Stood, 
processing AADL models in AADL Inspector and in 
TASTE.  
 
However, one of the most interesting benefits of this 
approach is that it can easily be generalized to 
address the models-interoperability issue that has 
been expressed in section 1 of this paper. In this 
section, we explain how LMP can be used to 
convert, merge and process heterogeneous models. 
 
4.1. Converting heterogeneous models 
 
The role of model parsing in the LMP context 
consists of performing a syntactic transformation 
from the original model stored in memory or 
serialized in a file into a normalized prolog facts 
base. 
 
In the case of text based input models, the 
conversion are insured by a parser which output 
consists of a list of prolog predicates. 
 
In the case of memory based input models, which 
are for instance produced by a graphical tool, the 
prolog predicates must be generated with a 
dedicated printing or serialization feature. 
 
When the sbprolog environment is used, LMP 
provides a C library for the production of binary 
predicates. This library can be linked to the model 
parsers or editors. 
 
4.2. Merging heterogeneous models 
 
The conversion step that is described in the previous 
paragraph can be applied to all the input models, 
whatever meta-model they comply with and 
whatever they are serialized in a file or stored in 
memory. 
 
The portable way of merging converted models is to 
concatenate the elementary textual prolog facts 
bases that have been produced by each conversion 
tool. I can be noted that additional information can 
be inserted at that stage under the direct form of 
dedicated prolog facts. This may be especially useful 
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to introduce processing instructions (pragmas) into 
the merged facts base. 
 
The main constraint that applies at this stage is the 
management of facts redundancy and ordering. A 
good practice to avoid issues is to ensure that each 
conversion tool produces a different set of 
predicates. When this is not possible, the variation of 
the number of parameters (arity) can be used to 
avoid facts overwriting. Another solution consists of 
using a dedicated parameter to identify the model 
source. 
 
In the case of sbprolog, it is not required to take care 
of the way textual facts are ordered. With other 
prolog environments it may be mandatory to group 
all the similar facts together. Moreover, sbprolog 
binary facts files can be also concatenated. 
 
At this stage, the resulting facts base is a 
homogeneous data repository representing the 
merged heterogeneous input models that is ready 
for any kind of processing. 
 
4.3. Processing heterogeneous models 
 
Most of what has been explained for the input 
models facts base can also be applied to the model 
processing rules bases. The main difference is that 
the rules bases are usually statically defined and 
stored in a model processing library, whereas the 
facts bases are dynamically elaborated from the 
current state of the applicative model. Another 
difference comes from the facts/rules separation that 
has strictly been applied until now for all the LMP 
realizations. However, some future applications may 
require that rules are also specified within the input 
model. This may be the case for instance while 
adding model constraints insertions during the 
modelling phases. 
 
All the variety of processing can now be applied to 
the merged facts base, such as static rules 
checkers, dedicated model generators to feed 
verification tools and source code generators. 
 
4.4. Example of use 
 
This section presents a practical example of use of 
the approach. This case study has been simplified 
as much as possible for illustrative purpose. We are 
addressing what could be the development process 
for a library of operations on complex numbers. 
 
We consider a development workflow that would be 
composed of four separate steps. Each step is 
associated with an ISO 12207 standard activity and 
is likely to use different description languages and 
tools: 
 

- step1: System Requirements Analysis (5.3.2). 
- step2: Software Requirements Analysis (5.3.4). 
- step3: Software Architectural Design (5.3.5). 
- step4: Software Coding and Testing (5.3.7). 
 
4.4.1 System requirements analysis 
 
The table below gives a small subset of possible 
requirements for the realisation of a mathematical 
library on complex numbers. 
 

Id Name Text 
1 R_ComplexLib The complex number 

library must define the 
complex number type 
and operations on 
complex numbers. 

