
 Page 1/10

Merging and Processing Heterogeneous Models

P. Dissaux1 ,B. Hall2

1: Ellidiss Technologies, 24, quai de la douane, 29200 Brest, France
2: Advanced Technology, Honeywell, 1985, Douglas Drive, Golden Valley, MN,USA

Introduction

Model Driven Engineering is now recognized as a
way to significantly improve the development
process of industrial systems and software. This
approach leads to the production of various kinds of
models associated to each modelling and verification
step of the life cycle. All these concrete models may
differ in their abstract definition (meta-model) and in
their syntactic expression. Such diversity cannot be
easily avoided as each modelling language brings its
own specific benefit or is fundamentally associated
with a particular tool or technique. However, merging
and processing heterogeneous models to support all
the required development activities can become a
real engineering issue in the context of industrial
projects.

This paper presents a solution to this problem. The
proposed approach is based on the LMP[1] (Logic
Model Processing) technology to provide a unique,
standardized and easy to process representation of
each model that is involved in a given project. Using
this solution leads to the realization of a global
homogeneous repository from syntactical conversion
of each input model, without altering their semantic
diversity. It then dramatically facilitates the
development of model processing tools, such as
model explorations, model verifications, model
transformations and architectural reasoning.

1. The model jungle

1.1. Model roles

Models can be used at the various stages of the
system development life-cycle. In the descending
branch of the life-cycle, we can easily find for a
single project at least requirements models, design
models and a set of models associated with early
verification techniques. If we make the assumption
that each individual model is well defined in the
context of its own purpose, the key issue is then to
ensure a proper inter-operability between these
various steps of the life-cycle. This implies that we
can manage various kinds of model dependencies,
such as traceability (e.g. between design model

entities and requirement model entities),
transformation (e.g. between a design model and a
verification model) and consistency (e.g. between
the various subsets of a design model)

1.2. Model syntax

Models can be defined with different meta-modelling
languages or approaches, including BNF, XML
DTDs or schemas, MOF or ECore. This choice has
of course an impact on the way the concrete models
can be handled in a tool or a tool-chain. Most of the
time, the internal representation of a model in
memory is tool dependent. On the contrary, the
result of a file serialization must comply with a
standard representation which depends on the
corresponding meta-model syntax. For instance,
BNF leads to token based human readable models,
XML DTD or schema leads to XML tag based
models and MOF or ECore leads to XMI tag based
models. In a given project, these three kinds of
concrete model syntax may have to collaborate
within a same tool chain.

1.3. Model correctness

Each modelling language carries semantic concepts
that are defined more or less formally by the various
layers of the language definition. For token based
languages, syntax compliancy brings a first level of
correctness that must usually be completed by the
verification of additional legality rules. With other
modelling languages, more rigorous structural rules,
such as relation cardinalities, can be guaranteed by
construct. However, the actual correctness of a
model depends on its foreseen usage, and two
models described with the same modelling language
may have different contents according to their
applicative domain. For instance, the model of a
real-time system may look correct in the scope of the
verification of its static architecture but not correct in
terms of its timing behaviour. Another source of
discrepancy may come from the compliancy with the
corporate or project engineering rules. For instance
the way to build a system in SysML[2] may
significantly vary between the various users or tool
vendors.

 Page 2/10

1.4. Model inter-operability

All these differences may be fully justified but can
become a blocking issue for the definition of
complete tool-chains or for system wide model
integration. Several approaches may be considered
to solve these model inter-operability issues. The
first natural solution is to express all the models with
the same meta-modelling language and implement
all the tools within the same framework. The typical
example of this solution is the use of the Eclipse
platform as it has been done with the Topcased and
Polarsys[3] initiatives. Such an “all-in-one” approach
does minimize the inter-operability problem but
raises a certain number of other issues like a lack of
modularity and an increase of the effort required to
include specialized legacy models and tools.
Another solution consists in offering a standardized
communication layer by the mean of a logical bus
that can be used to ensure model transformations
and tool interaction in a transparent way. An
example of this solution is ModelBus[4] which allows
for heterogeneous tools interaction, but is dedicated
to ECore based models. The alternate approach that
we are describing below does not have these
restrictions. This approach is called Logic Model
Processing (LMP).

2. Logic Model Processing

LMP is based on the use of the Prolog[5] language
to formally specify rules to be applied to an
appropriate representation of the applicative model.
This representation of the model is composed of
Prolog facts. Prolog (Programmation Logique) is a
declarative language that is used to express rules
applying on predicates. Rules can then be combined
using Boolean Logic. Prolog syntax is very simple
and most programs can be specified using AND, OR
and NOT logical operators.

LMP consists of a methodology, a set of tools and
prolog libraries.

