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Abstract— Low frequency propagation in shallow water is
described by modal theory. One challenge has been to extract
information about the modes in order to localize an acoustic
source and/or characterize the propagation medium. This article
presents a method for extracting modal arrival times using
a single receiver. This method is illustrated on experimental
small scale data recorded in an ultrasonic tank. Adaptive signal
processing, based on time and frequency warpings, is applied to
overcome limitations given by time-frequency overlap of modal
field contributions.

I. I NTRODUCTION

In this paper, we considere broadband propagation at low
frequency (0- 150Hz) in shallow water (0-400m) with a single
receiver. Although it is a classical configuration for underwater
acoustics, it is still a challenging problem when coupled with
single receiver. According to normal mode theory [1] [2], the
modal components comprising the pressure field propagate
dispersively, both dispersing from one another according to
mode number (called intermodal dispersion) and dispersing
individually according to frequency (called intramodal disper-
sion). Due to these effects of dispersion, highly pronounced
at low frequency, arrival times of a given mode differing for
each frequency are used for localization or inversion scheme.
In shallow water and for a source/ receiver distance smaller
than20 km, modes are not well resolved and arrive together
on the receiver. In this case, only few methods providing
pseudo-automatic extraction are available in the literature and
require iterative processing [3], [4]. We propose an automatic
estimation of the modal arrival times that requires no a priori
information about the environment and its application on
experimental small scale data.

In this paper, modal propagation (section II) is briefly
reviewed, and it is shown that modal information is embedded
in time-frequency domain although not easily accessible. In
section III, signal processing tools as warping methods in time
and frequency domains are presented as a solution to adapt
the received signal to classical time-frequency representations.
Then, section IV presents the estimation of the modal arrival
time. Finally, last section presents the application of the
estimation scheme on experimental small scale data.

II. M ODAL PROPAGATION

In shallow water, for low frequency source, the most suitable
propagation model is the normal mode theory [1]. For a

frequencyf , the transfer functionH(f) between a source
X(f) at depthzs and a signalY (f) recorded on a receiver at
a depthzr separated by a radial distancer can be expressed
as:

H(f) ≈ Q

N
∑

m=1

Ψm(f, zs)Ψm(f, zr)
ejkrm(f)r

√

krm(f)r
(1)

where N is the number of propagating modes,Ψm the
modal depth function of modem, krm(f) the radial wavenum-
ber of modem, and Q = ejπ/4

√
8πρ(zs)

(with ρ(zs) the water
density at the source depth).

The spectrumY (f) of the received signal (recorded at
depth zr) is given by Y (f) = H(f)X(f), with X(f)
the source spectrum (emitted at depthzs). Considering an
impulsive source (its spectrum is almost flat for the considered
frequencies), meansY (f) ≈ H(f). In this case, signal in time
y(t) is given by the inverse Fourier Transform ofY (f). As
Y (f) is a sum ofN terms,y(t) is also a sum ofN terms
written as:

y(t) =

N
∑

m=1

Am(t)ejϕm(t) (2)

whereAm(t) can be interpreted as the instantaneous amplitude
of the modem and Φm(t) as its instantaneous phase. As a
matter of simplicity, we rewrite Eq. (1) as

Y (f) =

N
∑

m=1

Bm(t)ejΦm(f). (3)

Both Y (f) and y(t) are multicomponent and complex func-
tions describing the same signal. They carry exactly the same
information.

For each modem, a group velocityvgm describing the
propagation speed of energy is defined as:

vgm(f) = 2π
∂f

∂krm

(4)

As it depends both on frequencyf and mode indexm, each
frequency of each mode travels at its own speed (dispersive
propagation). To extract information of the single received
signal, the different modes have to be distinguished. To extract
information of the single received signal, the different modes
have to be distinguished. If the distance between source and



receiver is big enough (more than 20 km in a classical shallow
water waveguide), the modes are perfectly separated in time,
and no further treatment is needed. In our case of short
distance between source and receiver, modes overlapped in the
received signal: for a given time, several modes coexist. As
they also share a frequency band, it is not possible to separate
them, neither in time nor in frequency domain.

To overcome this problem, the signal will be studied in
the (joint) time-frequency domain. In fact, an Ideal Time-
Frequency Distribution [5] of the modesITFD can be given
using the notion of group delayτm:

ITFD(ω, t) =
∑

m

δ[t + τm(ω)], (5a)

τm(ω) =
∂Φm(ω)

∂f
= −

r

vgm(ω)
, (5b)

where vgm is the group velocity of modem. This ITFD,
presenting the modal arrival times, carry information about
the source localization (radial distancer) and about the
environment (via the group velocities which are related to the
wavenumbers). Equation (5b) assumes that source emission
time is t0 = 0. In other world, emission time and reception
time are supposed to be synchronized.