2 R_ComplexType A complex number type 
must have a Real part 
and an Imaginary part. 

3 R_ComplexAttributes Real and Imaginary 
parts of a complex 
number must be real 
numbers. 

4 R_ComplexAdd The two operands and 
the return value of the 
add operation must be 
complex numbers. 

5 R_ComplexSub The two operands and 
the return value of the 
sub operation must be 
complex numbers. 

 

When done with a requirements analysis tool, such 
as IBM Doors or SysML compliant editors, a 
requirements model can be serialised in various 
formats. For the purpose of the example, we have 
selected the Requirements Interchange Format 
(ReqIF), as it is an OMG standard. A small fragment 
of the corresponding file is given below: 
 
<SPEC-OBJECTS> 
  <SPEC-OBJECT LONG-NAME="R_ComplexLib" ... 
  <SPEC-OBJECT LONG-NAME="R_ComplexType" ... 
  <SPEC-OBJECT LONG-NAME="R_ComplexAttributes" 
  <SPEC-OBJECT LONG-NAME="R_ComplexAdd" ... 
  <SPEC-OBJECT LONG-NAME="R_ComplexSub" ... 
</SPEC-OBJECTS> 
 

Applying the appropriate LMP parser (xmlrev) to this 
file provides the corresponding list of prolog facts: 
 
isXMLTag('#39','SPEC-OBJECTS','#13','39'). 
isXMLTag('#40','SPEC-OBJECT','#39','40'). 
isXMLAttribute('#40','SPEC-OBJECT', 

'LONG-NAME','R_ComplexLib','40'). 
... 

 
The fact type isXMLTag/4 keeps track of the XML 
tags hierarchy whereas isXMLAttribute/5 provides 
the name and value of each attribute for each XML 
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tag. This low level description may be hard to use 
during the next steps. We can thus improve the 
access to relevant information by introducing a first 
level of processing that defines a new set of 
predicates of type isSpecObject/1: 
 
getSpecObjects :-  
  isXMLTag(X,’SPEC-OBJECTS’,_,_), 
  isXMLTag(Y,’SPEC-OBJECT’,X,_),  
  isXMLAttribute(Y,_,’LONG-NAME’,R,_),  
  assert(isSpecObject(R)). 

 
This rule creates a new list of facts that hides the 
syntactic complexity of the original XML structure 
and filters the needed data for further use, such as 
performing requirements traceability. 
 
isSpecObject('R_ComplexLib'). 
isSpecObject('R_ComplexType'). 
isSpecObject('R_ComplexAttributes'). 
isSpecObject('R_ComplexAdd'). 
isSpecObject('R_ComplexSub'). 

 
4.4.2 Software requirements analysis 
 
We assume that the next modelling step consists in 
formalizing the data type requirements thanks to a 
UML class diagram, as shown below: 
 

 
Figure 1 : a UML class 
 
This UML class diagram can be serialized in 
standard XMI format. A little fragment of the resulting 
.uml file is given below: 
 
<uml:Model xmi:type='uml:Model' ...> 
<packagedElement xmi:type='uml:Class' ... 
 name='Complex'> 

<ownedAttribute xmi:type='uml:Property' ... 
name='Re'/> 
<ownedAttribute xmi:type='uml:Property' ... 
name='Im' /> 

</packagedElement> 

 
We can then use the same LMP parser as in the 
previous step to convert this UML model into an 
equivalent list of prolog facts.  
 
isXMLTag('uml#3','uml:Model','#2','3'). 
isXMLAttribute('#3','uml:Model', 

'xmi:type','uml:Model','3'). 
isXMLTag('#5','packagedElement','#3','5'). 
isXMLAttribute('#5','packagedElement', 

'xmi:type','uml:Class','5'). 
isXMLAttribute('#5','packagedElement', 

'name','Complex','5'). 
isXMLTag('#6','ownedAttribute','#5','6'). 
isXMLAttribute('#6','ownedAttribute', 

'xmi:type','uml:Property','6'). 
isXMLAttribute('#6','ownedAttribute', 

'name','Re','6'). 
... 

The XMI serialisation generated by UML tools may 
be huge even for a small model. To pre-select the 
useful information for a given processing purpose, 
we can create a more specialised facts base from 
the original one by specifying a filtering rule: 
 
getUmlClasses :-  
  isXMLTag(X,'uml:Model',_,_),  
  isXMLTag(Y,'packagedElement',X,_),  

isXMLAttribute(Y,_,'xmi:type','uml:Class',_),  
isXMLAttribute(Y,_,'name',C,_),  
assert(isUmlClass(C)),  

  isXMLTag(Z,'ownedAttribute',Y,_),  
  isXMLAttribute(Z,_,'xmi:type', 
                        'uml:Property',_),  

isXMLAttribute(Z,_,'name',P,_),  
assert(isUmlProperty(C,P)). 

