
A Model-driven and Tool-integration Framework for Whole Vehicle Co-
simulation Environments

 Jinzhi Lu, Dejiu Chen, Martin Törngren, Jad El-Khoury, Frédéric Loiret
 School of Industrial Engineering and Management

KTH Royal Institute of Technology, Stockholm 100 44
jinzhl@kth.se

Abstract— Throughout the design of automotive vehicle

systems, modeling and simulation technologies have been widely
used for supporting their conceptualization and evaluation. Due
to the increasing complexity of such systems, the overall quality
management and design process optimization are becoming more
important. This in particular brings the necessity of integrating
various domain-specific physical models that are traditionally
based on different formalisms and isolated tools. In this paper,
we present the initial concepts towards a model-driven and tool-
integration framework with automated managed simulation
services in the system development. We exploit EAST-ADL and
some other existing state-of-the-art modeling technologies as the
reference frameworks for a formal system description, with the
content including requirements, design solutions, extra-
functional constraints, and verification and validation cases.
Given such a formal specification, dedicated co-simulation
services will be developed to provide the support for automated
configuration and execution of simulation tools.

Keywords—Development, Simulation, System Design, Model-
driven, Tool-integration

I. INTRODUCTION
Automotive vehicle systems have evolved continuously

over the past decades with increasing functional and technical
complexity. The development involves complex interactions of
designers and stakeholders, [1]. Typically, an automotive
vehicle can be divided into different parts with associated
engineering tasks allocated to different work groups or
companies. These groups often use specific domain-specific
simulator tools to assist the specification, analysis and
synthesis tasks.

 For a whole vehicle, the overall system behaviors and
other properties depend on the characteristics of its subsystems
and components being composed. It is therefore important for
system developers to conduct early system integration and
thereby to understand the system behaviors and analyze system
performance in the initial design phases.

In current industrial practices, different CAD and CAE
tools have been used for the development of vehicle
subsystems and components, such as for requirement analysis,
high level design, detailed level design, implementation,
testing, etc. Since the subsystem designers often use their own
tools to build models, it is a challenge for the system
developers to integrate those detailed models and to predict the
whole system performance. This calls for a complete

integration framework for different models and tools while
taking the process management perspective into consideration.

This paper describes an initial version of, and work towards
establishing, a model-driven and tool-integration design
framework for whole vehicle systems in regard to the
methodology and technical roadmap. In such a framework, a
formal system description is provided to share information
among various stakeholders, including project managers,
system engineers, modeler, system designers and simulation
testers. The content of system information being described and
integrated includes requirements, function analysis, system
design, parameter settings, interface contract of physical
system models, and tool specific information for co-simulation.
The framework integrates subsystem models in order to predict
the whole vehicle performance. Also, parameters related to
optimized simulation behaviors can be added.

The paper has five main sections. Section 2 provides a brief
introduction of simulation technologies and system modeling
methods. Section 3 presents a problem analysis of an auto-
breaking system. Section 4 illustrates a model-driven and tool-
integration framework we provided. Section 5 demonstrates a
co-simulation test case of a vehicle auto-breaking system.
Section 6 and 7 discusses how Open Services for Lifecycle
Collaboration (OSLC) can be integrated into our framework
and future work.

II. STATE OF THE ART
Nowadays, computation design and simulation technology

can help to improve design efficiency and decrease the time
consumption and R&D cost [2]. In the vehicle conception
design phase, model-based design is very important to predict
the system performance in advance. Designers have used many
types of modeling technologies and tools to finish their design
jobs. For example, CAE and CAD tools, such as Solidworks,
Catia, AMESim, Simplorer, Matlab\Simulink, are very widely
used in the vehicle industries.

However, there are still various challenges in the whole life
cycle of vehicle design. Firstly, different CAD and CAE tools
can help designers to build models for designing these
subsystems or components to satisfy design requirements,
however the whole system performance is very different (and
more difficult) to predict, because the subsystem designers are
often from other groups or companies and use different tools to
build models.

https://www.kth.se/en/itm
mailto:jinzhl@kth.se

FIGURE 1 MODEL-DRIVEN AND TOOL-INTEGRATION FRAMEWORK FOR WHOLE VEHICLE SIMULATION

Sometimes because of the intellectual property, they even
cannot provide the original models. That’s why it’s hard for
integrated system department to integrate the detailed models
to predict the whole system performance.

