
Aspect-oriented Data and Safety Modeling for
Cyber-Physical Systems in Process Automation

Dirk Kuschnerus
Institute of Electronic Circuits

Ruhr-Universität Bochum
Bochum, Germany

Email: dirk.kuschnerus@rub.de

Attila Bilgic
KROHNE Messtechnik GmbH

Duisburg, Germany
Email: a.bilgic@krohne.com

Thomas Musch
Institute of Electronic Circuits

Ruhr-Universität Bochum
Bochum, Germany

Email: thomas.musch@est.rub.de

Abstract—Cyber-physical systems (CPS) integrate computa-
tion with physical processes, enabling the dynamic adaption of
systems based on economic and environmental conditions. The
adoption of CPS in industrial process automation is impeded by
legacy systems with severe functional safety constraints and the
need for highly configurable devices. To transfer the benefits of
CPS to process automation, the inherent conflict between CPS
safety and configurability must be explicitly considered during
system design and operation. This paper proposes aspect-oriented
modeling of safety and data for CPS in process automation as a
baseline for formal consistency monitoring.

I. INTRODUCTION

Cyber-physical Systems (CPS) integrate computation and
physical processes [1]. A remaining key research challenge for
CPS is the definition of suitable modeling approaches covering
abstraction and functional safety [2], [3]. Devices used in
process automation CPS are usually mass market products
which must be adapted to the specific process environment
of the customer. Suppliers implement this requirement by
adding configurability to their products, tailoring them to the
customer’s requirements during production and on-site. This
drastically increases device complexity, an effect which is
amplified by the emergent requirements for highly dynamic
systems arising from initiatives like the German ”Industry 4.0”,
where factory automation shall enable the dynamic adaption
of the production to customer’s desires or real-time demand
and economical factors along the life cycle of a product [4].
Unlike in factory automation, systems in process automation
are typically large scale plants with complex static control
loops, where despite its benefits CPS adoption is limited by
functional safety restrictions imposed by standards such as IEC
61508 [5] due to risks for humans and environment. Safety-
critical applications require extended verification of the plant’s
safety functions, which is impeded when the implementing
CPS components are configurable, creating a dependence
between safety-critical behavior and configuration data. This
conflict raises the need for formal specification and verification
techniques to enable safety verification of devices considering
specific configurations. In [6], we introduced a domain model
for hierarchical modeling of CPS in process automation. In
this paper, we propose a modeling approach advancing our
domain model, using the aspect-oriented paradigm to explicitly
model the safety and data concerns separated from the CPS
domain model. Our goal is to enable the reasoning about
safety in presence of complex configurability, setting a baseline

for the application of dynamic CPS in process automation
while preserving the required functional safety of the legacy
installations.
The remainder of this paper is organized as follows: Section
II examines related work on CPS modeling, Sections III and
IV describe the interconnected modeling of the safety and data
aspects. Both aspects are jointly examined in a case study in
Section V, which also covers inconsistencies between aspect
and domain models. Section VI gives a conclusion and outlines
further research directions.

II. RELATED WORK

To obtain an overview of methods for modeling CPS
in process automation, we conducted a systematic mapping
following the method introduced in [7]. The mapping identified
and categorized a total of 448 relevant publications, 15 of
which target the domain of process automation. This low
number is also confirmed by [8], where only one publication
from the domain of industrial automation is listed.
Following our mapping, we further examined the relevant
papers from all domains in a systematic literature review
as suggested in [9], focusing on the aspects of data and
functional safety. From the 15 process automation papers only
[10], [11] and [12] address functional safety. A combination
of safety and data modeling was only found in [12], where
the reachability of unsafe hybrid parametrized automata states
is determined but further safety and data concepts such as
hierarchical modeling and data dependencies are not covered.
To additionally cover cross-domain and generic approaches,
we broadened our investigation to relevant approaches from
all domains and identified 5 further papers covering data
and safety aspects in CPS ([13], [14], [15], [16], [17]). [14]
describes architectural views for heterogeneous CPS models
and consistency considerations between these views as well
as behavioral semantics for system verification. The approach
uses automata states to model and verify the safety of the
CPS. [16] develops a formal framework and graphical notation
for the development of hybrid systems using graphs and
hybrid automata. Neither [13], [14], [15] nor [16] include the
modeling of safety concepts that are incorporated in the design
of the whole CPS on various abstraction levels or the in-depth
coverage of configuration and the effects of configuration data
on system behavior and safety. [17] does not cover physical
and deployment views of CPS which we consider important
for safety and data consistency. In addition, none of the
publications mentioned before use aspect-oriented modeling

for the cross-cutting concerns of safety and data.
Concluding our literature review, to the best of our knowledge
our approach differentiates from the state of the art by covering
the explicit aspect-oriented modeling of functional safety and
data for CPS in process automation. We are further not aware
of generic or cross-domain approaches providing a compre-
hensive modeling coverage of safety and data concepts which
we consider crucial for CPS in process automation.

III. ASPECT-ORIENTED SAFETY MODELING

In aspect-oriented development, cross-cutting concerns af-
fecting major parts of the development artifacts are represented
as detached aspects to achieve separation between functional-
ity and cross-cutting concerns [18]. During the definition of
our domain model, we identified the influence of functional
safety on its structural, behavioral, physical, deployment and
communication viewpoints on the plant, CPS, subsystem and
component layers of abstraction. In addition to their distributed
influence, safety concepts typically are major development
artifacts which regarding to their specification and certification
efforts are desired to be reused in multiple projects. We there-
fore follow the aspect-oriented paradigm by integrating these
concerns into safety aspect models abstracted from a specific
device development and connecting them to our domain model
using formal weaving functions.
Fig. 1 shows the scope of our safety aspect. Aspect models

Safety Concept

Physical

Communication

Behavior

Structure

HW / Deploy

Safety Function
implements

1..* *
Risk

mitigates

1 1

cross-cutting concerns
Process CPS

weaving-functions,
well-formedness rules

monitored by

controls

Fig. 1. Scope of the safety aspect

define cross-cutting safety concerns from all viewpoints and
abstraction layers. Multiple concerns are integrated to safety
concepts implementing safety functions, which are defined in
IEC 61508 [5] as functions controlling a process or system
to mitigate the risk of dangerous failure causing harm to hu-
mans and environment. The connection points between aspect
models and the domain model are formally defined by weav-
ing functions and structurally constrained by well-formedness
rules (wfrs). The following paragraphs give an overview of the
aspect beginning with the cross-cutting concerns.
The influence of functional safety on the logical CPS structure
is primarily specified by the criticality and safety integrity
level (SIL) of structural model elements, needed as baseline
for further approaches such as partitioning and deployment.
The function crit defines whether an element is safety-related
(sr), non-safety related (nsr) or has a mixed criticality:

critcritcrit :Entity ∪DeployContext ∪ Channel ∪ Protocol

→ {sr, nsr,mixed} (1)

The function sil defines a SIL for each element used to
determine its valid dependencies regarding safety. To connect
this safety information to our domain model, we define the
weaving-function addAttribute:

addAttributeaddAttributeaddAttribute ={faA1 , ..., faAn}
faAi =E′ ⊆ Entities→ type(atti ∈ Attributes)