 
The new facts base would then looks like the 
following, and could be easily enriched to contain 
other details such as attribute types or requirement 
satisfy abstractions. 
 
isUmlClass('Complex'). 
isUmlProperty('Complex','Re'). 
isUmlProperty('Complex','Im').  
 
4.4.3 Software architectural design 
 
We are now considering the software architecture 
and express the library as an AADL package, so that 
it can be used by the other parts of the application. 
Although the AADL standard has a graphical 
notation, its main usage is with the textual notation 
that is human readable and scalable. 
  
PACKAGE ComplexLib 
PUBLIC 
WITH Base_Types; 
 
  DATA Complex 
  END Complex; 
 
  DATA IMPLEMENTATION Complex.others 
  SUBCOMPONENTS 
    Re : DATA Base_Types::Float; 
    Im : DATA Base_Types::Float; 
  END Complex.others; 
 
  SUBPROGRAM Add 
  FEATURES 
    C1 : IN PARAMETER ComplexLib::Complex; 
    C2 : IN PARAMETER ComplexLib::Complex; 
    R : OUT PARAMETER ComplexLib::Complex; 
  END Add; 
 
  SUBPROGRAM Sub 
  FEATURES 
    C1 : IN PARAMETER ComplexLib::Complex; 
    C2 : IN PARAMETER ComplexLib::Complex; 
    R : OUT PARAMETER ComplexLib::Complex; 
  END Sub; 
 
END ComplexLib; 

 
In order to be able to process an AADL specification 
with LMP, we need to use the AADL parser 
(aadlrev). The result of the parsing is the facts base 
that is shown below: 
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isComponentType('ComplexLib','PUBLIC', 
  'Complex','DATA','',6). 
isComponentImplementation('ComplexLib','PUBLIC', 
  'Complex','others','DATA','','',9). 
isSubcomponent('ComplexLib','Complex','others', 
  'Re','DATA','Base_Types::Float','','',10). 
isSubcomponent('ComplexLib','Complex','others', 
  'Im','DATA','Base_Types::Float','','',11). 
isComponentType('ComplexLib','PUBLIC', 
  'Add','SUBPROGRAM','',15). 
isFeature('PARAMETER','ComplexLib','Add','C1', 
  'IN','','ComplexLib::Complex','','',16). 
isFeature('PARAMETER','ComplexLib','Add','C2', 
  'IN','','ComplexLib::Complex','','',17). 
isFeature('PARAMETER','ComplexLib','Add','R', 
  'OUT','','ComplexLib::Complex','','',18). 
... 

 
Due to the token based nature of the AADL syntax 
as opposed to the XML/XMI based languages, the 
resulting facts base is much more compact and 
directly usable without having to define a new set of 
more precise predicates. 
 
4.4.4 Coding 
 
For the last step of our development process, we will 
process an implementation of the library in Ada 
language. A possible realisation in source code 
could be: 
 
package ComplexLib is 
  type Complex is record 
    Re : Float; 
    Im : Float; 
  end record; 

function add ( 
  C1 : IN Complex;  
  C2 : IN Complex )  
  return Complex; 
function sub ( 
  C1 : IN Complex;  
  C2 : IN Complex )  
  return Complex; 

end ComplexLib; 

 
We can then use another parser of the LMP toolbox 
(adarev) to build a facts base from the Ada code. 
 
packageSpec('ComplexLib','_root_'). 
typeComponent('ComplexLib','Complex',  
  'Re','Float',''). 
typeComponent('ComplexLib','Complex',  
  'Im','Float',''). 
typeSpec('ComplexLib','Complex','...'). 
operationSpec('ComplexLib','add','...'). 
param('ComplexLib','add','...', 
  'C1','Complex','in',''). 
param('ComplexLib','add','...', 
  'C2','Complex','in',''). 
param('ComplexLib','add','...', 
  'return','Complex','out',''). 
... 

 
For the same reason as for AADL, there is no need 
to create a new facts base to select the useful 
information. 
 

4.4.5 All together 
 
Although they are coming from different modelling 
languages, the syntactic transformation into prolog 
predicates allows for global processing of the 
merged model. 
 
The facts sub-bases can be concatenated to provide 
all the required data to perform cross-activity 
processing. In particular, this can be used to verify 
the consistency of the workflow, such as 
requirements coverage or code compatibility with the 
architecture. 
 
