
A Practical Approach to the Simulation of
Safety-critical Automotive Control Systems

considering Complex Data Flows

Sébastien Dubé
Hella Engineering France

Toulouse, France
Email: sebastien.dube@hella.com

Mesut Özhan
INCHRON GmbH
Potsdam, Germany

Email: oezhan@inchron.com

Achim Rettberg
Hella Electronics

Lippstadt, Germany
Email: achim.rettberg@hella.com

I. ABSTRACT

Embedded systems highly contribute to the efficiency,
safety, and usability of our present-day means of transport
like cars and airplanes. Due to the possible hazards and risks
involved with their operation, safety standards like DO-178C
for avionics and ISO 26262 for automotive commend the
application of methods and tools according to the state of
the art. Functional safety requirements imposed on hardware
and software imply the detection of malfunctions and taking
corrective actions, before hazards actually occur. As described
in [5] one of the key challenges thereby is the prediction
and verification of the system’s timing behavior. In this paper
we describe a model-based approach for real-time simulation
focusing on complex end-to-end data flows typically encoun-
tered in safety-critical automotive control applications. Based
on first-hand experiences gained during the development of
an electrical power steering control system, we illustrate how
real-time simulation models can be utilized to guide design
decisions, and help to achieve safety goals defined at system
level. Furthermore, we discuss the issues of response time
analysis for dynamic state-dependent data flows considering
different semantics for communication in the context of the
AUTOSAR standard.

II. KEYWORDS

Automotive Control Applications, Electronic Power Steer-
ing, Fault Tolerant Time Interval, Response Time Analysis,
Real-Time Simulation, AUTOSAR

III. MOTIVATION

Engineers developing electrical / electronic systems for the
automotive or avionics domain have to manage a high degree
of functional, technological, and organizational complexity.
Design and implementation of highly dynamic safety-critical
applications make a model-based approach with careful con-
sideration of fault tolerance indispensable. A fault-tolerant
design follows a safety strategy which defines the (worst)
conditions that a system must cope with, and defines safety
mechanisms for fault detection and error handling that must be
implemented. Such a design ensures that a system experiencing
malfunctions remains operational – possibly with reduced
functionality – and transits into a safe error-free state.

Safety mechanisms built into a system are liable to hard
real-time requirements. Hence, the transition into a safe state
must be achieved under all possible conditions with respect to
a limited time span, the so called fault tolerant time interval
(FTTI) as defined in [23]. However, if one considers the many
different factors that influence a system’s timing behavior, e.g.
the number of possible faults and failure states, the complexity
of the data and control flow, or the scheduling properties of
different hardware and software variants, it turns out, that find-
ing a robust and reliable dynamic architecture design is a very
challenging task. The problem of verifying the schedulability
of processes and messages in a distributed system is NP-hard
[7], and besides hard real-time requirements, for safety-critical
systems additional requirements must be considered in order
to guarantee dependability.

During the past decades, since Liu and Layland in [19]
presented their work about rate-monotonic scheduling (RMS),
research in scheduling theory has developed a large number
of concepts and mathematical proofs in order to take on
the challenges presented by the analysis and optimization of
embedded control applications. But, despite the many advances
in extending their scope and applicability as described by
Sha et al. in [22], most theoretical approaches remain limited
to specific use cases as typically some of their constraints
are violated in real industrial systems. Examples for those
limitations and constraints are given by Cooling in [9] and
Davis et al. in [10]. A more recent study taking into account
precedence relations between tasks is provided by Kermia in
[16].

The software standards developed by the Automotive Open
System Architecture (AUTOSAR) partnership [3] have dramat-
ically changed the way automotive systems are built today,
and the transformation of processes, methods, and tools is
not yet finished. Since AUTOSAR release 4.0 there is also
a dedicated specification [4] for the formalized description
of timing properties and constraints available. And although,
this helps to identify and exchange timing-related information
in a complex automotive supply chain, AUTOSAR does not
address the issue of how this information can be obtained, or
a timing analysis can be performed.

In order to evaluate a system’s performance, interoperabil-
ity, robustness, and eventually its safety, the specific charac-
teristics of the AUTOSAR operating system and run-time en-



vironment (RTE) must be considered on implementation level.
These comprise concepts like OS applications, IOC, shared
(multi-core) resources, schedule tables, and extended tasks.
For AUTOSAR compliant real-time systems, Anssi et al. in
[1] presented a study, where the applicability of schedulability
analysis is evaluated using an open source implementation
[12] of Palencia’s and Harbour’s algorithm [21]. Additional
evaluations are provided by Hladik et al. in [15].

