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Abstract— Throughout the design of automotive vehicle 

systems, modeling and simulation technologies have been widely 
used for supporting their conceptualization and evaluation. Due 
to the increasing complexity of such systems, the overall quality 
management and design process optimization are becoming more 
important. This in particular brings the necessity of integrating 
various domain-specific physical models that are traditionally 
based on different formalisms and isolated tools. In this paper, 
we present the initial concepts towards a model-driven and tool-
integration framework with automated managed simulation 
services in the system development. We exploit EAST-ADL and 
some other existing state-of-the-art modeling technologies as the 
reference frameworks for a formal system description, with the 
content including requirements, design solutions, extra-
functional constraints, and verification and validation cases. 
Given such a formal specification, dedicated co-simulation 
services will be developed to provide the support for automated 
configuration and execution of simulation tools.  

Keywords—Development, Simulation, System Design, Model-
driven, Tool-integration 

I.  INTRODUCTION  
Automotive vehicle systems have evolved continuously 

over the past decades with increasing functional and technical 
complexity. The development involves complex interactions of 
designers and stakeholders, [1]. Typically, an automotive 
vehicle can be divided into different parts with associated 
engineering tasks allocated to different work groups or 
companies. These groups often use specific domain-specific 
simulator tools to assist the specification, analysis and 
synthesis tasks. 

 For a whole vehicle, the overall system behaviors and 
other properties depend on the characteristics of its subsystems 
and components being composed. It is therefore important for 
system developers to conduct early system integration and 
thereby to understand the system behaviors and analyze system 
performance in the initial design phases.  

In current industrial practices, different CAD and CAE 
tools have been used for the development of vehicle 
subsystems and components, such as for requirement analysis, 
high level design, detailed level design, implementation, 
testing, etc. Since the subsystem designers often use their own 
tools to build models, it is a challenge for the system 
developers to integrate those detailed models and to predict the 
whole system performance. This calls for a complete 

integration framework for different models and tools while 
taking the process management perspective into consideration.  

This paper describes an initial version of, and work towards 
establishing, a model-driven and tool-integration design 
framework for whole vehicle systems in regard to the 
methodology and technical roadmap. In such a framework, a 
formal system description is provided to share information 
among various stakeholders, including project managers, 
system engineers, modeler, system designers and simulation 
testers. The content of system information being described and 
integrated includes requirements, function analysis, system 
design, parameter settings, interface contract of physical 
system models, and tool specific information for co-simulation. 
The framework integrates subsystem models in order to predict 
the whole vehicle performance. Also, parameters related to 
optimized simulation behaviors can be added.  

The paper has five main sections. Section 2 provides a brief 
introduction of simulation technologies and system modeling 
methods. Section 3 presents a problem analysis of an auto-
breaking system. Section 4 illustrates a model-driven and tool-
integration framework we provided. Section 5 demonstrates a 
co-simulation test case of a vehicle auto-breaking system. 
Section 6 and 7 discusses how Open Services for Lifecycle 
Collaboration (OSLC) can be integrated into our framework 
and future work. 

II. STATE OF THE ART 
Nowadays, computation design and simulation technology 

can help to improve design efficiency and decrease the time 
consumption and R&D cost [2]. In the vehicle conception 
design phase, model-based design is very important to predict 
the system performance in advance. Designers have used many 
types of modeling technologies and tools to finish their design 
jobs. For example, CAE and CAD tools, such as Solidworks, 
Catia, AMESim, Simplorer, Matlab\Simulink, are very widely 
used in the vehicle industries.  

However, there are still various challenges in the whole life 
cycle of vehicle design. Firstly, different CAD and CAE tools 
can help designers to build models for designing these 
subsystems or components to satisfy design requirements, 
however the whole system performance is very different (and 
more difficult) to predict, because the subsystem designers are 
often from other groups or companies and use different tools to 
build models. 
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FIGURE 1 MODEL-DRIVEN AND TOOL-INTEGRATION FRAMEWORK FOR WHOLE VEHICLE SIMULATION

Sometimes because of the intellectual property, they even 
cannot provide the original models. That’s why it’s hard for 
integrated system department to integrate the detailed models 
to predict the whole system performance.  

Secondly, even though various PDM and PLM systems can 
help companies to manage information during vehicle design, 
such tool-based information management has a restricted 
scope. For example, if some subsystems are designed by 
different companies, it is no possible to push all the subsystem 
suppliers to use the same tool.  