All these verification rules can be expressed in 
standard prolog language, as shown in the two 
simple examples given below. 
 
Rule1. the data types specified in the software 
specification must be defined in the software 
architecture: 
 
checkR1 :-  
 isUmlClass(T),                         /*UML*/ 
 not(isComponentType(_,_,T,'DATA',_,_)),/*AADL*/  

write('Error R1 for: '), write(T). 

 
Rule2: the data types specified in the software 
architecture must be defined in the source code: 
 
checkR2 :-  

isComponentType(_,_,T,'DATA',_,_),    /*AADL*/ 
  not(typeSpec(_,T,_)),                 /*Ada*/ 
  write('Error R2 for: '), write(T). 

 
Similar rules could be defined to check that all the 
system requirements are properly covered by design 
entities.  
 
After having shown how LMP could ease static 
processing of merged heterogeneous models, we 
will now consider dynamic architectural reasoning. 
 
5.  Architectural Reasoning Using LMP 
 
The prolog fact-based representation of the LMP 
form presents a good foundation for the logical 
reasoning and processing of the architectural 
models. In the next sections we present some 
simple examples to illustrate the flexibility of the LMP 
approach. 
 
5.1.Physical Separation and Independence Analysis  
 
To illustrate this potential, we present a simple LMP-
based extension to illustrate how physical zonal 
independence can be assessed from the LMP 
model.   
 
In modern aircraft, there is often a need to ensure 
that the independence assumed within a fault-tree is 
sufficient to mitigate the potential of physical 
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damage that may arise from adverse system events 
such as fire, or explosions. Many manufactures 
require a minimum physical separation among 
redundant elements. In Integrated Modular Avionic 
(IMA) architectures, assuring that this separation is 
achieved for all of the hosted functions can be non-
trivial, as multiple sub-function elements are 
distributed across the IMA processing and 
input/output hardware elements.  As architectures 
become increasing networked and distributed, the 
complexity of such analysis may only increase, 
hence the ability to address it systematically is 
attractive. 

 
Figure 2 : Example Wheel Brake System 
 
To illustrate the technique we present the wheel 
brake system case study, shown in Figure 2.  This 
system comprises two independent hydraulic circuits 
that are each controlled by a dual lane command 
/monitor computation system.  For each circuit, the 
command processor modulates the expected 
pressure to achieve the required braking force; the 
monitor processor supervises the commanded 
braking operation, monitoring commanded output 
pressure sensor feedback. If the monitored pressure 
is not in agreement with the monitor’s expected 
limits, the monitor closes the isolation valve and 
removes all hydraulic pressure, rendering the 
channel in active. It then yields control to the other 
channel.  
 
For brevity of the presentation, our example analysis 
focuses on the placement of the command and 
monitoring processing hardware of each lane.  
 
To introduce the physical location of components 
onto the model a new AADL property is defined. In 
our simple example, we utilize a single point, but in 
practice this may be a series of points, which 
represent the physical boundaries of the 
components. Inherently extensible, via property sets 

adding such notions to an AADL model is very 
straightforward. 
 
property set Location  is 
 
Location: list of record  
( x_pos : aadlreal; 
  y_pos :aadlreal; 

z_pos : aadlreal; )  
applies to 
( processor, system, abstract, device ); 
 
end Location; 

 
To represent both good and bad configurations, two 
system implementations are defined, by extending 
the base implementation. In the first configuration 
the command and monitor components within each 
lane are placed to be adjacent, and the computation 
elements of the Alt and Norm lanes are separated by 
10 meters, as illustrated below. 
 
System implementation 
wbs_com_mon_dual_lane.good_impl  
  extends wbs_com_mon_dual_lane.impl 
 
properties 
Location::Location => 

([x_pos => 1.0; y_pos => 1.0; z_pos=> 1.0;])  
applies to monAlt; 

Location::Location => 
([x_pos => 1.1; y_pos => 1.0; z_pos=> 1.0;])  
applies to comAlt; 

Location::Location=> 
([x_pos => 10.0; y_pos => 1.0; z_pos=> 1.0;])  
applies to comNorm; 

Location::Location => 
([x_pos => 10.1; y_pos => 1.0; z_pos=> 1.0;])  
applies to monNorm; 

          
end wbs_com_mon_dual_lane.good_impl; 

 
In the second configuration the monitor of the Alt 
channel is swapped with the monitor of the Norm 
channel.  It should be noted that, this configuration is 
insufficient with respect to the required physical 
channel separation, since failure of a single physical 
zone will destroy critical components of both lanes of 
redundancy. Hence, it is our intention is to illustrate 
this using model analysis. 
 