(2)

specifying a function faAi
for each attribute Ai that shall be

added to the domain model. faAi
assigns the type of Ai to

each of the targeted Entities E′. faAi
is by convention named

after the added attribute Ai. The application of every weaving
function is constrained by associated structural wfrs.
IEC 61508 differentiates between systematic failures and
random hardware failures e.g. due to hardware aging. The
latter are included in safety analysis such as Failure Modes
Effects and Diagnostic Analysis (FMEDA) to determine the
risk of dangerous undetected failures of the safety function.
We add hardware failure information to the hardware
elements in the domain model using the weaving function
addAttribute, covering the probability of a hardware error,
the fractions of safe, unsafe, detected and undetected errors
and aggregated values for system integrators.
The dependable transfer of safety-related data must be
ensured by safe communication channels in safety-critical
CPS. The applicability of a channel for transporting data
of a specific SIL is influenced by the bit error probability
of the underlying hardware link as well as qualitative and
quantitative communication measures modeled by the safety
aspect both in the deployment and communication viewpoints.
Safety-critical CPS typically adapt their behavior according

Startup Nonsafe
Operation

Safe
Operation

Maintenance
Mode

Safe Error
State

error detected

error resolved
!error resolved

service attempt

DD error
detected

Safety Checkmode

change

[check

successful]

[!check successful]
DU / SD /
SU error

Fig. 2. Safety modes introduced by the safety aspect

to their internal safety mode. To model the overlaying safety
modes of the CPS under development and the modification of
the domain model behavior during the modes, our aspect uses
a safety automaton connected to the behavioral semantics
of the domain model via weaving functions. Behavioral
changes triggered by the safety mode are the augmentation
of the behavioral semantics, e.g. the addition of an additional
safety check, and their restriction, e.g. due to a simulation
function which may only be started in nonsafe operation.
Both augmentation and restriction can be applied to all
behavioral models used in [6]. Fig. 2 shows the generic safety
automaton, describing the internal safety mode of the CPS
from startup to nonsafe and safe operation. The CPS stays
in safe operation in case of dangerous undetected and safe
errors, switching to a safe state on detection of critical errors.
The augmentation of behavioral semantics is used in the
motivated verification of process safety functions considering
their configurable realization. On the subsystem layer, safety
functions are modeled by adding control modes to the hybrid
automaton of the process step. The process safety time, i.e.
the time between the occurrence of a failure and a resulting
hazardous event defines the detection and reaction time
available to the safety functions for mitigating the risk of
the event and is modeled inside the safety automaton of the
specific CPS. The realization of safety functions is modeled
on the component layer by modifying the system’s activity
diagrams. Both concepts are detailed in section V-D.
As shown in Fig. 1, our safety aspect additionally defines
reusable safety concepts from sets of cross-cutting concerns.
These templates can e.g. define diagnostic functions to detect
the hardware failures introduced above, facilitating the tracing

between failure analysis and mitigation as shown in the
2-channel safety concept in Fig. 11.

IV. ASPECT-ORIENTED DATA MODELING

The device development for industrial CPS targets
mass markets where it is unfeasible to develop individual
products for every customer. As a result, complementing
the measurement data the CPS gathers and processes,
industrial CPS contain a large number of configuration data
used for the customization of base device variants to the
customer’s application. Both data categories influence all
viewpoints over the entire system hierarchy. A configuration
data model is often used detached from a specific device,
e.g. during manufacturing and order processes or customer
service and should be separated from other development
artifacts. We therefore model CPS data as aspect to enable
data development, deployment and analysis to be conducted
independently from the domain model.
Fig. 3 shows the fundamental data aspect model for CPS
in process automation, categorizing data items into device
variables and static data. Device variables represent values
connected to the physical process which are periodically
refreshed and distributed throughout the CPS, whereas static
data items describe typically persistent attributes of the CPS
itself. Every data item is uniquely identified by its localId
and scope, which defines the area where device variables are
distributed and static data is synchronized and available to
all modules. This can be e.g. a partition or a node. Device
variables are produced by one distinct software module
(producer), can be set to a synthetic test value (synthetic)
and connected to an external CPS interface (outputChannel).
Each device variable has an update interval and can be kept
local by stopping the bus distribution. The data aspect defines
two types of device variables: a float value with timestamp
and a double value. Static data is protected by an access
level specifying valid editors as well as the item’s settings for
persistent storage and replication between data stores. Static
data is defined for several data types and contains actual,
default and SIL values and associated value ranges.
The data aspect also defines dependencies between data
items. Configuration details of device variables such as limits
and default values are given by a referenced static data item
(configuredBy). Both device variables and static data can be
derived from other data items. Derived data items are locally
calculated from primary data items and are not persistently
stored. In addition, static data items can interfere with each
other during the update of their values. An updateDependency
between multiple data items denotes that the CPS can only
accept an updated value of a data item if the dependent
items are also updated. The checkDependency is an internal
dependency that triggers a validation of connected data items
if the value of one data item is altered.
While the safety and data aspects are specified concurrently
to the domain model, there is interdependence between
the aspect models. Device variables and static data both
have a criticality and SIL defined via the weaving function
addAttribute from the safety aspect. In addition, the SIL value
in static data items defines a value that is set when the safe
operation mode specified by the safety aspect is entered.
The aspect model is connected to the domain model using

Fig. 3. Basic data model defined by the data aspect

the concepts of weaving functions and restrictions specified
by wfrs as described in Section III. In the structural,
communication and deployment views, attributes can be
altered and entities such as software modules can be
deactivated by the data aspect. As the data aspect models
the CPS internal representation of process values, it adds a
connection between process values and device variables thus
connecting physical and computational parts of the domain
model. In the deployment and communication views, the
storage and distribution data flow of device variables and static
data is modeled using the weaving function addData. This
function also specifies hardware configuration by connecting
static data items to hardware nodes. As described in Section
III, the aspect models influence the behavior of the CPS. The
influence of configuration data to the behavioral semantics
is modeled using the weaving functions addBehavior and
removeBehavior as shown in Fig. 9.

V. CASE STUDY

A. Example Process - Distillation in MDI Production

We use the simplified chemical process of methylene
diphenyl diisocyanate (MDI) production [19] as case
study for exemplary application and evaluation of our
modeling approach. MDI as a base product of polyurethanes
is one of the most produced isocyanates. It can be
generated by condensation of aniline and formaldehyde
to methylenedianiline (MDA) using hydrochloric acid (HCl)
as catalyst followed by phosgenation of the MDA. Using
the highly dangerous phosgene, the process is well-suited to
study our domain model in a safety-critical environment. As
shown in Fig. 4, phosgene and HCl must be separated from
the crude MDI after the phosgenation in a distinct subprocess
”phosgene separation”, on which we focus in our case study.