Thirdly, nowadays documents still play a very important 
role in communication and information description, but it’s 
difficult to manage the changes in documents and releases of a 
huge document may delay the other parts of development. 
Consequently, a framework with formalized and graphical 
conception models for model-driven and tool-integration of co-
simulation is needed. Several technologies that may be used for 
such a framework are now briefly surveyed. 

A. Multi-domain Simulation Technologies 
In addition to commercial simulation platforms, several 

languages and standards are provided for multi-domain system 
simulation and analysis. 

1) Modelica 
Modelica language is a non-proprietary, object-oriented, 

equation based language to conveniently model complex 
physical systems [3]. Nowadays, Modelica language is widely 
used in automobile industries. 

2) Co-simulation  
Co-simulation is a technology which can solve the multi-

physics model integration. It represents a particular case of 
simulation scenarios in which there are at least two simulators 
to solve coupled algebraic equations and exchange the data 
with each other during simulation [2].The High-Level 
Architecture (HLA) is a technology for developing distributed 

simulation developed by the Simulation Interoperability 
Standards Organization (SISO) [4]. The Functional Mock-up 
Interface (FMI) standard was initiated through the Modelisar  
project. FMI is designed for commercial simulators to 
transform their models to a normative form [5].  The HLA is 
powerful in mastering the whole co-simulation process and 
control the data flow. FMI is better for interface design for 
simulator tools. 

B. System Modeling Approach 
From the perspective of system engineering, physical 

system models are not the unique concern. Though a lot of 
complex and completed model libraries and model 
management platforms already exist, it’s also different for 
system designers in each layer to understand the whole 
physical system model and share the model information with 
each other except for documents or reports. This leads to a 
need for an information model for information exchange and 
function descriptions. In this part, several system modeling 
languages, (e.g., SysML, EAST-ADL, etc.) are investigated.  

1) SysML 
SysML is a general-purpose modeling language for systems 

engineering with a subset of UML2 and additional extensions 
to satisfy the demands of the language description. SysML 
provides constructs for modeling systems engineering 
problems including requirements, structure, behavior, 
allocations, and constraints [6].  

2) EAST-ADL 
EAST-ADL is a language to describe automotive electrical 

and electronic systems; it relates closely to SysML and can be 
seen as a domain specific tailoring for automotive systems. It 
enables to capture detailed information for documentation, 
design, analysis and synthesis from the top level characteristics 
to tasks and interface &communication framework [7].  

3) ARCADIA 



Arcadia / Capella is a field-proven domain specific 
modeling solution for system  engineering. It has an open 
source framework to define operation, system, logic and 
physical system [8].  

III. PROBLEM ANALYSIS 
We provide a test case to show how co-simulation can be 

used in autobreaking system design. The verification purpose is 
to test if the new autobreaking controller can satisfy the ‘3-
second rule’, which is a measurement on the time interval for 
the vehicles to pass the same fixed point on road. If a vehicle 
reaches such a point within 3 seconds after its foregoing 
vehicle, then the following distance is too short. For icy or 
snow-covered road, the corresponding interval can be 7~8 sec.  

As Figure 2 shows, we define the Green zones, Red zones 
and Black zones for the autobreaking controller. X1 and X2 is 
the position in X direction of vehicle1’s and vehicle2’s 
geometric center. If the distance between V1 and V2 is not less 
than v1/1.2, vehicle2 need accelerate. When it’s in red zones, 
vehicle 2 need decelerate. When the distance between V1 and 
V2 is less than 1.2m, these two vehicles crashed. 

Vehicle2Vehicle1

Red Zones:
Vehicle2: Decrease Velocity

|x1-x2|<1.2(x1-x2)>=(dx1/dt)/1.2

Green Zones:
Vehicle2: Increase Velocity

Black Zones:
Crashed

X1 is Vehicle 1 position
X2 is Vehicle 2 position

Xgeometric center

 

FIGURE 2 CHECKING ZONES FOR AUTOBREAKING STRATEGY 

In this case, Carmaker, MWorks and Simulink were used 
for subsystem modeling and the whole system model is 
integrated in Simulink which represents the co-simulation 
process. As shown in Figure 3, the controller model was built 
by Modelica language in MWorks and was exported to a FMU. 
Then S-function for co-simulation with FMU and interface 
library for Carmaker have been used to connect with these two 
subsystem models with Simulink. 