The AADL composite error model, records the 
assumptions of the structure of the redundancy, 
hence the first stage of analysis is to convert this into 
LMP form. This is done using the ADDL parser 
(aadlrev) that has been extended under this work to 
capture the structure of the Error Annex logical 
expressions.  
 
composite error behaviour 
states 
--Unannunciated braking loss 
[  
( ( pumpGreen.Failed or isolNorm.Failed or   

  bcvNorm.Failed or monNorm.Failed or   
  comNorm.Failed ) and  

  ( pumpBlue.Failed or isolAlt.Failed or  
  bcvAlt.Failed or monAlt.Failed or  
  comAlt.Failed ) ) or  

( pedalLeft.Failed and PedalRight.Failed ) or 
brake.Failed 
]-> UnannunciatedBrakingLoss; 
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The LMP representation for the above model 
comprises two facts; isEMV2CompositeStateElem is 
used to store failure conditions, and 
isEMV2CompositeStateExpr facts are then used to 
map the logical relationships of the elements. Two 
example facts are shown below. 
 
isEMV2CompositeStateExpr('wbs','wbs_com_mon_dual
_lane','impl','unnamed_A1','unnamed_K1','$1','pu
mpGreen.Failed','OR','isolNorm.Failed',235). 
 
isEMV2CompositeStateElem('wbs','wbs_com_mon_dual
_lane','impl','unnamed_A1','unnamed_K1','$2','bc
vNorm.Failed','NIL',235). 

 
In a similar manner to other LMP parsers, element 
and expression identifies and indexes ‘$1’ are 
maintained to support the mapping and relating of 
the facts. Once in LMP form, the next stage of the 
physical separation, is to convert the logical 
structure of the fault-tree into a form that can be 
executed with prolog, This conversion comprises a 
simple mapping. Each expression is converted to a 
dynamic prolog fact as illustrated below. 
 
 init :- 
  dynamic('pumpGreen.Failed'/0), 
  dynamic('isolNorm.Failed'/0), 
  dynamic('bcvNorm.Failed'/0), 
  dynamic('monNorm.Failed'/0), 
  dynamic('comNorm.Failed'/0), 
  dynamic('pumpBlue.Failed'/0), 
  dynamic('isolAlt.Failed'/0), 
  dynamic('bcvAlt.Failed'/0), 
  dynamic('monAlt.Failed'/0), 
  dynamic('comAlt.Failed'/0), 
  dynamic('pedalLeft.Failed'/0), 
  dynamic('PedalRight.Failed'/0), 
  dynamic('brake.Failed'/0). 

 
The init predicate introduces all of the potential 
faults as dynamic facts in the prolog database. It is 
complimented by a clear, predicate (not shown) that 
retracts all facts related to failures. Clear is then 
used to establish a clean baseline for iterative 
analysis and queries. This is also useful to support 
working in the interactive prolog shell, when 
manually exploring failure combinations. 
 
The isEMV2CompositeStateExpr are similarly 
reduced and mapped to a simplified executable form 
as illustrated below.  
 
exp11 :- exp5,exp10. 
exp12 :- 'pedalLeft.Failed','PedalRight.Failed'. 
exp1 :- 'pumpGreen.Failed';'isolNorm.Failed'. 
exp2 :- exp1;'bcvNorm.Failed'. 
exp3 :- exp2;'monNorm.Failed'. 
exp4 :- exp3;'comNorm.Failed'. 
exp6 :- 'pumpBlue.Failed';'isolAlt.Failed'. 
exp7 :- exp6;'bcvAlt.Failed'. 
exp8 :- exp7;'monAlt.Failed'. 
exp9 :- exp8;'comAlt.Failed'. 
exp14 :- exp11; exp13. 
exp15 :- exp14;'brake.Failed'. 
exp5 :- exp4. 
exp10 :- exp9. 
exp13 :- exp12. 

 
Logical structure of these is generated from the 
structure of the composite error model state-

annotations. It should be noted that the code and 
effort required to generate executable form from the 
LMP representation is very small comprising less 
than 100 lines of prolog in total. 
 