Model Driven Engineering activities are supported by
LMP as follows:
- The meta-model classes define prolog fact
specifications whose parameters names correspond
to the attributes names of the classes.
- An instantiated model consists in a populated
prolog facts base, where facts parameters values
correspond to classes attributes values.
- The model processing program is expressed as a
set of prolog rules whose predicates are others rules
or facts.
- To execute a LMP program, it is necessary to
produce the facts base associated with the model to
be processed, to merge it with the rules base
associated with the processing to be performed and
to run a query with the prolog interpreter.

With the prolog language being an ISO standard,
any prolog environment can be used to support the
LMP approach. The one that has been used until
now is sbprolog[6]. Other environments such as
SWI-Prolog[7] are also being considered. One of the
particularities of sbprolog is that the facts and rules
bases can be described in textual form or in a binary
form (byte code). Sbprolog binary files can be
concatenated which highly facilitates the realization
of modular processing features and the merge of
input models.

In addition to the prolog interpreter itself and its run-
time environment, a set of additional tools and
reusable libraries are also part of the LMP tool-box.
These include in particular input model parsers and
output model un-parsers (or printers). The currently
available parsers are for XML/XMI models (xmlrev),
AADL[8] models (aadlrev), and programming
languages. Facts base generation can also be
implemented for memory stored models handled by
modeling tools.

The main benefits brought by the LMP approach are:
- A clear separation between the model to be
processed (facts base) and the model processing
program (rules base).
- A strong traceability between model processing
requirements and their implementation (one rule per
requirement).
- The declarative and logical programming style
offered by the prolog language.
- The ability to define modular set of processing
rules and to link them together at run time.
- The ability to use a same implementation language
for all kinds of model processing, i.e. navigation
within the model language constructs (query
language), verification of model properties
(constraint language), model to model, model to text
and text to model transformations (transformation
language).

3. Current LMP Applications

3.1. Stood

LMP principles have been applied in their early
phase in the Stood[9] design tool. It has been used
in this context for more than twenty years to
implement various features such as static rules
checkers, code and documentation generators as
well as reverse engineering tools.

One of the most significant successes of the use of
the LMP technology within the Stood tool has been
the qualification of customized model verification by
Airbus in support of the DO 178 certification process.

 Page 3/10

3.2. AADL Inspector

After the positive experience of the use of the LMP
approach for increasing the capabilities of the Stood
tool, it was decided to apply it in an extensive way
for the development of the AADL Inspector[10]
framework.

AADL Inspector is a model processing environment
that can parse AADL models and connect them to a
variety of verification and generation tools, such as
Cheddar[11] for scheduling analysis, Marzhin[12] for
event based simulation and Ocarina[13] for source
code generation. AADL Inspector can also be used
to convert SysML or UML-MARTE[14] models into a
corresponding AADL specification to take advantage
of the existing connections with the processing tools.

AADL Inspector can thus be seen as a generic
model processing framework using AADL as pivot
language and LMP as transformation technique.

3.3. The TASTE tool-chain

The TASTE[15] tool-set resulted from spin-off
studies of the ASSERT project, which started in
2004 with the objective to propose innovative and
pragmatic solutions to develop real-time software.
One of the primary targets was satellite flight
software, but it appeared quickly that their
characteristics were shared among various
embedded systems.

The solutions that have been developed now
comprise a process and several tools. The
development process is based on the idea that real-
time, embedded systems are heterogeneous by
nature and that a unique UML-like language was
helping neither their construction, nor their
validation. Rather than inventing yet another
“ultimate” language, TASTE makes the link between
existing and mature technologies such as Simulink,
SDL, ASN.1, C, Ada, and generates complete,
homogeneous software-based systems that one can
straightforwardly download and execute on a
physical target.

Within the TASTE tool-chain, LMP is used to insure
a link between the Domain Specific Models
(Interface View and Deployment View) and the
corresponding AADL specification that is used
during the model processing phases (real-time
analysis and code generation).

3.4. The PMM editors

The Property Model Methodology[16] is a system
engineering approach that involves several
interconnected models: the Specification Model, the

Property Based Requirements, four kinds of Design
Models and the overall System Model.

A graphical editor is being developed to support this
modelling approach and the use of LMP is foreseen
to insure the various required model processing
needs in this context.

4. Using LMP to process heterogeneous models

The examples of use of the LMP technology that
have been presented in the previous section are all
confined in the scope of a particular tool or tool-
chain: processing HOOD[17] models in Stood,
processing AADL models in AADL Inspector and in
TASTE.

However, one of the most interesting benefits of this
approach is that it can easily be generalized to
address the models-interoperability issue that has
been expressed in section 1 of this paper. In this
section, we explain how LMP can be used to
convert, merge and process heterogeneous models.

4.1. Converting heterogeneous models

The role of model parsing in the LMP context
consists of performing a syntactic transformation
from the original model stored in memory or
serialized in a file into a normalized prolog facts
base.

In the case of text based input models, the
conversion are insured by a parser which output
consists of a list of prolog predicates.