 

FIGURE 3 TOOL-CHAIN DURING CO-SIMULATION 

When the co-simulation is running, Simulink Model, S-
function for FMU interface, co-simulation environment setting 
should be set by hand. And when the version of FMU or 
Carmaker model is changed, the simulation result should be 
dependence to the changing. That’s really difficult to manage 
the models and hard to configure the tool setting each time by 
hand. And simulation technology is used in whole life cycle. In 
[8], for example, simulation was used in different phases of ‘V’ 
model. So simulation information integration with different 

phase is also a big challenge for current environment without 
any tool or platform support. 

IV. MODEL-DRIVEN AND TOOL-INTEGRATION FRAMEWORK 
To solve the former challenge, we design a framework as 

shown in Figure 1. This framework is inspired by SPIT (Social 
layer, Process layer, Information layer and Technical layer) [9]. 
This framework is designed for tool-integration, data-
integration, MBSE technical integration and web deployment 
for the whole life cycle in product design. 

A. Social layer 
In the social layer, the social models of people’s behaviors, 

organizations, management views, social views and culture for 
MBSE (Model-based System Engineering) technology are 
created and describe relative engineering activity in the whole 
life cycle. From our research, we take an example of MBSE 
transitioning model as a social model in this layer to describe 
MBSE maturity level. 

This MBSE maturity level model describes enterprises or 
research teams from the traditional document-based system 
engineering approach to MBSE approach. In the technical 
aspect, we separately define transitioning of software and 
multi-domain system design. As Table 1, we define 
transitioning level of software and multi-domain system. And 
we will have an investigation of different effect factors 
including cultural aspect, stakeholder aspect and transitioning 
aspect.  

TABLE 1 MATURITY LEVEL OF MBSE 

Document-
based Design 

Software Multi-domain system 

 

Transitioning 

Component Design CAD-based Design 

Model-based 
Design 

Simulation-based design 
and analysis 

Model-integrated 
Engineering and analysis 

MBSE Model-driven Model-based development 

 

B. Business process layer (Process layer) 
In this layer, based on different stakeholders’ requirements, 
domain or industrial standards and simulation targets, project 
managers or team leaders can build different kinds of Business 
process model (BPM) to describe the process of projects as 
Figure 6. For the distributed simulation as an example, the 
IEEE Recommended Practice for Distributed Simulation 
Engineering and Execution Process (DSEEP) is a standard to 
define engineering activities for the Process of simulation. We 
can see, in Figure 8,the BPMN can be used to describe the 
process model in DESSP.  



Business Process Model

Task
Time plan
Human 
Resourse
...

Select Or

Requirement 

 

FIGURE 4 PROCESS LAYER 

 

FIGURE 5 BPMN DESCRIBING DSEEP 

C. Simulation description model layer (Information layer) 
System designers can use system models to describe 

simulation requirement, physical system feature, model 
function, model structure, data model, simulation behavior 
model including verification model, optimization model, and 
so on as shown in Figure 7. 

Requirement 
Model Feature 

Model
Functional

Model

Simulation Decription Model

Operation
Model Requirement

System description

Varification ...

Function...

Opitimization

System Demand
Share Information

Structure
Model

Data
Model

Simulation Target

Function1
Function2

component1
component2
component3

Test Case

Interface
Model

Interface Design
Test Case1

Test Case2

Data
Model1

Result Data
Model1

 

FIGURE 6 SIMULATION DESCRIPTION MODEL 

In Figure 7, System model can describe simulation includes 
requirement diagrams, feature diagrams, functional diagrams, 
structure diagrams, data diagrams, and behavior diagrams. 
Requirement diagrams can describe different stakeholders’ 
need including modeling purposes, simulation technologies, 
constrains of simulation target and etc. Then based on 
requirement we can select different feature model to describe 
design targets, simulation targets, optimization targets, system 
descriptions and simulation settings. System description 
diagrams can connect to different function model then extend 
to component diagrams of structure models. Each component 
block maps to the specified physical system model on the forth 
layer. Different simulation target and optimization target block 
can be achieved corresponding verification model and 
optimization model which are constructed by behaviors model. 
Each behavior model connects to the corresponding set of 
services to run the simulation process automatically. 
Simulation setting models in feature diagram can describe all 

the information during simulation including simulation type, 
tool selection, communicational time step point, solver type 
and so on. Each data model represents sets of parameter for the 
corresponding physical system model. 