Viewed from the system engineering perspective eventually
one key issue remains: Even if state of the art scheduling
analysis methods can be applied, they can only provide true
or false statements on the feasibility of a given system con-
figuration. However, in order to perform design modifications
efficiently, engineers need more fine-grained information about
their system’s dynamic behavior, e.g. obtained by statistical
analysis of trace data coming from target measurements or
real-time simulation.

IV. CASE STUDY: ELECTRONIC POWER STEERING

The research results presented in the following are based on
the observations and experiences made by the authors during
the development of an electronic power steering (EPS) system
at Hella Engineering in Toulouse, France. Due to the safety
and hard real-time requirements for this system, a model-
based approach using SysML at logical architecture level, and
AUTOSAR methodology at technical architecture level was
implemented. For the simulation, visualization, and exploration
of various design alternatives methods and tools [14] provided
by INCHRON were also used from the very beginning of this
project.

A. System overview

The electronic power steering system in our case study as
depicted in figure 1 uses a brushless motor to assist the driver
in steering his vehicle. Position and torque of the steering
column are permanently measured by sensors and processed
by the steering control module (SCM), which calculates an
assistive torque that is applied depending on different driving
conditions. Advantages of an electronic power steering system
over a comparable hydraulic solution are improved fuel effi-
ciency and greatly simplified manufacturing and maintenance
processes. Also, in combination with an electronic stability
control it vastly contributes to improved driving safety.

B. Objectives

A major challenge during the development of embedded
systems such as the electronic power steering is the verification
of end-to-end latency requirements. The difficulty lays in
the fact that these systems feature many different functional
and dysfunctional modes of operation with corresponding
hard real-time requirements for monitoring, error detection,
and error handling. Depending on the required safety level,
the implementation of these safety mechanisms in addition
to the actual control functionality, drastically increases the
complexity of the data and control flow. As a consequence for
the EPS system development, following a classical integration
and test approach solely based on measurements on the target
hardware, seemed not feasible. In order to reduce the time
and effort, that it takes to find resource bottlenecks, timing

Figure 1. Electro-mechanical components of the electronic power steering
system

errors, and eventually to verify the real-time requirements, it
was one of our main objectives in this case study to apply state-
of-the-art methods and tools, aiming at a virtual integration
of the system in earlier development phases. Furthermore,
the verification of an embedded system requires that timing
properties and constraints are specified in a formal, unam-
biguous way, matching with the semantics of the formalism
which is used for the analysis. Thus, another objective was to
check if all the system information, needed by either formal
schedulability analysis or model-based scheduling simulation,
is available in a real project environment. Finally, we wanted
to achieve a seamless integration of all methods and tools
avoiding redundant modeling of the same information as much
as possible.

C. Design of the dynamic architecture

An important part of the dynamic architecture design for
the SCM was planning the execution of tasks and interrupt
service routines (ISR) on the main microcontroller. The initial
design was created according to the strategy of deadline-
monotonic scheduling (DMS) [18] where tasks are assigned
priorities depending on their deadline with priorities being
inversely proportional to the length of the deadline. Compared
to RMS, deadline-monotonic priority assignment is an optimal
strategy for tasks that can have a deadline equal or smaller
than their activation period. Furthermore, Audsley and Burns
[2] [7] showed that with additional schedulability tests, the
deadlines of sporadic tasks can be guaranteed within the
deadline-monotonic theory.

Table I shows the initial scheduling configuration for the
SCM according to the deadline-monotonic priority assignment
strategy.1 In order to preserve most of the scheduling charac-
teristics guaranteed by DMS, the SCM design was restricted to
only use time-triggered, basic tasks with no priorities shared
between two different tasks.

For the model-based simulation with the INCHRON Tool-
Suite a project file (.ipr) of this configuration needed to be

1Note, that due to intellectual property rights of the companies involved in
the development of the SCM, only anonymized and simplified versions of the
original system information can be documented.



Table I. SCHEDULING WITH OS COUNTER TICK OF 1MS

Name Type Period
(µs)

Deadline
(µs)

Offset
(µs)

Priority

Torque_Manager Task 1000 100 async 200

Analog_Manager Task 1000 500 0 102

ASIC_Manager Task 1000 1000 0 95

Mode_Manager Task 5000 5000 2000 70

Com_Rx Task 5000 5000 2000 50

Com_Tx Task 5000 5000 2000 45

Temp_Manager Task 10000 10000 4000 20

Memory_Manager Task 10000 10000 9000 5

Diagnosis Task 10000 10000 8000 2

created. As suggested by the TIMMO-2-USE project in [11],
there are basically two different possibilities to create a model
for the simulation: either top-down based on requirements and
design specifications in an early project phase, or bottom-up
by reverse-engineering the necessary information based on an
existing (prototype) implementation of the system. In this case
study the initial simulation model was generated by importing
the AUTOSAR ECU configuration data of a prototype sample
into the INCHRON Tool-Suite.