In the case of memory based input models, which
are for instance produced by a graphical tool, the
prolog predicates must be generated with a
dedicated printing or serialization feature.

When the sbprolog environment is used, LMP
provides a C library for the production of binary
predicates. This library can be linked to the model
parsers or editors.

4.2. Merging heterogeneous models

The conversion step that is described in the previous
paragraph can be applied to all the input models,
whatever meta-model they comply with and
whatever they are serialized in a file or stored in
memory.

The portable way of merging converted models is to
concatenate the elementary textual prolog facts
bases that have been produced by each conversion
tool. I can be noted that additional information can
be inserted at that stage under the direct form of
dedicated prolog facts. This may be especially useful

 Page 4/10

to introduce processing instructions (pragmas) into
the merged facts base.

The main constraint that applies at this stage is the
management of facts redundancy and ordering. A
good practice to avoid issues is to ensure that each
conversion tool produces a different set of
predicates. When this is not possible, the variation of
the number of parameters (arity) can be used to
avoid facts overwriting. Another solution consists of
using a dedicated parameter to identify the model
source.

In the case of sbprolog, it is not required to take care
of the way textual facts are ordered. With other
prolog environments it may be mandatory to group
all the similar facts together. Moreover, sbprolog
binary facts files can be also concatenated.

At this stage, the resulting facts base is a
homogeneous data repository representing the
merged heterogeneous input models that is ready
for any kind of processing.

4.3. Processing heterogeneous models

Most of what has been explained for the input
models facts base can also be applied to the model
processing rules bases. The main difference is that
the rules bases are usually statically defined and
stored in a model processing library, whereas the
facts bases are dynamically elaborated from the
current state of the applicative model. Another
difference comes from the facts/rules separation that
has strictly been applied until now for all the LMP
realizations. However, some future applications may
require that rules are also specified within the input
model. This may be the case for instance while
adding model constraints insertions during the
modelling phases.

All the variety of processing can now be applied to
the merged facts base, such as static rules
checkers, dedicated model generators to feed
verification tools and source code generators.

4.4. Example of use

This section presents a practical example of use of
the approach. This case study has been simplified
as much as possible for illustrative purpose. We are
addressing what could be the development process
for a library of operations on complex numbers.

We consider a development workflow that would be
composed of four separate steps. Each step is
associated with an ISO 12207 standard activity and
is likely to use different description languages and
tools:

- step1: System Requirements Analysis (5.3.2).
- step2: Software Requirements Analysis (5.3.4).
- step3: Software Architectural Design (5.3.5).
- step4: Software Coding and Testing (5.3.7).

4.4.1 System requirements analysis

The table below gives a small subset of possible
requirements for the realisation of a mathematical
library on complex numbers.

Id Name Text
1 R_ComplexLib The complex number

library must define the
complex number type
and operations on
complex numbers.

2 R_ComplexType A complex number type
must have a Real part
and an Imaginary part.

3 R_ComplexAttributes Real and Imaginary
parts of a complex
number must be real
numbers.

4 R_ComplexAdd The two operands and
the return value of the
add operation must be
complex numbers.

5 R_ComplexSub The two operands and
the return value of the
sub operation must be
complex numbers.

When done with a requirements analysis tool, such
as IBM Doors or SysML compliant editors, a
requirements model can be serialised in various
formats. For the purpose of the example, we have
selected the Requirements Interchange Format
(ReqIF), as it is an OMG standard. A small fragment
of the corresponding file is given below:

<SPEC-OBJECTS>
 <SPEC-OBJECT LONG-NAME="R_ComplexLib" ...
 <SPEC-OBJECT LONG-NAME="R_ComplexType" ...
 <SPEC-OBJECT LONG-NAME="R_ComplexAttributes"
 <SPEC-OBJECT LONG-NAME="R_ComplexAdd" ...
 <SPEC-OBJECT LONG-NAME="R_ComplexSub" ...
</SPEC-OBJECTS>

Applying the appropriate LMP parser (xmlrev) to this
file provides the corresponding list of prolog facts:

isXMLTag('#39','SPEC-OBJECTS','#13','39').
isXMLTag('#40','SPEC-OBJECT','#39','40').
isXMLAttribute('#40','SPEC-OBJECT',

'LONG-NAME','R_ComplexLib','40').
...

The fact type isXMLTag/4 keeps track of the XML
tags hierarchy whereas isXMLAttribute/5 provides
the name and value of each attribute for each XML

 Page 5/10

tag. This low level description may be hard to use
during the next steps. We can thus improve the
access to relevant information by introducing a first
level of processing that defines a new set of
predicates of type isSpecObject/1:

getSpecObjects :-
 isXMLTag(X,’SPEC-OBJECTS’,_,_),
 isXMLTag(Y,’SPEC-OBJECT’,X,_),
 isXMLAttribute(Y,_,’LONG-NAME’,R,_),
 assert(isSpecObject(R)).