Aniline

MDA
Production

Formal-
dehyde

HCl

Phosgenation
Phosgene
Separation

Phosgene, MDI,

HCl, MCB
MDA crude

MDI

HCl

Phosgene Phosgene

MCB MCB

Fig. 4. Schematic Overview of MDI Production

The separation of phosgene, HCl, MDI and the solvent
chlorobenzene (MCB) can be realized by distillation, as
schematically shown in Fig. 5. The feed mixture F enters
the column in liquid state and flows towards the base of
the column which is continuously heated by circulation of
the base product (MCB and MDI) through a steam reboiler.
This leads to vaporization of phosgene, HCl and parts of
the MCB, forming a vapor flow V towards the head of the
column. This head product exits the column and enters a
condenser, which cools down the vapor to liquefy MCB
and phosgene while extracting the gaseous HCl. MCB and
phosgene are then stored in an output tank and directed
towards other subprocesses. In a non-ideal distillation column,
the vapor emerging at the column bottom contains both the
lighter and heavier compound. To reduce this mixing and to
obtain higher purity of base and head product, column floors
and a partial reflux L from the output tank to the column
are installed. When the steam meets with the reflux at a
certain floor, it partly condenses whereat mostly the heavier
compound is liquefied. The condensing energy contrarily
causes the vaporization of the lighter compound in the reflux.
Moving towards the column head, this effect is multiplied by
introducing additional floors to reach a desired level of purity.
Typical distillation columns are controlled using five control

Condenser

HCl

coolant

MCB+phosgene

MCB + MDI

phpt1

VfF
phosgene+MDI
+HCl+MCB

wc

PC

Output Tank

L1 LC2

FCD

VfD

MCB+phosgene

FC1

VfR
FCR

Reboiler

steam
VfS

FC2

t2 L2

LC1

MCB + MDI
VfBP

V

V

D

B

FCBP

L

Thp

FCSF2

material flow

control

material flow (alt.)

whp

FCS

column
F

base product base product

distillate
reflux

FCC

Tc

FCSF1

Vfc

Thp0

Tc0

qc

qr qD

Fig. 5. Schematic Overview of Phosgene Separation by Distillation

loops. To obtain stable column operation, the levels at the
column base (LC1) and the output tank (LC2) as well as the
column pressure (PC) are controlled. The product quality is
defined by the desired separation between the compounds in
both base and head product (distillate). Control schemes for
distillation columns are commonly named after the variables
used to control the product quality. In our case study, we
apply the LV control scheme, which controls the head product
composition by the reflux (FC1 controlling L) and the base
product composition by the flow of steam to the reboiler
(FC2 controlling V). To reduce the size of our case study, we

evaluate our aspect-oriented modeling approach focusing on
condenser and output tank of the distillation. In the following
section, we introduce both process steps and derive a state
space representation to which we apply our approach.

B. State Space Representation

Control algorithms in process automation are designed
based on system models either deduced from physical
characteristics of the controlled process or aggregated from
measurements. The variables and detail of the model must
be adapted to the actual control task. In our case study, the
safety-relevant criterion of the condenser is the complete
liquefaction of phosgene, warranted if the condenser cools the
head product lower than the boiling point of phosgene at 7.44
degrees Celsius. The controlled variable in the condenser is
the mass flow wc of the coolant. We abstract the behavior of
the condenser with that of a heat exchanger:

˙Thp =
whp

mhp
Thp0 −

whp

mhp
Thp(t)− kAThp(t)

mhpchp
+

kATc(t)

mhpchp

Ṫc =
wc

mc
Tc0 −

wc

mc
Tc(t) +

kAThp(t)

mccc
− kATc(t)

mccc

(3)

where ˙Thp and Ṫc are the time-derivatives of the head product
and coolant temperatures after condensing, k is a constant of
the heat exchanger describing its ability to transfer energy, A
is the area of the heat exchanger, mhp and mc are the masses,
chp and cc the heat capacities, whp and wc the mass flows
and Thp0 and Tc0 the temperatures at the entry point of the
condenser of the head product and coolant, respectively.
The change in head product temperature depends on the heat
transfer between product and coolant as well as on their initial
temperatures. For controlling the head product temperature by
manipulating the mass flow of the coolant, we rewrite the
second equation for Tc(t) and insert it into the first to obtain
a non-linear equation for the dependency of ˙Thp and wc. To
facilitate control and verification activities we generate a linear
state space representation of the form

∆ẋt = A∆x(t) + B∆u(t) + E∆d(t)

∆y(t) = C∆x(t) + D∆u(t)
(4)

where ∆x(t) =

(
∆Thp(t)
∆Tc(t)

)
is the state, ∆u(t) = ∆wc(t)

the input, ∆d(t) =

(
∆whp(t)
∆Thp0(t)

)
are the disturbance variables

and ∆y(t) is the output of the condenser. ∆ symbolizes
small deviations from the original variables in the cause of
linearization. The matrices A, B, C, D and E are obtained
by Taylor linearization of the equations in (3) at a specific
operation point in which Thp and Tc are stable, i.e. ˙Thp = 0
and Ṫc = 0 :

A =

(
0 −whpRccwcR

kA
− whpR − ccwcR

chp
− kA

chp
kA

mccc
−wcR

mc
− kA

mhpchp

)
B =

(
−whpRccTcR

kA
+

whpRccTc0

kA
− ccTcR

chp
+ ccTc0

chp

Tc0 − TcR

)
C =

(
1 0

)
D = 0

E =

(
Thp0R − ccwcRTcR

kA
− TcR + ccwcRTc0

kA

whpR

mhp

0 0

)
(5)

Variables with the index R are fixed in the operation point.
While more complex models for condensing processes exist
(see e.g. [20]), we use this abstracted form to keep the size of
the verification problem manageable for our case study.
The output tank is the second process step covered by our
case study. The critical process variable concerning functional
safety is the level of the distillate h(t) inside the tank which is
controlled by LC2 via the valve FCD. The level is influenced
by the input qc from the condenser, the reflux qr to the column
and the output flow qD:

qc = V fc ∗ dc(t)
qr = kr ∗ dr(t)

√
2gh(t)

qD = kD ∗ u(t)
√

2gh(t)

(6)

The flows are defined by the opening of the corresponding
valve (dc(t), dr(t), u(t) ∈ [0..1]) and the constants kr, V fc, kD
defining the maximum flow at the entry and exit points of the
flow. For the level control, dc(t) and dr(t) are disturbances and
the input u(t) is located at FCD. qr and qD are dependent on
the current level h(t) according to Torricelli’s law. The time-
derivative ḣ is given by the non-linear equation

ḣ =
qc − qr − qD

AT
(7)

which can be linearized to a linear state space model in the
form of (4) where ∆x(t) = ∆y(t) = ∆h(t) and

A =
(

1
AT

√
2g 1

2
√

hR

(krdrR + kDuR)
)

B =
(
− 1

AT
kD
√

2g
√
hR

)
C = 1

D = 0

E =
(
V fc
AT

− 1
AT

krR
√

2g
√
hR

)√
hR =

−V fcdcR

(−krdrR − kDuR)
√

2g

(8)

C. Modeling the CPS

Focusing on the condenser and output tank of the phosgene
separation, we first model the control systems PC and LC2

from Fig. 5 excluding data and functional safety. Both span
over the subsystem and component layers of abstraction. The
connection between the continuous state space models of
condenser and tank introduced in section V-B and the behavior
of their control systems is established on the subsystem layer
using hybrid automata as defined in [21].
The states V of a hybrid automaton
H = 〈X,V,E, init, inv, flow, jump, event,Σ〉 represent
control modes defining the continuous flow of real number
variables X , while the transitions E specify discrete mode
switches. The labeling functions init, inv, flow and jump assign
predicates to each control mode vi, where init assigns initial
values to the variables of vi, inv defines invariants for the
variables, flow specifies the continuous change of variable
values within a control mode and jump defines conditions for
control switches. The function event assigns a triggering event
from the set Σ of events to each control switch. In our domain
model, the automata of a subprocess can exchange signals and
change their control modes by the discrete event of receiving
a signal and by the violation of a state invariant.
Figure 6 shows the hybrid automaton of the condenser, whose
control state defines the control algorithm of the condenser in