Another very important input parameter required for the
schedulability analysis and simulation is the core execution
time (CET) of the scheduled processes. Obtaining actual
and reliable execution time information in reality is not an
easy task. Even if sophisticated measurement capabilities are
available, it can be very difficult or nearly impossible to
do measurements for all possible operation states and (er-
ror) conditions in many different variants. An alternative to
measurements on the target hardware is to predict worst case
execution times by using static code analysis, e.g. as suggested
by Ferdinand in [13]. However, this approach also has its
limitations: for example increasingly complex caching and
pipelining solutions found in modern microcontrollers, make
it very difficult to predict the time consumption of machine
code instructions.

In the case study, the model-based simulation of different
scheduling scenarios was performed by using execution time
information which was measured on the target hardware.
Measurements were taken for various operation states, whereas
focus was laid on those configurations that covered the most
complex execution paths (in case of the control functions).
In order to further increase the confidence into the results,
we applied scaling factors to some of the measured values
for those functions where behavioral details were unknown.
However, it should also be noted, that for the verification and
optimization of end-to-end latencies in a distributed system,
time delays caused by asynchronous process executions can
be more important, than the deviation of individual execution
times.

D. Event chains with hard real-time latency requirements

A temporally ordered sequence of correlated events, that
can be observed or measured in a system, is referred to as a
chain of events, or event chain. Applied to embedded real-time
systems, the concept of an event chain can be used to specify
a sequence of function executions and (communication) data

flows between them, which are subject to safety and real-time
requirements. Figure 2 shows an example for such an event
chain in the SCM, starting with the sampling of the torque
sensor and ending with the control of the motor realizing the
steering assistance.

Figure 2. Event chain with end-to-end latency requirement

The event chain concept is a very useful abstraction in order
to describe the scope of an end-to-end latency requirement
from the perspective of a control or system engineer, consider-
ing the influence of both the hardware and the software. In the
automotive industry it is a widely used concept, but only since
its formalization by the AUTOSAR standard, the semantical
pitfalls of ambiguous textual and visual descriptions could be
mitigated.

A key issue in the formal semantics of an event chain
concerns the definition of data flow properties: the data flow
in a system results from the production, transmission, and
consumption of data by different hardware and software func-
tions. In a distributed system the deployment (location) of a
function mostly determines the means by which this function
is able to communicate with other local or remote functions,
e.g. via messaging over a network, shared variables etc. As
the interpretation of an event chain depends on the behavior
of the functions in its scope, and again their behavior depends
on the value, state, order, and age of the processed data, a
formal semantics of the data flow needs to take the different
communication means and their characteristics into account. At
the same time, the mathematical model which is used by the
analysis or simulation, must be able to handle that formalism.

Initially, at the beginning of the case study, the data
flow between hardware and software components at system
level was modeled by using the flow port concept of SysML
[20] as depicted in the figure 3. This modeling view helps
to understand the relationships between architectural blocks,
differentiated between hardware and software. However, some
essential data flow characteristics as described above, were not
supported by that concept. Furthermore, we also tried to derive
a communication model from the AUTOSAR meta-model, but
that approach turned out to be too complex, as the specification
of the communication and the dependencies between basic
software modules is significantly different from the concepts
used for the application software. A further restriction was the



difficulty to adequately describe the behavior and influence of
hardware functions.

Figure 3. Simplified SCM model as SysML internal block diagram

Eventually, in the case study a rather simple but sufficiently
powerful formalism, derived from the co-design methodology
for embedded systems (MCSE) [8], was used for the specifi-
cation of data flows as follows:

• Shared variable (or permanent data): Data which
can be read / written at any time. In order to avoid
data inconsistencies, the access to shared variables
must be protected against simultaneous read and write
operations by asynchronous processes.

• Event: An (activation) event that triggers the execu-
tion of a process.

• Queued: Data is buffered in a queue with FIFO
mechanism where the oldest data in the queue is read
first. In control theory the queue size usually directly
depends on the execution periods (frequency) of the
producing and consuming processes.

Figure 4 shows the application of the co-design methodol-
ogy for the modeling of the SCM system architecture.