This rule creates a new list of facts that hides the
syntactic complexity of the original XML structure
and filters the needed data for further use, such as
performing requirements traceability.

isSpecObject('R_ComplexLib').
isSpecObject('R_ComplexType').
isSpecObject('R_ComplexAttributes').
isSpecObject('R_ComplexAdd').
isSpecObject('R_ComplexSub').

4.4.2 Software requirements analysis

We assume that the next modelling step consists in
formalizing the data type requirements thanks to a
UML class diagram, as shown below:

Figure 1 : a UML class

This UML class diagram can be serialized in
standard XMI format. A little fragment of the resulting
.uml file is given below:

<uml:Model xmi:type='uml:Model' ...>
<packagedElement xmi:type='uml:Class' ...
 name='Complex'>

<ownedAttribute xmi:type='uml:Property' ...
name='Re'/>
<ownedAttribute xmi:type='uml:Property' ...
name='Im' />

</packagedElement>

We can then use the same LMP parser as in the
previous step to convert this UML model into an
equivalent list of prolog facts.

isXMLTag('uml#3','uml:Model','#2','3').
isXMLAttribute('#3','uml:Model',

'xmi:type','uml:Model','3').
isXMLTag('#5','packagedElement','#3','5').
isXMLAttribute('#5','packagedElement',

'xmi:type','uml:Class','5').
isXMLAttribute('#5','packagedElement',

'name','Complex','5').
isXMLTag('#6','ownedAttribute','#5','6').
isXMLAttribute('#6','ownedAttribute',

'xmi:type','uml:Property','6').
isXMLAttribute('#6','ownedAttribute',

'name','Re','6').
...

The XMI serialisation generated by UML tools may
be huge even for a small model. To pre-select the
useful information for a given processing purpose,
we can create a more specialised facts base from
the original one by specifying a filtering rule:

getUmlClasses :-
 isXMLTag(X,'uml:Model',_,_),
 isXMLTag(Y,'packagedElement',X,_),

isXMLAttribute(Y,_,'xmi:type','uml:Class',_),
isXMLAttribute(Y,_,'name',C,_),
assert(isUmlClass(C)),

 isXMLTag(Z,'ownedAttribute',Y,_),
 isXMLAttribute(Z,_,'xmi:type',
 'uml:Property',_),

isXMLAttribute(Z,_,'name',P,_),
assert(isUmlProperty(C,P)).

The new facts base would then looks like the
following, and could be easily enriched to contain
other details such as attribute types or requirement
satisfy abstractions.

isUmlClass('Complex').
isUmlProperty('Complex','Re').
isUmlProperty('Complex','Im').

4.4.3 Software architectural design

We are now considering the software architecture
and express the library as an AADL package, so that
it can be used by the other parts of the application.
Although the AADL standard has a graphical
notation, its main usage is with the textual notation
that is human readable and scalable.

PACKAGE ComplexLib
PUBLIC
WITH Base_Types;

 DATA Complex
 END Complex;

 DATA IMPLEMENTATION Complex.others
 SUBCOMPONENTS
 Re : DATA Base_Types::Float;
 Im : DATA Base_Types::Float;
 END Complex.others;

 SUBPROGRAM Add
 FEATURES
 C1 : IN PARAMETER ComplexLib::Complex;
 C2 : IN PARAMETER ComplexLib::Complex;
 R : OUT PARAMETER ComplexLib::Complex;
 END Add;

 SUBPROGRAM Sub
 FEATURES
 C1 : IN PARAMETER ComplexLib::Complex;
 C2 : IN PARAMETER ComplexLib::Complex;
 R : OUT PARAMETER ComplexLib::Complex;
 END Sub;

END ComplexLib;

In order to be able to process an AADL specification
with LMP, we need to use the AADL parser
(aadlrev). The result of the parsing is the facts base
that is shown below:

 Page 6/10

isComponentType('ComplexLib','PUBLIC',
 'Complex','DATA','',6).
isComponentImplementation('ComplexLib','PUBLIC',
 'Complex','others','DATA','','',9).
isSubcomponent('ComplexLib','Complex','others',
 'Re','DATA','Base_Types::Float','','',10).
isSubcomponent('ComplexLib','Complex','others',
 'Im','DATA','Base_Types::Float','','',11).
isComponentType('ComplexLib','PUBLIC',
 'Add','SUBPROGRAM','',15).
isFeature('PARAMETER','ComplexLib','Add','C1',
 'IN','','ComplexLib::Complex','','',16).
isFeature('PARAMETER','ComplexLib','Add','C2',
 'IN','','ComplexLib::Complex','','',17).
isFeature('PARAMETER','ComplexLib','Add','R',
 'OUT','','ComplexLib::Complex','','',18).
...

Due to the token based nature of the AADL syntax
as opposed to the XML/XMI based languages, the
resulting facts base is much more compact and
directly usable without having to define a new set of
more precise predicates.