Secondly, even though various PDM and PLM systems can
help companies to manage information during vehicle design,
such tool-based information management has a restricted
scope. For example, if some subsystems are designed by
different companies, it is no possible to push all the subsystem
suppliers to use the same tool.

Thirdly, nowadays documents still play a very important
role in communication and information description, but it’s
difficult to manage the changes in documents and releases of a
huge document may delay the other parts of development.
Consequently, a framework with formalized and graphical
conception models for model-driven and tool-integration of co-
simulation is needed. Several technologies that may be used for
such a framework are now briefly surveyed.

A. Multi-domain Simulation Technologies
In addition to commercial simulation platforms, several

languages and standards are provided for multi-domain system
simulation and analysis.

1) Modelica
Modelica language is a non-proprietary, object-oriented,

equation based language to conveniently model complex
physical systems [3]. Nowadays, Modelica language is widely
used in automobile industries.

2) Co-simulation
Co-simulation is a technology which can solve the multi-

physics model integration. It represents a particular case of
simulation scenarios in which there are at least two simulators
to solve coupled algebraic equations and exchange the data
with each other during simulation [2].The High-Level
Architecture (HLA) is a technology for developing distributed

simulation developed by the Simulation Interoperability
Standards Organization (SISO) [4]. The Functional Mock-up
Interface (FMI) standard was initiated through the Modelisar
project. FMI is designed for commercial simulators to
transform their models to a normative form [5]. The HLA is
powerful in mastering the whole co-simulation process and
control the data flow. FMI is better for interface design for
simulator tools.

B. System Modeling Approach
From the perspective of system engineering, physical

system models are not the unique concern. Though a lot of
complex and completed model libraries and model
management platforms already exist, it’s also different for
system designers in each layer to understand the whole
physical system model and share the model information with
each other except for documents or reports. This leads to a
need for an information model for information exchange and
function descriptions. In this part, several system modeling
languages, (e.g., SysML, EAST-ADL, etc.) are investigated.

1) SysML
SysML is a general-purpose modeling language for systems

engineering with a subset of UML2 and additional extensions
to satisfy the demands of the language description. SysML
provides constructs for modeling systems engineering
problems including requirements, structure, behavior,
allocations, and constraints [6].

2) EAST-ADL
EAST-ADL is a language to describe automotive electrical

and electronic systems; it relates closely to SysML and can be
seen as a domain specific tailoring for automotive systems. It
enables to capture detailed information for documentation,
design, analysis and synthesis from the top level characteristics
to tasks and interface &communication framework [7].

3) ARCADIA

Arcadia / Capella is a field-proven domain specific
modeling solution for system engineering. It has an open
source framework to define operation, system, logic and
physical system [8].

III. PROBLEM ANALYSIS
We provide a test case to show how co-simulation can be

used in autobreaking system design. The verification purpose is
to test if the new autobreaking controller can satisfy the ‘3-
second rule’, which is a measurement on the time interval for
the vehicles to pass the same fixed point on road. If a vehicle
reaches such a point within 3 seconds after its foregoing
vehicle, then the following distance is too short. For icy or
snow-covered road, the corresponding interval can be 7~8 sec.

As Figure 2 shows, we define the Green zones, Red zones
and Black zones for the autobreaking controller. X1 and X2 is
the position in X direction of vehicle1’s and vehicle2’s
geometric center. If the distance between V1 and V2 is not less
than v1/1.2, vehicle2 need accelerate. When it’s in red zones,
vehicle 2 need decelerate. When the distance between V1 and
V2 is less than 1.2m, these two vehicles crashed.

Vehicle2Vehicle1

Red Zones:
Vehicle2: Decrease Velocity

|x1-x2|<1.2(x1-x2)>=(dx1/dt)/1.2

Green Zones:
Vehicle2: Increase Velocity

Black Zones:
Crashed

X1 is Vehicle 1 position
X2 is Vehicle 2 position

Xgeometric center

FIGURE 2 CHECKING ZONES FOR AUTOBREAKING STRATEGY

In this case, Carmaker, MWorks and Simulink were used
for subsystem modeling and the whole system model is
integrated in Simulink which represents the co-simulation
process. As shown in Figure 3, the controller model was built
by Modelica language in MWorks and was exported to a FMU.
Then S-function for co-simulation with FMU and interface
library for Carmaker have been used to connect with these two
subsystem models with Simulink.