Figure 4. Technical architecture of SCM with functional and dysfunctional
data flows

This model describes the main hardware and software
functions, and also the data and control flow connections
according to the MCSE semantics. Compared to the basic

SysML semantics (see figure 3), the most important differences
are as follows:

• Rich data flow semantics: MCSE supports different
types (shared variable, event, queued) for data flows,
which allows abstract modeling of the most common
communication mechanisms encountered in real sys-
tems.

• Activation flow: Event-triggered activation of pro-
cesses is explicitly supported by MCSE, but not the
basic SysML model.

• Timing properties: Task periods, interrupt inter-
arrival times, and other timing parameters can be
specified as properties of a (software) block.

• Closer to AUTOSAR model: MCSE is closer to
the AUTOSAR meta-model (the SCM is based on
AUTOSAR), and offers better support for the concepts
used in the specification of the software architecture.

In the case study, this model was used as a starting point for
the definition of the data and control flow in the INCHRON
Tool-Suite. Basically, the MCSE concepts could be mapped
one-to-one to semantically equivalent communication concepts
in the tool. A further advantage of this approach is that event
chain definitions for the functional and dysfunctional operation
states of the system can be described in a common model,
using the same data and control flow concepts. For this paper,
we have selected two (dysfunctional) event chains, in order to
demonstrate the application of our approach for the verification
of end-to-end FTTI requirements. Figure 5 shows the sequence
of process executions for each event chain similar to the
definition in the simulation tool.

Figure 5. Event chain definition for Temperature Error and Analog Input
Error

They start with the detection of a failure at different
signal sources, but then follow the same sequence of function
executions until they end with the transition into a safe state
(here disabling the application of the motor torque to the
motor power stage). Arrows between the processes represent
a (typed) data flow connection in the model, which are then
traced and highlighted in the simulation (see figures 10, 11,
13, 14).

In general, a failure of the system can have different
underlying causes originating from either the environment
(e.g. the system operating under conditions different from its



specification) or the system itself (e.g. a malfunction of an
electrical, electronic, or mechanical component). However, at
software level for the verification of FTTI requirements, this
difference can be neglected. For example, if the system needs
to shutdown when sensors indicate a too high temperature, we
do not need to care, if this indication is caused by a sensor
malfunction, or the system temperature being actually too
high. Regardless of the failure source, the dynamic architecture
design must ensure, that monitoring, error detection and error
handling processes are executed in a deterministic way, and
meet the FTTI requirements.

In a real system the malfunction causing the system failure
can occur at any time, and in order to verify the compliance of
the dynamic software architecture with the FTTI requirements,
it is necessary to recreate the different scheduling situations in
the simulation. Therefore, it is not sufficient to induce an error
just once, but it must be done repeatedly over the time of the
simulation. For the SCM the stimulation generator of chron-
SIM was used to define an environment model (scenario), that
would randomly induce an error with respect to the activation
period of the concerned monitoring or error detection process.
For example, if the error detection is executed every 10ms,
then a uniform random variation between 0 and 10ms was
chosen for the error induction. Figure 6 shows the stimulation
scenario defined for the different errors induced during the
simulation.

Figure 6. Stimulation scenario defined with the INCHRON Tool-Suite

The main benefit of this approach is, that it allows to reach
a high coverage of the various, relevant preemption situations
in a very short time – much shorter than in a hardware-in-the-
loop (HIL) or prototype test environment.

V. SIMULATION AND OPTIMIZATION

Using the INCHRON Tool-Suite we performed several
simulation runs in order to compare alternative scheduling
configurations for the SCM. The traces generated by the
simulation were evaluated according to the following quality
criteria:

• Deadline violations

• Response time distribution

• CPU peak load in certain averaging intervals

• Start-to-start jitter

• End-to-end latencies of dedicated event chains

According timing requirements were specified directly in
the simulation tool, and evaluation statistics were automatically
generated after each iteration. After analyzing these results,
the (scheduling) configuration was modified manually, and a

new iteration was started. The most important observations and
conclusions made during the case study, are presented in the
following.

A. Adjustment of start offsets

Figure 7 shows an excerpt from the simulation trace of
the initial system configuration as specified further above in
table I: process executions (indicated by green areas within
the rectangular process box) and preemptions (white areas) by
higher priority processes are depicted as a Gantt diagram.

Figure 7. Gantt chart view of processes inside the SCM

One observation made during the analysis of simulation re-
sults for the initial scheduling configuration was, that CPU load
peaks can occur when processes with relatively large execution
times are activated at the same time. For example the time-
triggered processes ASIC_Manager and Analog_Manager both
with a period of 1ms were affected. Furthermore, Com_Tx and
Com_Rx with a period of 5ms also had this issue. An obvious
solution to smooth the peak load, would be to introduce a
time delay (offset) between the activations of the processes
in question. For example for the ASIC_Manager task, an
activation offset of 500µs against the Analog_Manager task
seemed feasible.2 However, the granularity of the underlying
OS counter tick was just 1ms, and thus shifts between the
activations were only possible in steps of 1ms. For this reason,
the OS configuration was modified, and the granularity of the
OS counter tick was reduced to 500µs.