4.4.4 Coding

For the last step of our development process, we will
process an implementation of the library in Ada
language. A possible realisation in source code
could be:

package ComplexLib is
 type Complex is record
 Re : Float;
 Im : Float;
 end record;

function add (
 C1 : IN Complex;
 C2 : IN Complex)
 return Complex;
function sub (
 C1 : IN Complex;
 C2 : IN Complex)
 return Complex;

end ComplexLib;

We can then use another parser of the LMP toolbox
(adarev) to build a facts base from the Ada code.

packageSpec('ComplexLib','_root_').
typeComponent('ComplexLib','Complex',
 'Re','Float','').
typeComponent('ComplexLib','Complex',
 'Im','Float','').
typeSpec('ComplexLib','Complex','...').
operationSpec('ComplexLib','add','...').
param('ComplexLib','add','...',
 'C1','Complex','in','').
param('ComplexLib','add','...',
 'C2','Complex','in','').
param('ComplexLib','add','...',
 'return','Complex','out','').
...

For the same reason as for AADL, there is no need
to create a new facts base to select the useful
information.

4.4.5 All together

Although they are coming from different modelling
languages, the syntactic transformation into prolog
predicates allows for global processing of the
merged model.

The facts sub-bases can be concatenated to provide
all the required data to perform cross-activity
processing. In particular, this can be used to verify
the consistency of the workflow, such as
requirements coverage or code compatibility with the
architecture.

All these verification rules can be expressed in
standard prolog language, as shown in the two
simple examples given below.

Rule1. the data types specified in the software
specification must be defined in the software
architecture:

checkR1 :-
 isUmlClass(T), /*UML*/
 not(isComponentType(_,_,T,'DATA',_,_)),/*AADL*/

write('Error R1 for: '), write(T).

Rule2: the data types specified in the software
architecture must be defined in the source code:

checkR2 :-

isComponentType(_,_,T,'DATA',_,_), /*AADL*/
 not(typeSpec(_,T,_)), /*Ada*/
 write('Error R2 for: '), write(T).

Similar rules could be defined to check that all the
system requirements are properly covered by design
entities.

After having shown how LMP could ease static
processing of merged heterogeneous models, we
will now consider dynamic architectural reasoning.

5. Architectural Reasoning Using LMP

The prolog fact-based representation of the LMP
form presents a good foundation for the logical
reasoning and processing of the architectural
models. In the next sections we present some
simple examples to illustrate the flexibility of the LMP
approach.

5.1.Physical Separation and Independence Analysis

To illustrate this potential, we present a simple LMP-
based extension to illustrate how physical zonal
independence can be assessed from the LMP
model.

In modern aircraft, there is often a need to ensure
that the independence assumed within a fault-tree is
sufficient to mitigate the potential of physical

 Page 7/10

damage that may arise from adverse system events
such as fire, or explosions. Many manufactures
require a minimum physical separation among
redundant elements. In Integrated Modular Avionic
(IMA) architectures, assuring that this separation is
achieved for all of the hosted functions can be non-
trivial, as multiple sub-function elements are
distributed across the IMA processing and
input/output hardware elements. As architectures
become increasing networked and distributed, the
complexity of such analysis may only increase,
hence the ability to address it systematically is
attractive.

Figure 2 : Example Wheel Brake System

To illustrate the technique we present the wheel
brake system case study, shown in Figure 2. This
system comprises two independent hydraulic circuits
that are each controlled by a dual lane command
/monitor computation system. For each circuit, the
command processor modulates the expected
pressure to achieve the required braking force; the
monitor processor supervises the commanded
braking operation, monitoring commanded output
pressure sensor feedback. If the monitored pressure
is not in agreement with the monitor’s expected
limits, the monitor closes the isolation valve and
removes all hydraulic pressure, rendering the
channel in active. It then yields control to the other
channel.

For brevity of the presentation, our example analysis
focuses on the placement of the command and
monitoring processing hardware of each lane.

To introduce the physical location of components
onto the model a new AADL property is defined. In
our simple example, we utilize a single point, but in
practice this may be a series of points, which
represent the physical boundaries of the
components. Inherently extensible, via property sets

adding such notions to an AADL model is very
straightforward.

property set Location is

Location: list of record
(x_pos : aadlreal;
 y_pos :aadlreal;

z_pos : aadlreal;)
applies to
(processor, system, abstract, device);

end Location;

To represent both good and bad configurations, two
system implementations are defined, by extending
the base implementation. In the first configuration
the command and monitor components within each
lane are placed to be adjacent, and the computation
elements of the Alt and Norm lanes are separated by
10 meters, as illustrated below.