FIGURE 3 TOOL-CHAIN DURING CO-SIMULATION

When the co-simulation is running, Simulink Model, S-
function for FMU interface, co-simulation environment setting
should be set by hand. And when the version of FMU or
Carmaker model is changed, the simulation result should be
dependence to the changing. That’s really difficult to manage
the models and hard to configure the tool setting each time by
hand. And simulation technology is used in whole life cycle. In
[8], for example, simulation was used in different phases of ‘V’
model. So simulation information integration with different

phase is also a big challenge for current environment without
any tool or platform support.

IV. MODEL-DRIVEN AND TOOL-INTEGRATION FRAMEWORK
To solve the former challenge, we design a framework as

shown in Figure 1. This framework is inspired by SPIT (Social
layer, Process layer, Information layer and Technical layer) [9].
This framework is designed for tool-integration, data-
integration, MBSE technical integration and web deployment
for the whole life cycle in product design.

A. Social layer
In the social layer, the social models of people’s behaviors,

organizations, management views, social views and culture for
MBSE (Model-based System Engineering) technology are
created and describe relative engineering activity in the whole
life cycle. From our research, we take an example of MBSE
transitioning model as a social model in this layer to describe
MBSE maturity level.

This MBSE maturity level model describes enterprises or
research teams from the traditional document-based system
engineering approach to MBSE approach. In the technical
aspect, we separately define transitioning of software and
multi-domain system design. As Table 1, we define
transitioning level of software and multi-domain system. And
we will have an investigation of different effect factors
including cultural aspect, stakeholder aspect and transitioning
aspect.

TABLE 1 MATURITY LEVEL OF MBSE

Document-
based Design

Software Multi-domain system

Transitioning

Component Design CAD-based Design

Model-based
Design

Simulation-based design
and analysis

Model-integrated
Engineering and analysis

MBSE Model-driven Model-based development

B. Business process layer (Process layer)
In this layer, based on different stakeholders’ requirements,
domain or industrial standards and simulation targets, project
managers or team leaders can build different kinds of Business
process model (BPM) to describe the process of projects as
Figure 6. For the distributed simulation as an example, the
IEEE Recommended Practice for Distributed Simulation
Engineering and Execution Process (DSEEP) is a standard to
define engineering activities for the Process of simulation. We
can see, in Figure 8,the BPMN can be used to describe the
process model in DESSP.

Business Process Model

Task
Time plan
Human
Resourse
...

Select Or

Requirement

FIGURE 4 PROCESS LAYER

FIGURE 5 BPMN DESCRIBING DSEEP

C. Simulation description model layer (Information layer)
System designers can use system models to describe

simulation requirement, physical system feature, model
function, model structure, data model, simulation behavior
model including verification model, optimization model, and
so on as shown in Figure 7.

Requirement
Model Feature

Model
Functional

Model

Simulation Decription Model

Operation
Model Requirement

System description

Varification ...

Function...

Opitimization

System Demand
Share Information

Structure
Model

Data
Model

Simulation Target

Function1
Function2

component1
component2
component3

Test Case

Interface
Model

Interface Design
Test Case1

Test Case2

Data
Model1

Result Data
Model1

FIGURE 6 SIMULATION DESCRIPTION MODEL

In Figure 7, System model can describe simulation includes
requirement diagrams, feature diagrams, functional diagrams,
structure diagrams, data diagrams, and behavior diagrams.
Requirement diagrams can describe different stakeholders’
need including modeling purposes, simulation technologies,
constrains of simulation target and etc. Then based on
requirement we can select different feature model to describe
design targets, simulation targets, optimization targets, system
descriptions and simulation settings. System description
diagrams can connect to different function model then extend
to component diagrams of structure models. Each component
block maps to the specified physical system model on the forth
layer. Different simulation target and optimization target block
can be achieved corresponding verification model and
optimization model which are constructed by behaviors model.
Each behavior model connects to the corresponding set of
services to run the simulation process automatically.
Simulation setting models in feature diagram can describe all

the information during simulation including simulation type,
tool selection, communicational time step point, solver type
and so on. Each data model represents sets of parameter for the
corresponding physical system model.