Table II. ADJUSTED START OFFSETS FOR ASIC_Manager AND Com_Tx

Name Type Period
(µs)

Deadline
(µs)

Offset
(µs)

Priority

. . .

ASIC_Manager Task 1000 1000 500 95

. . .

Com_Tx Task 5000 5000 3500 45

. . .

The activation offsets for ASIC_Manager and Com_Tx
were adjusted as shown in table II.

B. Deadline violations

In the case study deadline requirements were defined for
all processes. These were monitored and checked during the

2The worst-case response time determined for the ASIC_Manager task was
lower than 500µs.



simulation of the different scheduling configurations. The
simulation tool shows the evaluation of all (response time
and other) requirements in a dedicated requirements evaluation
view, where the number of successful, critical, and failed
checks for each requirement is summarized (see figure 8). A
concrete response time check is considered critical, if a certain
predefined margin relative to the actual deadline is exceeded.

Figure 8. Evaluation of response time requirements

For example, we can see that the response time of Com_Rx
is considered critical, as it exceeds the safety margin. Overall,
we observed no hard deadline requirement violations in the
case study.

C. Execution jitter

In order to monitor the efficiency of a specific scheduling
configuration, it may be necessary to monitor additional pro-
cess statistics. A very useful indicator is the execution jitter.
Figure 9 for example shows the time distribution of the start-
to-start (purple bars) and terminate-to-terminate jitter (green
bars) for the Com_Rx task.

Figure 9. Distribution of execution jitter (start and terminate) for task Com_Rx

In the histogram, we can see that the start time of Com_Rx
fluctuates between 4.98 and 5.03ms due to preemptions caused
by interrupts and higher priority tasks.

D. Evaluation of event chain ’Temperature Error’

A Temperature Error is indicated by the task
Temp_Manager when the temperature value measured
by the temperature sensor exceeds a predefined threshold. If
this is the case, the Mode_Manager task shall switch into a
corresponding failure mode, and send an error notification
PWM_Stop to the power stage which is driving the motor.
According to the system specification, the end-to-end latency
requirement goal for this event chain was 12ms.

The simulation of the SCM with chronSIM predicted, that
violations of the end-to-end latency requirement are possible,
although no activation violations occur and all processes meet
their deadline requirements. An example from the simulation

which shows such a requirement violation is given in figure
10.

Figure 10. Violation of end-to-end latency requirement (Temperature Error)
detected in the simulation

In this particular case, we can observe that the end-
to-end latency mainly arises from the 10ms period of the
Temp_Manager task, and from the additional delay (almost
3ms) between the execution of the Temp_Manager and the
Mode_Manager task. One possible solution would be to in-
crease the execution frequency of the Temp_Manager task, in
order to reduce the time delay which occurs after the provision
of new sensor values by the Analog_Manager task. However,
this would also increase the CPU load.

Alternatively, a solution would be to reduce the time
delay between the activation of the Temp_Manager and
Mode_Manager task, by adjusting the start offsets. Further-
more, it is also necessary, that Temp_Manager gets a higher
priority than Mode_Manager, so it is scheduled first. Al-
though, this priority change contradicts the DMS strategy –
Temp_Manager has a bigger deadline than Mode_Manager –
it seems to be the most feasible solution to reduce the event
chain latency.

Table III. ADJUSTED SCHEDULING WITH OS COUNTER TICK OF 500US

Name Type Period
(µs)

Deadline
(µs)

Offset
(µs)

Priority

Torque_Manager Task 1000 100 - 200

Analog_Manager Task 1000 500 0 102

ASIC_Manager Task 1000 1000 500 95

Temp_Manager Task 10000 10000 2000 71

Mode_Manager Task 5000 5000 2000 70

Com_Rx Task 5000 5000 2000 50

Com_Tx Task 5000 5000 3500 45

Memory_Manager Task 10000 10000 9000 5

Diagnosis Task 10000 10000 8000 2

After the adjustment of the scheduling as defined in table
III, a rerun of the simulation shows, that the end-to-end latency
of the event chain now remains under the deadline of 12ms.
An example for a successful evaluation of the requirement is
shown in figure 11.