System implementation
wbs_com_mon_dual_lane.good_impl
 extends wbs_com_mon_dual_lane.impl

properties
Location::Location =>

([x_pos => 1.0; y_pos => 1.0; z_pos=> 1.0;])
applies to monAlt;

Location::Location =>
([x_pos => 1.1; y_pos => 1.0; z_pos=> 1.0;])
applies to comAlt;

Location::Location=>
([x_pos => 10.0; y_pos => 1.0; z_pos=> 1.0;])
applies to comNorm;

Location::Location =>
([x_pos => 10.1; y_pos => 1.0; z_pos=> 1.0;])
applies to monNorm;

end wbs_com_mon_dual_lane.good_impl;

In the second configuration the monitor of the Alt
channel is swapped with the monitor of the Norm
channel. It should be noted that, this configuration is
insufficient with respect to the required physical
channel separation, since failure of a single physical
zone will destroy critical components of both lanes of
redundancy. Hence, it is our intention is to illustrate
this using model analysis.

The AADL composite error model, records the
assumptions of the structure of the redundancy,
hence the first stage of analysis is to convert this into
LMP form. This is done using the ADDL parser
(aadlrev) that has been extended under this work to
capture the structure of the Error Annex logical
expressions.

composite error behaviour
states
--Unannunciated braking loss
[
((pumpGreen.Failed or isolNorm.Failed or

 bcvNorm.Failed or monNorm.Failed or
 comNorm.Failed) and

 (pumpBlue.Failed or isolAlt.Failed or
 bcvAlt.Failed or monAlt.Failed or
 comAlt.Failed)) or

(pedalLeft.Failed and PedalRight.Failed) or
brake.Failed
]-> UnannunciatedBrakingLoss;

 Page 8/10

The LMP representation for the above model
comprises two facts; isEMV2CompositeStateElem is
used to store failure conditions, and
isEMV2CompositeStateExpr facts are then used to
map the logical relationships of the elements. Two
example facts are shown below.

isEMV2CompositeStateExpr('wbs','wbs_com_mon_dual
_lane','impl','unnamed_A1','unnamed_K1','$1','pu
mpGreen.Failed','OR','isolNorm.Failed',235).

isEMV2CompositeStateElem('wbs','wbs_com_mon_dual
_lane','impl','unnamed_A1','unnamed_K1','$2','bc
vNorm.Failed','NIL',235).

In a similar manner to other LMP parsers, element
and expression identifies and indexes ‘$1’ are
maintained to support the mapping and relating of
the facts. Once in LMP form, the next stage of the
physical separation, is to convert the logical
structure of the fault-tree into a form that can be
executed with prolog, This conversion comprises a
simple mapping. Each expression is converted to a
dynamic prolog fact as illustrated below.

 init :-
 dynamic('pumpGreen.Failed'/0),
 dynamic('isolNorm.Failed'/0),
 dynamic('bcvNorm.Failed'/0),
 dynamic('monNorm.Failed'/0),
 dynamic('comNorm.Failed'/0),
 dynamic('pumpBlue.Failed'/0),
 dynamic('isolAlt.Failed'/0),
 dynamic('bcvAlt.Failed'/0),
 dynamic('monAlt.Failed'/0),
 dynamic('comAlt.Failed'/0),
 dynamic('pedalLeft.Failed'/0),
 dynamic('PedalRight.Failed'/0),
 dynamic('brake.Failed'/0).

The init predicate introduces all of the potential
faults as dynamic facts in the prolog database. It is
complimented by a clear, predicate (not shown) that
retracts all facts related to failures. Clear is then
used to establish a clean baseline for iterative
analysis and queries. This is also useful to support
working in the interactive prolog shell, when
manually exploring failure combinations.

The isEMV2CompositeStateExpr are similarly
reduced and mapped to a simplified executable form
as illustrated below.

exp11 :- exp5,exp10.
exp12 :- 'pedalLeft.Failed','PedalRight.Failed'.
exp1 :- 'pumpGreen.Failed';'isolNorm.Failed'.
exp2 :- exp1;'bcvNorm.Failed'.
exp3 :- exp2;'monNorm.Failed'.
exp4 :- exp3;'comNorm.Failed'.
exp6 :- 'pumpBlue.Failed';'isolAlt.Failed'.
exp7 :- exp6;'bcvAlt.Failed'.
exp8 :- exp7;'monAlt.Failed'.
exp9 :- exp8;'comAlt.Failed'.
exp14 :- exp11; exp13.
exp15 :- exp14;'brake.Failed'.
exp5 :- exp4.
exp10 :- exp9.
exp13 :- exp12.

Logical structure of these is generated from the
structure of the composite error model state-

annotations. It should be noted that the code and
effort required to generate executable form from the
LMP representation is very small comprising less
than 100 lines of prolog in total.

We remind that the logical operator AND (resp. OR)
is expressed in prolog by a comma (resp. a
semicolon).

Once in this reduced form, prolog is able to compute
how the combination of failures impacts the top-level
event. In our simple the top-level event is
represented by the expression with the highest
index.