D. Physical model and data model layer (Technology layer)
In this paper, each sub-system component model can be

uploaded into the library as a FMU or a component of co-
simulation model. A master engine should be designed to
master the co-simulation procedure between different physical
system models. Now the solver of Matlab\Simulink is used to
control the co-simulation and S-function is designed as an
interface. Each physical system model has its own connections
to the component diagrams in the third layer [10].

E. Comparion with other modelling frameworks or projects
1) C2WT Framework
C2WT (Command and Control Wind Tunnel) is a model-

based multi-model integration platform which is from a project
of American Air Force Research Laboratory. Actually, it’s a
framework based on Run-Time Infrastructure (RTI) of HLA
[11]. In [12], this framework can support RTI to control FMU
to run the co-simulation. They have their domain specified
language (DSL) to configure and control the simulation.
However, the DSL can only describe the model structures and
configuration which cannot satisfy the demand for information
integration and MBSE approach.

2) DESTECS Project
DESTECS (Design Support and Tooling for Embedded

Control Software) is an EU project developed for fault-tolerant
embedded systems design. They have a co-simulation engine to
control co-simulation process between 20-sim for continuous
system model and Overture tools based on Vienna
Development Method for discrete-event models. An integrated
development environment has been developed to integrate such
physical system models [13]. However, this project has
limitation for embedded system and is short for information
integration during the whole life cycle.

3) WSAF Project
WSAF (Whole-of-System Analytical Framework) is a

project running by Australia and New Zealand. In [14], the
author introduces a model-based way to share contractual
contents between acquirers and suppliers and provides several
requirements for such technology. In this paper, only
architectural model including requirements and functions has
been used for information exchange. The physical system
model has not been used for information exchange which
means integrated system performance cannot be analyzed in
the initial phase of the whole life cycle.

4) ModelicaML
ModelicaML is a UML profile and a language extension for

Modelica. It’s a good way to connect requirements with
physical system simulation by Modelica language to verify if
the system can satisfy the requirements which are built by
UML[15]. In general, based on several industrial
investigations, many industrial firms like to choose the co-
simulation way for their model-integration rather than
Modelica language. This is because time and financial

consumption for training programs and model-rebuild. So this
method has practice restrictions which will influence on its
future application.

5) CERTI
CERTI is an HLA RTI developed since 1996 by ONERA,

the French Aerospace Lab. It’s an open source project for HLA
usage. There is no DSL support, but an open source RTI is
provided in this project.

6) CRYSTAL
The ARTEMIS Joint Undertaking project CRYSTAL

(CRitical sYSTem engineering AcceLeration) takes up the
challenge to establish and push forward an Interoperability
Specification (IOS) and a Reference Technology Platform
(RTP) as a European standard for safety-critical systems[18].

This project has some investigation to show tool-
integration’s consistency, the methodology of co-simulation
was also covered to be tested and applied within the frame.

From such projects, we can find such framework which can
cover models and tool-integration is really needed for current
industries. As we see, SPIT framework has a more clearly
structures for MBSE technologies, data-integration, tool-
integration and service-oriented web deployments.

V. USER CASE FOR PHYSICAL SYSTEM MODEL
DESCRIPTION

VVcaseStructure Model Interface
Design

Meta-edit

Create Simulink Model and
insert interface block of FMU

S-function for interface
, info of FMU

Set parameter for models
and run simulation

Simulink
Model

Environment configuration
Open Carmaker select

carmaker model, configue FMU
Define task based on parameter

setting and solver setting

Automatically run simulation based on tasks

Auto- generate

Run M-script

Co-simulation
Execution Strategy

Configure the co-
simulation Environment

FIGURE 7 SIMULATION DESCRIPTION MODEL AND CO-SIMULATION
EXECUTION

We want to use a test case to understand the clear
requirements for SPIT framework. So we use MetaEdit to build
the SDL and use the code-generator in MetaEdit to produce the
M-script in Matlab to run the co-simulation execution
automatically.

So we use the test case mentioned in Chapter 3 to build a
Simulation Description Model to capture the information for
co-simulation process as shown in Figure 9. Function design
architecture diagram demostrated the structure of co-simulation
model. Interface design diagram showed the interface for the
assigned FMU. Co-simulation Strategy diagram was created to
configure co-simulation environment and VVcase diagram
presented the parameter setting and solver setting for each task
in this scenarios. Then Meta-edit uses such diagram model to
automatically produce the M-script to control the Co-
simulation. Function design architecture diagram produced the
M-script to create Simulink models and insert the FMU block
in Simulink. Interface design diagram produced the S-function
for the assigned FMU and set the FMU block in Simulink. The
M-Script which produced by Co-simulation strategy diagram

was used to execute co-simulation environment configuration.
VVcase diagram produced the M-Script for parameter setting
in Simulink Model.