/!ECond_T_high

Thp(t) >
Thp_max

control

Control

Inv

Safety FunctionOperation

Thp(t) ≤ Thp_max
- hysteresis

/!ECond_control01 SFCF


/!ECond_overtemp

tSFC2_1:
tSFC2_2:

tSFC2_3:
tSFC2_4:

ConfThp::
FloatDataItem

unit: degC
scope:CPS
sil:SIL3
crit:SR
replicated:true
persistent:true
silLowerRange:0f
silUpperRange:7.44f
silValue:7.44f

Thp::FloatTsDV

configuredBy

addData

Thp_max::
FloatDataItem

unit: degC
scope:CPS
sil:SIL3
crit:SR
replicated:true
persistent:true
accessLevel:user
silLowerRange:0f
silUpperRange:7.44f
silValue:7.44f

addData





































)(

)(
)(

)(

)(

0 tT

tw
EtBw

tT

tT
A

T

T

hp

hp

c

c

hp

c

hp





FCSF1==1

SFC2_switchover

Inv

Control

11 FCSFSF vCF 

FCSF1==0temp_control
Δy(t)=ΔThp(t)

Δy(t)=ΔThp(t)

Δwc(t)=kc(w(t)-Δy(t))

Δwc(t)=kc(w(t)-Δy(t))

SFC2_switchback

Inv

Control

11 FCSFSF vCF 

temp_control
Δy(t)=ΔThp(t)

Δwc(t)=kc(w(t)-Δy(t))

SFC2_overtemp

Inv

Control

temp_control
Δy(t)=ΔThp(t)

Δwc(t)=kc(w(t)-Δy(t))

01 SFCF


FCSF1=0

ΔThp(t)≤Thp_max & FCSF1=1

FCSF1>0

FCSF1<1

Fig. 6. Behavior of the Condenser Control System on Subsystem Level

safe operation mode, where the mass flow of the coolant wc

is controlled to keep the temperature Thp below Thp max. The
control system in our case study uses a proportional controller
∆wc(t) = kc(w(t)−∆y(t)) which multiplies the comparison
of reference variable w(t) and output ∆y(t) by a factor kc.
The invariants of the control state define that during regular
control, the HCl output valve FCFS1 is constantly open and
the temperature ∆Thp is always below the threshold Thp max

of 7.44 degrees Celsius. Similar to the condenser, the behavior
of the output tank on subsystem level is defined as hybrid
automaton shown in Fig. 7. During regular operation, the
automaton controls the level of the output tank via the valve
FCD, as defined in (8).
In our domain model, the component layer as lowest layer
of abstraction specifies the implementation of the control
algorithms defined on the subsystem layer. Fig. 8 shows the
deployment structure of the condenser and output tank. The
condenser consists of five nodes which are containers for
groups of hardware units connected by communication links
and typically contained in a separate housing. Three of the
nodes are vortex sensors which count the vortexes in the
Kármán vortex street behind a bluff body in the pipe to mea-
sure the flow speed. The structural model of a vortex node in
our domain model consists of a sensor (e.g. piezo elements or a
physical switch) for vortex counting, pressure and temperature
sensors for mass flow calculation, a vortex algorithm software
calculating the mass flow from the vortex frequency f as well
as software components for inter-node data management and
communication. Condenser Vortex1 and Condenser Vortex2
measure the mass flow whp and the temperature Thp0, while
Condenser Vortex3 measures the incoming mass flow wc and
temperature Tc0 of the coolant. The node Condenser Temp1
contains two temperature sensors measuring the temperature
Thp of the distillate. In addition to the three sensor nodes,
the converter includes a node with two microcontroller units
(MCUs) running the software components for the temperature
control algorithm and the actual valve control. The converter
controls the valve nodes FCC, FCSF1 and FCSF2.
The output tank in our case study consists of three nodes: two
radar level sensor nodes Tank Radar1 and Tank Radar2 as
well as the Tank converter node which runs the level control
algorithm and controls the valve FCD. The nodes of the
converter and the tank are connected using a bus system while
the connections between valves and control nodes are realized
via point to point links.
On the component level the behavior of each control mode
from the hybrid automaton on the subsystem level is modeled

ECond_T_high |
FCSF1==0

control SFOT3_output_closing

FCDD vCF 

EC
on

d_
co

nt
ro
l &

h(
t)
=
=
0

ECond_control &
h(t) > 0

h(t)==0FCSF2==1 &
h(t) ≥ hmin + hysteresis

ESFOT2_Timeout
ECond_control |
FCSF1==1

/!Eout_control

h(t) ≥ hmin
+ hysteresis

h(t) ≤ hmin

Safety Function SFOT4

/!Eout_control

Err_Lvl

tSFOT2_1:

tSFOT3_1:
tSFOT2_2:

tSFOT3_3:
t SF

O
T
3_

4:

tSFOT3_5:tSFOT3_6:

tSFOT4_1:

tSFOT4_2:

tSFOT4_4:

FCSF2==0tSFOT2_3:











)(

)(
*)(

2

tFC

tFC
EFCBthAh

R

SF

D


tSFOT2_5:
FCSF2==1

FCD>0

tSFOT2_4: ECond_control | FCSF1==1

Operation Safety Functions SFOT2, SFOT3

SFOT4_output_closing
Control

level_control

FCDD vCF 

Inv

Δy(t)=Δh(t)

FCD>0

SFOT4_output_closed
Control

level_control

0DCF


Inv

Δy(t)=Δh(t)

FCD=0

h(t)==0 &
FCD ≠ 0

tSFOT4_3:

h(t) ≠ 0 &
FCD==0

Control

level_control:

Δy(t)=Δh(t)

FCSF1>0Inv

SFOT2_input_closing
Control

level_control

Inv

Δy(t)=Δh(t)

FCSF2>0

22 FCSFSF vCF 

SFOT2_input_closed
Control

level_control

Inv

Δy(t)=Δh(t)

02 SFCF


SFOT2_input_opening
Control

level_control

Inv

Δy(t)=Δh(t)

22 FCSFSF vCF 

FCSF2<1

Control

level_control
Δy(t)=Δh(t)

22 FCSFSF vCF 

Inv

SFOT3_input_opening

0DCF


FCD=0

Control

level_control
Δy(t)=Δh(t)

22 FCSFSF vCF 

Inv

FCD==0
tSFOT3_2:

SFOT3_output_closed

FCD=0

Control

level_control
Δy(t)=Δh(t)

22 FCSFSF vCF 

Inv

0DCF


SFOT3_tank_draining

FCD=0

Control

level_control
Δy(t)=Δh(t)

22 FCSFSF vCF 

Inv

0DCF


FCSF2=0

Fig. 7. Behavior of the Output Tank Control System on Subsystem Level

as activity diagram defining the control and data flows between
the control system entities in this specific mode. Each of
the activities carried out by an entity can additionally be
detailed by a distinct activity diagram. Fig. 9 partly shows
the activity diagram for the control mode of the condenser.
The grey actions mark the standard behavior of the control
system while the dotted flows and white activities are weaved
from the safety aspect as described in section V-D. The mass
flow whp1 is calculated from the vortex frequency fhp1 and the
temperature Thp0 1 and transferred via the bus using the action
transferSR denoting safety-critical communication. Together
with the current temperature value Thp, the temperature control
calculates a control input controlFCC which is adjusted in the
ValveControl module of the valve FCC .