The next stage of the analysis is to generate the set
of failures that can correspond to the different zones.
Once processed by LMP, the location properties
introduced previously yield a set of facts for each
component as shown below.

isRecordField('wbs','wbs_com_mon_dual_lane',
'good_impl','monAlt','LOCATION::LOCATION',1,'x_p
os','1.0',275).
isRecordField('wbs','wbs_com_mon_dual_lane',
'good_impl','monAlt','LOCATION::LOCATION',1,'y_p
os','1.0',275).
isRecordField('wbs','wbs_com_mon_dual_lane',
'good_impl','monAlt','LOCATION::LOCATION',1,'z_p
os','1.0',275).

The local facts are then grouped by component
using a ftacomponent predicate as shown below,
that simply maps the component name and X,Y,Z
location.

ftacomponent(P,T,I,Name,X,Y,Z) :-
 isRecordField(P,T,I,Name,'LOCATION::LOCATION',
 1,'x_pos',XA,_),
 isRecordField(P,T,I,Name,'LOCATION::LOCATION',
 1,'y_pos',YA,_),
 isRecordField(P,T,I,Name,'LOCATION::LOCATION',
 1,'z_pos',ZA,_),
 atom_number(XA,X),
 atom_number(YA,Y),
 atom_number(ZA,Z).

The system then examines all instances of the
ftacomponent and generates zones of collocated
component using the a simple separation auxiliary
predicate, that returns true if the two components
are located within a defined separation limit
(Distance), which in our case was 6 meters.

separation((X1,Y1,Z1),(X2,Y2,Z2),Distance):-
 Xd = X2 - X1,
 Yd = Y2 - Y1,
 Zd = Z2 - Z1,
 D is sqrt((Xd * Xd) + (Yd * Yd) + (Zd * Zd)),
 D < Distance.

As illustrated below the code to build_zones is
relatively terse comprising only a few lines of code.
This is one of the attractions of the declarative
nature of the prolog processing.

 Page 9/10

build_zones([],PP,TT,II,Acc,Acc).
build_zones([(_,X,Y,Z)|T],PP,TT,II,Acc,Final):-
findall((B,BX,BY,BZ),
 (ftacomponent(PP,TT,II,B,BX,BY,BZ),
 (seperation((X,Y,Z),(BX,BY,BZ),6))),Zone),
 (not(member(Zone,Acc)) ->
 append(Acc,[Zone],NewAcc);
 NewAcc = Acc),
 build_zones(T,PP,TT,II,NewAcc,Final).

Once the zones are complete, we simply instantiate
a zonal related failure set for each zone, but adding
zone predicates to the output. The zone predicates
for the good and bad wheel brake command monitor
configurations are shown below.

zone_good_impl0:-
 assertz('comAlt.Failed'),
 assertz('monAlt.Failed').
zone_good_impl1:-
 assertz('monNorm.Failed'),
 assertz('comNorm.Failed').

zone_bad_impl0:-
 assertz('monNorm.Failed'),
 assertz('comAlt.Failed').
zone_bad_impl1:-
 assertz('comNorm.Failed'),
 assertz('monAlt.Failed').

To explore the system, it is only necessary to
instantiate each of the generated zonal fault-sets
with the fault tree expression logic discussed
previously, and querying the state of the top-level
hazard, in out case exp15. To package such
analysis in smaller form large LMP database, a
stand-alone file ‘ftap.pro’ is generated by the LMP
processing logic.

This can then be loaded into the interactive SWI-
Prolog environment. A trace from an interactive
session following the loading of the file is shown
below for the good component placement example.

- ['ftap.pro'].
true.
?- init.
true.
?- clear.
true.
?- exp15.
false.
?- zone_good_impl0.
true.
?- exp15.
false.
?- zone_good_impl1.
true.
?- exp15.
true .

Evaluating exp15 following the single zone failure
zone_good_impl0 concludes false, indicating that
the failure of zone_good_impl0 is not sufficient to
cause the top-level event. However, the subsequent
additional failure of zone_good_impl1 does cause
the top-level event, and the subsequent query of
exp15.

Repeating the procedure with the bad configuration,
we see that failures of the single zone are sufficient
to cause the failure of the top-level event as
illustrated in the trace below.

?- ['ftap.pro'].
true.
?- init.
true.
?- clear.
true.
?- exp15.
false.
?- zone_bad_impl0.
true.
?- exp15.
true .

Note, that in our toy example, we are using a
simplified representation of location. In real
deployments our single point may be expanded to
present the component boundary points. Similarly,
other types of queries such as the use of a common
CPU type, cooling zone, and or power-supply
distribution etc., are easily implemented given
AADL’s extensible property provisions. In each case
basic analysis technique would remain largely
unchanged, only requiring adaption of the
build_zones criteria.

5.2. Modelling Completeness Checks.

A second application of the LMP processing is the
implementation of automated model completion and
completeness checking. In large systems the level
of detail and abstraction within the model needs to
be managed and maintained. Organizations often
maintain modelling standards that define the
required model content. However, enforcing such
standards can be cumbersome without the
appropriate automation.