D. Physical model and data model layer (Technology layer) 
In this paper, each sub-system component model can be 

uploaded into the library as a FMU or a component of co-
simulation model. A master engine should be designed to 
master the co-simulation procedure between different physical 
system models. Now the solver of Matlab\Simulink is used to 
control the co-simulation and S-function is designed as an 
interface. Each physical system model has its own connections 
to the component diagrams in the third layer [10]. 

E. Comparion with other modelling frameworks or projects 
1) C2WT Framework 
C2WT (Command and Control Wind Tunnel) is a model-

based multi-model integration platform which is from a project 
of American Air Force Research Laboratory. Actually, it’s a 
framework based on Run-Time Infrastructure (RTI) of HLA 
[11]. In [12], this framework can support RTI to control FMU 
to run the co-simulation. They have their domain specified 
language (DSL) to configure and control the simulation. 
However, the DSL can only describe the model structures and 
configuration which cannot satisfy the demand for information 
integration and MBSE approach.  

2) DESTECS Project 
DESTECS (Design Support and Tooling for Embedded 

Control Software) is an EU project developed for fault-tolerant 
embedded systems design. They have a co-simulation engine to 
control co-simulation process between 20-sim for continuous 
system model and Overture tools based on Vienna 
Development Method for discrete-event models. An integrated 
development environment has been developed to integrate such 
physical system models [13]. However, this project has 
limitation for embedded system and is short for information 
integration during the whole life cycle. 

3)  WSAF Project 
WSAF (Whole-of-System Analytical Framework) is a 

project running by Australia and New Zealand. In [14], the 
author introduces a model-based way to share contractual 
contents between acquirers and suppliers and provides several 
requirements for such technology. In this paper, only 
architectural model including requirements and functions has 
been used for information exchange. The physical system 
model has not been used for information exchange which 
means integrated system performance cannot be analyzed in 
the initial phase of the whole life cycle. 

4) ModelicaML  
ModelicaML is a UML profile and a language extension for 

Modelica. It’s a good way to connect requirements with 
physical system simulation by Modelica language to verify if 
the system can satisfy the requirements which are built by 
UML[15]. In general, based on several industrial 
investigations, many industrial firms like to choose the co-
simulation way for their model-integration rather than 
Modelica language. This is because time and financial 



consumption for training programs and model-rebuild. So this 
method has practice restrictions which will influence on its 
future application. 

5) CERTI  
CERTI is an HLA RTI developed since 1996 by ONERA, 

the French Aerospace Lab. It’s an open source project for HLA 
usage. There is no DSL support, but an open source RTI is 
provided in this project. 

6) CRYSTAL 
The ARTEMIS Joint Undertaking project CRYSTAL 

(CRitical sYSTem engineering AcceLeration) takes up the 
challenge to establish and push forward an Interoperability 
Specification (IOS) and a Reference Technology Platform 
(RTP) as a European standard for safety-critical systems[18].  

This project has some investigation to show tool-
integration’s consistency, the methodology of co-simulation 
was also covered to be tested and applied within the frame. 

From such projects, we can find such framework which can 
cover models and tool-integration is really needed for current 
industries. As we see, SPIT framework has a more clearly 
structures for MBSE technologies, data-integration, tool-
integration and service-oriented web deployments. 

V. USER CASE FOR PHYSICAL SYSTEM MODEL 
DESCRIPTION 

VVcaseStructure Model Interface 
Design

Meta-edit

Create Simulink Model and 
insert interface block of FMU

S-function for interface
, info of FMU

Set parameter for models 
and run simulation

Simulink 
Model

Environment configuration
Open Carmaker select 

carmaker model, configue FMU
Define task based on parameter 

setting and solver setting

Automatically run simulation based on tasks

Auto- generate

Run M-script

Co-simulation 
Execution Strategy

Configure the co-
simulation Environment

 

FIGURE 7 SIMULATION DESCRIPTION MODEL AND CO-SIMULATION 
EXECUTION 

We want to use a test case to understand the clear 
requirements for SPIT framework. So we use MetaEdit to build 
the SDL and use the code-generator in MetaEdit to produce the 
M-script in Matlab to run the co-simulation execution 
automatically. 

So we use the test case mentioned in Chapter 3 to build a 
Simulation Description Model to capture the information for 
co-simulation process as shown in Figure 9. Function design 
architecture diagram demostrated the structure of co-simulation 
model. Interface design diagram showed the interface for the 
assigned FMU. Co-simulation Strategy diagram was created to 
configure co-simulation environment and VVcase diagram 
presented the parameter setting and solver setting for each task 
in this scenarios. Then Meta-edit uses such diagram model to 
automatically produce the M-script to control the Co-
simulation. Function design architecture diagram produced the 
M-script to create Simulink models and insert the FMU block 
in Simulink. Interface design diagram produced the S-function 
for the assigned FMU and set the FMU block in Simulink. The 
M-Script which produced by Co-simulation strategy diagram 

was used to execute co-simulation environment configuration. 
VVcase diagram produced the M-Script for parameter setting 
in Simulink Model. 