D. Modeling Safety Aspects

Complementing the system specification, we use safety
aspect models to define the safety functions of condenser
and tank on the subsystem layer of abstraction as well as
their realization on the component layer. To demonstrate
the specification of hardware failures and their tracing to
detection methods, we apply the safety concept of 2-channel
redundancy by structural and behavioral weaving to the
condenser domain model.
The safety functions of condenser and output tank are
closely coupled. SFC1 in the condenser ensures that the HCl
which is used in other processes or even sold to contractors
is not contaminated with phosgene. To prevent this, PC
continuously controls pressure and temperature Thp by
manipulating the incoming mass flow wc of the coolant. A
demand on the safety function SFC2 occurs when Thp rises
above 7.44 degrees Celsius due to insufficient cooling. In
this case, the safety function assumes that phosgene has not
been completely liquefied and is flowing as gas towards the
valve FCSF1. SFC2 must close the valve before phosgene
exits. The resulting effect is a mixture of HCL and phosgene
leaving the condenser towards the output tank.
The output tank has four distinct safety functions. SFOT 1
continuously controls the tank level via the valve FCD.
SFOT 2 reacts on the flow of HCl towards the output tank
evoked by the triggering of SFC2 by closing the valve
FCSF2 before HCl can enter the tank, directing the complete

TABLE I. SAFETY FUNCTIONS OF CONDENSER AND OUTPUT TANK

Process Step Mode Control Description
SFC1 condenser continuous PC temperature control
SFC2 condenser on demand PC prevent phosgene output
SFOT 1 tank continuous LC2 level control
SFOT 2 tank on demand LC2, PC prevent HCl output
SFOT 3 tank on demand LC2 prevent HCl output
SFOT 4 tank on demand LC2 prevent empty pipe

condenser output back to the distillation column as reflux.
SFOT 3 closes the input and output valves FCSF2 and FCD

in case SFOT 2 is not successful in preventing the entry of
HCl into the output tank. SFOT 3 is responsible for emptying
the tank via the reflux to ensure that no HCl is put out to
following subprocesses. A demand on SFOT 4 is triggered
when the tank level falls below a minimum threshold. SFOT 4
is responsible for ensuring that the output valve is never
opened when the tank is completely empty to prevent damage
to following subprocesses caused by empty pipes. Table I
lists the safety functions covered by our case study.
As introduced in section III, our domain model extends
the behavioral specification of the system models using the
weaving functions addBehavior and removeBehavior. Fig. 6
shows the behavioral extension of the condenser automaton by
the behavior of the safety functions from Table I. The safety
function SFC1 is continuously executed during safe operation
in the control state of the automaton without altering the
behavior. SFC2 is executed on demand, i.e. when a dangerous
event occurs that may lead to process risks which have to
be mitigated. We use the weaving function addBehavior
to add three additional states to the automaton that are
executed by SFC2. The demand for SFC2 is modeled by the
transition tSFC2 1 which transfers the automaton to the state
switchover when the temperature Thp(t) rises above Thp max

and broadcasts the signal ECond T high. In this state, SFC2
closes the valve FCSF1 at maximum speed vFCSF1 which is
denoted by the flow equation ˙FCSF1 = −vFCSF1. When the
valve is completely closed, SFC2 enters the state overtemp in
which the valve FCSF1 remains closed (˙FCSF1 = 0) so that
gaseous phosgene cannot be released and the total output of
the condenser flows towards the tank. When the temperature
Thp(t) falls below Thp max including a hysteresis preventing

FCC::NodeCondenser_Converter::Node

Condenser_Temp1::Node

Condenser_Vortex1::Node

C_V1::
VortexSensor

fhp0_1

C_T1::
TempSensor

C_P1::
PressSensor

Thp0_1

ControlMCU1::
ProcessingUnit

ControlMCU2::
ProcessingUnit

whp1,

Thp0_1

whp2,

Thp0_2

co
n
tro

l_
F
C

c1

control_FCc

co
n
tr

o
l_

F
C

c2

control_FCSF1 Valve_FCc::
ActuatorHw

control_FCSF2

C_T4::
TempSensor

Thp1

php0_1

Condenser_Vortex3::Node

C_V3::
VortexSensor

fc

C_T3::
TempSensor

C_P3::
PressSensor

VortexMCU3::
ProcessingUnit

Tc0

pc

DataMgmt:

VortexAlgorithm

IntComm

VortexMCU1::
ProcessingUnit

DataMgmt:

VortexAlgorithm

IntComm

Condenser_Vortex2::Node

C_V2

fhp0_2 Thp0_2 php0_2

VortexMCU2::
ProcessingUnit

wc,Tc0

TempMCU1::
ProcessingUnit

DataMgmt:

IntComm
C_T5::

TempSensor
Thp2

Thp

IntComm DataMgmt

Comparison TempControl

IntComm DataMgmt

ComparisonTempControl

ValveMCU1::
ProcessingUnit

IntComm

ValveControl

FCSF1::Node

FCSF1::
ActuatorHw

ValveMCU2::
ProcessingUnit

IntComm

ValveControl

FCSF2::Node

FCSF2::
ActuatorHw

Readback

ValveMCU3::
ProcessingUnit

IntComm

ValveControl

Readback

dc(t)

Tank_Converter::Node

ControlMCU1::ProcessingUnit

ControlMCU2::ProcessingUnit

co
n
tro

l_
F
C

D
1

co
n
tr

o
l_

F
C

D
2

IntComm

DataMgmt Comparison

LevelControl

IntComm

DataMgmt Comparison

LevelControl

FCD::Node

Valve_FCc::
ActuatorHw

ValveMCU1::
ProcessingUnit

IntComm

ValveControl
control_FCD

readback_FCSF1

Tank_Radar1::Node

T_R1::
RadarSensor

Δf_1

RadarMCU1::
ProcessingUnit

DataMgmt:

RadarAlgorithm

IntComm

Tank_Radar2::Node

T_R2::
RadarSensor

Δf_2

RadarMCU2::
ProcessingUnit

DataMgmt:

RadarAlgorithm

IntComm

NSR Module /
HwUnit

SR Module /
HwUnit

NSR Node SR Node

2-Channel

Legend

Thp_max::
FloatDataItem

scope:CPS
sil:SIL3
crit:SR
replicated:true
persistent:true
accessLevel:user

replicate

deploy

bus1Baudrate::
u16DataItem

scope:CPS
sil:SIL3
crit:SR
accessLevel:factory

configure

bluffBodyWidth::
u16DataItem

scope:CPS
sil:SIL0
crit:NSR
accessLevel:service

addData

h1

h2

C_T2 C_P2

Failure

id:dataCorruption
λD:1.7*10-9

λS:1.7*10-9

DCD=0.9

Fig. 8. Deployment Diagram of the Condenser Control System

the rapid switching of control modes, transition tSFC2 3 fires
and the valve FCSF1 is opened again in the state switchback
to finally return to the behavior of the control state when the
valve is completely opened.
The same mechanism is used to attach the safety functions
of the output tank to the hybrid automaton in Fig. 7. SFOT 1
is continuously processed in the control state of the hybrid
automaton. The safety functions SFOT 2 and SFOT 3 are
chained. SFOT 2 is entered when the valve FCSF1 is
completely closed or the signal ECond T high is received
which announces the triggering of SFC1. In both cases, the
tank control closes the input valve (˙FCSF2 = −vFCSF2)
to prevent the inflow of HCl. The safety time for SFOT 2 is
defined by the time the HCl needs to flow from the condenser
to the valve FCSF2. If FCSF2 closes before the safety time
exceeds, SFOT 2 returns to the control state via tSFOT2 3.
If the closing of the valve requires more time (denoted by
the signal ESFOT2 Timeout), HCl enters the output tank and
the transition tSFOT3 1 activates safety function SFOT 3 as
second part of the chain. SFOT 3 closes the output valve
FCD by setting the flow ˙FCD = −vFCD in the state
output closing. Once FCD is completely closed, tSFOT3 2