We remind that the logical operator AND (resp. OR) 
is expressed in prolog by a comma (resp. a 
semicolon). 
 
Once in this reduced form, prolog is able to compute 
how the combination of failures impacts the top-level 
event. In our simple the top-level event is 
represented by the expression with the highest 
index. 
 
The next stage of the analysis is to generate the set 
of failures that can correspond to the different zones. 
Once processed by LMP, the location properties 
introduced previously yield a set of facts for each 
component as shown below. 
 
isRecordField('wbs','wbs_com_mon_dual_lane', 
'good_impl','monAlt','LOCATION::LOCATION',1,'x_p
os','1.0',275). 
isRecordField('wbs','wbs_com_mon_dual_lane', 
'good_impl','monAlt','LOCATION::LOCATION',1,'y_p
os','1.0',275). 
isRecordField('wbs','wbs_com_mon_dual_lane', 
'good_impl','monAlt','LOCATION::LOCATION',1,'z_p
os','1.0',275). 

 
The local facts are then grouped by component 
using a ftacomponent predicate as shown below, 
that simply maps the component name and X,Y,Z 
location.  
 
ftacomponent(P,T,I,Name,X,Y,Z) :- 
  isRecordField(P,T,I,Name,'LOCATION::LOCATION', 
    1,'x_pos',XA,_), 
  isRecordField(P,T,I,Name,'LOCATION::LOCATION', 
    1,'y_pos',YA,_), 
  isRecordField(P,T,I,Name,'LOCATION::LOCATION', 
    1,'z_pos',ZA,_), 
  atom_number(XA,X), 
  atom_number(YA,Y), 
  atom_number(ZA,Z). 

 
The system then examines all instances of the 
ftacomponent and generates zones of collocated 
component using the a simple separation auxiliary 
predicate, that returns true if the two components 
are located within a defined separation limit 
(Distance), which in our case was 6 meters. 
 
separation((X1,Y1,Z1),(X2,Y2,Z2),Distance):- 
  Xd = X2 - X1, 
  Yd = Y2 - Y1, 
  Zd = Z2 - Z1, 
  D is sqrt((Xd * Xd) + (Yd * Yd) + (Zd * Zd)), 
  D < Distance. 

 
As illustrated below the code to build_zones is 
relatively terse comprising only a few lines of code. 
This is one of the attractions of the declarative 
nature of the prolog processing. 
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build_zones([],PP,TT,II,Acc,Acc). 
build_zones([(_,X,Y,Z)|T],PP,TT,II,Acc,Final):- 
findall((B,BX,BY,BZ), 
   (ftacomponent(PP,TT,II,B,BX,BY,BZ), 
   (seperation((X,Y,Z),(BX,BY,BZ),6))),Zone), 
    (not(member(Zone,Acc)) -> 
 append(Acc,[Zone],NewAcc); 
 NewAcc = Acc ), 
    build_zones(T,PP,TT,II,NewAcc,Final). 

 
Once the zones are complete, we simply instantiate 
a zonal related failure set for each zone, but adding 
zone predicates to the output. The zone predicates 
for the good and bad wheel brake command monitor 
configurations are shown below. 
 
zone_good_impl0:- 
 assertz('comAlt.Failed'), 
 assertz('monAlt.Failed'). 
zone_good_impl1:- 
 assertz('monNorm.Failed'), 
 assertz('comNorm.Failed'). 

 
zone_bad_impl0:- 
 assertz('monNorm.Failed'), 
 assertz('comAlt.Failed'). 
zone_bad_impl1:- 
 assertz('comNorm.Failed'), 
 assertz('monAlt.Failed'). 

 
To explore the system, it is only necessary to 
instantiate each of the generated zonal fault-sets 
with the fault tree expression logic discussed 
previously, and querying the state of the top-level 
hazard, in out case exp15. To package such 
analysis in smaller form large LMP database, a 
stand-alone file ‘ftap.pro’ is generated by the LMP 
processing logic.  
 
This can then be loaded into the interactive SWI-
Prolog environment. A trace from an interactive 
session following the loading of the file is shown 
below for the good component placement example. 
 
- ['ftap.pro'].    
true. 
?- init.         
true. 
?- clear.           
true. 
?- exp15.           
false. 
?- zone_good_impl0. 
true. 
?- exp15.           
false. 
?- zone_good_impl1. 
true. 
?- exp15.           
true . 