A. Testcase for SDL in MetaEdit
We have four models in MetaEdit as Figure 9 shows. In

Figure 10, the model describes the co-simulation execution
strategy as operation model. The information of FMUs,
subsystem models and tools which will be used in this co-
simulation will be described and now we can fill such
information by hand.

FIGURE 8 MODELS IN META-EDIT

As Figure 10 shows, the top structure model in Simulink
for this autobreaking user case is built in MetaEdit. Each block
describes a subsystem block in Simulink which has been put in
the Simulink library.

The VVcase model in Figure 10 describes different solver
settings and parameters for the same co-simulation model. In
each task, different solver and parameter configurations can be
finished by the parameter blocks.

In Figure 10, the interface model is used to describe to S-
function for FMUs which will be used for the autobreaking test
case. It includes the methods for the S-functions and all the
function codes in each method. We need to fill some
information for the interface by hand to produce the s-function
code automatically.

FIGURE 9 INTERFACE MODEL FOR FMUS

B. Automatic Execution for co-simulation
We design the Code-generator in the MetaEdit. Based on

the models we built in the Meta-Edit and the information we
fill by hand, the M-script in Figure 9 will be produced.

C. Physical system model in Simulink
In Figure 11, a Simulink model has been automatically

produced by M-script and block library which we built.

Then we run the M-script produced by VVcase and co-
simulation task is running automatically. During co-simulation
process, Carmaker model is running as Figure 12. A front-end
window has been designed for verifying the simulation result
online and simulation result data has been stored in .mat files
as Figure 13.

FIGURE 10 SIMULINK MODE FOR AUTOBREAKING TESTCASE

FIGURE 11 CARMAKER MODELS

FIGURE 12 FRONT-END FOR VERIFICATION FOR AUTOBREAKING CASE

D. Result
As Table 2 shows, we have three different tasks for 3 tests.

Each test has different parameters for each models based on
various situations. After co-simulation executions, results are
shown as Figure 17.

TABLE 2 TEST CASE FOR AUTOBREAKING CASE

FIGURE 13 SIMULATION RESULT FOR 3 TESTS

VI. DISCUSION
In the whole lifecycle collaboration of the SPIT framework

for MBSE, several sections, such as design space exploration,
system validation, searching for models, will need model
management, information exchange and data management. We
take an example of scenarios which OSLC can be used for the
whole SPIT framework. As Figure 18 as an example, if we use
the web deployments to execute the design process for SOS by
co-simulation, the information exchange, co-simulation trigger,
and simulation result verification can be achieved by OSLC
technology.

SDL
RTI (HLA)

FMUs

FMUs

FMUs

Requirement
Uescriptions

Execution of
co-

simulation

V&V test
case

Web
deployments

Trigger

Time
management

Results

Data exchangeInformation
Exchange

OSLC Job

FIGURE 14 SCENARIOS FOR OSLC JOBS

VII. CONCLUSION AND FUTURE WORK
From the test case, we can see Simulation Description

Modeling Language can be used to describe the basis

information for co-simulation. The structure model captures the
components in top system model which connected with all the
subsystem models. Integrated behavior model describes the
procedure of co-simulation. VVcase shows a scenario for the
autobreaking test case with parameter setting and simulation
setting. Interface Design Model demonstrates the approach of
interface design. That means graphical model can be used to
describe the co-simulation process and control the simulation
running automatically. In the future, we will improve our
project from four aspects. Firstly, OSLC will be adapted in this
framework in order to strength the capabilities for information
exchange between different models and layers. Secondly, a
special master (RTI) will be designed to control different
FMUs and commercial software for co-simulation [11].
Thirdly, a domain specified modeling language will be
designed to capture all the information for co-simulation. The
last, requirements from business process model should be
dependent to ones in simulation description model.

References
[1] Martin Törgren, Dejiu Chen , Diana Malvius , and Jakob Axelsson,

Model-Based Development of Automotive Embedded Systems
[2] Jinzhi. Lu “Co-simulation for heterogeneous simulation system and

application for aerospace”, Master. dissertation, Univ. Huazhong
University of Science and Technology, Wuhan, China, 2011.