fires and the tank level decreases due to the reflux to the
column. The safety function waits for the signal ECond control

which announces regular condenser operation with complete
separation of HCl and phosgene. If at this point in time the
tank still contains HCl and phosgene, SFOT 3 enters the state
tank draining and waits for h(t) to decrease to zero. If h(t)
equals zero, the safety function reopens FCSF2 in the state
input opening, filling the output tank with phosgene, and
returns to normal operation via tSFOT3 6 when the level rises
above a minimum threshold hmin + hysteresis.
The safety function SFOT 4 ensures that the output valve
FCD is closed when the tank level h(t) decreases to zero to
prevent damage to following subprocesses. The demand for
the safety function is a decrease of h(t) below a configurable
threshold hmin which causes firing of the transition tSFOT4 1.
In the state output closing, SFOT 4 closes the valve FCD.
If FCD is completely closed, the safety function waits in

the state output closed for the tank level to rise over the
minimum threshold with hysteresis and switches back to
normal operation via tSFOT4 4. If however the tank level
decreases to zero before FCD is completely closed, a
safety-critical error Err Lvl occurs representing the failure of
SFOT 4 in preserving a safe system state for the process step.
The safety functions of condenser and output tank have to
react by transferring their process step into a safe state during
the interval between the occurrence and the consequence of
dangerous events referred to as process safety time. Fig. 10
shows the safety automaton of condenser and output tank. As
described in section III, in addition to the modes of operation
the safety automaton defines the process safety times and
safety-critical errors for each safety function. For SFC2, the
automaton defines the safety time tsafeSFC2 whose violation
leads to the critical error Err FCSF1, and the chained safety
times tsafeSFOT2 and tsafeSFOT3 leading to the error state
Err FCD. Section V-F argues that the occurrence of these
safety-critical errors depends on the configuration on both
subsystem and component layer and uses the automaton in
Fig. 10 to define a reachability problem supporting the prove
of correct system configurations regarding functional safety.
To support reuse and reduce modeling complexity, the safety
aspect defines safety concepts which can be used to implement
safety functions. These safety concepts are weaved into both
structural and behavioral models on the component layer. Fig.
11 shows the structural aspect model of the safety concept
”2-channel” which introduces a system of two sensors, two
processing units and two actuators. The sensors send a
dynamic data item to both processing units where they are
compared by software modules. The comparison modules on
each processing unit then calculate a derived data item and
exchange it to verify the calculation on each MCU. Each
of the processing units controls an actuator connected to
the same physical process. This safety concept introduces
redundancy to safety-related control tasks.
Fig. 8 shows the weaving of the 2-channel safety concept to the
condenser control structure. Both the node Condenser Vortex2
and the processing units VortexMCU2 and ControlMCU2 and

PiezoISR

fhp1

C_V1 C_T1 VortexMCU1::
VortexAlgorithm

calculateFreq calculateTemp

Thp0_1

[success]

setValve

getResValue

calcMassFlow

FCC::ValveControlControlMCU1::
Comparison

Bus

transferSR
whp1,Thp0_1

ControlMCU2::
Comparison

Bus VortexMCU2::
VortexAlgorithm

calcMassFlow

transferSR
whp2,Thp0_2

compare
whp1,Thp0_1

compare
whp1,Thp0_1

whp2,Thp0_2

whp2,Thp0_2

ControlMCU1::
TempControl

ControlMCU2::
TempControl

tempControl tempControl
[fail]...

compare

[success] [fail] ...

whp1,Thp0_1,Thp1

whp2,Thp0_2,Thp2

controlFCc1

compare

controlFCc2

controlFCc1controlFCc2
[success][fail]... [success] [fail] ...

controlFCc controlFCc

addBehavior

controlFCc

safe_operation

compareInterval::
u8DataItem

scope:module
sil:SIL3
crit:SR
accessLevel:factory

configure

Thp0_1::
FloatTsDV

unit: degC
scope:node
sil:SIL3
crit:SR

whp1::
DerivedFloatDV

derive_Float

derive()

unit: kg/s
scope:cps
sil:SIL3
crit:SR
updateMs:50
busMapped:true

removeBehavior
(busMapped,

scope)

Fig. 9. Weaving of 2-Channel Concept into Condenser Behavior

safe_operation

02 SFOTt

SFOT2

12 SFOTt

03 SFOTt
04 SFOTt

FCSF1==0 SFOT3

02 SFOTt

13 SFOTt

Err_FCD

/!ESFOT3_Timeout

/!ESFOT2_Timeout

03 SFOTt
FCSF1==1

FCSF1==1 & FCSF2==1 & h(t) ≥ hmin + hysteresis

02 SFCt

SFC2

12 SFCt

Err_FCSF1

/!ESFC2_Timeout

02 SFCt
FCSF1==0

tSFC2 ≥ tsafeSFC2

Thp(t) > Thp_max

/tSFC2=0

/tSFOT2=0 tSFOT2 ≥ tsafeSFOT2

/tSFOT3=0

tSFOT3 ≥ tsafeSFOT3

Fig. 10. Safety Automaton of Condenser and Output Tank

2Channel::
SafetyConcept

2

InputChannel Comparison OutputChannel

22

Host::
Processing
Unit

Comparison::
Module

Link::Channel

Sensor::
SensorHw

Link::Channel

Actuator::
ActuatorHw

Link::Channel

src
target

1

2

1

1

2

2

2

2

1

1

1

src
target

1

src

target

1

2
2

1

Fig. 11. Structural Aspect Model for Safety Concept ”2-Channel”

the corresponding bus channels are part of the 2-channel
safety concept added to the model via the weaving function
addEntity. Well formedness rules ensure the correct binding
of aspect and domain models using the types of the elements
in the aspect model as reference.
The hardware failure information introduced in section
III can be used on the component level to document the
identified failure modes from a safety analysis and trace their
implemented countermeasures to support system certification.
In Fig. 8 this is illustrated using the failure dataCorruption
which occurs at the memory of VortexMCU1 and leads to
a dangerous failure with the rate λD = 1.7 ∗ 10−9. The
2-channel safety concept acts as diagnostic measure against
the dataCorruption error with a diagnostic coverage DCD of
90% regarding dangerous failures.
Complementing the structure, a behavioral description of
safety concepts is part of the aspect models as shown for the
2-channel concept in Fig. 12. The activity diagram defines the
cross-verification data exchange between the concept entities.
An exemplary weaving of the safety concept is shown in the
activity diagram of the condenser in Fig. 9 using the weaving
function addBehavior to add entities, activities, control and
data flows to the original behavior with correspondence to the
safety concept ensured by well-formedness rules. The aspect-

measure

m1

Sensor1 Sensor2 Comparison1 Comparison2 Actuator1 Actuator2

measure

process process

m2

compare

compare

safetyReaction

[m1 m2] [m1 m2]

calculate
derived m1

[else]

calculate
derived m2

[else]

calculate
derived m2

calculate
derived m1

dm1 dm2m1,dm1m2,dm2

compare compare

safetyReaction

[dm1 dm2] [dm1 dm2]

[else]

[else]
adjust

adjust

Fig. 12. Behavioral Aspect Model for Safety Concept ”2-Channel”

oriented approach improves the accessibility of common
safety patterns like the 2-channel approach to domain experts
without explicit safety knowledge and encourages extended
reuse from implementation to documentation and certification
artifacts when reusing complete safety concepts.