Figure 11. Successful evaluation of end-to-end latency requirement (Tem-
perature Error)

The distribution of the end-to-end latency for the event
chain Temperature Error predicted by the simulation is shown
in figure 12.

Figure 12. End-to-end latency distribution for event chain (Temperature
Error)

According to these results, the latency of the event chain
ranges from 0.3ms up to 10.4ms.

E. Evaluation of event chain ’Analog Input Error’

In addition to the main temperature sensor, the SCM
processes temperature information from two additional tem-
perature sensors in different locations. These are connected
to the SCM via two multiplexed (switched) analog inputs.
The multiplexing is controlled by an ASIC using synchronous
SPI bus communication. Depending on the SPI pin selection
controlled by the ASIC_Manager, the ADC reads the sensor
signal from either Analog_Input 1 or Analog_Input 2.

As shown in figure 13, the switching between the analog
inputs every 6ms can lead to a delay for the recognition of
a potential Analog Input Error. In this situation, we can see
that an input error propagating from Analog_Input 1 is not
processed immediately by the Analog_Manager task, but only
after an additional switching cycle, when Analog_Input 1 is
selected again after Analog_Input 2 was read. Considering the
simulation results we can see that the switching frequency is
highly relevant for the optimization of the end-to-end event

Figure 13. Violation of end-to-end latency requirement (Analog Input Error)

chain latency. If we increase the frequency (decrease the
period) switching inputs every 1ms, thus accepting a slight
increase of the CPU load, we can reduce the time delay for
the error indication to propagate and reach the power stage in
less than 12ms as depicted in figure 14.

Figure 14. Successful evaluation of end-to-end latency requirement (Switched
Analog Input Error)

VI. COMPARISON OF CPU LOAD FOR SCHEDULING
ALTERNATIVES

Finally, after the optimization of the end-to-end latencies
for the different event chains, we compared the CPU load char-
acteristics of the different scheduling alternatives, as described
in table I and III.

Figure 15. Simulated CPU load average for initial configuration



Figure 15 shows the CPU load for the initial configuration
of the SCM before the optimization, and figure 16 shows the
CPU load for the final configuration. In both cases the CPU
load curve was calculated for a smoothing interval of 1ms
with a granularity of 10us.

Figure 16. Simulated CPU load average for final configuration after
optimization

We can observe that the CPU load peaks in the initial
configuration reach up to 64%, and are slightly higher than
those observed in the optimized configuration. The decrease
from 64% to 58% was achieved mainly by the re-adjustment
of the start offset for the ASIC_Manager task.

VII. GENERIC DESIGN RULES LEARNED FROM THE CASE
STUDY

A key question for the optimization of the scheduling in
the SCM was to know which configuration parameters can be
changed, and which changes are the most effective in order
to fulfill the timing requirements. The theory for preemptive
fixed-priority scheduling usually focuses on the optimization
of process priorities and relative activation offsets. As we have
shown in this paper, the optimization of offsets – even when it
is done manually – is very effective to minimize the number of
context switches3 and to smooth the CPU load in time intervals
which show high CPU load peaks. At this, it is important
to follow the precedence relations imposed by the data flow
in the system, as otherwise the end-to-end latencies of event
chains will be unnecessarily prolonged. However, we have
also shown that for the optimization of event chains, it can
be very useful to consider changing also other aspects of the
system configuration, like activation periods, or the number
and decomposition of processes:

• Periods of time-triggered processes: Usually, the ac-
tivation period of a time-triggered processes is de-
duced from the system requirements of the functions
allocated to this process. Nevertheless, in some cases
the activation period can be relaxed without violat-
ing any constraints. For example in many control
systems, processes concerned with the sampling and
(pre-)processing of sensor data are usually scheduled
with a higher frequency than necessary, in order to
compensate for unpredicted scheduling effects.

3A context switch in an AUTOSAR OS with memory protection may
consume several microseconds.

• Number and decomposition of processes: The number
of processes and their decomposition, as a matter of
fact the allocation of basic and application software
functions (or runnables) to processes, is guided by
both functional and safety requirements. As the end-
to-end latency of an event chain results from a prede-
fined, sequential chain of function executions and data
flows, and thus depends on the timely interaction of
the involved processes, it can only be optimized under
consideration of the underlying process architecture.
In a complex control system, consisting of many event
chains with different criticality, designers must find a
trade-off between the separation of concerns driven by
safety requirements, and the compliance with real-time
requirements imposed by the functional domain.

• Execution order: In general, the execution order of
functions within one process should follow the data
flow between the functions. In some cases, additional
design techniques must be employed to break up
feedback loops in the data flow.