[3] Modelica® - A Unified Object-Oriented Language for Systems
Modeling, https://www.modelica.org/, 2012

[4] HLA Tutorial, http://www.pitch.se/hlatutorial
[5] FMI specification, MODELISAR, https://www.fmi-standard.org
[6] OMG Systems Modeling Language (OMG SysML™),

http://www.omg.org.
[7] EAST-ADL-Specification_V2.1.12,EAST-ADL Association,

http://www.east-adl.info/

[8] https://www.eclipsecon.org/france2014/session/arcadia-capella-field-
proven-modeling-solution-system-and-software-architecture-engineering

[9] Dong Zhang, Jin-zhi Lu , Lin Wang , and Jun Ii, Research of Model-
based Aeroengine Control System Design Structure and Workflow,
Asia-Pacific International Symposium on Aerospace Technology, 50(4):
511–515, 2014.

[10] Hillary Sillitto. Design Principles for Ultra-Large Scale (ULS) Systems.
In INCOSE, International Symposium (INCOSE’2010, Proceedings,
pages 63–82, 2010.

[11] Jinzhi Lu, Jian-wan Ding, Fanli-Zhou, Research of Tool-Coupling
Based Electro-Hydraulic System Development Method, IEEE
International Conference on Industrial Engineering and Information
Technology, 2014.

[12] Roth K E, Barrett S K. Command & control wind tunnel integration and
overview[C]//Proceedings of the 2009 SISO European Simulation
Interoperability Workshop. Society for Modeling & Simulation
International, 2009: 45-51.

[13] Neema H, Gohl J, Lattmann Z, et al. Model-based integration platform
for FMI co-simulation and heterogeneous simulations of cyber-physical
systems[C]//10th International Modelica Conference. 2014: 10-12.

[14] Broenink J F, Kleijn C, Larsen P G, et al. Design support and tooling for
dependable embedded control software[C]//Proceedings of the 2nd
International Workshop on Software Engineering for Resilient Systems.
ACM, 2010: 77-82.

[15] Do Q, Cook S, Lay M. An Investigation of MBSE Practices across the
Contractual Boundary[J]. Procedia Computer Science, 2014, 28: 692-
701.

[16] Schamai W, Fritzson P, Paredis C J J, et al. ModelicaML value bindings
for automated model composition[C]//Proceedings of the 2012
Symposium on Theory of Modeling and Simulation-DEVS Integrative
M&S Symposium. Society for Computer Simulation International, 2012:
31.

[17] Noulard E, Rousselot J Y, Siron P. CERTI, an Open Source RTI, why
and how[C]//Spring Simulation Interoperability Workshop. 2009: 23-27.

[18] http://www.crystal-artemis.eu/
[19] OSLC specification, http://open-services.net/resources/

http://www.pitch.se/hlatutorial
https://www.fmi-standard.org/
http://www.omg.org/
http://www.east-adl.info/
https://www.eclipsecon.org/france2014/session/arcadia-capella-field-proven-modeling-solution-system-and-software-architecture-engineering
https://www.eclipsecon.org/france2014/session/arcadia-capella-field-proven-modeling-solution-system-and-software-architecture-engineering
http://www.crystal-artemis.eu/
http://open-services.net/resources/

	A Model-driven and Tool-integration Framework for Whole Vehicle Co-simulation Environments
	I. Introduction
	II. State of the Art
	A. Multi-domain Simulation Technologies
	1) Modelica
	2) Co-simulation

	B. System Modeling Approach
	1) SysML
	2) EAST-ADL
	3) ARCADIA

	III. Problem Analysis
	IV. Model-driven And Tool-integration Framework
	A. Social layer
	B. Business process layer (Process layer)
	C. Simulation description model layer (Information layer)
	D. Physical model and data model layer (Technology layer)
	E. Comparion with other modelling frameworks or projects
	1) C2WT Framework
	2) DESTECS Project
	3) WSAF Project
	4) ModelicaML
	5) CERTI
	6) CRYSTAL

	V. User Case For Physical System Model Description
	A. Testcase for SDL in MetaEdit
	B. Automatic Execution for co-simulation
	C. Physical system model in Simulink
	D. Result

	VI. Discusion
	VII. Conclusion And Future Work