E. Modeling Data Aspects

We use the data aspect to add configurability to condenser
and tank on subsystem and component level and demonstrate
how a specific configuration can be defined and bound to the
domain models. On the subsystem level, the aspect focuses
on the parameters of process steps and their safety functions,
providing a process owner’s point of view. The major part
of the data represent customization and data processing of
the CPS parts realizing the process control on the component
level. Similar to the safety aspect, weaving functions connect
device variables and static data items with the behavioral
and structural models on both layers, where the weaving on
component level corresponds to the customization of a mass
market device to a specific application.
The hybrid automata on the subsystem layer use device
variables in their flow equations and static data items in
transition guards and invariants. The weaving function
addData connects the device variables and static data items
from the data aspect to the variables and constants of the
hybrid automata. Fig. 6 shows the connection of the device
variable Thp and its configuration data item ConfThp as well
as the maximum value Thp max to the condenser automaton.
This reduced data set shows that inline modeling of all

configuration data values would magnify the complexity of
behavioral models beyond the point of efficient handling.
Using our aspect-oriented approach, we promote to hold
complete data models externally, e.g. in a separate database
and trace the connections to the variables in the automata via
the aspect weaving.
On the component layer, the origin of the device variables
introduced in the hybrid automata is defined by connecting
the device variables to producing software modules in the
structural and deployment viewpoint using the weaving
function producedBy. Dependent on their scope, the device
variables are then distributed to all data management modules
in the scope of the device variable. Fig. 8 illustrates the source
modules of device variables by the labels of their outgoing
links. Hardware-related characteristics used by software
modules are bound to the respective hardware unit or link
via the addData weaving function, configuration of software
modules is done using the function configure. In Fig. 8, the
construction variable bluff body width of the vortex sensor
CV 3 is defined using the static data item bluffBodyWidth and
the baudrate of the bus system connecting the nodes is set
using the data item bus1Baudrate. The storage and replication
of static data items is defined in the structural models of the
component by the weaving functions replicate and deploy, as
shown in Fig. 8 for the example of the maximum temperature
at the condenser Thp max, which is deployed at TempMCU1
of the condenser and replicated to ControlMCU1.
Configuration data influences the behavior of the control
system on the component layer by manipulating the control
flows of the overview and detailed activity diagrams. The
scope and distribution settings of device variables can add
sending behavior via the addBehavior weaving function as
shown in Fig. 9 for whp1. The common case of behavioral
manipulation is the binding of activities and control paths to
device variables as shown for the control state of the tank
subsystem in Fig. 13.

F. Model-based Verification

During our case study, we focused on inconsistencies aris-
ing from the interdependence between the influences of data
and safety aspects on the domain model. The configuration
of a domain model via the data aspect can lead to an unsafe
system due to structural and behavioral configuration errors.
Structural inconsistencies are static misconfigurations which
prevent correct system execution, arising from the weaving of
the data aspect into domain models with varying complex-
ity. They can be mitigated using the well-formedness rules
connected to the weaving functions of our aspect models. For
example in the hardware and deployment viewpoint, the safety
aspect adds wfrs that constrain the deployment of elements to
safety considerations:

Wfrsil deployWfrsil deployWfrsil deploy : ∀depi ∈ Deployee, dci ∈ DeployContext :

(depi, dci) ∈ deploy → sil(depi) ≤ sil(dci)
(9)

wfrsil deploy ensures that elements depi may only be deployed
on hardware or partitions dci that have a SIL high enough to
provide the safety demanded by depi. Additional wfrs restrict
the control of safety-related actuator and sensor hardware. In
our case study, the deployment of device variables to producing
modules in Fig. 8 must be checked using wfrs that guarantee
that the producing software modules of sr device variables are

sr themselves, have a sil equal or higher than those of the
device variable and are deployed on an appropriate hardware
unit.
Apart from these errors within the scope of a single viewpoint,
more complex scenarios arise when interactions of multiple
system parts defined on multiple views must be considered.
The device variable whp1 e.g. is produced at the vortex sensor
Condenser Vortex1, and transferred to both Control MCUs of
the condenser where it is compared before further processing
(see Fig. 8 and 9). If one of the compared whp values is
configured with a narrow scope, it is not transferred and
thus not usable by the comparison module. In addition, static
inconsistencies can arise due to influence of both data and
safety aspects on the same domain model elements. During our
case study, this conflict occurred in combination with check
and update dependencies of data items. Check dependencies
ensure that the configuration of a data item d1 is only accepted
by the system if the attached data items d2..dn perform checks
including range compliance on their values. If the safety
aspect however removes parts of an activity diagram by the
weaving function removeBehavior to which the dependent data
item di>1 is attached, data item d1 cannot satisfy its check
dependencies and thus cannot be configured. In industrial scale
CPS with multiple processes and control loops, even the basic
single-view cases discussed above become critical and the set
of possible inconsistencies are not manually controllable. Our
case study therefore confirms the need for algorithmic support
to concisely monitor the structural consistency of safety and
data aspects with respect to the domain model during system
development and operation.
Inconsistencies arising due to the influence of data items on the
system behavior are more difficult to detect. As illustrated in
Fig. 10, safety functions of a control system must mitigate risks
within the process safety time defined in the hybrid automata
on the subsystem layer from the process owner’s point of view.
In contrast to this, device vendors deliver systems which are
highly configurable via data items manipulating structure and
behavior on the component layer. As motivated before, this
raises the problem of verifying that a system configuration
given by an instanced data model does not prevent the safety
functions from transferring the system into a safe state in
case of a dangerous event within the safety time. A longer
query interval of the valve value FCSF1 due to energy
restrictions e.g. leads to longer activation and thus shorter
available reaction time of the safety function SFOT 2.
To detect and prevent these error scenarios, we propose to
extend the activity diagrams on the component layer by worst
case execution times (WCET) determined for each action and
accumulated for activities in the overview activity diagrams.
Since every state in the hybrid automaton of a control system is
represented by a distinct overview activity diagram at the com-
ponent layer, the accumulated execution times of a diagram
iteration can be interpreted as the WCET of a transition exiting
the corresponding state in the hybrid automaton of the control
system. Through the manipulation of control flows in activities,
the influence of static data items and device variables on the
WCET becomes traceable and can be automatically evaluated
from the activity diagrams, specifying the correlation between
data and execution time.
Fig. 13 shows excerpts from the tank and safety automaton
and the overview activity diagram of the tank control state.
Transition tSFOT2 1 marks the activation of safety function

Subsystem Layer: Tank Control

Component Layer: control (tSFOT2_1)

ECond_T_high |
FCSF1 == 0

control
Control











)(

)(
*)(

2

tFC

tFC
EFCBthAh

R

SF

D


)()(thty 

SFOT2_input_closing
Control

)()(thty 

22 FCSFSF vCF 











)(

)(
*)(

2

tFC

tFC
EFCBthAh

R

SF

D


tSFOT2_1:

Subsystem Layer: Safety Automaton

SFOT2

12 SFOTt
22 SFOTSFOT tsafet 

0/ 3 SFOTt

getValvePos

FCSF1: Readback

storeDV

receiveSC

configure

FCSF1::
FloatTsDV

unit: percent
scope:cps
sil:SIL3
crit:SR
updateMs:50
busMapped:true

FCSF1: DataMgmt FCSF1: P2PComm
TankMCU1:
P2PComm

TankMCU1:
DataMgmt

TankMCU1:
LevelControl

FCSF1

50

0.5
20

sendSC

checkDistribution

configure

2
100

bus1Baudrate::
u16DataItem

scope:CPS
sil:SIL3
crit:SR
accessLevel:factory

configure

200

storeDV

20

validateFCSF1
FCSF1

1

[FCSF1==0]

[else]
SFOT2

5.393/ 2 SFOTt

FCSF1r == 0

0/ 2 SFOTt
...