 
Evaluating exp15 following the single zone failure 
zone_good_impl0 concludes false, indicating that 
the failure of zone_good_impl0 is not sufficient to 
cause the top-level event.  However, the subsequent 
additional failure of zone_good_impl1 does cause 
the top-level event, and the subsequent query of 
exp15. 

 
Repeating the procedure with the bad configuration, 
we see that failures of the single zone are sufficient 
to cause the failure of the top-level event as 
illustrated in the trace below.  
 
?- ['ftap.pro']. 
true. 
?- init. 
true. 
?- clear.        
true. 
?- exp15.        
false. 
?- zone_bad_impl0. 
true. 
?- exp15.          
true . 

 
Note, that in our toy example, we are using a 
simplified representation of location. In real 
deployments our single point may be expanded to 
present the component boundary points. Similarly, 
other types of queries such as the use of a common 
CPU type, cooling zone, and or power-supply 
distribution etc., are easily implemented given 
AADL’s extensible property provisions. In each case 
basic analysis technique would remain largely 
unchanged, only requiring adaption of the 
build_zones criteria.  
 
5.2. Modelling Completeness Checks. 
 
A second application of the LMP processing is the 
implementation of automated model completion and 
completeness checking.  In large systems the level 
of detail and abstraction within the model needs to 
be managed and maintained. Organizations often 
maintain modelling standards that define the 
required model content. However, enforcing such 
standards can be cumbersome without the 
appropriate automation.   
 
However, if the model is expressed in LMP, the 
automation of consistence and compliance checks 
becomes very simple. Given that, all aspects of the 
architecture are represented by facts, simple queries 
against the fact bases can be generated for each 
requirement.  For example, as shown below, only a 
few lines of code are necessary to execute the query 
to check that all processing hardware components 
have a consistent error model associated with them. 
 
isComponentType(P,_,X,'PROCESSOR',_,_),  
not(isAnnex(P,X,_,_,'EMV2',_,_)),  
writeErrorMessage(P,X). 

 
By examining the architectural model, using 
additional system composition predicates and/or 
predicates derived from fault-tolerance theory 
predicates, the architectural correctness may be 
simply validated.  For example, a simple predicate 
may check that all bus components have a specified 
error model, e.g. Bit Error Rate (BER). A more 
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advanced predicate may check that protocols that 
are bound to the bus utilize a suitable end-to-end 
data transport protocol to mitigate the expected 
error-rate. More elaborate queries, such as 
Byzantine vulnerability analysis, are also possible, 
by highlighting all instances where forked data paths 
of the logical model, have terminals that bind to 
different physical components. 
 
Related Work 
 
The fault-tree representation used by our illustrative 
case-study was inspired from the original work of 
Shuchi[18].  
 
In the area of architecture model processing, several 
alternate solutions have been explored, such as 
REAL [19], RESOLUTE [20] and AGREE [21]. The 
definition of a “constraint annex” is also under 
discussion by the AADL standardisation committee. 
 
On-going and Future Work 
 
LMP is used for the development of the new 
processing plug-ins that will be integrated in the 
future distributions of the AADL Inspector tool. The 
current work is focused on extending the import 
capabilities for UML profiles models such as 
MARTE, SysML, SCADE System, or CAPELLA as 
well as new processing features, especially for 
safety analysis.  
 
In order to facilitate the connection with Domain 
Specific Modelling Languages, an automatic 
generation of most the prolog rules that are required 
to parse, navigate and process ECore based models 
is being developed. A similar approach is also 
envisaged for XSD definitions. 
 
Following the idea that LMP allows a tool agnostic 
infrastructure to be developed, integration with 
solutions like Modelbus is also considered.  
 
Another area of active research is the generation/ 
derivation of the AADL Error-Annex composite 
model annotations from a case-based reasoning 
approach of the known component failure modes in 
conjunction with architectural topology.  
 
Conclusion 
 
This paper introduces the raising issue of 
heterogeneous models processing and proposes an 
original solution to address it. This solution merges 
the principles of logic programming and those of 
model driven engineering to define the Logic Model 
Processing (LMP) approach.  
 

This approach and the supporting tools are 
described in the paper and several examples are 
provided to illustrate its benefits. 
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