However, if the model is expressed in LMP, the
automation of consistence and compliance checks
becomes very simple. Given that, all aspects of the
architecture are represented by facts, simple queries
against the fact bases can be generated for each
requirement. For example, as shown below, only a
few lines of code are necessary to execute the query
to check that all processing hardware components
have a consistent error model associated with them.

isComponentType(P,_,X,'PROCESSOR',_,_),
not(isAnnex(P,X,_,_,'EMV2',_,_)),
writeErrorMessage(P,X).

By examining the architectural model, using
additional system composition predicates and/or
predicates derived from fault-tolerance theory
predicates, the architectural correctness may be
simply validated. For example, a simple predicate
may check that all bus components have a specified
error model, e.g. Bit Error Rate (BER). A more

 Page 10/10

advanced predicate may check that protocols that
are bound to the bus utilize a suitable end-to-end
data transport protocol to mitigate the expected
error-rate. More elaborate queries, such as
Byzantine vulnerability analysis, are also possible,
by highlighting all instances where forked data paths
of the logical model, have terminals that bind to
different physical components.

Related Work

The fault-tree representation used by our illustrative
case-study was inspired from the original work of
Shuchi[18].

In the area of architecture model processing, several
alternate solutions have been explored, such as
REAL [19], RESOLUTE [20] and AGREE [21]. The
definition of a “constraint annex” is also under
discussion by the AADL standardisation committee.

On-going and Future Work

LMP is used for the development of the new
processing plug-ins that will be integrated in the
future distributions of the AADL Inspector tool. The
current work is focused on extending the import
capabilities for UML profiles models such as
MARTE, SysML, SCADE System, or CAPELLA as
well as new processing features, especially for
safety analysis.

In order to facilitate the connection with Domain
Specific Modelling Languages, an automatic
generation of most the prolog rules that are required
to parse, navigate and process ECore based models
is being developed. A similar approach is also
envisaged for XSD definitions.

Following the idea that LMP allows a tool agnostic
infrastructure to be developed, integration with
solutions like Modelbus is also considered.

Another area of active research is the generation/
derivation of the AADL Error-Annex composite
model annotations from a case-based reasoning
approach of the known component failure modes in
conjunction with architectural topology.

Conclusion

This paper introduces the raising issue of
heterogeneous models processing and proposes an
original solution to address it. This solution merges
the principles of logic programming and those of
model driven engineering to define the Logic Model
Processing (LMP) approach.

This approach and the supporting tools are
described in the paper and several examples are
provided to illustrate its benefits.

References

[1] “Model Verification: Return of Experience”, P.
Dissaux and P. Farail, ERTS 2014.
[2] SysML: Systems Modeling Language,
http://sysml.org
[3] Polarsys: https://www.polarsys.org/
[4] Modelbus: https://www.modelbus.org/
[5] prolog: ISO/IEC 13211-1, 1995
[6] sbprolog: Stony Brook Prolog,
https://www.cs.cmu.edu/Groups/AI/lang/prolog/impl/
prolog/sbprolog/0.html
[7] SWI-Prolog: http://www.swi-prolog.org/
[8] AADL: SAE AS-5506B, 2012:
http://www.aadl.info/
[9] Stood: http://www.ellidiss.fr/public/wiki/wiki/stood
[10] AADL Inspector:
http://www.ellidiss.fr/public/wiki/wiki/inspector
[11] Cheddar:
http://beru.univ-brest.fr/~singhoff/cheddar/
[12] “The SMART Project: Multi-Agent Scheduling
Simulation of Real-time Architectures”, P. Dissaux,
O. Marc and all, ERTS 2014.
[13] Ocarina: http://www.openaadl.org/ocarina.html
[14] MARTE: Modeling and Analysis of Real-Time
and Embedded Systems, http://omgmarte.org/
[15] TASTE: http://taste.tuxfamily.org/
[16] “Model Based System Engineering”, P. Micouin,
ISTE and John Wiley & Sons editors, September
2014.
[17] HOOD: Hierarchical Object Oriented Design,
http://www.esa.int/TEC/Software_engineering_and_
standardisation/TECKLAUXBQE_0.html
[18] "Construction of a fault tree using prolog."
Fukuda, Shuichi. ICF6, New Delhi (India) 1984.
2013.
[19] “Modeling and verification of memory
architectures with AADL and REAL”, S. Rubini, F.
Singhoff and J. Hugues, ICECSS 2011.
[20] "Resolute: an assurance case language for
architecture models." Gacek, Andrew, et al.
Proceedings of the 2014 ACM SIGAda annual
conference on HILT. ACM, 2014.
[21] "Compositional verification of architectural
models.", Cofer, Darren, et al. NASA Formal
Methods. Springer Berlin Heidelberg, 2012. 126-140.