• Core affinity: On multi-core processors, the core affin-
ity of a process defines on which core(s) this process is
allowed to execute. In order to avoid expensive cross-
core communication between processes, functions of
the same event chain should not be allocated to
processes which execute on different cores.

VIII. EXTENDED TIMING-AWARE CO-DESIGN
METHODOLOGY

Based on the experiences made in the case study, we
have enhanced our development process for the verification of
(safety-critical) event chains with hard real-time requirements.
A seamless workflow as depicted in figure 17 combining
timing measurements on the target hardware with model-
based timing simulation was defined, and feasibility of the
approach was tested using the commercial tools chronVIEW
and chronSIM developed by INCHRON.

Sensors
Actuators

Microcontrollers / CPUs
Peripherals

Busses

Tasks / ISRs
Shared resources

CPU / Core mapping
Scheduling parameters

Execution times

Functional
data and control flow

Dysfunctional
data and control flow

Functional
timing requirements

Dysfunctional
timing requirements

Timing simulation

Safety analysis
(FMEA, FTA)

Hardware and software
architecture model

Trace analysis

Target measurement
(Hella specific tooling)

Optimize configuration

Refine simulation

Figure 17. Model-based timing simulation of AUTOSAR compliant systems

The following work tasks shall be performed iteratively:



• Specify the structural system architecture comprising
the basic hardware and software elements using the
MCSE modeling concepts.

• Identify the interactions between application and basic
software (e.g. required services), and basic software
and hardware peripherals (e.g. sensor data acquisi-
tion).

• Specify the dynamic system architecture comprising
the basic execution and communication blocks (tasks,
interrupts, messages) and their associated timing prop-
erties (BCET, WCET, period, offset, deadline, priority
etc.).

• Specify the functional data and control flow consider-
ing all relevant modes of operation.

• Perform safety analysis and deduce the dysfunctional
data and control flow for all relevant fault conditions.

• Create (using chronSIM’s model editor directly) or
generate (using the INCHRON python API) a timing
simulation for the chronSIM tool out of the various
architecture models.

• Define simulation scenarios in chronSIM for the var-
ious modes and fault conditions and perform simula-
tion runs.

• If available perform measurements of the integrated
target and import and analyze the measured trace with
the chronVIEW tool.

• Extract timing properties and update simulation pa-
rameters with measured values. This is already done
automatically by the tool.

• Iteratively perform simulations and target measure-
ments until all functional and safety requirements can
be fulfilled by the current set of timing properties.

IX. CONCLUSION AND FUTURE WORK

Following the practical approach described in this paper,
we have shown how state-of-the-art model-based simulation
techniques can be used to support the dynamic architecture
design of complex automotive control systems. Although,
it may appear that adjusting the scheduling configuration
in the presented examples is not too complicated, and the
proposed solutions may seem obvious, one should consider
the number and complexity of the entire event chains in the
SCM. In reality, system engineers and software architects
responsible for integration and testing, have to achieve many
different competing, and sometimes contradicting design goals,
especially concerning the dynamic behavior of the system.
Model-based simulation and statistical analysis tools as pro-
vided by INCHRON greatly help to detect possible real-
time requirement violations, and furthermore offer guidance in
order to adjust and optimize an existing system configuration.
Eventually, they help to document and prove4 the feasibility
of the dynamic architecture design or subsequently proposed
design modifications.

4Depending on the safety and integrity level (SIL) standards like IEC 61508
or ISO 26262 for automotive require or at least recommend the usage of
analysis and simulation tools for the verification of the dynamic architecture.

Another goal of the case study was to explore possible
options for the integration of the different tools used in this
project, e.g. for modeling the system architecture, compiling
the AUTOSAR configuration, performing the timing simula-
tion, and debugging and tracing on the target microcontroller.
Although, some tool-integrations already exist, for example
the INCHRON Tool-Suite can generate a model out of an
AUTOSAR configuration in .arxml format, not all the relevant
information is represented adequately in each model. In some
case, we used the Python programing language and the model
API of the INCHRON Tool-Suite to automatically generate
the simulation model, and to extract execution times from
a measured trace in order to update the parameters of the
simulation model. In other cases, e.g. for the modeling of event
chains or real-time requirements, the transformation from the
system architecture model into the simulation model was done
manually, mainly due to issues with the interpretation of the
data flow semantics discussed in section IV-D of this paper.

In the future, we intend to increase the efficiency of the
integration between the simulation and system modeling tools
by extending the UML/SysML meta-model profile with the
semantics defined in the MCSE methodology. This will make
it possible, to automatically generate the event chain and
requirement definitions used by the simulation, directly from
the system architecture model, and thus eliminate the need
to re-model them manually. This solution would also use
the existing model API of the simulation tool, and can be
maintained without high effort.