A. Testcase for SDL in MetaEdit 
We have four models in MetaEdit as Figure 9 shows. In 

Figure 10, the model describes the co-simulation execution 
strategy as operation model. The information of FMUs, 
subsystem models and tools which will be used in this co-
simulation will be described and now we can fill such 
information by hand. 

 

FIGURE 8 MODELS IN META-EDIT 

As Figure 10 shows, the top structure model in Simulink 
for this autobreaking user case is built in MetaEdit. Each block 
describes a subsystem block in Simulink which has been put in 
the Simulink library. 

The VVcase model in Figure 10 describes different solver 
settings and parameters for the same co-simulation model. In 
each task, different solver and parameter configurations can be 
finished by the parameter blocks.  

In Figure 10, the interface model is used to describe to S-
function for FMUs which will be used for the autobreaking test 
case. It includes the methods for the S-functions and all the 
function codes in each method. We need to fill some 
information for the interface by hand to produce the s-function 
code automatically.  

 

FIGURE 9 INTERFACE MODEL FOR FMUS 



B. Automatic Execution for co-simulation 
We design the Code-generator in the MetaEdit. Based on 

the models we built in the Meta-Edit and the information we 
fill by hand, the M-script in Figure 9 will be produced. 

C. Physical system model in Simulink 
In Figure 11, a Simulink model has been automatically 

produced by M-script and block library which we built. 

Then we run the M-script produced by VVcase and co-
simulation task is running automatically. During co-simulation 
process, Carmaker model is running as Figure 12. A front-end 
window has been designed for verifying the simulation result 
online and simulation result data has been stored in .mat files 
as Figure 13. 

 

FIGURE 10 SIMULINK MODE FOR AUTOBREAKING TESTCASE 

 

FIGURE 11 CARMAKER MODELS 

 

FIGURE 12 FRONT-END FOR VERIFICATION FOR AUTOBREAKING CASE 

D. Result 
As Table 2 shows, we have three different tasks for 3 tests. 

Each test has different parameters for each models based on 
various situations. After co-simulation executions, results are 
shown as Figure 17. 

TABLE 2 TEST CASE FOR AUTOBREAKING CASE 

 

 

FIGURE 13 SIMULATION RESULT FOR 3 TESTS 

VI. DISCUSION 
In the whole lifecycle collaboration of the SPIT framework 

for MBSE, several sections, such as design space exploration, 
system validation, searching for models, will need model 
management, information exchange and data management. We 
take an example of scenarios which OSLC can be used for the 
whole SPIT framework. As Figure 18 as an example, if we use 
the web deployments to execute the design process for SOS by 
co-simulation, the information exchange, co-simulation trigger,  
and simulation result verification can be achieved by OSLC 
technology. 

SDL
RTI (HLA)

FMUs

FMUs

FMUs

Requirement
Uescriptions

Execution of
co-

simulation

V&V test 
case

Web 
deployments

Trigger

Time 
management

Results

Data exchangeInformation 
Exchange

OSLC Job

 

FIGURE 14 SCENARIOS FOR OSLC JOBS 

VII. CONCLUSION AND FUTURE WORK 
From the test case, we can see Simulation Description 

Modeling Language can be used to describe the basis 



information for co-simulation. The structure model captures the 
components in top system model which connected with all the 
subsystem models. Integrated behavior model describes the 
procedure of co-simulation. VVcase shows a scenario for the 
autobreaking test case with parameter setting and simulation 
setting. Interface Design Model demonstrates the approach of 
interface design. That means graphical model can be used to 
describe the co-simulation process and control the simulation 
running automatically. In the future, we will improve our 
project from four aspects. Firstly, OSLC will be adapted in this 
framework in order to strength the capabilities for information 
exchange between different models and layers. Secondly, a 
special master (RTI) will be designed to control different 
FMUs and commercial software for co-simulation [11]. 
Thirdly, a domain specified modeling language will be 
designed to capture all the information for co-simulation. The 
last, requirements from business process model should be 
dependent to ones in simulation description model. 
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