Note that in an ideal waveguide (pressure release surface
and rigid bottom), previous equations can be explicitely ex-
pressed. In particular, phases of the signal, both in time and
frequency domain are [2]:

ϕid
m(t) = 2πfcmξ(t) , ξ(t) =

√

t2 − t2r ; (6a)

Φid
m(f) = 2π

r

c

√

f2 − f2
cm, (6b)

with tr = r/c the time of first arrival on the receiver andfcm

the cutoff frequency of modem.

III. WARPING TRANSFORMATIONS

Because of time-frequency representation inherent limita-
tions, automatic estimation of modal group delay is impossible
without adapted signal processing. In our study, the received
signal is transformed (warped) so that it can be represented
using classical time-frequency representations. The aim of
warping is to undo dispersion. To do that, warping transforms
are based on a simple propagation model: the isovelocity
waveguide. However, warping transformations are quite ro-
bust. Warping can by apply with canonical parameters on
any shallow water received signal, even when environment
is unknown. Note that by nature, warping transformations
conserve energy and are invertible.

In our study, the received signal is transformed (warped)
so that it can be represented using classical time-frequency
representations. Mathematically, the warping transformation is
mainly a substitution. Let consider a functiong of the variable
x. The warped versionWhg of g is given by:

Whg(x) =

√

∣

∣

∣

dh(x)

dx

∣

∣

∣
g[h(x)] (7)

with h the warping function. The variablex is substituted by
h(x), and g[h(x)] is multiplied by the square root term so

that Whg andg have the same energy. This allows a warping
interpretation in term of unitary equivalence [6].

In our case,g is the received signal (in time or in frequency
domain), andx can be timet or frequencyf . Consequently,
warping is equivalent to stretch one axis of the signal:t or
f . To take benefits of time-frequency representations, warping
is defined so that the modal structure becomes linear in the
time-frequency plan. A warped mode will be a straight line
(horizontal or vertical, depending of warping type) in the
time-frequency plan and classical time-frequency representa-
tions will easily be used. Time warping (means time axis
is stretched) makes all modes horizontal in time-frequency
domain as a warped mode is now a pure frequency ; frequency
warping (frequency axis is stretched) makes a mode horizontal
in time-frequency domain as the warped mode is now a Dirac
function in time.

First, an adequate warping function has to be defined for
each type of warping. In order to do so, as model of the envi-
ronment is required, we choose the ideal waveguide. Indeed,it
exists an analytical formulation of the warping functions in this
case. Although the ideal waveguide modelisation is simplistic,
the corresponding warping functions can be used on signals
recorded in more realistic environments. We will prove it in
next sections on experimental data.

A. Frequency warping

The aim of frequency warping is to undo intramodal dis-
persion. The warping function defined as:

wm(f) =
√

f2 + f2
cm (8)

depends on the mode numberm, which means that modes
have to be warped one by one. In an ideal waveguide, the
warped spectrum (for a chosen modem) is then:

Wwm
Y id(f) =Dm(f)ej2π r

c f

+
∑

i6=m

Di(f)ej2π r
c

√
f2+f2

cm−f2

ci (9)

whereDm is a real functions giving the spectrum amplitude of
the warped modem. For the modem, the phase of its spectrum
2π r

c
f is linear in frequency. This mode is a Dirac in time and

all its energy is concentrated on the timetr = r/c which
corresponds to the direct path propagation time. The other
modes are also warped but they are still spread in time (and
thus different from a Dirac). Consequently, their amplitude is
considerably smaller than the amplitude of the modem.

So after warping transformation, a given mode is trans-
formed into a Dirac, canceling dispersion effect. Note that
frequency warping operates on the spectrum of the received
signal and does not require emission and reception time
synchronization.

B. Time warping

The aim of time warping is to separate modes in time
frequency domain [7].

For the ideal waveguide case, the warping function is:

h(t) =
√

t2 + (r/c)2 = ξ−1(t). (10)



We can notice that this warping function does not depend on
the mode numberm, which means that all modes are warped
at once. In an ideal waveguide, the result of time warping is

Whyid(t) =

N
∑

m=1

Cm(t)ej2πfcmt (11)

where Cm(t) =
√

h′(t) Am[h(t)] is the instantaneous am-
plitude of the warped modem. For each warped mode, the
instantaneous phase2πfcmt is now linear in time as a pure
frequency. Therefore, the warped signal contains only pure
frequencies as every modes are transformed into sinusoids
(pure frequencies). Classical time-frequency representations
are adapted to represent it, and it will be very easy now
to separate warped modes with classical filters. Note that
time warping operates directly on the received signal in
time domain, and required the reception and emission time
synchronization.

IV. M ODAL ARRIVAL TIME ESTIMATION

In this section, we present an algorithm to extract modal
arrival times from a received signal by warping processing
and then build the time-frequency pattern of the signal i.e.the
ITFD presented in section 2. The modal arrival time estimation
are extracted using the following tree step algorithm.