After that, we also want to evaluate, if formal verification
methods as described in [6] can be applied in a real project en-
vironment, in order to find possible inconsistencies concerning
the data and control flow already in the structural architecture
model, and thus reducing the number of required simulation
iterations for the optimization of the system. Finally, we
plan to migrate the case study to a multi-core platform, in
order to analyze and verify our assumptions for multi-core
architectures.

REFERENCES

[1] S. Anssi, S. T. Piergiovanni, S. Kuntz, S. Gérard, and F. Terrier.
Enabling scheduling analysis for AUTOSAR systems. In ISORC, pages
152–159. IEEE Computer Society, 2011.

[2] Neil C. Audsley. Deadline monotonic scheduling, 1990.
[3] AUTOSAR Development Partnership. http://www.autosar.org.
[4] AUTOSAR Development Partnership. Specification of Timing Exten-

sions, Final Version, Release 4.2.1.
[5] J. Belz, T. Kramer, and R. Münzenberger. Functional safety: Predictable

reactions in real-time. EE Times Europe, 2011.
[6] Bernard Berthomieu, Jean-Paul Bodeveix, Patrick Farail, Mamoun

Filali, Hubert Garavel, Pierre Gaufillet, Frederic Lang, and François
Vernadat. Fiacre: an intermediate language for model verification in
the topcased environment. In ERTS 2008, 2008.

[7] A. Burns. Scheduling hard real-time systems: a review. Software
Engineering Journal, 6(3):116–128, May 1991.

[8] Jean Paul Calvez, Dominique Heller, and Olivier Pasquier. Uninter-
preted co-simulation for performance evaluation of hw/sw systems. In
Hardware/Software Co-Design, 1996.(Codes/CASHE’96), Proceedings.,
Fourth International Workshop on, pages 132–139. IEEE, 1996.

[9] J. Cooling. Rate monotonic analysis.
[10] R. I. Davis and A. Burns. A survey of hard real-time scheduling

for multiprocessor systems. ACM Comput. Surv., 43(4):35:1–35:44,
October 2011.



[11] C. Ekelin, A. Hamann, D. Karlsson, U. Kiffmeier, S. Kuntz,
O. Ljungkrantz, M. Özhan, and S. Quinton. TIMMO-2-USE Method-
ology Description V2. Technical report, October 2012.

[12] Software engineering and Universidad de Cantabria real-time group.
Modeling and analysis suite for real-time applications (MAST).
http://mast.unican.es.

[13] C. Ferdinand. Worst case execution time prediction by static program
analysis. In Parallel and Distributed Processing Symposium, 2004.
Proceedings. 18th International, pages 125–, April 2004.

[14] INCHRON GmbH. INCHRON Tool-Suite. http://www.inchron.com.
[15] P.-E. Hladik, A. Déplanche, S. Faucou, and Y. Trinquet. Adequacy

between autosar os specification and real-time scheduling theory. In
Industrial Embedded Systems, 2007. SIES’07. International Symposium
on, pages 225–233. IEEE, 2007.

[16] O. Kermia. Optimizing distributed real-time embedded system handling
dependence and several strict periodicity constraints. Advances in
Operations Research, 2011, 2011.

[17] Frédéric Leens. An introduction to i 2 c and spi protocols. Instrumen-
tation & Measurement Magazine, IEEE, 12(1):8–13, 2009.

[18] Joseph Y.-T. Leung and Jennifer Whitehead. On the complexity of
fixed-priority scheduling of periodic, real-time tasks. Performance
Evaluation, 2(4):237 – 250, 1982.

[19] C. L. Liu and James W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. J. ACM, 20(1):46–61,
January 1973.

[20] OMG. SysML Standard v1.2. http://www.omgsysml.org/.
[21] J. C. Palencia and M. González Harbour. Schedulability analysis for

tasks with static and dynamic offsets. In Proceedings of the IEEE Real-
Time Systems Symposium, RTSS ’98, pages 26–, Washington, DC, USA,
1998. IEEE Computer Society.

[22] L. Sha, T. Abdelzaher, K.-E. Arzen, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real time
scheduling theory: A historical perspective. Real-Time Syst., 28(2-
3):101–155, November 2004.

[23] F. Simonot-Lion. Automotive Embedded Systems - The Emergence of
Standards. In 15th IEEE International Conference on Emerging Tech-
nology and Factory Automation (ETFA 2010), Bilbao, Spain, September
2010. IEEE.