Err_FCD

Fig. 13. Dynamic Verification

SFOT 2 by detection of the closing of valve FCSF1. The
example activity diagram shows that the configuration of the
device variable FCSF1 heavily influences the execution time
of the transition: updateMs defines the update interval of 50ms,
busMapped defines the transfer function used and the static
data item bus1Baudrate influences the transfer time of the
device variable. In the example, the data-including WCET of
the transition tSFOT2 1 is 393.5ms. This delay is added to
the counter tSFOT2 in the safety automaton which models
the occurrence of a safety-critical error in case of a safety
timeout. Note that the timer in the safety automation starts at
the condition FCSF1r == 0 which references the real value
of the valve independent of control system delays.
Using this approach, the ability of a control system to perform
its safety functions within the safety time under a given
configuration can be expressed as reachability problem, where
the error states of the safety automaton may not be reached by
the configuration under test. When moving from our simple
example to more complex models, e.g. the 2-channel safety
scheme weaved into the condenser behavior in Fig. 9, the
need for automated verification becomes obvious. Such a
verification approach must prove that the error states of the
system, e.g. Err FCD in Fig. 13, can never be reached
given the influences of the data configuration on the execution
times of the hybrid automata. Existing approaches use over-
approximation of the continuous flows inside the automata
states to manage termination and execution time and space.
We currently investigate the application of the tool SpaceEx
which was used by Frehse et. al. in [22] for control system
verification to our data-driven approach.

VI. CONCLUSION AND FUTURE WORK

In this paper, we extend our domain model for hierarchical
modeling of CPS in industrial automation introduced in [6]
by defining comprehensive aspect models for the cross-cutting
concerns of functional safety and data. Both aspects are key
concerns in process automation systems. We use the concepts
of weaving functions and well-formedness rules to give a
concise definition of the valid connections between aspect
and domain models, providing a baseline for isolated formal
reasoning about data and safety. We apply our aspect models to
a case study on the development of an industrial CPS in MDI
production, focusing on the conflicts between functional safety
and configurability. We identify possible consistency conflicts
due to the interdependence between safety and data aspects

and the domain model. Based on our case study, we propose
approaches for static and dynamic verification of the safety
of given configurations and deduce the need for algorithmic
support for monitoring and configuring large-scale industrial
safety-critical CPS.
Future work includes the formal definition of configuration
and data conflicts in industrial CPS and research on algorithms
enabling offline and online monitoring of configurations con-
flicting with the functional safety of the CPS.

REFERENCES

[1] E. A. Lee, “Cyber physical systems: Design challenges,” University of
California, Berkeley, USA, Tech. Rep. UCB/EECS-2008-8, Jan 2008.

[2] P. Derler, E. Lee et al., “Modeling cyber-physical systems,” Proc. IEEE,
vol. 100, no. 1, pp. 13–28, 2012.

[3] R. Rajkumar, I. Lee et al., “Cyber-physical systems: The next comput-
ing revolution,” in Proc. DAC 2010, Jun 2010, pp. 731–736.

[4] A. Colombo, T. Bangemann et al., Industrial Cloud-Based Cyber-
Physical Systems: The IMC-AESOP Approach. Springer, 2014.

[5] Functional safety of electrical/electronic/programmable electronic
safety-related systems, IEC Std. 61 508, 2010.

[6] D. Kuschnerus, A. Bilgic et al., “A hierarchical domain model for
safety-critical cyber-physical systems in process automation,” in Proc.
INDIN 2015, Cambridge, UK, Jul. 2015.

[7] K. Petersen, R. Feldt et al., “Systematic mapping studies in software
engineering,” in Proc. EASE’08, Bari, Italy, Jun 2008, pp. 68–77.

[8] S. Khaitan and J. McCalley, “Design techniques and applications of
cyberphysical systems: A survey,” IEEE Systems Journal.

[9] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” Keele Univ., Keele, UK,
Tech. Rep. EBSE-2007-01, Jul 2007.

[10] B. Genge and C. Siaterlis, “Physical process resilience-aware network
design for SCADA systems,” Computers & Electrical Engineering,
vol. 40, no. 1, pp. 142–157, 2014.

[11] N. Saeedloei and G. Gupta, “A logic-based modeling and verification
of CPS,” SIGBED Rev., vol. 8, no. 2, pp. 31–34, 2011.

[12] C. Schwarz, “Modelling a real-time control system using parameterized
linear hybrid automata,” in Informatik 2011, Bonn, Germany, Oct 2011,
pp. 328–328.

[13] L. Besnard, A. Bouakaz et al., “Timed behavioural modelling and affine
scheduling of embedded software architectures in the AADL using
polychrony,” Sci. Comp. Prog., 2014.

[14] A. Rajhans, A. Bhave et al., “Supporting heterogeneity in cyber-physical
systems architectures,” IEEE Trans. Autom. Control, vol. 59, no. 12, pp.
3178 – 3193, 2014.

[15] F. Saunders, J. Rife et al., “Information flow diagram analysis of
a model cyber-physical system: Conflict detection and resolution for
airport surface traffic,” IEEE Trans. Aerosp. Electron. Syst., vol. 28,
no. 12, pp. 26–35, 2013.

[16] T. Stauner, “Systematic development of hybrid systems,” Ph.D. disser-
tation, Technische Universitaet Muenchen, 2001.

[17] M. Zheng, J. Sun et al., “Towards a model checker for NesC and
wireless sensor networks,” in LNCS. Berlin Heidelberg: Springer-
Verlag, 2011, vol. 6991.

[18] R. France, I. Ray et al., “Aspect-oriented approach to early design
modelling,” Softw., IEE Proc., vol. 151, no. 4, pp. 173–185, Aug 2004.

[19] H. Pirkl, J. Bolton et al., “Process for the preparation of highly pure
2,4’-methylenediphenyldiisocyanate,” Patent EP1 561 746A2, Jan, 2005.

[20] R. Shah, A. Alleyne et al., “Dynamic modeling and control of single
and multi-evaporator subcritical vapor compression systems,” Air Con-
ditioning and Refrigeration Center. College of Engineering. University
of Illinois, Tech. Rep. ACRC-TR-216, Aug. 2003.

[21] T. Henzinger, “The theory of hybrid automata,” in Ver. Digital Hybrid
Systems. Berlin Heidelberg: Springer-Verlag, 2000, vol. 170.

[22] G. Frehse, A. Hamann et al., “Formal analysis of timing effects
on closed-loop properties of control software,” in Real-Time Systems
Symposium (RTSS), 2014 IEEE, Dec 2014, pp. 53–62.