1) Detection of the signal using frequency warping (direct
path arrival time estimation)

2) Modal filtering using time warping information (adap-
tive filtering)

3) Modal arrival times extraction

A. Detection of the signal using frequency warping

Frequency warping is blindly and recursively applied on
the spectrum of the received signal until a mode become as
a Dirac as possible. This mode in concentrated around time
tr = r/c while other modes are more spread in time. This
allow to estimate the time of first arrival and to synchronize
emission and reception times.

B. Time warping and modal filtering

The previous estimation allows to synchronize source and
receiver times. Time warping can now be applied. Warped
modes ideally become pure frequencies. This is not true as
warping model is based on ideal waveguide and recorded
signal often comes from a more complicated environement.
At worse, warped modes are more resolved on time-frequency
domain than non-processed mode. They can easily be fil-
tered using a simple time-frequency threshold. Each filtered
(warped) mode is then unwarped using the inverse time
warping.

C. Modal arrival time estimation

Modal arrival time estimation is done on each filtered mode
using reallocated spectrogram [8]. This is a suitable tool when
the modes are separated.

V. A PPLICATION TO EXPERIMENTAL DATA

To clarify the presentation, the previous algorithm is applied
on small scale experimental data. These data were recorded
in an ultrasonic tank at Laboratoire de Géophysique Interneet
Tectonophysique in Grenoble (France). Indeed, to change scale
in an underwater acoustics experiment, one only have to keep
the ratio distance / wavelenght. Thus, to go from the tank scale
to the oceanic scale, distance (water depth, source/receiver
separation) has to be divided by a factorN , and frequency
has to be divided by the sameN

A. Experimental protocol

The waveguide is made up from a water column over a
stainless steel bottom. The waveguide parameters are then :

• Water column : sound speedc1 = 1480 m.s−1, density
ρ1 = 1000 kg.m−3, depthD ≃ 230 mm.

• Bottom (stainless steel) : sound speedc2 = 5800 m.s−1,
densityρ2 = 7900 kg.m−3.

Source/receiver separation isr ≃ 112 cm. The source is
impulsive (central frequencyfc ≃ 0.5 MHz, bandwidth
B ≃ 0.4MHz), and sampling frequency isFs = 10 MHz.
The experimental waveguide can be considered as a Pekeris
waveguide. By choosing the scaling factorN = 1000, this
experiment corresponds to a classical low frequency at-sea
experiment in shallow water. Figure 1 presents the tank used
for the experiment.

Fig. 1. The tank used for the small scale experiment

Note that from now, time and frequency axis of the figures
are scaled by a factorN = 1000 so that they correspond to
the classical oceanic scale.

B. Experimental results

Data were recorded on an 10 element horizontal array of
hydrophone, sampling the upper part of the water column from
the surface to the depthz ≃ 150 mm. The corresponding field
is represented on Fig. 2. One can see that only mode 1 is
slightly resolved in time. Other modes can not be detected. To
apply our estimation algorithm, we select the field recorded
on a single receiver (depthz ≃ 100mm). Figure 3 presents
the spectrogram of the original recorded signal. In this time
frequency domain, some mode can be seen but their pattern
is not clear. We apply on this signal the modal arrival time
estimation scheme presented in section IV.
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Fig. 2. Field recorded in the tank using a vertical array
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Fig. 3. Spectrogram of the signal recorded on sensor at depth100mm and
corresponding estimated modal arrival times

1-Detection of the signal using frequency warping :
figure 4 presents the spectrogram of the signal after frequency
warping. One can see that mode 2 is warped. This mode is
characterized and focused as a "‘Dirac structure"’ at time 0.3 s
with an high level of energy, while mode 1 lays on its left and
mode 3 is on its right with a lower level of energy. Estimation
of the arrival time is now greatly eased.
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Fig. 4. Spectrogram of recorded signal after frequency warping on mode 2.
Mode 2 is streched into a Dirac structure.

2-Time warping and modal filtering : figure 5 presents
the spectrogram of the signal after time-warping. All modes
are streched into nearly pure frequency structure and can be
easy filtered by classical technique.
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Fig. 5. Spectrogram of recorded signal after time warping. All modes can
be characterized as almost pure frequency structure.

3-Modal arrival time estimation : reallocated spectrogram
of each filtered mode is computed, and the final result of
this estimation is superimposed on Fig. 3. One can see
that although modal resolution is pretty bad in the original
spectrogram, our method allows an accurate estimation of the
modal arrival time. This processing has also been successfully
tested on synthetic dataset to test its precision. The extracted
arrival time can be used as an input for geoacoustic inversion,
as presented in [9].

CONCLUSION

This paper presents propagation based signal processing
tools. They allow passive estimation of modal arrival times.
These arrival times carry information about environment and
can be used in a single receiver inversion scheme.
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